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» Starting from an arbitrary Coxeter group W, one can
define By, Hyy, canonical bases, ...
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» In terms of the classical Garside structure on B,,, the
set {wW}yce, is the set of simple elements of the
positive braid monoid B, (=building blocks of the
Garside normal form).

» There is another Garside monoid for B,,, the
Birman-Ko-Lee or dual braid monoid B;:. The simples
of B} are in bijection with noncrossing partitions.

» Let NC denote the simple dual elements. Their images
under ¢ form a linearly independent subset of H,,. In
fact, they form a basis of a famous quotient of H,,, the
Temperley-Lieb algebra (Zinno 2002, Lee-Lee 2004).
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> Let G be a group. For n > 2, there is an action of B,
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(preserves the product of the elements in the n-tuple).
» Let G = B,,. One can show that (01,...,0,-1) has a
finite orbit under the action of B,,_.
» A simple dual braid is an element of the form ¢ty ---t;,
0<i<n-—1, where
(tl,tQ, . ,tn—l) S Bn—l . (0'1,0‘2, . 70'n—1)-
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(G152 Gim1s Git 15 G1 9iGi41 Git 25 - - - > Gn)-

(preserves the product of the elements in the n-tuple).
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0<i<n-—1, where
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» Example: For n = 3, one has
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> Let G be a group. For n > 2, there is an action of B,
on the set of n-tuples of elements of G-

i (91 Gi=1, 9> Git1, Git2s - - -+ 9n) =
(G152 Gim1s Git 15 G1 9iGi41 Git 25 - - - > Gn)-

(preserves the product of the elements in the n-tuple).

» Let G = B,,. One can show that (01,...,0,-1) has a
finite orbit under the action of B,,_.

» A simple dual braid is an element of the form ¢ty ---t;,
0<i<n-—1, where
(tl,tQ, . 7tn—1) S Bn—l . (0'1,0‘2, . ,O‘TL_l).

» Example: For n = 3, one has

By - (01,02) = {(01,02), (02702_10102)7 (02_10102701)}-

The simple dual braids are 1,01,02,0510102,0102.
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» The SDB generate the Birman-Ko-Lee braid monoid
B, It is a Garside monoid (BKL 1997). Note that
B C B:.

» Simple dual braids in B are in bijection with
noncrossing partitions of {1,2,...,n}.
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Dual braid monoids, Il

» The SDB generate the Birman-Ko-Lee braid monoid
B, It is a Garside monoid (BKL 1997). Note that

B C B:.
» Simple dual braids in B are in bijection with
noncrossing partitions of {1,2,...,n}.
» Generalisations: the dual braid monoids (Bessis 2001):
» Replace (01,02,...,0,-1) by
(0r(1),07(2)> - -+, Or(n-1)), Where 7 € &,,_1. (equiv. to

choosing a Coxeter element ¢ in G,,). The obtained
monoid B} is conjugate to B}, inside B,,.

» Replace the symmetric group &,, by any Coxeter group
W and B,, by By . (Warning: the isomorphism type of
B will depend on ¢ in general when W is infinite).

» Define the c-simple dual braids (c-SDB) in B in the
exact same way as for B .
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» Let n > 3. The Temperley-Lieb algebra TL,, is a
quotient of H,. It is a free Z[v*!]-module with a
(diagrammatic) basis {by, },, indexed by certain o
permutations w € &,, (called 321-avoiding). Tenpn e
» Fan and Green (1997) showed that, denoting by 6 the
quotient map H,, — TL,,, we have

0(C.) = 0 if w is not 321-avoiding,
YT (=) ®)p,, if w is 321-avoiding

> Let ¢ denote the composition B, RN Hn ﬁ) TL,.
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Temperley-Lieb algebras and dual braid monoids

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in &,,. The images of the c-SDB of
B’ under 1) yield a basis of TL,,, and there is a triangular
base change matrix to {by } -
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» Given = a ¢-SDB, computer calculations were
suggesting that
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Temperley-Lieb algebras and dual braid monoids

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in &,,. The images of the c-SDB of
B’ under 1) yield a basis of TL,,, and there is a triangular
base change matrix to {by } -

