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◮ Let (W,S) be a Coxeter system, i.e., W is a group
generated by S = {s1, . . . , sn} with presentation
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◮ Let (W,S) be a Coxeter system, i.e., W is a group
generated by S = {s1, . . . , sn} with presentation

W = 〈 s1, . . . , sn | s2i = e, sisj · · ·
︸ ︷︷ ︸

mij factors

= sjsi · · ·
︸ ︷︷ ︸

mji factors

if i 6= j 〉,

where mij = mji ∈ {2, 3, . . . } ∪ {∞}.
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◮ Let (W,S) be a Coxeter system, i.e., W is a group
generated by S = {s1, . . . , sn} with presentation

W = 〈 s1, . . . , sn | s2i = e, sisj · · ·
︸ ︷︷ ︸

mij factors

= sjsi · · ·
︸ ︷︷ ︸

mji factors

if i 6= j 〉,

where mij = mji ∈ {2, 3, . . . } ∪ {∞}.

◮ Denote by ℓ : W → Z≥0 the length function, by
T =

⋃

w∈W wSw−1 the set of reflections of W and by
≤ the (strong) Bruhat order.
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◮ Let (W,S) be a Coxeter system, i.e., W is a group
generated by S = {s1, . . . , sn} with presentation

W = 〈 s1, . . . , sn | s2i = e, sisj · · ·
︸ ︷︷ ︸

mij factors

= sjsi · · ·
︸ ︷︷ ︸

mji factors

if i 6= j 〉,

where mij = mji ∈ {2, 3, . . . } ∪ {∞}.

◮ Denote by ℓ : W → Z≥0 the length function, by
T =

⋃

w∈W wSw−1 the set of reflections of W and by
≤ the (strong) Bruhat order.

◮ Let B(W ) = B(W,S) be the Artin-Tits group attached
to (W,S), that is, B(W ) is generated by a copy
{s1, . . . , sn} of the elements of S and has a presentation
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◮ Let (W,S) be a Coxeter system, i.e., W is a group
generated by S = {s1, . . . , sn} with presentation

W = 〈 s1, . . . , sn | s2i = e, sisj · · ·
︸ ︷︷ ︸

mij factors

= sjsi · · ·
︸ ︷︷ ︸

mji factors

if i 6= j 〉,

where mij = mji ∈ {2, 3, . . . } ∪ {∞}.

◮ Denote by ℓ : W → Z≥0 the length function, by
T =

⋃

w∈W wSw−1 the set of reflections of W and by
≤ the (strong) Bruhat order.

◮ Let B(W ) = B(W,S) be the Artin-Tits group attached
to (W,S), that is, B(W ) is generated by a copy
{s1, . . . , sn} of the elements of S and has a presentation

B(W ) = 〈 s1, . . . , sn | sisj · · ·
︸ ︷︷ ︸

mij factors

= sjsi · · ·
︸ ︷︷ ︸

mij factors

〉,
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Example

◮ The symmetric group W = Sn, is a Coxeter group with
S = {si = (i, i+ 1) | i = 1, . . . , n − 1}, mij = 3 if
|i− j| = 1, mij = 2 if |i− j| > 1.
T = {transpositions}.



On positivity

properties in Hecke

algebras of

arbitrary Coxeter

groups

Thomas Gobet

Coxeter groups

and Artin groups

Hecke algebras

Positivity

properties and

Soergel bimodules

Main results

Coxeter groups and their Artin-Tits groups

Example

◮ The symmetric group W = Sn, is a Coxeter group with
S = {si = (i, i+ 1) | i = 1, . . . , n − 1}, mij = 3 if
|i− j| = 1, mij = 2 if |i− j| > 1.
T = {transpositions}.

