2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Institut Denis Poisson, Université de Tours

Conference Braids in representation theory and algebraic combinatorics, ICERM (Brown University), Providence, February 2022. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

• Let $n \ge 2$, let B_n be Artin's *n*-strand braid group.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

• Let $n \ge 2$, let B_n be Artin's *n*-strand braid group.

$$w = \underbrace{s_{i_1} s_{i_2} \cdots s_{i_k}}_{\text{reduced}} \in \mathfrak{S}_n \rightsquigarrow \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_k} =: \mathbf{w}$$

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

• Let $n \ge 2$, let B_n be Artin's *n*-strand braid group.

$$w = \underbrace{s_{i_1}s_{i_2}\cdots s_{i_k}}_{\text{reduced}} \in \mathfrak{S}_n \rightsquigarrow \sigma_{i_1}\sigma_{i_2}\cdots \sigma_{i_k} =: \mathbf{w}$$

▶ Let \mathcal{H}_n be the Iwahori-Hecke algebra of \mathfrak{S}_n , i.e., the associative, unital $\mathbb{Z}[v^{\pm 1}]$ -algebra with generators T_{s_i} and relations the defining relations of B_n together with

$$T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}, \forall i = 1, \dots, n-1.$$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・ 臣 ・

It is a free $\mathbb{Z}[v^{\pm 1}]$ -module with standard basis $\{T_w\}_{w\in\mathfrak{S}_n}$, or canonical bases $\{C_w\}_w$ and $\{C'_w\}_w$.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Sar

• Let $n \ge 2$, let B_n be Artin's *n*-strand braid group.

$$w = \underbrace{s_{i_1}s_{i_2}\cdots s_{i_k}}_{\text{reduced}} \in \mathfrak{S}_n \rightsquigarrow \sigma_{i_1}\sigma_{i_2}\cdots \sigma_{i_k} =: \mathbf{w}$$

▶ Let \mathcal{H}_n be the lwahori-Hecke algebra of \mathfrak{S}_n , i.e., the associative, unital $\mathbb{Z}[v^{\pm 1}]$ -algebra with generators T_{s_i} and relations the defining relations of B_n together with

$$T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}, \forall i = 1, \dots, n-1.$$

It is a free $\mathbb{Z}[v^{\pm 1}]$ -module with standard basis $\{T_w\}_{w\in\mathfrak{S}_n}$, or canonical bases $\{C_w\}_w$ and $\{C'_w\}_w$. Consider the well-known group homomorphism $\varphi: B_n \longrightarrow \mathcal{H}_n^{\times}, \ \sigma_i \mapsto T_{s_i}$. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let $n \ge 2$, let B_n be Artin's *n*-strand braid group.

$$w = \underbrace{s_{i_1}s_{i_2}\cdots s_{i_k}}_{\text{reduced}} \in \mathfrak{S}_n \rightsquigarrow \sigma_{i_1}\sigma_{i_2}\cdots \sigma_{i_k} =: \mathbf{w}$$

▶ Let \mathcal{H}_n be the lwahori-Hecke algebra of \mathfrak{S}_n , i.e., the associative, unital $\mathbb{Z}[v^{\pm 1}]$ -algebra with generators T_{s_i} and relations the defining relations of B_n together with

$$T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}, \forall i = 1, \dots, n-1.$$

It is a free Z[v^{±1}]-module with standard basis {T_w}_{w∈𝔅n}, or canonical bases {C_w}_w and {C'_w}_w.
Consider the well-known group homomorphism φ : B_n → H[×]_n, σ_i ↦ T_{si}. It is not known in general if φ is injective or not.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let $n \ge 2$, let B_n be Artin's *n*-strand braid group.

$$w = \underbrace{s_{i_1}s_{i_2}\cdots s_{i_k}}_{\text{reduced}} \in \mathfrak{S}_n \rightsquigarrow \sigma_{i_1}\sigma_{i_2}\cdots \sigma_{i_k} =: \mathbf{w}$$

▶ Let \mathcal{H}_n be the lwahori-Hecke algebra of \mathfrak{S}_n , i.e., the associative, unital $\mathbb{Z}[v^{\pm 1}]$ -algebra with generators T_{s_i} and relations the defining relations of B_n together with

$$T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}, \forall i = 1, \dots, n-1.$$

It is a free $\mathbb{Z}[v^{\pm 1}]$ -module with standard basis $\{T_w\}_{w\in\mathfrak{S}_n}$, or canonical bases $\{C_w\}_w$ and $\{C'_w\}_w$. Consider the well-known group homomorphism $\varphi: B_n \longrightarrow \mathcal{H}_n^{\times}, \ \sigma_i \mapsto T_{s_i}$. It is not known in general if φ is injective or not. We have $\varphi(\mathbf{w}) = T_w, \ \forall w \in \mathfrak{S}_n$. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let $n \ge 2$, let B_n be Artin's *n*-strand braid group.

$$w = \underbrace{s_{i_1}s_{i_2}\cdots s_{i_k}}_{\text{reduced}} \in \mathfrak{S}_n \rightsquigarrow \sigma_{i_1}\sigma_{i_2}\cdots \sigma_{i_k} =: \mathbf{w}$$

▶ Let \mathcal{H}_n be the lwahori-Hecke algebra of \mathfrak{S}_n , i.e., the associative, unital $\mathbb{Z}[v^{\pm 1}]$ -algebra with generators T_{s_i} and relations the defining relations of B_n together with

$$T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}, \forall i = 1, \dots, n-1.$$

It is a free $\mathbb{Z}[v^{\pm 1}]$ -module with standard basis $\{T_w\}_{w\in\mathfrak{S}_n}$, or canonical bases $\{C_w\}_w$ and $\{C'_w\}_w$.

