2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Institut Denis Poisson, Université de Tours
Conference Braids in representation theory and algebraic combinatorics, ICERM (Brown University), Providence, February 2022.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation

- Let $n \geq 2$, let B_{n} be Artin's n-strand braid group.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation

- Let $n \geq 2$, let B_{n} be Artin's n-strand braid group.

$$
w=\underbrace{s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}}_{\text {reduced }} \in \mathfrak{S}_{n} \rightsquigarrow \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}=: \mathbf{w}
$$

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation

- Let $n \geq 2$, let B_{n} be Artin's n-strand braid group.

$$
w=\underbrace{s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}}_{\text {reduced }} \in \mathfrak{S}_{n} \rightsquigarrow \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}=: \mathbf{w}
$$

- Let \mathcal{H}_{n} be the Iwahori-Hecke algebra of \mathfrak{S}_{n}, i.e., the associative, unital $\mathbb{Z}\left[v^{ \pm 1}\right]$-algebra with generators $T_{s_{i}}$ and relations the defining relations of B_{n} together with

$$
T_{s_{i}}^{2}=\left(v^{-2}-1\right) T_{s_{i}}+v^{-2}, \forall i=1, \ldots, n-1
$$

It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with standard basis $\left\{T_{w}\right\}_{w \in \mathfrak{S}_{n}}$, or canonical bases $\left\{C_{w}\right\}_{w}$ and $\left\{C_{w}^{\prime}\right\}_{w}$.

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation

- Let $n \geq 2$, let B_{n} be Artin's n-strand braid group.

$$
w=\underbrace{s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}}_{\text {reduced }} \in \mathfrak{S}_{n} \rightsquigarrow \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}=: \mathbf{w}
$$

- Let \mathcal{H}_{n} be the Iwahori-Hecke algebra of \mathfrak{S}_{n}, i.e., the associative, unital $\mathbb{Z}\left[v^{ \pm 1}\right]$-algebra with generators $T_{s_{i}}$ and relations the defining relations of B_{n} together with

$$
T_{s_{i}}^{2}=\left(v^{-2}-1\right) T_{s_{i}}+v^{-2}, \forall i=1, \ldots, n-1
$$

It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with standard basis $\left\{T_{w}\right\}_{w \in \mathfrak{S}_{n}}$, or canonical bases $\left\{C_{w}\right\}_{w}$ and $\left\{C_{w}^{\prime}\right\}_{w}$.

- Consider the well-known group homomorphism $\varphi: B_{n} \longrightarrow \mathcal{H}_{n}^{\times}, \sigma_{i} \mapsto T_{s_{i}}$.

Original motivation

- Let $n \geq 2$, let B_{n} be Artin's n-strand braid group.

$$
w=\underbrace{s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}}_{\text {reduced }} \in \mathfrak{S}_{n} \rightsquigarrow \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}=: \mathbf{w}
$$

- Let \mathcal{H}_{n} be the Iwahori-Hecke algebra of \mathfrak{S}_{n}, i.e., the associative, unital $\mathbb{Z}\left[v^{ \pm 1}\right]$-algebra with generators $T_{s_{i}}$ and relations the defining relations of B_{n} together with

$$
T_{s_{i}}^{2}=\left(v^{-2}-1\right) T_{s_{i}}+v^{-2}, \forall i=1, \ldots, n-1
$$

It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with standard basis $\left\{T_{w}\right\}_{w \in \mathfrak{S}_{n}}$, or canonical bases $\left\{C_{w}\right\}_{w}$ and $\left\{C_{w}^{\prime}\right\}_{w}$.

- Consider the well-known group homomorphism $\varphi: B_{n} \longrightarrow \mathcal{H}_{n}^{\times}, \sigma_{i} \mapsto T_{s_{i}}$. It is not known in general if φ is injective or not.
algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation

- Let $n \geq 2$, let B_{n} be Artin's n-strand braid group.

$$
w=\underbrace{s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}}_{\text {reduced }} \in \mathfrak{S}_{n} \rightsquigarrow \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}=: \mathbf{w}
$$

- Let \mathcal{H}_{n} be the Iwahori-Hecke algebra of \mathfrak{S}_{n}, i.e., the associative, unital $\mathbb{Z}\left[v^{ \pm 1}\right]$-algebra with generators $T_{s_{i}}$ and relations the defining relations of B_{n} together with

$$
T_{s_{i}}^{2}=\left(v^{-2}-1\right) T_{s_{i}}+v^{-2}, \forall i=1, \ldots, n-1
$$

It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with standard basis $\left\{T_{w}\right\}_{w \in \mathfrak{S}_{n}}$, or canonical bases $\left\{C_{w}\right\}_{w}$ and $\left\{C_{w}^{\prime}\right\}_{w}$.

- Consider the well-known group homomorphism $\varphi: B_{n} \longrightarrow \mathcal{H}_{n}^{\times}, \sigma_{i} \mapsto T_{s_{i}}$. It is not known in general if φ is injective or not. We have $\varphi(\mathbf{w})=T_{w}, \forall w \in \mathfrak{S}_{n}$.

Original motivation

- Let $n \geq 2$, let B_{n} be Artin's n-strand braid group.

$$
w=\underbrace{s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}}_{\text {reduced }} \in \mathfrak{S}_{n} \rightsquigarrow \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}=: \mathbf{w}
$$

- Let \mathcal{H}_{n} be the Iwahori-Hecke algebra of \mathfrak{S}_{n}, i.e., the associative, unital $\mathbb{Z}\left[v^{ \pm 1}\right]$-algebra with generators $T_{s_{i}}$ and relations the defining relations of B_{n} together with

$$
T_{s_{i}}^{2}=\left(v^{-2}-1\right) T_{s_{i}}+v^{-2}, \forall i=1, \ldots, n-1
$$

It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with standard basis $\left\{T_{w}\right\}_{w \in \mathfrak{S}_{n}}$, or canonical bases $\left\{C_{w}\right\}_{w}$ and $\left\{C_{w}^{\prime}\right\}_{w}$.