» Given = a ¢-SDB, computer calculations were
suggesting that

U(z) € > e (—1)" by,
w 321—avoiding
> Since §(C,) is either 0 or (—1)“®)b,,, to obtain the

above property it is enough to show that

p(z) € > Zxo™Cy. (1)
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Temperley-Lieb algebras and dual braid monoids

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in &,,. The images of the c-SDB of
B’ under 1) yield a basis of TL,,, and there is a triangular
base change matrix to {by } -

» Given = a ¢-SDB, computer calculations were
suggesting that

dye D et (=) by,
w 321—avoiding

> Since §(C,) is either 0 or (—1)“®)b,,, to obtain the
above property it is enough to show that

p(z) € > Zxo™Cy. (1)
weS,

» Note that (1) can be asked for an arbitrary Coxeter
group W with attached Artin-Tits group Byy ...
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Two questions

» Dyer (1987) conjectured that for an arbitrary Coxeter

group W and z,y € W, we have
o(xy 1) = T:,;Ty_1 € Z Zo[v]Ch.
weW

Dyer and Lehrer (1990) showed (2) for finite Weyl
groups.

()

2-braid groups and
positivity
phenomenons in
Hecke and
Temperley-Lieb
algebras

Thomas Gobet

Two questions



Two questions

» Dyer (1987) conjectured that for an arbitrary Coxeter
group W and z,y € W, we have

pxy ) =TT € Y Zoo™Cuw. (2)
weW

Dyer and Lehrer (1990) showed (2) for finite Weyl
groups. Elias and Williamson (2012) showed it with
y = 1 for arbitrary W.
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» Dyer (1987) conjectured that for an arbitrary Coxeter
group W and z,y € W, we have

pxy ) =TT € Y Zoo™Cuw. (2)
weW
Dyer and Lehrer (1990) showed (2) for finite Weyl
groups. Elias and Williamson (2012) showed it with
y = 1 for arbitrary W.

» Hence to show (1) at least for W a finite Weyl group, it
is enough to positively answer the following question:
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» Dyer (1987) conjectured that for an arbitrary Coxeter
group W and z,y € W, we have

pxy ) =TT € Y Zoo™Cuw. (2)
weW

Dyer and Lehrer (1990) showed (2) for finite Weyl
groups. Elias and Williamson (2012) showed it with
y = 1 for arbitrary W.

» Hence to show (1) at least for W a finite Weyl group, it
is enough to positively answer the following question:

Question 1: Are simple dual braids always of the form
xy 17?7
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» Dyer (1987) conjectured that for an arbitrary Coxeter Sy oAty
group W and z,y € W, we have Thomas Gobet
pxy ) =TT € Y Zoo™Cuw. (2)
weW
Dyer and Lehrer (1990) showed (2) for finite Weyl
groups. Elias and Williamson (2012) showed it with
y = 1 for arbitrary W. Two questions

» Hence to show (1) at least for W a finite Weyl group, it
is enough to positively answer the following question:

Question 1: Are simple dual braids always of the form
xy 17?7

To get the statement at least for all the finite Coxeter
groups, we can also consider the following:

Question 2: Is Dyer’s conjecture true for arbitrary
Coxeter systems 7
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Mikado braids

» Let us focus on type A,,_1 for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,
2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other

strands, and such that removing this strand yields a
braid 5’ € B,_1 which is Mikado.

2-braid groups and
positivity
phenomenons in
Hecke and
Temperley-Lieb
algebras

Thomas Gobet

Mikado braids



Mikado braids e

phenomenons in
Hecke and
Temperley-Lieb
» Let us focus on type A,,_1 for the moment. -

Thomas Gobet

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,

2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other
strands, and such that removing this strand yields a Mifizls rettds
braid 5’ € B,_1 which is Mikado.
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Mikado braids

» Let us focus on type A,,_1 for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,

2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other
strands, and such that removing this strand yields a
braid 5’ € B,_1 which is Mikado.
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We define Mikado braids by induction on n as:
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» Let us focus on type A,,_1 for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,

2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other
strands, and such that removing this strand yields a
braid 5’ € B,_1 which is Mikado.
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» Let us focus on type A,,_1 for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,

2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other
strands, and such that removing this strand yields a
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» Let us focus on type A,,_1 for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,

2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other
strands, and such that removing this strand yields a
braid 5’ € B,_1 which is Mikado.