- Consider the well-known group homomorphism $\varphi: B_n \longrightarrow \mathcal{H}_n^{\times}, \ \sigma_i \mapsto T_{s_i}$. It is not known in general if φ is injective or not. We have $\varphi(\mathbf{w}) = T_w$, $\forall w \in \mathfrak{S}_n$.
- Starting from an arbitrary Coxeter group W, one can define B_W, H_W, canonical bases, ...

・ロト ・ 西 ト ・ 田 ト ・ 田 ト ・ 日 ト

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

► Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ■ りへぐ

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

$$\varphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}]C_y \text{ (Kazhdan-Lusztig 1980)}$$

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

$$arphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_y \; (\mathsf{Kazhdan-Lusztig} \; 1980)$$

In terms of the classical Garside structure on B_n, the set {w}_{w∈☉n} is the set of *simple elements* of the positive braid monoid B⁺_n

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

$$arphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_y \; (\mathsf{Kazhdan-Lusztig}\; 1980)$$

In terms of the classical Garside structure on B_n, the set {w}_{w∈☉n} is the set of *simple elements* of the positive braid monoid B⁺_n (=building blocks of the Garside normal form).

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

 $\varphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_y \ (\mathsf{Kazhdan-Lusztig 1980})$

- In terms of the classical Garside structure on B_n, the set {w}_{w∈☉n} is the set of *simple elements* of the positive braid monoid B⁺_n (=building blocks of the Garside normal form).
- ► There is another Garside monoid for B_n, the Birman-Ko-Lee or dual braid monoid B_n^{*}.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid nonoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

 $\varphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_y \ (\mathsf{Kazhdan-Lusztig 1980})$

- In terms of the classical Garside structure on B_n, the set {w}_{w∈☉n} is the set of *simple elements* of the positive braid monoid B⁺_n (=building blocks of the Garside normal form).
- There is another Garside monoid for B_n, the Birman-Ko-Lee or dual braid monoid B^{*}_n. The simples of B^{*}_n are in bijection with noncrossing partitions.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

 $\varphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_y \ (\mathsf{Kazhdan-Lusztig 1980})$

- In terms of the classical Garside structure on B_n, the set {w}_{w∈☉n} is the set of *simple elements* of the positive braid monoid B⁺_n (=building blocks of the Garside normal form).
- There is another Garside monoid for B_n, the Birman-Ko-Lee or dual braid monoid B^{*}_n. The simples of B^{*}_n are in bijection with noncrossing partitions.
- Let NC denote the simple dual elements.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

 $\varphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_y \ (\mathsf{Kazhdan-Lusztig 1980})$

- In terms of the classical Garside structure on B_n, the set {w}_{w∈☉n} is the set of *simple elements* of the positive braid monoid B⁺_n (=building blocks of the Garside normal form).
- There is another Garside monoid for B_n, the Birman-Ko-Lee or dual braid monoid B^{*}_n. The simples of B^{*}_n are in bijection with noncrossing partitions.
- Let NC denote the simple dual elements. Their images under φ form a linearly independent subset of H_n.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

▶ Let {C_w}_{w∈𝔅n} be Kazhdan and Lusztig's canonical basis. Then

 $\varphi(\mathbf{w}) = T_w \in \sum_{y \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_y \ (\mathsf{Kazhdan-Lusztig 1980})$

- In terms of the classical Garside structure on B_n, the set {w}_{w∈☉n} is the set of *simple elements* of the positive braid monoid B⁺_n (=building blocks of the Garside normal form).
- There is another Garside monoid for B_n, the Birman-Ko-Lee or dual braid monoid B^{*}_n. The simples of B^{*}_n are in bijection with noncrossing partitions.
- Let NC denote the simple dual elements. Their images under φ form a linearly independent subset of \mathcal{H}_n . In fact, they form a basis of a famous quotient of \mathcal{H}_n , the *Temperley-Lieb algebra* (Zinno 2002, Lee-Lee 2004).

(日) (日) (日) (日) (日) (日) (日) (日)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Questions

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

What are the properties of Zinno's basis ?

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

・ロト・西ト・山田・山田・山口・

What are the properties of Zinno's basis ? Is there a triangular base change to the diagrammatic basis of TL_n, positivity properties of the base change matrix, categorifications explaining such phenomenons, etc. ? 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ● のの⊙

What are the properties of Zinno's basis ? Is there a triangular base change to the diagrammatic basis of TL_n, positivity properties of the base change matrix, categorifications explaining such phenomenons, etc. ?

▶ What happens in other types ?

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ● のの⊙

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

$$\sigma_i \cdot (g_1, \dots, g_{i-1}, g_i, g_{i+1}, g_{i+2}, \dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_i g_{i+1}, g_{i+2}, \dots, g_n).$$

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

$$\sigma_i \cdot (g_1, \dots, g_{i-1}, g_i, g_{i+1}, g_{i+2}, \dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_i g_{i+1}, g_{i+2}, \dots, g_n).$$

(preserves the product of the elements in the *n*-tuple).

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

$$\sigma_i \cdot (g_1, \dots, g_{i-1}, g_i, g_{i+1}, g_{i+2}, \dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_i g_{i+1}, g_{i+2}, \dots, g_n).$$

(preserves the product of the elements in the *n*-tuple).