- Consider the well-known group homomorphism $\varphi: B_{n} \longrightarrow \mathcal{H}_{n}^{\times}, \sigma_{i} \mapsto T_{s_{i}}$. It is not known in general if φ is injective or not. We have $\varphi(\mathbf{w})=T_{w}, \forall w \in \mathfrak{S}_{n}$.
- Starting from an arbitrary Coxeter group W, one can define B_{W}, H_{W}, canonical bases, \ldots

Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

- In terms of the classical Garside structure on B_{n}, the set $\{\mathbf{w}\}_{w \in \mathfrak{S}_{n}}$ is the set of simple elements of the positive braid monoid B_{n}^{+}

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

- In terms of the classical Garside structure on B_{n}, the set $\{\mathbf{w}\}_{w \in \mathfrak{S}_{n}}$ is the set of simple elements of the positive braid monoid B_{n}^{+}(=building blocks of the Garside normal form).

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

- In terms of the classical Garside structure on B_{n}, the set $\{\mathbf{w}\}_{w \in \mathfrak{S}_{n}}$ is the set of simple elements of the positive braid monoid B_{n}^{+}(=building blocks of the Garside normal form).
- There is another Garside monoid for B_{n}, the Birman-Ko-Lee or dual braid monoid B_{n}^{*}.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

- In terms of the classical Garside structure on B_{n}, the set $\{\mathbf{w}\}_{w \in \mathfrak{S}_{n}}$ is the set of simple elements of the positive braid monoid B_{n}^{+}(=building blocks of the Garside normal form).
- There is another Garside monoid for B_{n}, the Birman-Ko-Lee or dual braid monoid B_{n}^{*}. The simples of B_{n}^{*} are in bijection with noncrossing partitions.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

- In terms of the classical Garside structure on B_{n}, the set $\{\mathbf{w}\}_{w \in \mathfrak{S}_{n}}$ is the set of simple elements of the positive braid monoid B_{n}^{+}(=building blocks of the Garside normal form).
- There is another Garside monoid for B_{n}, the Birman-Ko-Lee or dual braid monoid B_{n}^{*}. The simples of B_{n}^{*} are in bijection with noncrossing partitions.
- Let NC denote the simple dual elements.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

- In terms of the classical Garside structure on B_{n}, the set $\{\mathbf{w}\}_{w \in \mathfrak{S}_{n}}$ is the set of simple elements of the positive braid monoid B_{n}^{+}(=building blocks of the Garside normal form).
- There is another Garside monoid for B_{n}, the Birman-Ko-Lee or dual braid monoid B_{n}^{*}. The simples of B_{n}^{*} are in bijection with noncrossing partitions.
- Let NC denote the simple dual elements. Their images under φ form a linearly independent subset of \mathcal{H}_{n}.

2-braid groups and positivity Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Original motivation, II

2-braid groups and positivity

- Let $\left\{C_{w}\right\}_{w \in \mathfrak{S}_{n}}$ be Kazhdan and Lusztig's canonical basis. Then

$$
\varphi(\mathbf{w})=T_{w} \in \sum_{y \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{y} \text { (Kazhdan-Lusztig 1980) }
$$

- In terms of the classical Garside structure on B_{n}, the set $\{\mathbf{w}\}_{w \in \mathfrak{S}_{n}}$ is the set of simple elements of the positive braid monoid B_{n}^{+}(=building blocks of the Garside normal form).
- There is another Garside monoid for B_{n}, the Birman-Ko-Lee or dual braid monoid B_{n}^{*}. The simples of B_{n}^{*} are in bijection with noncrossing partitions.
- Let NC denote the simple dual elements. Their images under φ form a linearly independent subset of \mathcal{H}_{n}. In fact, they form a basis of a famous quotient of \mathcal{H}_{n}, the Temperley-Lieb algebra (Zinno 2002, Lee-Lee 2004).

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Questions

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Questions

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids

- What are the properties of Zinno's basis ?

```
Bases of
Temperley-Lieb
algebras
```

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Questions

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids

- What are the properties of Zinno's basis ? Is there a triangular base change to the diagrammatic basis of TL_{n}, positivity properties of the base change matrix, categorifications explaining such phenomenons, etc. ?

Questions

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids

- What are the properties of Zinno's basis ? Is there a triangular base change to the diagrammatic basis of TL_{n}, positivity properties of the base change matrix, categorifications explaining such phenomenons, etc. ?
- What happens in other types ?

Dual braid monoids

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

$$
\begin{aligned}
& \sigma_{i} \cdot\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, g_{i+2}, \ldots, g_{n}\right)= \\
& \left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right) .
\end{aligned}
$$

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

$$
\begin{aligned}
& \sigma_{i} \cdot\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, g_{i+2}, \ldots, g_{n}\right)= \\
& \left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right) .
\end{aligned}
$$

(preserves the product of the elements in the n-tuple).

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

$$
\begin{aligned}
& \sigma_{i} \cdot\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, g_{i+2}, \ldots, g_{n}\right)= \\
& \left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right)
\end{aligned}
$$

(preserves the product of the elements in the n-tuple).

- Let $G=B_{n}$. One can show that $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ has a finite orbit under the action of B_{n-1}.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

$$
\begin{aligned}
& \sigma_{i} \cdot\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, g_{i+2}, \ldots, g_{n}\right)= \\
& \left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right) .
\end{aligned}
$$

(preserves the product of the elements in the n-tuple).

- Let $G=B_{n}$. One can show that $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ has a finite orbit under the action of B_{n-1}.
- A simple dual braid is an element of the form $t_{1} t_{2} \cdots t_{i}$, $0 \leq i \leq n-1$, where $\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in B_{n-1} \cdot\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$.

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

$$
\begin{aligned}
& \sigma_{i} \cdot\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, g_{i+2}, \ldots, g_{n}\right)= \\
& \left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right)
\end{aligned}
$$

(preserves the product of the elements in the n-tuple).

- Let $G=B_{n}$. One can show that $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ has a finite orbit under the action of B_{n-1}.
- A simple dual braid is an element of the form $t_{1} t_{2} \cdots t_{i}$, $0 \leq i \leq n-1$, where $\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in B_{n-1} \cdot\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$.
- Example: For $n=3$, one has

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

$$
\begin{aligned}
& \sigma_{i} \cdot\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, g_{i+2}, \ldots, g_{n}\right)= \\
& \left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right)
\end{aligned}
$$

(preserves the product of the elements in the n-tuple).