◮ The corresponding group B(W ) is the Artin braid
group Bn on n strands.
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◮ The symmetric group W = Sn, is a Coxeter group with
S = {si = (i, i+ 1) | i = 1, . . . , n − 1}, mij = 3 if
|i− j| = 1, mij = 2 if |i− j| > 1.
T = {transpositions}.

◮ The corresponding group B(W ) is the Artin braid
group Bn on n strands.

b b b b b b b

b b b b b b b
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Example

◮ The symmetric group W = Sn, is a Coxeter group with
S = {si = (i, i+ 1) | i = 1, . . . , n − 1}, mij = 3 if
|i− j| = 1, mij = 2 if |i− j| > 1.
T = {transpositions}.

◮ The corresponding group B(W ) is the Artin braid
group Bn on n strands.

b b b b b b b

b b b b b b b

◮ Given w = s1s2 · · · sk with ℓ(w) = k, the lift s1s2 · · · sk
in B(W ) is well-defined and denoted by w.
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Hecke algebra of a Coxeter system

◮ Let A = Z[v, v−1]. Let H(W ) = H(W,S) be the Hecke
algebra attached to (W,S), that is, the associative
unital A-algebra with a presentation

〈

Ts1 , . . . , Tsn , si ∈ S

TsiTsj · · ·
︸ ︷︷ ︸

mij

= TsjTsi · · ·
︸ ︷︷ ︸

mij

T 2
si
= (v−2 − 1)Tsi + v−2

〉
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◮ Let A = Z[v, v−1]. Let H(W ) = H(W,S) be the Hecke
algebra attached to (W,S), that is, the associative
unital A-algebra with a presentation

〈

Ts1 , . . . , Tsn , si ∈ S

TsiTsj · · ·
︸ ︷︷ ︸

mij

= TsjTsi · · ·
︸ ︷︷ ︸

mij

T 2
si
= (v−2 − 1)Tsi + v−2

〉

◮ Since the Tsi satisfy the braid relations, there is a group
homomorphism a : B(W ) → H(W )×, a(si) = Tsi .
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◮ Let A = Z[v, v−1]. Let H(W ) = H(W,S) be the Hecke
algebra attached to (W,S), that is, the associative
unital A-algebra with a presentation

〈

Ts1 , . . . , Tsn , si ∈ S

TsiTsj · · ·
︸ ︷︷ ︸

mij

= TsjTsi · · ·
︸ ︷︷ ︸

mij

T 2
si
= (v−2 − 1)Tsi + v−2

〉

◮ Since the Tsi satisfy the braid relations, there is a group
homomorphism a : B(W ) → H(W )×, a(si) = Tsi .

◮ For w ∈ W , let Tw := a(w). The set {Tw}w∈W is a
basis of H(W ) as an A-module, called standard.
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Hecke algebra of a Coxeter system

◮ Let A = Z[v, v−1]. Let H(W ) = H(W,S) be the Hecke
algebra attached to (W,S), that is, the associative
unital A-algebra with a presentation

〈

Ts1 , . . . , Tsn , si ∈ S

TsiTsj · · ·
︸ ︷︷ ︸

mij

= TsjTsi · · ·
︸ ︷︷ ︸

mij

T 2
si
= (v−2 − 1)Tsi + v−2

〉

◮ Since the Tsi satisfy the braid relations, there is a group
homomorphism a : B(W ) → H(W )×, a(si) = Tsi .

◮ For w ∈ W , let Tw := a(w). The set {Tw}w∈W is a
basis of H(W ) as an A-module, called standard.

◮ Each Tw is invertible and {T−1
w−1}w∈W is also a basis of

H(W ), called costandard.
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Kazhdan-Lusztig canonical bases

◮ There is an involution ¯ : H(W ) → H(W ) s.t. v = v−1,
Tw = (Tw−1)−1. For w ∈ W , set Hw := vℓ(w)Tw.