• Let $G = B_n$. One can show that $(\sigma_1, \ldots, \sigma_{n-1})$ has a finite orbit under the action of B_{n-1} .

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

$$\sigma_i \cdot (g_1, \dots, g_{i-1}, g_i, g_{i+1}, g_{i+2}, \dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_i g_{i+1}, g_{i+2}, \dots, g_n).$$

(preserves the product of the elements in the n-tuple).

- Let $G = B_n$. One can show that $(\sigma_1, \ldots, \sigma_{n-1})$ has a finite orbit under the action of B_{n-1} .
- A simple dual braid is an element of the form $t_1t_2\cdots t_i$, $0 \le i \le n-1$, where $(t_1, t_2, \dots, t_{n-1}) \in B_{n-1} \cdot (\sigma_1, \sigma_2, \dots, \sigma_{n-1}).$

<日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 0 0

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

$$\sigma_i \cdot (g_1, \dots, g_{i-1}, g_i, g_{i+1}, g_{i+2}, \dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_i g_{i+1}, g_{i+2}, \dots, g_n).$$

(preserves the product of the elements in the *n*-tuple).

- Let $G = B_n$. One can show that $(\sigma_1, \ldots, \sigma_{n-1})$ has a finite orbit under the action of B_{n-1} .
- A simple dual braid is an element of the form $t_1t_2\cdots t_i$, $0 \le i \le n-1$, where $(t_1, t_2, \dots, t_{n-1}) \in B_{n-1} \cdot (\sigma_1, \sigma_2, \dots, \sigma_{n-1}).$
- **Example:** For n = 3, one has

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

$$\sigma_i \cdot (g_1, \dots, g_{i-1}, g_i, g_{i+1}, g_{i+2}, \dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_i g_{i+1}, g_{i+2}, \dots, g_n).$$

(preserves the product of the elements in the *n*-tuple).

- Let $G = B_n$. One can show that $(\sigma_1, \ldots, \sigma_{n-1})$ has a finite orbit under the action of B_{n-1} .
- A simple dual braid is an element of the form $t_1t_2\cdots t_i$, $0 \le i \le n-1$, where $(t_1, t_2, \dots, t_{n-1}) \in B_{n-1} \cdot (\sigma_1, \sigma_2, \dots, \sigma_{n-1}).$
- **Example:** For n = 3, one has $B_2 \cdot (\sigma_1, \sigma_2) = \{(\sigma_1, \sigma_2), (\sigma_2, \sigma_2^{-1} \sigma_1 \sigma_2), (\sigma_2^{-1} \sigma_1 \sigma_2, \sigma_1)\}.$

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

▶ Let G be a group. For n ≥ 2, there is an action of B_n on the set of n-tuples of elements of G:

$$\sigma_i \cdot (g_1, \dots, g_{i-1}, g_i, g_{i+1}, g_{i+2}, \dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_i g_{i+1}, g_{i+2}, \dots, g_n)$$

(preserves the product of the elements in the n-tuple).

- Let $G = B_n$. One can show that $(\sigma_1, \ldots, \sigma_{n-1})$ has a finite orbit under the action of B_{n-1} .
- A simple dual braid is an element of the form $t_1t_2\cdots t_i$, $0 \le i \le n-1$, where $(t_1, t_2, \dots, t_{n-1}) \in B_{n-1} \cdot (\sigma_1, \sigma_2, \dots, \sigma_{n-1}).$
- **Example:** For n = 3, one has $B_2 \cdot (\sigma_1, \sigma_2) = \{(\sigma_1, \sigma_2), (\sigma_2, \sigma_2^{-1} \sigma_1 \sigma_2), (\sigma_2^{-1} \sigma_1 \sigma_2, \sigma_1)\}.$ The simple dual braids are $1, \sigma_1, \sigma_2, \sigma_2^{-1} \sigma_1 \sigma_2, \sigma_1 \sigma_2.$

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

・ロト・西ト・山田・山田・山下

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

The SDB generate the *Birman-Ko-Lee* braid monoid B_n^{*}. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

The SDB generate the *Birman-Ko-Lee* braid monoid B_n^{*}. It is a Garside monoid (BKL 1997). 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids
- ▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.
- ► Simple dual braids in B^{*}_n are in bijection with noncrossing partitions of {1, 2, ..., n}.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.
- ► Simple dual braids in B^{*}_n are in bijection with noncrossing partitions of {1, 2, ..., n}.
- Generalisations: the dual braid monoids (Bessis 2001):

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.
- ► Simple dual braids in B^{*}_n are in bijection with noncrossing partitions of {1, 2, ..., n}.
- Generalisations: the dual braid monoids (Bessis 2001):
 - ▶ Replace $(\sigma_1, \sigma_2, ..., \sigma_{n-1})$ by $(\sigma_{\tau(1)}, \sigma_{\tau(2)}, ..., \sigma_{\tau(n-1)})$, where $\tau \in \mathfrak{S}_{n-1}$. (equiv. to choosing a Coxeter element c in \mathfrak{S}_n).

(日)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- ▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.
- ► Simple dual braids in B^{*}_n are in bijection with noncrossing partitions of {1, 2, ..., n}.
- Generalisations: the dual braid monoids (Bessis 2001):
 - ▶ Replace (σ₁, σ₂,..., σ_{n-1}) by (σ_{τ(1)}, σ_{τ(2)},..., σ_{τ(n-1)}), where τ ∈ 𝔅_{n-1}. (equiv. to choosing a Coxeter element c in 𝔅_n). The obtained monoid B^{*}_c is conjugate to B^{*}_n inside B_n.