- Let $G=B_{n}$. One can show that $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ has a finite orbit under the action of B_{n-1}.
- A simple dual braid is an element of the form $t_{1} t_{2} \cdots t_{i}$, $0 \leq i \leq n-1$, where $\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in B_{n-1} \cdot\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$.

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

- Example: For $n=3$, one has $B_{2} \cdot\left(\sigma_{1}, \sigma_{2}\right)=\left\{\left(\sigma_{1}, \sigma_{2}\right),\left(\sigma_{2}, \sigma_{2}^{-1} \sigma_{1} \sigma_{2}\right),\left(\sigma_{2}^{-1} \sigma_{1} \sigma_{2}, \sigma_{1}\right)\right\}$.

Dual braid monoids

- Let G be a group. For $n \geq 2$, there is an action of B_{n} on the set of n-tuples of elements of G :

$$
\begin{aligned}
& \sigma_{i} \cdot\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, g_{i+2}, \ldots, g_{n}\right)= \\
& \left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right)
\end{aligned}
$$

(preserves the product of the elements in the n-tuple).

- Let $G=B_{n}$. One can show that $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ has a finite orbit under the action of B_{n-1}.
- A simple dual braid is an element of the form $t_{1} t_{2} \cdots t_{i}$, $0 \leq i \leq n-1$, where $\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in B_{n-1} \cdot\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$.

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

- Example: For $n=3$, one has $B_{2} \cdot\left(\sigma_{1}, \sigma_{2}\right)=\left\{\left(\sigma_{1}, \sigma_{2}\right),\left(\sigma_{2}, \sigma_{2}^{-1} \sigma_{1} \sigma_{2}\right),\left(\sigma_{2}^{-1} \sigma_{1} \sigma_{2}, \sigma_{1}\right)\right\}$. The simple dual braids are $1, \sigma_{1}, \sigma_{2}, \sigma_{2}^{-1} \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{2}$.

Dual braid monoids, II

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997).

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.
- Simple dual braids in B_{n}^{*} are in bijection with noncrossing partitions of $\{1,2, \ldots, n\}$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid monoids

Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.
- Simple dual braids in B_{n}^{*} are in bijection with noncrossing partitions of $\{1,2, \ldots, n\}$.
- Generalisations: the dual braid monoids (Bessis 2001):

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.
- Simple dual braids in B_{n}^{*} are in bijection with noncrossing partitions of $\{1,2, \ldots, n\}$.
- Generalisations: the dual braid monoids (Bessis 2001):
- Replace $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ by ($\sigma_{\tau(1)}, \sigma_{\tau(2)}, \ldots, \sigma_{\tau(n-1)}$), where $\tau \in \mathfrak{S}_{n-1}$. (equiv. to choosing a Coxeter element c in \mathfrak{S}_{n}).

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.
- Simple dual braids in B_{n}^{*} are in bijection with noncrossing partitions of $\{1,2, \ldots, n\}$.
- Generalisations: the dual braid monoids (Bessis 2001):
- Replace $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ by ($\left.\sigma_{\tau(1)}, \sigma_{\tau(2)}, \ldots, \sigma_{\tau(n-1)}\right)$, where $\tau \in \mathfrak{S}_{n-1}$. (equiv. to choosing a Coxeter element c in \mathfrak{S}_{n}). The obtained monoid B_{c}^{*} is conjugate to B_{n}^{*} inside B_{n}.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.
- Simple dual braids in B_{n}^{*} are in bijection with noncrossing partitions of $\{1,2, \ldots, n\}$.
- Generalisations: the dual braid monoids (Bessis 2001):
- Replace $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ by ($\sigma_{\tau(1)}, \sigma_{\tau(2)}, \ldots, \sigma_{\tau(n-1)}$), where $\tau \in \mathfrak{S}_{n-1}$. (equiv. to choosing a Coxeter element c in \mathfrak{S}_{n}). The obtained monoid B_{c}^{*} is conjugate to B_{n}^{*} inside B_{n}.
- Replace the symmetric group \mathfrak{S}_{n} by any Coxeter group W and B_{n} by B_{W}.

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.
- Simple dual braids in B_{n}^{*} are in bijection with noncrossing partitions of $\{1,2, \ldots, n\}$.
- Generalisations: the dual braid monoids (Bessis 2001):
- Replace $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ by $\left(\sigma_{\tau(1)}, \sigma_{\tau(2)}, \ldots, \sigma_{\tau(n-1)}\right)$, where $\tau \in \mathfrak{S}_{n-1}$. (equiv. to choosing a Coxeter element c in \mathfrak{S}_{n}). The obtained monoid B_{c}^{*} is conjugate to B_{n}^{*} inside B_{n}.
- Replace the symmetric group \mathfrak{S}_{n} by any Coxeter group W and B_{n} by B_{W}. (Warning: the isomorphism type of B_{c}^{*} will depend on c in general when W is infinite).

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Dual braid monoids, II

- The SDB generate the Birman-Ko-Lee braid monoid B_{n}^{*}. It is a Garside monoid (BKL 1997). Note that $B_{n}^{+} \subseteq B_{n}^{*}$.
- Simple dual braids in B_{n}^{*} are in bijection with noncrossing partitions of $\{1,2, \ldots, n\}$.
- Generalisations: the dual braid monoids (Bessis 2001):
- Replace $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ by $\left(\sigma_{\tau(1)}, \sigma_{\tau(2)}, \ldots, \sigma_{\tau(n-1)}\right)$, where $\tau \in \mathfrak{S}_{n-1}$. (equiv. to choosing a Coxeter element c in \mathfrak{S}_{n}). The obtained monoid B_{c}^{*} is conjugate to B_{n}^{*} inside B_{n}.
- Replace the symmetric group \mathfrak{S}_{n} by any Coxeter group W and B_{n} by B_{W}. (Warning: the isomorphism type of B_{c}^{*} will depend on c in general when W is infinite).
- Define the c-simple dual braids (c-SDB) in B_{c}^{*} in the exact same way as for B_{n}^{*}.

Temperley-Lieb algebras

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

- Let $n \geq 3$. The Temperley-Lieb algebra TL_{n} is a quotient of \mathcal{H}_{n}.