/
X7

2-braid groups and
positivity
phenomenons in
Hecke and
Temperley-Lieb
algebras

Thomas Gobet

Mikado braids



Mikado braids

» Let us focus on type A,,_1 for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,

2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other
strands, and such that removing this strand yields a
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» Let us focus on type A,,_1 for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:
1. The trivial braid in By is a Mikado braid,
2. A braid S € B, is a Mikado braid if there exists a braid
diagram for S with a strand lying above all the other
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A braid 3 € B,, is Mikado iff there are z,y € &,, such that fhomes Gebet

B =xy ! (iff there are u,v € &,, such that 3 =u"'v) Vst
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Mikado braids, Il

Proposition (Digne-G., 2015)

A braid 5 € B,, is Mikado iff there are x,y € &,, such that
B =xy~! (iff there are u,v € &,, such that 3 =u~'v)

» Dyer gave the following definition. Let (W, .S) be a
Coxeter group with set of reflections T and root system
®. Let A C ®T be a biclosed set of positive roots and
let T4 C T be the corresponding set of reflections. Let
x € W, let s189 - s be a reduced expression of x and

let
Ty =si'sy - sk,
where ¢, = —1 if sgSk_1---8;Si+1-- S € Ta and 1

otherwise. Then x4 is well-defined.
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Mikado braids, Il

Proposition (Digne-G., 2015)

A braid 5 € B,, is Mikado iff there are x,y € &,, such that
B =xy~! (iff there are u,v € &,, such that 3 =u~'v)

» Dyer gave the following definition. Let (W, .S) be a
Coxeter group with set of reflections T and root system
®. Let A C ®T be a biclosed set of positive roots and
let T4 C T be the corresponding set of reflections. Let
x € W, let s189 - s be a reduced expression of x and

let
Ty =si'sy - sk,
where ¢, = —1 if sgSk_1---8;Si+1-- S € Ta and 1

otherwise. Then x4 is well-defined.

» Call an element x4 a Mikado braid. It is not hard to see
that braids of the form xy ! or u=!v are Mikado, and
that in spherical types both definitions are equivalent.
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In spherical types, simple dual braids are Mikado braids.
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Mikado braids and SDB

Theorem (Digne-G. 2015 conjecture + proof except D,
Licata-Queffelec 2017 ADE, Baumeister-G. 2017 D,,)

In spherical types, simple dual braids are Mikado braids.

» All these proofs give an algorithm to expess a SDB as a
Mikado braid rather than an explicit formula.
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Mikado braids and SDB

Theorem (Digne-G. 2015 conjecture + proof except D,
Licata-Queffelec 2017 ADE, Baumeister-G. 2017 D,,)

In spherical types, simple dual braids are Mikado braids.

» All these proofs give an algorithm to expess a SDB as a
Mikado braid rather than an explicit formula.

Theorem (Formula expressing the SDB in the standard
Artin generators; G., 2018)

Let 3 be a SDB in a spherical type Artin group with choice
of Coxeter element c. Let x be its image in W. Then

B8 =z, where A can be explicitely defined using Reading’s
c-sortable elements.
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» Let (IW,S) be a Coxeter group and V' a reflection
faithful representation of W. Let R = S(V*).
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Soergel bimodules

» Let (W, S) be a Coxeter group and V' a reflection
faithful representation of W. Let R = S(V*). For
s € S consider the graded R-bimodule R ®ps R where
RS:={re R|s(r)=r}andlet By :== R®pgs R(1)
(grading shift).
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» Let (W, S) be a Coxeter group and V' a reflection
faithful representation of W. Let R = S(V*). For
s € S consider the graded R-bimodule R ®ps R where
RS:={re R|s(r)=r}andlet By :== R®pgs R(1)
(grading shift).