(日) (日) (日) (日) (日) (日) (日) (日)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- ▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.
- ► Simple dual braids in B^{*}_n are in bijection with noncrossing partitions of {1, 2, ..., n}.
- Generalisations: the dual braid monoids (Bessis 2001):
 - ▶ Replace (σ₁, σ₂,..., σ_{n-1}) by (σ_{τ(1)}, σ_{τ(2)},..., σ_{τ(n-1)}), where τ ∈ 𝔅_{n-1}. (equiv. to choosing a Coxeter element c in 𝔅_n). The obtained monoid B^{*}_c is conjugate to B^{*}_n inside B_n.
 - ▶ Replace the symmetric group S_n by any Coxeter group W and B_n by B_W.

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- ▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.
- ► Simple dual braids in B^{*}_n are in bijection with noncrossing partitions of {1, 2, ..., n}.
- Generalisations: the dual braid monoids (Bessis 2001):
 - ▶ Replace (σ₁, σ₂,..., σ_{n-1}) by (σ_{τ(1)}, σ_{τ(2)},..., σ_{τ(n-1)}), where τ ∈ 𝔅_{n-1}. (equiv. to choosing a Coxeter element c in 𝔅_n). The obtained monoid B^{*}_c is conjugate to B^{*}_n inside B_n.
 - ▶ Replace the symmetric group S_n by any Coxeter group W and B_n by B_W. (Warning: the isomorphism type of B^{*}_c will depend on c in general when W is infinite).

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- ▶ The SDB generate the *Birman-Ko-Lee* braid monoid B_n^* . It is a Garside monoid (BKL 1997). Note that $B_n^+ \subseteq B_n^*$.
- ► Simple dual braids in B^{*}_n are in bijection with noncrossing partitions of {1, 2, ..., n}.
- Generalisations: the dual braid monoids (Bessis 2001):
 - ▶ Replace (σ₁, σ₂,..., σ_{n-1}) by (σ_{τ(1)}, σ_{τ(2)},..., σ_{τ(n-1)}), where τ ∈ 𝔅_{n-1}. (equiv. to choosing a Coxeter element c in 𝔅_n). The obtained monoid B^{*}_c is conjugate to B^{*}_n inside B_n.
 - ▶ Replace the symmetric group S_n by any Coxeter group W and B_n by B_W. (Warning: the isomorphism type of B^{*}_c will depend on c in general when W is infinite).
- ▶ Define the *c-simple dual braids* (*c*-SDB) in *B*^{*}_c in the exact same way as for *B*^{*}_n.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Temperley-Lieb algebras

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Let n ≥ 3. The Temperley-Lieb algebra TL_n is a quotient of H_n.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

・ロト・西ト・山田・山田・山口・

Let n ≥ 3. The Temperley-Lieb algebra TL_n is a quotient of H_n. It is a free Z[v^{±1}]-module with a (diagrammatic) basis {b_w}_w indexed by certain permutations w ∈ S_n (called 321-avoiding).

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

<日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 0 0

- Let n ≥ 3. The Temperley-Lieb algebra TL_n is a quotient of H_n. It is a free Z[v^{±1}]-module with a (diagrammatic) basis {b_w}_w indexed by certain permutations w ∈ S_n (called 321-avoiding).
- ► Fan and Green (1997) showed that, denoting by θ the quotient map $\mathcal{H}_n \longrightarrow \mathrm{TL}_n$, we have

$$\theta(C_w) = \begin{cases} 0 & \text{if } w \text{ is not } 321\text{-avoiding}, \\ (-1)^{\ell(w)} b_w & \text{if } w \text{ is } 321\text{-avoiding}, \end{cases}$$

<日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 0 0

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- Let n ≥ 3. The Temperley-Lieb algebra TL_n is a quotient of H_n. It is a free Z[v^{±1}]-module with a (diagrammatic) basis {b_w}_w indexed by certain permutations w ∈ S_n (called 321-avoiding).
- ► Fan and Green (1997) showed that, denoting by θ the quotient map $\mathcal{H}_n \longrightarrow TL_n$, we have

 $\theta(C_w) = \left\{ \begin{array}{ll} 0 & \text{if } w \text{ is not } 321\text{-avoiding}, \\ (-1)^{\ell(w)} b_w & \text{if } w \text{ is } 321\text{-avoiding} \end{array} \right.$

• Let ψ denote the composition $B_n \xrightarrow{\varphi} \mathcal{H}_n \xrightarrow{\theta} \mathrm{TL}_n$.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

<ロト 4 団 ト 4 三 ト 4 三 ト 1 回 9 Q ()</p>

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in \mathfrak{S}_n . The images of the c-SDB of B_c^* under ψ yield a basis of TL_n , and there is a triangular base change matrix to $\{b_w\}_w$.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ● のの⊙

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in \mathfrak{S}_n . The images of the c-SDB of B_c^* under ψ yield a basis of TL_n , and there is a triangular base change matrix to $\{b_w\}_w$.

 Given x a c-SDB, computer calculations were suggesting that

$$\psi(x) \in \sum_{w \ 321-\text{avoiding}} \mathbb{Z}_{\geq 0}[v^{\pm 1}](-1)^{\ell(w)}b_w.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in \mathfrak{S}_n . The images of the c-SDB of B_c^* under ψ yield a basis of TL_n , and there is a triangular base change matrix to $\{b_w\}_w$.