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

- Let $n \geq 3$. The Temperley-Lieb algebra TL_{n} is a quotient of \mathcal{H}_{n}. It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with a (diagrammatic) basis $\left\{b_{w}\right\}_{w}$ indexed by certain permutations $w \in \mathfrak{S}_{n}$ (called 321-avoiding).

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras

phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

- Let $n \geq 3$. The Temperley-Lieb algebra TL_{n} is a quotient of \mathcal{H}_{n}. It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with a (diagrammatic) basis $\left\{b_{w}\right\}_{w}$ indexed by certain permutations $w \in \mathfrak{S}_{n}$ (called 321-avoiding).
- Fan and Green (1997) showed that, denoting by θ the quotient map $\mathcal{H}_{n} \longrightarrow \mathrm{TL}_{n}$, we have

$$
\theta\left(C_{w}\right)= \begin{cases}0 & \text { if } w \text { is not 321-avoiding, } \\ (-1)^{\ell(w)} b_{w} & \text { if } w \text { is 321-avoiding }\end{cases}
$$

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras

phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

- Let $n \geq 3$. The Temperley-Lieb algebra TL_{n} is a quotient of \mathcal{H}_{n}. It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with a (diagrammatic) basis $\left\{b_{w}\right\}_{w}$ indexed by certain permutations $w \in \mathfrak{S}_{n}$ (called 321-avoiding).
- Fan and Green (1997) showed that, denoting by θ the quotient map $\mathcal{H}_{n} \longrightarrow \mathrm{TL}_{n}$, we have

$$
\theta\left(C_{w}\right)= \begin{cases}0 & \text { if } w \text { is not 321-avoiding } \\ (-1)^{\ell(w)} b_{w} & \text { if } w \text { is 321-avoiding }\end{cases}
$$

- Let ψ denote the composition $B_{n} \xrightarrow{\varphi} \mathcal{H}_{n} \xrightarrow{\theta} \mathrm{TL}_{n}$.

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras and dual braid monoids

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras and dual braid monoids

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)
Fix a Coxeter element c in \mathfrak{S}_{n}. The images of the c-SDB of B_{c}^{*} under ψ yield a basis of TL_{n}, and there is a triangular base change matrix to $\left\{b_{w}\right\}_{w}$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras and dual braid monoids

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in \mathfrak{S}_{n}. The images of the c-SDB of B_{c}^{*} under ψ yield a basis of TL_{n}, and there is a triangular base change matrix to $\left\{b_{w}\right\}_{w}$.

- Given x a c-SDB, computer calculations were suggesting that

$$
\psi(x) \in \sum_{w} \sum_{321 \text {-avoiding }} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right](-1)^{\ell(w)} b_{w} .
$$

phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Temperley-Lieb algebras and dual braid monoids

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in \mathfrak{S}_{n}. The images of the c-SDB of B_{c}^{*} under ψ yield a basis of TL_{n}, and there is a triangular base change matrix to $\left\{b_{w}\right\}_{w}$.

- Given x a c-SDB, computer calculations were suggesting that

$$
\psi(x) \in \quad \sum_{\mathbb{Z}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right](-1)^{\ell(w)} b_{w} .
$$

- Since $\theta\left(C_{w}\right)$ is either 0 or $(-1)^{\ell(w)} b_{w}$, to obtain the above property it is enough to show that

$$
\begin{equation*}
\varphi(x) \in \sum_{w \in \mathfrak{G}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} . \tag{1}
\end{equation*}
$$

Temperley-Lieb algebras and dual braid monoids

Theorem (Zinno 2002, Lee-Lee 2004, G. 2016)

Fix a Coxeter element c in \mathfrak{S}_{n}. The images of the c-SDB of B_{c}^{*} under ψ yield a basis of TL_{n}, and there is a triangular base change matrix to $\left\{b_{w}\right\}_{w}$.

- Given x a c-SDB, computer calculations were suggesting that

$$
\psi(x) \in \quad \sum \quad \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right](-1)^{\ell(w)} b_{w} .
$$

- Since $\theta\left(C_{w}\right)$ is either 0 or $(-1)^{\ell(w)} b_{w}$, to obtain the above property it is enough to show that

$$
\begin{equation*}
\varphi(x) \in \sum_{w \in \mathfrak{S}_{n}} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} . \tag{1}
\end{equation*}
$$

- Note that (1) can be asked for an arbitrary Coxeter group W with attached Artin-Tits group $B_{W} \ldots$

Two questions

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Two questions

- Dyer (1987) conjectured that for an arbitrary Coxeter group W and $x, y \in W$, we have

$$
\begin{equation*}
\varphi\left(\mathbf{x y}^{-1}\right)=T_{x} T_{y}^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \tag{2}
\end{equation*}
$$

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Two questions

- Dyer (1987) conjectured that for an arbitrary Coxeter group W and $x, y \in W$, we have

$$
\begin{equation*}
\varphi\left(\mathbf{x y}^{-1}\right)=T_{x} T_{y}^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \tag{2}
\end{equation*}
$$

Dyer and Lehrer (1990) showed (2) for finite Weyl groups.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Two questions

- Dyer (1987) conjectured that for an arbitrary Coxeter group W and $x, y \in W$, we have

$$
\begin{equation*}
\varphi\left(\mathbf{x y}^{-1}\right)=T_{x} T_{y}^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \tag{2}
\end{equation*}
$$

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with $y=1$ for arbitrary W.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Two questions

- Dyer (1987) conjectured that for an arbitrary Coxeter group W and $x, y \in W$, we have

$$
\begin{equation*}
\varphi\left(\mathbf{x y}^{-1}\right)=T_{x} T_{y}^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \tag{2}
\end{equation*}
$$

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with $y=1$ for arbitrary W.

- Hence to show (1) at least for W a finite Weyl group, it is enough to positively answer the following question:

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Two questions

- Dyer (1987) conjectured that for an arbitrary Coxeter group W and $x, y \in W$, we have

$$
\begin{equation*}
\varphi\left(\mathbf{x y}^{-1}\right)=T_{x} T_{y}^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \tag{2}
\end{equation*}
$$

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with $y=1$ for arbitrary W.

- Hence to show (1) at least for W a finite Weyl group, it is enough to positively answer the following question:

Question 1: Are simple dual braids always of the form xy^{-1} ?