» Given an expression $153 - - - S, Where s; € S, consider
the Bott-Samelson bimodule B;, ® g Bs, g -+ - QR Bs,..
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Soergel bimodules

» Let (W, S) be a Coxeter group and V' a reflection
faithful representation of W. Let R = S(V*). For
s € S consider the graded R-bimodule R ®ps R where
RS:={re R|s(r)=r}andlet By :== R®pgs R(1)
(grading shift).

» Given an expression $153 - - - S, Where s; € S, consider
the Bott-Samelson bimodule B;, ® g Bs, g -+ - QR Bs,..

» Let B denote the additive, Karoubian category
generated by (shifts of) Bott-Samelson bimodules.
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Soergel bimodules

» Let (W, S) be a Coxeter group and V' a reflection
faithful representation of W. Let R = S(V*). For
s € S consider the graded R-bimodule R ®ps R where
RS:={re R|s(r)=r}andlet By :== R®pgs R(1)
(grading shift).

» Given an expression $153 - - - S, Where s; € S, consider
the Bott-Samelson bimodule B;, ® g Bs, g -+ - QR Bs,..

» Let B denote the additive, Karoubian category
generated by (shifts of) Bott-Samelson bimodules.

» Soergel showed that the indecomposable bimodules in
B are (up to grading shift) indexed by the elements of
W, say { By }wew-
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Soergel bimodules

» Let (W, S) be a Coxeter group and V' a reflection
faithful representation of W. Let R = S(V*). For
s € S consider the graded R-bimodule R ®ps R where
RS:={re R|s(r)=r}andlet By :== R®pgs R(1)
(grading shift).

» Given an expression $153 - - - S, Where s; € S, consider
the Bott-Samelson bimodule B;, ® g Bs, g -+ - QR Bs,..

» Let B denote the additive, Karoubian category
generated by (shifts of) Bott-Samelson bimodules.

» Soergel showed that the indecomposable bimodules in
B are (up to grading shift) indexed by the elements of
W, say { By }wew. He showed that the split
Grothendieck ring (B) of B is isomorphic to the Hecke
algebra Hyy of W, and conjectured that the class (B,,)
of B,, corresponds to the element C/, of Hyy.
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Soergel bimodules, Il

» Elias and Williamson (2012) showed Soergel's
conjecture, which implies that

Cl, € > Zo[v]Ty,. (KL positivity)
yeWw

They also showed that

T, € Z Z>o[vFYC,  (Inverse KL positivity)
weW
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» Elias and Williamson (2012) showed Soergel's
conjecture, which implies that

Thomas Gobet

Cl, € > Zo[v]Ty,. (KL positivity)
yeWw

They also showed that

T, € Z Z>o[vFYC,  (Inverse KL positivity)
weW

Soergel bimodules

» In the first case, the coefficients are interpreted as
graded multiplicities in filtrations of By, (recall that
(By) = C},). In the second case, the coefficients count
the number of occurrences of B,,'s in a chain complex
of Soergel bimodules categorifying 7.
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» Consider the bounded homotopy category K°(B) of B.
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Categorification of Artin-Tits groups

» Consider the bounded homotopy category K°(13) of B.

Consider the complex

*

F, : 0— B, — R(1) = 0 € KB),

where the nontrivial map is a ® b — ab.
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Categorification of Artin-Tits groups

» Consider the bounded homotopy category K°(13) of B.

Consider the complex
*

F, : 0— B, — R(1) = 0 € KB),

where the nontrivial map is a ® b — ab.

» The complex F; has an inverse E, in K°(B) for the
tensor product of complexes. It is given by

*

Es; : 0— R(—1) - B; — 0,

for a suitable map in the middle.
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» Consider the bounded homotopy category K°(13) of B.

Consider the complex

*
F, : 0— B, — R(1) = 0 € KB),
where the nontrivial map is a ® b — ab.
» The complex F; has an inverse E, in K°(B) for the

tensor product of complexes. It is given by
*
Es : 0— R(—-1) - Bs — 0,
for a suitable map in the middle.

» Rouquier (2004) showed that it defines a conjecturally
faithful action of the Artin-Tits group By on K*(B).
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Categorification of Artin-Tits groups

» Consider the bounded homotopy category K°(13) of B.