 Given x a c-SDB, computer calculations were suggesting that

$$\psi(x) \in \sum_{w \ 321-\text{avoiding}} \mathbb{Z}_{\geq 0}[v^{\pm 1}](-1)^{\ell(w)} b_w.$$

Since θ(C_w) is either 0 or (−1)^{ℓ(w)}b_w, to obtain the above property it is enough to show that

$$\varphi(x) \in \sum_{w \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w.$$
(1)

(日)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in \mathfrak{S}_n . The images of the c-SDB of B_c^* under ψ yield a basis of TL_n , and there is a triangular base change matrix to $\{b_w\}_w$.

 Given x a c-SDB, computer calculations were suggesting that

$$\psi(x) \in \sum_{w \text{ 321-avoiding}} \mathbb{Z}_{\geq 0}[v^{\pm 1}](-1)^{\ell(w)} b_w.$$

Since θ(C_w) is either 0 or (−1)^{ℓ(w)}b_w, to obtain the above property it is enough to show that

$$\varphi(x) \in \sum_{w \in \mathfrak{S}_n} \mathbb{Z}_{\geq 0}[v^{\pm 1}]C_w.$$
(1)

► Note that (1) can be asked for an arbitrary Coxeter group W with attached Artin-Tits group B_W...

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Sar

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

• Dyer (1987) conjectured that for an arbitrary Coxeter group W and $x, y \in W$, we have

$$\varphi(\mathbf{x}\mathbf{y}^{-1}) = T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w.$$
(2)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Dyer (1987) conjectured that for an arbitrary Coxeter group W and x, y ∈ W, we have

$$\varphi(\mathbf{x}\mathbf{y}^{-1}) = T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w.$$
(2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Dyer and Lehrer (1990) showed (2) for finite Weyl groups.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

► Dyer (1987) conjectured that for an arbitrary Coxeter group W and x, y ∈ W, we have

$$\varphi(\mathbf{x}\mathbf{y}^{-1}) = T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w.$$
(2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with y = 1 for arbitrary W.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

► Dyer (1987) conjectured that for an arbitrary Coxeter group W and x, y ∈ W, we have

$$\varphi(\mathbf{x}\mathbf{y}^{-1}) = T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w.$$
(2)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ● のの⊙

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with y = 1 for arbitrary W.

Hence to show (1) at least for W a finite Weyl group, it is enough to positively answer the following question: 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

► Dyer (1987) conjectured that for an arbitrary Coxeter group W and x, y ∈ W, we have

$$\varphi(\mathbf{x}\mathbf{y}^{-1}) = T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w.$$
(2)

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with y = 1 for arbitrary W.

Hence to show (1) at least for W a finite Weyl group, it is enough to positively answer the following question:

Question 1: Are simple dual braids always of the form $\mathbf{x}\mathbf{y}^{-1}$?

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

► Dyer (1987) conjectured that for an arbitrary Coxeter group W and x, y ∈ W, we have

$$\varphi(\mathbf{x}\mathbf{y}^{-1}) = T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w.$$
(2)

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with y = 1 for arbitrary W.

Hence to show (1) at least for W a finite Weyl group, it is enough to positively answer the following question:

Question 1: Are simple dual braids always of the form $\mathbf{x}\mathbf{y}^{-1}$?

To get the statement at least for all the finite *Coxeter* groups, we can also consider the following:

Question 2: Is Dyer's conjecture true for arbitrary Coxeter systems ? 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

• Let us focus on type A_{n-1} for the moment.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ■ りへぐ

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

・ロト・日本・日本・日本・日本・日本

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

1. The trivial braid in B_1 is a Mikado braid,

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules
• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

• Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define *Mikado braids* by induction on n as:

- 1. The trivial braid in B_1 is a Mikado braid,
- 2. A braid $\beta \in B_n$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta' \in B_{n-1}$ which is Mikado.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Mikado braids, II

Proposition (Digne-G., 2015)

A braid $\beta \in B_n$ is Mikado iff there are $x, y \in \mathfrak{S}_n$ such that $\beta = \mathbf{x}\mathbf{y}^{-1}$ (iff there are $u, v \in \mathfrak{S}_n$ such that $\beta = \mathbf{u}^{-1}\mathbf{v}$)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Proposition (Digne-G., 2015)

A braid $\beta \in B_n$ is Mikado iff there are $x, y \in \mathfrak{S}_n$ such that $\beta = \mathbf{x}\mathbf{y}^{-1}$ (iff there are $u, v \in \mathfrak{S}_n$ such that $\beta = \mathbf{u}^{-1}\mathbf{v}$)

• Dyer gave the following definition. Let (W, S) be a Coxeter group with set of reflections T and root system Φ . Let $A \subseteq \Phi^+$ be a biclosed set of positive roots and let $T_A \subseteq T$ be the corresponding set of reflections. Let $x \in W$, let $s_1 s_2 \cdots s_k$ be a reduced expression of x and let

$$x_A := \mathbf{s}_1^{\epsilon_1} \mathbf{s}_2^{\epsilon_2} \cdots \mathbf{s}_k^{\epsilon_k},$$

where $\epsilon_i = -1$ if $s_k s_{k-1} \cdots s_i s_{i+1} \cdots s_k \in T_A$ and 1 otherwise. Then x_A is well-defined.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Proposition (Digne-G., 2015)

A braid $\beta \in B_n$ is Mikado iff there are $x, y \in \mathfrak{S}_n$ such that $\beta = \mathbf{x}\mathbf{y}^{-1}$ (iff there are $u, v \in \mathfrak{S}_n$ such that $\beta = \mathbf{u}^{-1}\mathbf{v}$)

• Dyer gave the following definition. Let (W, S) be a Coxeter group with set of reflections T and root system Φ . Let $A \subseteq \Phi^+$ be a biclosed set of positive roots and let $T_A \subseteq T$ be the corresponding set of reflections. Let $x \in W$, let $s_1 s_2 \cdots s_k$ be a reduced expression of x and let

$$x_A := \mathbf{s}_1^{\epsilon_1} \mathbf{s}_2^{\epsilon_2} \cdots \mathbf{s}_k^{\epsilon_k},$$

where $\epsilon_i = -1$ if $s_k s_{k-1} \cdots s_i s_{i+1} \cdots s_k \in T_A$ and 1 otherwise. Then x_A is well-defined.