On positivity

properties in Hecke

algebras of

arbitrary Coxeter

groups

Thomas Gobet

Coxeter groups

and Artin groups

Hecke algebras

Positivity

properties and

Soergel bimodules

Main results

Kazhdan-Lusztig canonical bases

◮ There is an involution ¯ : H(W ) → H(W ) s.t. v = v−1,
Tw = (Tw−1)−1. For w ∈ W , set Hw := vℓ(w)Tw.

Theorem (Kazhdan-Lusztig, 1979)
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◮ There is an involution ¯ : H(W ) → H(W ) s.t. v = v−1,
Tw = (Tw−1)−1. For w ∈ W , set Hw := vℓ(w)Tw.

Theorem (Kazhdan-Lusztig, 1979)

◮ For any w ∈ W , there is a unique C ′
w ∈ H(W ) such

that C ′
w = C ′

w and C ′
w ∈ Hw +

∑

y<w vZ[v]Hy.
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◮ There is an involution ¯ : H(W ) → H(W ) s.t. v = v−1,
Tw = (Tw−1)−1. For w ∈ W , set Hw := vℓ(w)Tw.

Theorem (Kazhdan-Lusztig, 1979)

◮ For any w ∈ W , there is a unique C ′
w ∈ H(W ) such

that C ′
w = C ′

w and C ′
w ∈ Hw +

∑

y<w vZ[v]Hy.

◮ For any w ∈ W , there is a unique Cw ∈ H(W ) such
that Cw = Cw and Cw ∈ Hw +

∑

y<w v−1
Z[v−1]Hy.
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◮ There is an involution ¯ : H(W ) → H(W ) s.t. v = v−1,
Tw = (Tw−1)−1. For w ∈ W , set Hw := vℓ(w)Tw.

Theorem (Kazhdan-Lusztig, 1979)

◮ For any w ∈ W , there is a unique C ′
w ∈ H(W ) such

that C ′
w = C ′

w and C ′
w ∈ Hw +

∑

y<w vZ[v]Hy.

◮ For any w ∈ W , there is a unique Cw ∈ H(W ) such
that Cw = Cw and Cw ∈ Hw +

∑

y<w v−1
Z[v−1]Hy.

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)

Let C ′
w =

∑

y≤w hy,wTy. Then hy,w ∈ Z≥0[v].
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◮ There is an involution ¯ : H(W ) → H(W ) s.t. v = v−1,
Tw = (Tw−1)−1. For w ∈ W , set Hw := vℓ(w)Tw.

Theorem (Kazhdan-Lusztig, 1979)

◮ For any w ∈ W , there is a unique C ′
w ∈ H(W ) such

that C ′
w = C ′

w and C ′
w ∈ Hw +

∑

y<w vZ[v]Hy.

◮ For any w ∈ W , there is a unique Cw ∈ H(W ) such
that Cw = Cw and Cw ∈ Hw +

∑

y<w v−1
Z[v−1]Hy.

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)

Let C ′
w =

∑

y≤w hy,wTy. Then hy,w ∈ Z≥0[v].

◮ Proven for (finite and affine) Weyl groups by KL in
1980;
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◮ There is an involution ¯ : H(W ) → H(W ) s.t. v = v−1,
Tw = (Tw−1)−1. For w ∈ W , set Hw := vℓ(w)Tw.

Theorem (Kazhdan-Lusztig, 1979)

◮ For any w ∈ W , there is a unique C ′
w ∈ H(W ) such

that C ′
w = C ′

w and C ′
w ∈ Hw +

∑

y<w vZ[v]Hy.

◮ For any w ∈ W , there is a unique Cw ∈ H(W ) such
that Cw = Cw and Cw ∈ Hw +

∑

y<w v−1
Z[v−1]Hy.

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)

Let C ′
w =

∑

y≤w hy,wTy. Then hy,w ∈ Z≥0[v].