Consider the complex

*
F, : 0— B, — R(1) = 0 € KB),
where the nontrivial map is a ® b — ab.
» The complex F; has an inverse E, in K°(B) for the

tensor product of complexes. It is given by

Es : 0— R(—-1) - Bs — 0,
for a suitable map in the middle.

» Rouquier (2004) showed that it defines a conjecturally
faithful action of the Artin-Tits group By on K*(B).

» In this way one can attach to any braid 8 € By an
object Fz € K%(B), s1s27 1 > Fy, @ Eg, @ -+ -
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B. The obtained complex may have contractible
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isomorphism of complexes) minimal complex Fé“i“ of 5.
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» Given 3 € By, one can compute Fj using any word for
B. The obtained complex may have contractible
summands. Removing them yields the (unique up to
isomorphism of complexes) minimal complex Fé“i“ of 5.

» A crucial step in the proof of inverse KL positivity is to
show that F;(]rlin is linear, i.e., that the indecomposable
summands in homological degree i are all of the form
B, (i) for various x € W (in other words, the object Fy ~ Soereel bimodules
lies in the heart of the canonical t-structure on K°(B)).
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» Example: let 8 = 09010309, then Fénin is of the form

B325152(1) B5152( )
. Biysgsz(1) Bsssz( ) B, (3)
Bisgsisgss = Bsasyss(1) = Bsysi(2) = Bs(3) — R(4)
B, (1) Biys5(2) By (3)
B525153(1) BS253( )
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B525152(1) les2( ) Motivation
* B515352(1) 35352( ) le (3) _
Buyssss = Baysyus(1) = Baye(2) = Buy(3) —R@) Dol
Ba, (1) B B o
B525153(1) B5253( ) Temperley-Lieb
algebras
» For 2,y € W and 8 :=xy ! (or x~'y), the complex Ty
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» Example: let 8 = 09010302, then Fg™ is of the form glESLES
Thomas Gobet
B525152(1) B5152 (2)
* 515352 ]‘ B5352 (2) B'51 (3)
BSZSI 5352 - 3525352 (1) - B5251 (2) - B52 (3) - R(4)
B, (1) Bisys3(2) By (3)
B525153(1) B5253 (2)

» For 2,y € W and 8 :=xy ! (or x~'y), the complex
Fjp is still linear.

» Example: let § = 02010302_1, then Féni“ is of the form

* BSS (1) Linearity and
Bs s le(l) positivity of
B > 2Bs (1) R(Q) Mikado braids
BS25351(_1)_> 5193 — B 2 1) —  Basgsy(2)
Bazen et By s,
B52535152 3525352(1)
B535152 1
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» Using the linearity of the complex Fé“in (where
B =xy~! orx~ly), one can show the following using
Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)
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Positivity of Mikado braids

» Using the linearity of the complex Fé“in (where
B =xy~! orx~ly), one can show the following using
Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

1. Let w € W. The bimodule B,, appears as a direct
summand either only in odd cohomological degrees or

only in even cohomological degrees of Féni“.
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» Using the linearity of the complex Fé“in (where Sy oAty

B =xy~! orx~ly), one can show the following using Thomas Gobet
Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

1. Let w € W. The bimodule B,, appears as a direct
summand either only in odd cohomological degrees or

only in even cohomological degrees of Féni“.

2. The coefficient of Cy, in T, T, * (or T, *T,) counts the
number of occurrences of By, in all cohomological
degrees of Fii"" together. Hence it lies in Zso[vtl), e
and Dyer’s conjecture holds for arbitrary W . Bl
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» Using the linearity of the complex Fé“in (where Te";ﬁ’;:fé’s“eb
B =xy~! orx~ly), one can show the following using Thomas Gobet

Soergel's conjecture and twisted Bruhat orders
Theorem (G. 2016)

1. Let w € W. The bimodule B,, appears as a direct
summand either only in odd cohomological degrees or
only in even cohomological degrees of Fé“i“.