Two questions

- Dyer (1987) conjectured that for an arbitrary Coxeter group W and $x, y \in W$, we have

$$
\begin{equation*}
\varphi\left(\mathbf{x y}^{-1}\right)=T_{x} T_{y}^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \tag{2}
\end{equation*}
$$

Dyer and Lehrer (1990) showed (2) for finite Weyl groups. Elias and Williamson (2012) showed it with $y=1$ for arbitrary W.

- Hence to show (1) at least for W a finite Weyl group, it is enough to positively answer the following question:
Question 1: Are simple dual braids always of the form xy^{-1} ?
To get the statement at least for all the finite Coxeter groups, we can also consider the following:
Question 2: Is Dyer's conjecture true for arbitrary Coxeter systems ?

Mikado braids

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids

- Let us focus on type A_{n-1} for the moment.

Definition (Mikado braids)

We define Mikado braids by induction on n as:

1. The trivial braid in B_{1} is a Mikado braid,
2. A braid $\beta \in B_{n}$ is a Mikado braid if there exists a braid diagram for β with a strand lying above all the other strands, and such that removing this strand yields a braid $\beta^{\prime} \in B_{n-1}$ which is Mikado.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids, II

Mikado braids, II

Proposition (Digne-G., 2015)

A braid $\beta \in B_{n}$ is Mikado iff there are $x, y \in \mathfrak{S}_{n}$ such that $\beta=\mathbf{x y}^{-1}$ (iff there are $u, v \in \mathfrak{S}_{n}$ such that $\beta=\mathbf{u}^{-1} \mathbf{v}$)

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids, II

Proposition (Digne-G., 2015)

A braid $\beta \in B_{n}$ is Mikado iff there are $x, y \in \mathfrak{S}_{n}$ such that $\beta=\mathbf{x y}^{-1}$ (iff there are $u, v \in \mathfrak{S}_{n}$ such that $\beta=\mathbf{u}^{-1} \mathbf{v}$)

- Dyer gave the following definition. Let (W, S) be a Coxeter group with set of reflections T and root system Φ. Let $A \subseteq \Phi^{+}$be a biclosed set of positive roots and let $T_{A} \subseteq T$ be the corresponding set of reflections. Let $x \in W$, let $s_{1} s_{2} \cdots s_{k}$ be a reduced expression of x and let

$$
x_{A}:=\mathbf{s}_{1}^{\epsilon_{1}} \mathbf{s}_{2}^{\epsilon_{2}} \cdots \mathbf{s}_{k}^{\epsilon_{k}}
$$

where $\epsilon_{i}=-1$ if $s_{k} s_{k-1} \cdots s_{i} s_{i+1} \cdots s_{k} \in T_{A}$ and 1 otherwise. Then x_{A} is well-defined.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Mikado braids, II

Proposition (Digne-G., 2015)

A braid $\beta \in B_{n}$ is Mikado iff there are $x, y \in \mathfrak{S}_{n}$ such that $\beta=\mathbf{x y}^{-1}$ (iff there are $u, v \in \mathfrak{S}_{n}$ such that $\beta=\mathbf{u}^{-1} \mathbf{v}$)

- Dyer gave the following definition. Let (W, S) be a Coxeter group with set of reflections T and root system Φ. Let $A \subseteq \Phi^{+}$be a biclosed set of positive roots and let $T_{A} \subseteq T$ be the corresponding set of reflections. Let $x \in W$, let $s_{1} s_{2} \cdots s_{k}$ be a reduced expression of x and let

$$
x_{A}:=\mathbf{s}_{1}^{\epsilon_{1}} \mathbf{s}_{2}^{\epsilon_{2}} \cdots \mathbf{s}_{k}^{\epsilon_{k}}
$$

where $\epsilon_{i}=-1$ if $s_{k} s_{k-1} \cdots s_{i} s_{i+1} \cdots s_{k} \in T_{A}$ and 1 otherwise. Then x_{A} is well-defined.

- Call an element x_{A} a Mikado braid. It is not hard to see that braids of the form $\mathbf{x y}^{-1}$ or $\mathbf{u}^{-1} \mathbf{v}$ are Mikado, and that in spherical types both definitions are equivalent.

2-braid groups and positivity phenomenons in Hecke and Temperley-Lieb algebras

Thomas Gobet

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids and SDB

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids and SDB

Theorem (Digne-G. 2015 conjecture + proof except D_{n}, Licata-Queffelec 2017 ADE, Baumeister-G. $2017 D_{n}$)

In spherical types, simple dual braids are Mikado braids.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids and SDB

Theorem (Digne-G. 2015 conjecture + proof except D_{n}, Licata-Queffelec 2017 ADE, Baumeister-G. $2017 D_{n}$)

In spherical types, simple dual braids are Mikado braids.

- All these proofs give an algorithm to expess a SDB as a Mikado braid rather than an explicit formula.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Mikado braids and SDB

Theorem (Digne-G. 2015 conjecture + proof except D_{n}, Licata-Queffelec 2017 ADE, Baumeister-G. $2017 D_{n}$)
In spherical types, simple dual braids are Mikado braids.

- All these proofs give an algorithm to expess a SDB as a Mikado braid rather than an explicit formula.

Theorem (Formula expressing the SDB in the standard Artin generators; G., 2018)

Let β be a SDB in a spherical type Artin group with choice of Coxeter element c. Let x be its image in W. Then $\beta=x_{A}$, where A can be explicitely defined using Reading's c-sortable elements. algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Soergel bimodules

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Soergel bimodules

- Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R=S\left(V^{*}\right)$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Soergel bimodules

- Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R=S\left(V^{*}\right)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^{s}} R$ where $R^{s}:=\{r \in R \mid s(r)=r\}$ and let $B_{s}:=R \otimes_{R^{s}} R(1)$ (grading shift).