► Call an element x_A a Mikado braid. It is not hard to see that braids of the form xy⁻¹ or u⁻¹v are Mikado, and that in spherical types both definitions are equivalent.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Mikado braids and SDB

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Theorem (Digne-G. 2015 conjecture + proof except D_n , Licata-Queffelec 2017 ADE, Baumeister-G. 2017 D_n)

In spherical types, simple dual braids are Mikado braids.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Theorem (Digne-G. 2015 conjecture + proof except D_n , Licata-Queffelec 2017 ADE, Baumeister-G. 2017 D_n)

In spherical types, simple dual braids are Mikado braids.

 All these proofs give an algorithm to expess a SDB as a Mikado braid rather than an explicit formula. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Theorem (Digne-G. 2015 conjecture + proof except D_n , Licata-Queffelec 2017 ADE, Baumeister-G. 2017 D_n)

In spherical types, simple dual braids are Mikado braids.

 All these proofs give an algorithm to expess a SDB as a Mikado braid rather than an explicit formula.

Theorem (Formula expressing the SDB in the standard Artin generators; G., 2018)

Let β be a SDB in a spherical type Artin group with choice of Coxeter element c. Let x be its image in W. Then $\beta = x_A$, where A can be explicitly defined using Reading's c-sortable elements. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

• Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R = S(V^*)$.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▶ Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R = S(V^*)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^s} R$ where $R^s := \{r \in R \mid s(r) = r\}$ and let $B_s := R \otimes_{R^s} R(1)$ (grading shift). 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

- ▶ Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R = S(V^*)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^s} R$ where $R^s := \{r \in R \mid s(r) = r\}$ and let $B_s := R \otimes_{R^s} R(1)$ (grading shift).
- Given an expression $s_1 s_2 \cdots s_k$ where $s_i \in S$, consider the *Bott-Samelson bimodule* $B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k}$.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

- ▶ Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R = S(V^*)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^s} R$ where $R^s := \{r \in R \mid s(r) = r\}$ and let $B_s := R \otimes_{R^s} R(1)$ (grading shift).
- Given an expression $s_1 s_2 \cdots s_k$ where $s_i \in S$, consider the *Bott-Samelson bimodule* $B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k}$.
- Let B denote the additive, Karoubian category generated by (shifts of) Bott-Samelson bimodules.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

- ▶ Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R = S(V^*)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^s} R$ where $R^s := \{r \in R \mid s(r) = r\}$ and let $B_s := R \otimes_{R^s} R(1)$ (grading shift).
- Given an expression $s_1 s_2 \cdots s_k$ where $s_i \in S$, consider the *Bott-Samelson bimodule* $B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k}$.
- Let B denote the additive, Karoubian category generated by (shifts of) Bott-Samelson bimodules.
- Soergel showed that the indecomposable bimodules in B are (up to grading shift) indexed by the elements of W, say {B_w}_{w∈W}.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- ▶ Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R = S(V^*)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^s} R$ where $R^s := \{r \in R \mid s(r) = r\}$ and let $B_s := R \otimes_{R^s} R(1)$ (grading shift).
- Given an expression $s_1 s_2 \cdots s_k$ where $s_i \in S$, consider the *Bott-Samelson bimodule* $B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k}$.
- Let B denote the additive, Karoubian category generated by (shifts of) Bott-Samelson bimodules.
- ► Soergel showed that the indecomposable bimodules in \mathcal{B} are (up to grading shift) indexed by the elements of W, say $\{B_w\}_{w\in W}$. He showed that the split Grothendieck ring $\langle \mathcal{B} \rangle$ of \mathcal{B} is isomorphic to the Hecke algebra H_W of W, and conjectured that the class $\langle B_w \rangle$ of B_w corresponds to the element C'_w of H_W .

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Soergel bimodules, II

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ■ りへぐ

Soergel bimodules, II

 Elias and Williamson (2012) showed Soergel's conjecture, which implies that

$$C'_w \in \sum_{y \in W} \mathbb{Z}_{\geq 0}[v]T_y.$$
 (KL positivity)

They also showed that

$$T_x \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]C_w$$
 (Inverse KL positivity)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Soergel bimodules, II

 Elias and Williamson (2012) showed Soergel's conjecture, which implies that

$$C'_w \in \sum_{y \in W} \mathbb{Z}_{\geq 0}[v]T_y.$$
 (KL positivity)

They also showed that

$$T_x \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]C_w$$
 (Inverse KL positivity)

In the first case, the coefficients are interpreted as graded multiplicities in filtrations of B_w (recall that ⟨B_w⟩ = C'_w). In the second case, the coefficients count the number of occurrences of B_w's in a chain complex of Soergel bimodules categorifying T_x. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● りへぐ

• Consider the bounded homotopy category $K^b(\mathcal{B})$ of \mathcal{B} .