2. The coefficient of Cy, in T, T, * (or T, *T,) counts the
number of occurrences of By, in all cohomological
degrees of Fé“i“ together. Hence it lies in Z>o[v*Y], Linearity and
and Dyer’s conjecture holds for arbitrary W. Bl
3. Conversely, one has C}, € > v/ Zzo[vil]TxTy_l,
where coefficients are interpreted as graded
multiplicities in a twisted filtration of B,,.
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Questions

» In particular, the answer to both Question 1 and 2 is
positive, and the base change matrix between Zinno's
basis of TL,, and the diagram basis has coefficients
which have nonnegative coefficients (up to signatures).
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» In particular, the answer to both Question 1 and 2 is algebras
positive, and the base change matrix between Zinno's Thomas Gobet
basis of TL,, and the diagram basis has coefficients
which have nonnegative coefficients (up to signatures).

» For infinite W, there are Mikado braids which are not of
the form xy ! or x 7'y (e.g. s7'tu~! in the free group
with 3 generators s, t,u). Images of these elements are
still expected to have a positive KL expansion. Can we
show this ?
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» In particular, the answer to both Question 1 and 2 is algebras
positive, and the base change matrix between Zinno's Thomas Gobet
basis of TL,, and the diagram basis has coefficients
which have nonnegative coefficients (up to signatures).

» For infinite W, there are Mikado braids which are not of
the form xy ! or x 7'y (e.g. s7'tu~! in the free group
with 3 generators s, t,u). Images of these elements are
still expected to have a positive KL expansion. Can we
show this ? (... the hard step is to check that the braid
complex is linear...)
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» In particular, the answer to both Question 1 and 2 is algebras

positive, and the base change matrix between Zinno's Thomas Gobet
basis of TL,, and the diagram basis has coefficients
which have nonnegative coefficients (up to signatures).

» For infinite W, there are Mikado braids which are not of
the form xy ! or x 7'y (e.g. s7'tu~! in the free group
with 3 generators s, t,u). Images of these elements are
still expected to have a positive KL expansion. Can we
show this ? (... the hard step is to check that the braid
complex is linear...)

» One could conjecture that only Mikado braids have a Lnearity and
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» In particular, the answer to both Question 1 and 2 is algebras

positive, and the base change matrix between Zinno's Thomas Gobet
basis of TL,, and the diagram basis has coefficients
which have nonnegative coefficients (up to signatures).

» For infinite W, there are Mikado braids which are not of
the form xy ! or x 7'y (e.g. s7'tu~! in the free group
with 3 generators s, t,u). Images of these elements are
still expected to have a positive KL expansion. Can we
show this ? (... the hard step is to check that the braid
complex is linear...)
» One could conjecture that only Mikado braids have a Lnearity and

positive KL expansion... but this would imply that the positivity of
map By — Hy, is injective...
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» In particular, the answer to both Question 1 and 2 is algebras
positive, and the base change matrix between Zinno's Thomas Gobet
basis of TL,, and the diagram basis has coefficients

which have nonnegative coefficients (up to signatures).

» For infinite W, there are Mikado braids which are not of
the form xy ! or x 7'y (e.g. s7'tu~! in the free group
with 3 generators s, t,u). Images of these elements are
still expected to have a positive KL expansion. Can we
show this ? (... the hard step is to check that the braid
complex is linear...)

» One could conjecture that only Mikado braids have a Lnearity and
positive KL expansion... but this would imply that the positivity of
map By — HVXV is injective... a weaker form would
be, at the categorified level, to conjecture that only
Mikado braids are linear...
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» In particular, the answer to both Question 1 and 2 is algebras
positive, and the base change matrix between Zinno's Thomas Gobet
basis of TL,, and the diagram basis has coefficients
which have nonnegative coefficients (up to signatures).

» For infinite W, there are Mikado braids which are not of
the form xy ! or x 7'y (e.g. s7'tu~! in the free group
with 3 generators s, t,u). Images of these elements are
still expected to have a positive KL expansion. Can we
show this ? (... the hard step is to check that the braid
complex is linear...)

» One could conjecture that only Mikado braids have a Lnearity and
positive KL expansion... but this would imply that the positvity of
map By — HVXV is injective... a weaker form would
be, at the categorified level, to conjecture that only
Mikado braids are linear... but this would show the
faithfulness of Rouquier’s action.
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