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Soergel bimodules

- Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R=S\left(V^{*}\right)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^{s}} R$ where $R^{s}:=\{r \in R \mid s(r)=r\}$ and let $B_{s}:=R \otimes_{R^{s}} R(1)$ (grading shift).
- Given an expression $s_{1} s_{2} \cdots s_{k}$ where $s_{i} \in S$, consider the Bott-Samelson bimodule $B_{s_{1}} \otimes_{R} B_{s_{2}} \otimes_{R} \cdots \otimes_{R} B_{s_{k}}$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Soergel bimodules

- Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R=S\left(V^{*}\right)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^{s}} R$ where $R^{s}:=\{r \in R \mid s(r)=r\}$ and let $B_{s}:=R \otimes_{R^{s}} R(1)$ (grading shift).
- Given an expression $s_{1} s_{2} \cdots s_{k}$ where $s_{i} \in S$, consider the Bott-Samelson bimodule $B_{s_{1}} \otimes_{R} B_{s_{2}} \otimes_{R} \cdots \otimes_{R} B_{s_{k}}$.
- Let \mathcal{B} denote the additive, Karoubian category generated by (shifts of) Bott-Samelson bimodules.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Soergel bimodules

2-braid groups and positivity faithful representation of W. Let $R=S\left(V^{*}\right)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^{s}} R$ where $R^{s}:=\{r \in R \mid s(r)=r\}$ and let $B_{s}:=R \otimes_{R^{s}} R(1)$ (grading shift).

- Given an expression $s_{1} s_{2} \cdots s_{k}$ where $s_{i} \in S$, consider the Bott-Samelson bimodule $B_{s_{1}} \otimes_{R} B_{s_{2}} \otimes_{R} \cdots \otimes_{R} B_{s_{k}}$.
- Let \mathcal{B} denote the additive, Karoubian category generated by (shifts of) Bott-Samelson bimodules.
- Soergel showed that the indecomposable bimodules in \mathcal{B} are (up to grading shift) indexed by the elements of W, say $\left\{B_{w}\right\}_{w \in W}$.

Soergel bimodules

- Let (W, S) be a Coxeter group and V a reflection faithful representation of W. Let $R=S\left(V^{*}\right)$. For $s \in S$ consider the graded R-bimodule $R \otimes_{R^{s}} R$ where $R^{s}:=\{r \in R \mid s(r)=r\}$ and let $B_{s}:=R \otimes_{R^{s}} R(1)$ (grading shift).
- Given an expression $s_{1} s_{2} \cdots s_{k}$ where $s_{i} \in S$, consider the Bott-Samelson bimodule $B_{s_{1}} \otimes_{R} B_{s_{2}} \otimes_{R} \cdots \otimes_{R} B_{s_{k}}$.
- Let \mathcal{B} denote the additive, Karoubian category generated by (shifts of) Bott-Samelson bimodules.
- Soergel showed that the indecomposable bimodules in \mathcal{B} are (up to grading shift) indexed by the elements of W, say $\left\{B_{w}\right\}_{w \in W}$. He showed that the split Grothendieck ring $\langle\mathcal{B}\rangle$ of \mathcal{B} is isomorphic to the Hecke algebra H_{W} of W, and conjectured that the class $\left\langle B_{w}\right\rangle$ of B_{w} corresponds to the element C_{w}^{\prime} of H_{W}.

Soergel bimodules, II

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Soergel bimodules, II

- Elias and Williamson (2012) showed Soergel's conjecture, which implies that

$$
C_{w}^{\prime} \in \sum_{y \in W} \mathbb{Z}_{\geq 0}[v] T_{y} . \quad \text { (KL positivity) }
$$

They also showed that

$$
T_{x} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \quad \text { (Inverse KL positivity) }
$$

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Soergel bimodules, II

- Elias and Williamson (2012) showed Soergel's conjecture, which implies that

$$
C_{w}^{\prime} \in \sum_{y \in W} \mathbb{Z}_{\geq 0}[v] T_{y} . \quad \text { (KL positivity) }
$$

They also showed that

$$
T_{x} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] C_{w} \quad \text { (Inverse KL positivity) }
$$

- In the first case, the coefficients are interpreted as graded multiplicities in filtrations of B_{w} (recall that $\left.\left\langle B_{w}\right\rangle=C_{w}^{\prime}\right)$. In the second case, the coefficients count the number of occurrences of B_{w} 's in a chain complex of Soergel bimodules categorifying T_{x}.

Categorification of Artin-Tits groups

2-braid groups and
positivity
phenomenons in
Hecke and
Temperley-Lieb
algebras
Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Categorification of Artin-Tits groups

- Consider the bounded homotopy category $K^{b}(\mathcal{B})$ of \mathcal{B}.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Categorification of Artin-Tits groups

- Consider the bounded homotopy category $K^{b}(\mathcal{B})$ of \mathcal{B}. Consider the complex

$$
F_{s}: 0 \rightarrow \stackrel{\star}{B_{s}} \rightarrow R(1) \rightarrow 0 \in K^{b}(\mathcal{B})
$$

where the nontrivial map is $a \otimes b \mapsto a b$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Categorification of Artin-Tits groups

- Consider the bounded homotopy category $K^{b}(\mathcal{B})$ of \mathcal{B}. Consider the complex

$$
F_{s}: 0 \rightarrow \stackrel{\star}{B_{s}} \rightarrow R(1) \rightarrow 0 \in K^{b}(\mathcal{B})
$$

where the nontrivial map is $a \otimes b \mapsto a b$.

- The complex F_{s} has an inverse E_{s} in $K^{b}(\mathcal{B})$ for the tensor product of complexes. It is given by

$$
E_{s}: 0 \rightarrow R(-1) \rightarrow \stackrel{\star}{B}_{s} \rightarrow 0
$$

for a suitable map in the middle.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Categorification of Artin-Tits groups

- Consider the bounded homotopy category $K^{b}(\mathcal{B})$ of \mathcal{B}. Consider the complex

$$
F_{s}: 0 \rightarrow \stackrel{\star}{B_{s}} \rightarrow R(1) \rightarrow 0 \in K^{b}(\mathcal{B})
$$

where the nontrivial map is $a \otimes b \mapsto a b$.

- The complex F_{s} has an inverse E_{s} in $K^{b}(\mathcal{B})$ for the tensor product of complexes. It is given by

$$
E_{s}: 0 \rightarrow R(-1) \rightarrow \stackrel{\star}{B}_{s} \rightarrow 0
$$

for a suitable map in the middle.

- Rouquier (2004) showed that it defines a conjecturally faithful action of the Artin-Tits group B_{W} on $K^{b}(\mathcal{B})$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Categorification of Artin-Tits groups

- Consider the bounded homotopy category $K^{b}(\mathcal{B})$ of \mathcal{B}. Consider the complex

$$
F_{s}: 0 \rightarrow \stackrel{\star}{B_{s}} \rightarrow R(1) \rightarrow 0 \in K^{b}(\mathcal{B})
$$

where the nontrivial map is $a \otimes b \mapsto a b$.