◮ Proven for (finite and affine) Weyl groups by KL in
1980; recently (2014) Elias and Williamson proved
Soergel’s conjecture, which solves the general case.
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Conjecture (Dyer, 1987)

(D1) For all w, y ∈ W , C′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.
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Conjecture (Dyer, 1987)

(D1) For all w, y ∈ W , C′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

(D2) For all x, y ∈ W , TxT
−1
y ∈

∑

w∈W Z≥0[v
±1]Cw.
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Conjecture (Dyer, 1987)

(D1) For all w, y ∈ W , C′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

(D2) For all x, y ∈ W , TxT
−1
y ∈

∑

w∈W Z≥0[v
±1]Cw.

◮ (D1) for y = 1 is KL positivity conjecture.
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Conjecture (Dyer, 1987)

(D1) For all w, y ∈ W , C′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

(D2) For all x, y ∈ W , TxT
−1
y ∈

∑

w∈W Z≥0[v
±1]Cw.

◮ (D1) for y = 1 is KL positivity conjecture.

◮ Dyer (1987): combinatorial proof of (D1)− (D2) for
universal Coxeter systems.
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Conjecture (Dyer, 1987)

(D1) For all w, y ∈ W , C′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

(D2) For all x, y ∈ W , TxT
−1
y ∈

∑

w∈W Z≥0[v
±1]Cw.

◮ (D1) for y = 1 is KL positivity conjecture.

◮ Dyer (1987): combinatorial proof of (D1)− (D2) for
universal Coxeter systems.

◮ Dyer and Lehrer (1990): geometric proof of (D1) for finite
Weyl groups. Combinatorial proof that (D1) ⇔ (D2) for
finite Coxeter groups.
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Conjecture (Dyer, 1987)

(D1) For all w, y ∈ W , C′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

(D2) For all x, y ∈ W , TxT
−1
y ∈

∑

w∈W Z≥0[v
±1]Cw.

◮ (D1) for y = 1 is KL positivity conjecture.

◮ Dyer (1987): combinatorial proof of (D1)− (D2) for
universal Coxeter systems.

◮ Dyer and Lehrer (1990): geometric proof of (D1) for finite
Weyl groups. Combinatorial proof that (D1) ⇔ (D2) for
finite Coxeter groups.

◮ Grojnowski and Haiman (2004): geometric proof of (D1) for

affine Weyl groups.
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About proof of KL positivity: Soergel bimodules

◮ Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.
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About proof of KL positivity: Soergel bimodules

◮ Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.

◮ Let V be a real reflection faithful representation of
(W,S). Let R = O(V ) ∼= S(V ∗).
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About proof of KL positivity: Soergel bimodules

◮ Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.

◮ Let V be a real reflection faithful representation of
(W,S). Let R = O(V ) ∼= S(V ∗). It is graded (we set
deg(V ∗) = 2) and W acts degreewise on R.
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About proof of KL positivity: Soergel bimodules

◮ Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.

◮ Let V be a real reflection faithful representation of
(W,S). Let R = O(V ) ∼= S(V ∗). It is graded (we set
deg(V ∗) = 2) and W acts degreewise on R. For every
s ∈ S, set

Bs := R⊗Rs R(1).

It is an (indecomposable) graded R-bimodule.
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About proof of KL positivity: Soergel bimodules

◮ Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.

◮ Let V be a real reflection faithful representation of
(W,S). Let R = O(V ) ∼= S(V ∗). It is graded (we set
deg(V ∗) = 2) and W acts degreewise on R. For every
s ∈ S, set

Bs := R⊗Rs R(1).

It is an (indecomposable) graded R-bimodule. The
category of graded R-bimodules is Krull-Schmidt.
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Soergel bimodules, II

Theorem (Soergel, 2007)

1. Let w = s1s2 · · · sk ∈ W , k = ℓ(w). There is a unique
indecomposable summand Bw of Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsk

which does not occur as a summand of a smaller product.
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Theorem (Soergel, 2007)

1. Let w = s1s2 · · · sk ∈ W , k = ℓ(w). There is a unique
indecomposable summand Bw of Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsk

which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the Bw(i), w ∈ W , i ∈ Z.
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1. Let w = s1s2 · · · sk ∈ W , k = ℓ(w). There is a unique
indecomposable summand Bw of Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsk

which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the Bw(i), w ∈ W , i ∈ Z.