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

<ロト 4 団 ト 4 三 ト 4 三 ト 1 回 9 Q (?)</p>

Consider the bounded homotopy category K^b(B) of B.
Consider the complex

$$F_s : 0 \to \overset{\star}{B_s} \to R(1) \to 0 \in K^b(\mathcal{B}),$$

where the nontrivial map is $a \otimes b \mapsto ab$.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Consider the bounded homotopy category K^b(B) of B.
Consider the complex

$$F_s : 0 \to \overset{\star}{B_s} \to R(1) \to 0 \in K^b(\mathcal{B}),$$

where the nontrivial map is $a \otimes b \mapsto ab$.

► The complex F_s has an inverse E_s in K^b(B) for the tensor product of complexes. It is given by

$$E_s : 0 \to R(-1) \to \overset{\star}{B_s} \to 0,$$

・ロト ・ (目 ト ・ 日 ト ・ 日 ト

for a suitable map in the middle.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

SOR

Consider the bounded homotopy category K^b(B) of B.
Consider the complex

$$F_s : 0 \to \overset{\star}{B_s} \to R(1) \to 0 \in K^b(\mathcal{B}),$$

where the nontrivial map is $a \otimes b \mapsto ab$.

► The complex F_s has an inverse E_s in K^b(B) for the tensor product of complexes. It is given by

$$E_s : 0 \to R(-1) \to \overset{\star}{B_s} \to 0,$$

for a suitable map in the middle.

► Rouquier (2004) showed that it defines a conjecturally faithful action of the Artin-Tits group B_W on K^b(B).

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Consider the bounded homotopy category K^b(B) of B.
Consider the complex

$$F_s : 0 \to \overset{\star}{B_s} \to R(1) \to 0 \in K^b(\mathcal{B}),$$

where the nontrivial map is $a \otimes b \mapsto ab$.

► The complex F_s has an inverse E_s in K^b(B) for the tensor product of complexes. It is given by

$$E_s : 0 \to R(-1) \to \overset{\star}{B_s} \to 0,$$

for a suitable map in the middle.

- ► Rouquier (2004) showed that it defines a conjecturally faithful action of the Artin-Tits group B_W on K^b(B).
- ▶ In this way one can attach to any braid $\beta \in B_W$ an object $F_\beta \in K^b(\mathcal{B})$, $\mathbf{s_1 s_2}^{-1} \cdots \mapsto F_{s_1} \otimes E_{s_2} \otimes \cdots$.

(日) (日) (日) (日) (日) (日) (日) (日)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● りへぐ

• Given $\beta \in B_W$, one can compute F_β using any word for β .

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

• Given $\beta \in B_W$, one can compute F_β using any word for β . The obtained complex may have contractible summands.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid nonoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Given β ∈ B_W, one can compute F_β using any word for β. The obtained complex may have contractible summands. Removing them yields the (unique up to isomorphism of complexes) *minimal complex* F^{min}_β of β. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

- Given β ∈ B_W, one can compute F_β using any word for β. The obtained complex may have contractible summands. Removing them yields the (unique up to isomorphism of complexes) *minimal complex* F_β^{min} of β.
- A crucial step in the proof of inverse KL positivity is to show that F_x^{min} is *linear*, i.e., that the indecomposable summands in homological degree *i* are all of the form B_x(*i*) for various x ∈ W (in other words, the object F_x lies in the heart of the canonical *t*-structure on K^b(B)).

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules
2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

• Example: let
$$\beta = \sigma_2 \sigma_1 \sigma_3 \sigma_2$$
, then F_{β}^{\min} is of the form

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• **Example:** let
$$\beta = \sigma_2 \sigma_1 \sigma_3 \sigma_2$$
, then F_{β}^{\min} is of the form

$$\begin{array}{ccccc} & & B_{s_2s_1s_2}(1) & & B_{s_1s_2}(2) \\ & & B_{s_1s_3s_2}(1) & & B_{s_3s_2}(2) & & B_{s_1}(3) \\ & & B_{s_2s_1s_3s_2} \rightarrow & B_{s_2s_3s_2}(1) \rightarrow & B_{s_2s_1}(2) \rightarrow & B_{s_2}(3) \\ & & B_{s_2}(1) & & B_{s_1s_3}(2) & & B_{s_3}(3) \\ & & B_{s_2s_1s_3}(1) & & B_{s_2s_3}(2) \end{array}$$

For $x, y \in W$ and $\beta := \mathbf{x}\mathbf{y}^{-1}$ (or $\mathbf{x}^{-1}\mathbf{y}$), the complex F_{β} is still linear.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• **Example:** let
$$\beta = \sigma_2 \sigma_1 \sigma_3 \sigma_2$$
, then F_{β}^{\min} is of the form

$$\begin{array}{ccccc} & & B_{s_2s_1s_2}(1) & & B_{s_1s_2}(2) \\ & & B_{s_1s_3s_2}(1) & & B_{s_3s_2}(2) & & B_{s_1}(3) \\ & & B_{s_2s_1s_3s_2} \rightarrow & B_{s_2s_3s_2}(1) \rightarrow & B_{s_2s_1}(2) \rightarrow & B_{s_2}(3) \\ & & B_{s_2}(1) & & B_{s_1s_3}(2) & & B_{s_3}(3) \\ & & B_{s_2s_1s_3}(1) & & B_{s_2s_3}(2) \end{array}$$

For
$$x, y \in W$$
 and $\beta := \mathbf{x}\mathbf{y}^{-1}$ (or $\mathbf{x}^{-1}\mathbf{y}$), the complex F_{β} is still linear.