- The complex F_{s} has an inverse E_{s} in $K^{b}(\mathcal{B})$ for the tensor product of complexes. It is given by

$$
E_{s}: 0 \rightarrow R(-1) \rightarrow \stackrel{\star}{B_{s}} \rightarrow 0
$$

for a suitable map in the middle.

- Rouquier (2004) showed that it defines a conjecturally faithful action of the Artin-Tits group B_{W} on $K^{b}(\mathcal{B})$.
- In this way one can attach to any braid $\beta \in B_{W}$ an object $F_{\beta} \in K^{b}(\mathcal{B}), \mathrm{s}_{1} \mathrm{~s}_{2}-1 \cdots \mapsto F_{s_{1}} \otimes E_{s_{2}} \otimes \cdots$.

Categorification of Artin-Tits groups

2-braid groups and
positivity
phenomenons in
Hecke and
Temperley-Lieb
algebras
Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and
positivity of
Mikado braids

Categorification of Artin-Tits groups

- Given $\beta \in B_{W}$, one can compute F_{β} using any word for β.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Categorification of Artin-Tits groups

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

- Given $\beta \in B_{W}$, one can compute F_{β} using any word for β. The obtained complex may have contractible summands.

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Categorification of Artin-Tits groups

- Given $\beta \in B_{W}$, one can compute F_{β} using any word for β. The obtained complex may have contractible summands. Removing them yields the (unique up to isomorphism of complexes) minimal complex $F_{\beta}^{\min }$ of β.

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb

Simple dual braids are Mikado braids

Categorification of Artin-Tits groups

- Given $\beta \in B_{W}$, one can compute F_{β} using any word for β. The obtained complex may have contractible summands. Removing them yields the (unique up to isomorphism of complexes) minimal complex $F_{\beta}^{\min }$ of β.
- A crucial step in the proof of inverse KL positivity is to show that $F_{\mathbf{x}}^{\min }$ is linear, i.e., that the indecomposable summands in homological degree i are all of the form $B_{x}(i)$ for various $x \in W$ (in other words, the object $F_{\mathbf{x}}$ lies in the heart of the canonical t-structure on $K^{b}(\mathcal{B})$).

Linearity

2-braid groups and positivity phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and positivity of Mikado braids

Linearity

- Example: let $\beta=\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}$, then $F_{\beta}^{\min }$ is of the form

$$
\begin{aligned}
& \begin{array}{l}
B_{s_{2} s_{1} s_{2}}(1) \\
B_{s_{1} s_{3} s_{2}}(1) \\
B_{s_{2} s_{1} s_{3} s_{2}} \\
B_{s_{2} s_{3} s_{2}}(1) \\
B_{s_{2}}(1) \\
\\
B_{s_{2} s_{1} s_{3}}(1)
\end{array} \rightarrow \begin{array}{l}
B_{s_{1} s_{2}}(2) \\
B_{s_{3} s_{2}}
\end{array}(2) \\
& B_{s_{2} s_{1}}(2) \\
& B_{s_{1} s_{3}}(2) \\
& B_{s_{2} s_{3}}(2)
\end{aligned} \rightarrow \begin{aligned}
& B_{s_{1}}(3) \\
& B_{s_{2}}(3) \\
& B_{s_{3}}(3)
\end{aligned} \rightarrow R(4)
$$

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
 Dual braid
 monoids
 Bases of
 Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and positivity of Mikado braids

Linearity

- Example: let $\beta=\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}$, then $F_{\beta}^{\min }$ is of the form

$$
\begin{aligned}
& B_{s_{2} s_{1} s_{2}}(1) \quad B_{s_{1} s_{2}}(2) \\
& \begin{array}{l}
\star \\
B_{s_{2} s_{1} s_{3} s_{2}} \rightarrow \begin{array}{l}
B_{s_{1} s_{3} s_{2}}(1) \\
B_{s_{2} s_{3} s_{2}}(1)
\end{array} \rightarrow \begin{array}{l}
B_{s_{3} s_{2}}(2) \\
B_{s_{2} s_{1}}(2)
\end{array} \rightarrow \begin{array}{l}
B_{s_{1}}(3) \\
B_{s_{2}}(3)
\end{array} \rightarrow R(4)
\end{array} \\
& B_{s_{2}}(1) \quad B_{s_{1} s_{3}}(2) \quad B_{s_{3}}(3) \\
& B_{s_{2} s_{1} s_{3}}(1) \quad B_{s_{2} s_{3}}(2)
\end{aligned}
$$

- For $x, y \in W$ and $\beta:=\mathbf{x y}^{-1}$ (or $\mathbf{x}^{-1} \mathbf{y}$), the complex F_{β} is still linear.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
 Dual braid
 monoids
 Bases of
 Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and positivity of Mikado braids

Linearity

- Example: let $\beta=\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}$, then $F_{\beta}^{\min }$ is of the form

$$
\begin{aligned}
& B_{s_{2} s_{1} s_{2}}(1) \quad B_{s_{1} s_{2}}(2) \\
& \begin{array}{l}
\stackrel{B_{s}}{\star} \\
B_{s_{2} s_{1} s_{3} s_{2}} \rightarrow \begin{array}{l}
B_{s_{1} s_{3} s_{2}}(1) \\
B_{s_{2} s_{3} s_{2}}(1)
\end{array} \rightarrow \begin{array}{l}
B_{s_{3} s_{2}}(2) \\
B_{s_{2} s_{1}}(2)
\end{array} \rightarrow \begin{array}{l}
B_{s_{1}}(3) \\
B_{s_{2}}(3)
\end{array} \rightarrow R(4)
\end{array} \\
& B_{s_{2}}(1) \quad B_{s_{1} s_{3}}(2) \quad B_{s_{3}}(3) \\
& B_{s_{2} s_{1} s_{3}}(1) \quad B_{s_{2} s_{3}}(2)
\end{aligned}
$$

- For $x, y \in W$ and $\beta:=\mathbf{x y}^{-1}$ (or $\mathbf{x}^{-1} \mathbf{y}$), the complex F_{β} is still linear.
- Example: let $\beta=\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1}$, then $F_{\beta}^{\min }$ is of the form

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and positivity of Mikado braids

Positivity of Mikado braids

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and positivity of Mikado braids

Positivity of Mikado braids

- Using the linearity of the complex $F_{\beta}^{\min }$ (where $\beta=\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$), one can show the following using positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet Soergel's conjecture and twisted Bruhat orders

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Positivity of Mikado braids

- Using the linearity of the complex $F_{\beta}^{\min }$ (where $\beta=\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation

Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Positivity of Mikado braids

- Using the linearity of the complex $F_{\beta}^{\min }$ (where $\beta=\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

1. Let $w \in W$. The bimodule B_{w} appears as a direct summand either only in odd cohomological degrees or only in even cohomological degrees of $F_{\beta}^{\min }$.