3. There is an isomorphism of rings E : H(W ) −→ 〈B,⊗R〉,
E(C′

s) = 〈Bs〉, E(v) = 〈R(1)〉.
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Theorem (Soergel, 2007)

1. Let w = s1s2 · · · sk ∈ W , k = ℓ(w). There is a unique
indecomposable summand Bw of Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsk

which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the Bw(i), w ∈ W , i ∈ Z.

3. There is an isomorphism of rings E : H(W ) −→ 〈B,⊗R〉,
E(C′

s) = 〈Bs〉, E(v) = 〈R(1)〉. Its inverse is given by
ch(〈B ∈ B〉) =

∑

x∈W

∑

i∈Z
[B : Rx(i− ℓ(x))]vi+ℓ(x)Tx.
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Soergel bimodules, II

Theorem (Soergel, 2007)

1. Let w = s1s2 · · · sk ∈ W , k = ℓ(w). There is a unique
indecomposable summand Bw of Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsk

which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the Bw(i), w ∈ W , i ∈ Z.

3. There is an isomorphism of rings E : H(W ) −→ 〈B,⊗R〉,
E(C′

s) = 〈Bs〉, E(v) = 〈R(1)〉. Its inverse is given by
ch(〈B ∈ B〉) =

∑

x∈W

∑

i∈Z
[B : Rx(i− ℓ(x))]vi+ℓ(x)Tx.

Conjecture (Soergel 2007; proven by Elias and
Williamson 2014)

E(C′
w) = 〈Bw〉 for all w ∈ W .
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◮ Soergel’s conjecture implies KL positivity for all W .
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Proposition (Soergel, 2007)

Let w0 = e, w1, w2, . . . be an enumeration of W refining ≤.
For x ∈ W ,
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◮ Soergel’s conjecture implies KL positivity for all W .
◮ The coefficients of the KL polynomials are interpreted

as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let w0 = e, w1, w2, . . . be an enumeration of W refining ≤.
For x ∈ W , let Rx be the graded bimodule R with right
operation twisted by x.
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Standard filtrations of Soergel bimodules

◮ Soergel’s conjecture implies KL positivity for all W .
◮ The coefficients of the KL polynomials are interpreted

as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let w0 = e, w1, w2, . . . be an enumeration of W refining ≤.
For x ∈ W , let Rx be the graded bimodule R with right
operation twisted by x. Each B ∈ B has a unique filtration

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bk = B

with Bi/Bi−1 ∼=
⊕

pRwi
(np).
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Standard filtrations of Soergel bimodules

◮ Soergel’s conjecture implies KL positivity for all W .
◮ The coefficients of the KL polynomials are interpreted

as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let w0 = e, w1, w2, . . . be an enumeration of W refining ≤.
For x ∈ W , let Rx be the graded bimodule R with right
operation twisted by x. Each B ∈ B has a unique filtration

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bk = B

with Bi/Bi−1 ∼=
⊕

pRwi
(np). Moreover, the multiplicities

[B : Rx(j)]are independent of the enumeration of W which
we chose.
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Standard filtrations of Soergel bimodules

◮ Soergel’s conjecture implies KL positivity for all W .
◮ The coefficients of the KL polynomials are interpreted

as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let w0 = e, w1, w2, . . . be an enumeration of W refining ≤.
For x ∈ W , let Rx be the graded bimodule R with right
operation twisted by x. Each B ∈ B has a unique filtration

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bk = B

with Bi/Bi−1 ∼=
⊕

pRwi
(np). Moreover, the multiplicities

[B : Rx(j)]are independent of the enumeration of W which
we chose.