Example: let $\beta = \sigma_2 \sigma_1 \sigma_3 \sigma_2^{-1}$, then F_{β}^{\min} is of the form

$$B_{s_{2}s_{3}s_{1}}(-1) \rightarrow \begin{array}{ccc} * & & & & & B_{s_{3}}(1) \\ B_{s_{2}s_{3}} & & & & B_{s_{1}}(1) \\ B_{s_{1}s_{3}} & & & & 2B_{s_{2}}(1) \\ B_{s_{2}s_{1}} & & & & B_{s_{2}s_{1}s_{2}}(1) \\ B_{s_{2}s_{3}s_{1}s_{2}} & & & B_{s_{2}s_{3}s_{2}}(1) \\ B_{s_{3}s_{1}s_{2}}(1) & & & B_{s_{1}s_{2}}(2) \\ \end{array}$$

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

► Using the linearity of the complex F^{min}_β (where β = xy⁻¹ or x⁻¹y), one can show the following using Soergel's conjecture and twisted Bruhat orders 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

<日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 0 0

► Using the linearity of the complex F^{min}_β (where β = xy⁻¹ or x⁻¹y), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

► Using the linearity of the complex F^{min}_β (where β = xy⁻¹ or x⁻¹y), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

 Let w ∈ W. The bimodule B_w appears as a direct summand either only in odd cohomological degrees or only in even cohomological degrees of F^{min}_β. 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

► Using the linearity of the complex F^{min}_β (where β = xy⁻¹ or x⁻¹y), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

- 1. Let $w \in W$. The bimodule B_w appears as a direct summand either only in odd cohomological degrees or only in even cohomological degrees of F_{β}^{\min} .
- 2. The coefficient of C_w in $T_x T_y^{-1}$ (or $T_x^{-1} T_y$) counts the number of occurrences of B_w in all cohomological degrees of F_{β}^{\min} together. Hence it lies in $\mathbb{Z}_{\geq 0}[v^{\pm 1}]$, and Dyer's conjecture holds for arbitrary W.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

simple dual braids are Mikado braids

Soergel bimodules

► Using the linearity of the complex F^{min}_β (where β = xy⁻¹ or x⁻¹y), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

- 1. Let $w \in W$. The bimodule B_w appears as a direct summand either only in odd cohomological degrees or only in even cohomological degrees of F_{β}^{\min} .
- 2. The coefficient of C_w in $T_x T_y^{-1}$ (or $T_x^{-1} T_y$) counts the number of occurrences of B_w in all cohomological degrees of F_{β}^{\min} together. Hence it lies in $\mathbb{Z}_{\geq 0}[v^{\pm 1}]$, and Dyer's conjecture holds for arbitrary W.
- 3. Conversely, one has $C'_w \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]T_xT_y^{-1}$, where coefficients are interpreted as graded multiplicities in a twisted filtration of B_w .

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

imple dual braids re Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures). 2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

<日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 0 0

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- ► For infinite W, there are Mikado braids which are not of the form xy⁻¹ or x⁻¹y (e.g. s⁻¹tu⁻¹ in the free group with 3 generators s, t, u).

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

(日)

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- ► For infinite W, there are Mikado braids which are not of the form xy⁻¹ or x⁻¹y (e.g. s⁻¹tu⁻¹ in the free group with 3 generators s, t, u). Images of these elements are still expected to have a positive KL expansion. Can we show this ?

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

(日) (日) (日) (日) (日) (日) (日) (日)

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- ► For infinite W, there are Mikado braids which are not of the form xy⁻¹ or x⁻¹y (e.g. s⁻¹tu⁻¹ in the free group with 3 generators s, t, u). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

(日)

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- ► For infinite W, there are Mikado braids which are not of the form xy⁻¹ or x⁻¹y (e.g. s⁻¹tu⁻¹ in the free group with 3 generators s, t, u). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- One could conjecture that only Mikado braids have a positive KL expansion...

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- ► For infinite W, there are Mikado braids which are not of the form xy⁻¹ or x⁻¹y (e.g. s⁻¹tu⁻¹ in the free group with 3 generators s, t, u). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- ► One could conjecture that only Mikado braids have a positive KL expansion... but this would imply that the map B_W → H[×]_W is injective...

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- ► For infinite W, there are Mikado braids which are not of the form xy⁻¹ or x⁻¹y (e.g. s⁻¹tu⁻¹ in the free group with 3 generators s, t, u). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- ► One could conjecture that only Mikado braids have a positive KL expansion... but this would imply that the map B_W → H[×]_W is injective... a weaker form would be, at the categorified level, to conjecture that only Mikado braids are linear...

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_n and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- ► For infinite W, there are Mikado braids which are not of the form xy⁻¹ or x⁻¹y (e.g. s⁻¹tu⁻¹ in the free group with 3 generators s, t, u). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- ► One could conjecture that only Mikado braids have a positive KL expansion... but this would imply that the map B_W → H[×]_W is injective... a weaker form would be, at the categorified level, to conjecture that only Mikado braids are linear... but this would show the faithfulness of Rouquier's action.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of Temperley-Lieb algebras

Two questions

Mikado braids

Simple dual braids are Mikado braids

Soergel bimodules

Linearity and positivity of Mikado braids

Thank you for your attention!

・ロト ・ 四ト ・ 田 ・ ・ 田 ・ ・ 日 ・ うへつ