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Positivity of Mikado braids

- Using the linearity of the complex $F_{\beta}^{\min }$ (where $\beta=\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

1. Let $w \in W$. The bimodule B_{w} appears as a direct summand either only in odd cohomological degrees or only in even cohomological degrees of $F_{\beta}^{\min }$.
2. The coefficient of C_{w} in $T_{x} T_{y}^{-1}$ (or $T_{x}^{-1} T_{y}$) counts the number of occurrences of B_{w} in all cohomological degrees of F_{β}^{min} together. Hence it lies in $\mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right]$, and Dyer's conjecture holds for arbitrary W.

2-braid groups and positivity phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Positivity of Mikado braids

- Using the linearity of the complex $F_{\beta}^{\min }$ (where $\beta=\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$), one can show the following using Soergel's conjecture and twisted Bruhat orders

Theorem (G. 2016)

1. Let $w \in W$. The bimodule B_{w} appears as a direct summand either only in odd cohomological degrees or only in even cohomological degrees of $F_{\beta}^{\min }$.
2. The coefficient of C_{w} in $T_{x} T_{y}^{-1}$ (or $T_{x}^{-1} T_{y}$) counts the number of occurrences of B_{w} in all cohomological degrees of F_{β}^{min} together. Hence it lies in $\mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right]$, and Dyer's conjecture holds for arbitrary W.
3. Conversely, one has $C_{w}^{\prime} \in \sum_{x \in W} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] T_{x} T_{y}^{-1}$, where coefficients are interpreted as graded multiplicities in a twisted filtration of B_{w}.

Questions

2-braid groups and positivity
 phenomenons in Hecke and
 Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids
are Mikado braids
Soergel bimodules
Linearity and positivity of Mikado braids

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures). positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- For infinite W, there are Mikado braids which are not of the form $\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$ (e.g. $\mathbf{s}^{-1} \mathbf{t u}^{-1}$ in the free group with 3 generators $\mathbf{s}, \mathbf{t}, \mathbf{u}$).

Simple dual braids are Mikado braids

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- For infinite W, there are Mikado braids which are not of the form $\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$ (e.g. $\mathbf{s}^{-1} \mathbf{t u}^{-1}$ in the free group with 3 generators $\mathbf{s}, \mathbf{t}, \mathbf{u}$). Images of these elements are still expected to have a positive KL expansion. Can we show this?

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- For infinite W, there are Mikado braids which are not of the form $\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$ (e.g. $\mathbf{s}^{-1} \mathbf{t u}^{-1}$ in the free group with 3 generators $\mathbf{s}, \mathbf{t}, \mathbf{u}$). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)

2-braid groups and positivity
phenomenons in Hecke and
Temperley-Lieb algebras

Thomas Gobet

Motivation
Dual braid
monoids
Bases of
Temperley-Lieb
algebras
Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and
positivity of
Mikado braids

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- For infinite W, there are Mikado braids which are not of the form $\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$ (e.g. $\mathbf{s}^{-1} \mathbf{t u}^{-1}$ in the free group with 3 generators $\mathbf{s}, \mathbf{t}, \mathbf{u}$). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- One could conjecture that only Mikado braids have a positive KL expansion...

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- For infinite W, there are Mikado braids which are not of the form $\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$ (e.g. $\mathbf{s}^{-1} \mathbf{t u}^{-1}$ in the free group with 3 generators $\mathbf{s}, \mathbf{t}, \mathbf{u}$). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- One could conjecture that only Mikado braids have a positive KL expansion... but this would imply that the $\operatorname{map} B_{W} \longrightarrow H_{W}^{\times}$is injective...

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- For infinite W, there are Mikado braids which are not of the form $\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$ (e.g. $\mathbf{s}^{-1} \mathbf{t u}^{-1}$ in the free group with 3 generators $\mathbf{s}, \mathbf{t}, \mathbf{u}$). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- One could conjecture that only Mikado braids have a positive KL expansion... but this would imply that the map $B_{W} \longrightarrow H_{W}^{\times}$is injective... a weaker form would be, at the categorified level, to conjecture that only Mikado braids are linear...

Questions

- In particular, the answer to both Question 1 and 2 is positive, and the base change matrix between Zinno's basis of TL_{n} and the diagram basis has coefficients which have nonnegative coefficients (up to signatures).
- For infinite W, there are Mikado braids which are not of the form $\mathbf{x y}^{-1}$ or $\mathbf{x}^{-1} \mathbf{y}$ (e.g. $\mathbf{s}^{-1} \mathbf{t u}^{-1}$ in the free group with 3 generators $\mathbf{s}, \mathbf{t}, \mathbf{u}$). Images of these elements are still expected to have a positive KL expansion. Can we show this ? (... the hard step is to check that the braid complex is linear...)
- One could conjecture that only Mikado braids have a positive KL expansion... but this would imply that the map $B_{W} \longrightarrow H_{W}^{\times}$is injective... a weaker form would be, at the categorified level, to conjecture that only Mikado braids are linear... but this would show the faithfulness of Rouquier's action.

Simple dual braids are Mikado braids

```
2-braid groups and
    positivity
    phenomenons in
    Hecke and
    Temperley-Lieb
        algebras
```

 Thomas Gobet

Motivation

Dual braid

monoids

Bases of
 Temperley-Lieb algebras

Two questions
Mikado braids
Simple dual braids are Mikado braids

Soergel bimodules
Linearity and positivity of Mikado braids