◮ It follows from Soergel’s conjecture that these
multiplicities categorify the KL polynomials when
B = Bw.
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Back to Dyer’s conjectures

Rewrite

(D1) For all w, y ∈ W , C ′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.
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Back to Dyer’s conjectures

Rewrite

(D1) For all w, y ∈ W , C ′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

as

(D1′) For all w, y ∈ W , C ′
w ∈

∑

x∈W Z≥0[v
±1]TxT

−1
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Rewrite

(D1) For all w, y ∈ W , C ′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

as

(D1′) For all w, y ∈ W , C ′
w ∈

∑

x∈W Z≥0[v
±1]TxT

−1
y .

◮ This suggests to interpret the coefficients in (D1) as
graded multiplicities of alternative filtrations of Soergel
bimodules Bw.
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Back to Dyer’s conjectures

Rewrite

(D1) For all w, y ∈ W , C ′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

as

(D1′) For all w, y ∈ W , C ′
w ∈

∑

x∈W Z≥0[v
±1]TxT

−1
y .

◮ This suggests to interpret the coefficients in (D1) as
graded multiplicities of alternative filtrations of Soergel
bimodules Bw. What can we try to modifiy in Soergel’s
approach to get alternative filtrations?
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Back to Dyer’s conjectures

Rewrite

(D1) For all w, y ∈ W , C ′
wTy ∈

∑

x∈W Z≥0[v
±1]Tx.

as

(D1′) For all w, y ∈ W , C ′
w ∈

∑

x∈W Z≥0[v
±1]TxT

−1
y .

◮ This suggests to interpret the coefficients in (D1) as
graded multiplicities of alternative filtrations of Soergel
bimodules Bw. What can we try to modifiy in Soergel’s
approach to get alternative filtrations? Twist the
Bruhat order by y: define

u ≤y v ⇔ uy ≤ vy.
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Results

Theorem (G., 2016)

◮ (D1′) holds for arbitrary W .

◮ (D2) holds for arbitrary W .

(In particular (D1)− (D2) hold for arbitrary Coxeter groups).
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Results

Theorem (G., 2016)

◮ (D1′) holds for arbitrary W .

◮ (D2) holds for arbitrary W .

(In particular (D1)− (D2) hold for arbitrary Coxeter groups).

◮ The orders ≤y are nice enough to ensure the existence
of Soergel filtrations (key point: they satisfy Deodhar’s
Z-property).
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Results

Theorem (G., 2016)

◮ (D1′) holds for arbitrary W .

◮ (D2) holds for arbitrary W .

(In particular (D1)− (D2) hold for arbitrary Coxeter groups).

◮ The orders ≤y are nice enough to ensure the existence
of Soergel filtrations (key point: they satisfy Deodhar’s
Z-property). Mimicking Soergel’s approach one then
interprets the coefficients as graded multiplicities in a
filtration of Bw by the {Rx}x∈W in a total order
compatible with ≤y
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Results

Theorem (G., 2016)

◮ (D1′) holds for arbitrary W .

◮ (D2) holds for arbitrary W .

(In particular (D1)− (D2) hold for arbitrary Coxeter groups).

◮ The orders ≤y are nice enough to ensure the existence
of Soergel filtrations (key point: they satisfy Deodhar’s
Z-property). Mimicking Soergel’s approach one then
interprets the coefficients as graded multiplicities in a
filtration of Bw by the {Rx}x∈W in a total order
compatible with ≤y ⇒ (D1′) holds for arbitrary W .
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Artin groups

◮ Let Kb(B) be the bounded homotopy category of B.
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About the proof of (D2): categorification of

Artin groups

◮ Let Kb(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group 〈Kb(B)〉∆.
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About the proof of (D2): categorification of

Artin groups

◮ Let Kb(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group 〈Kb(B)〉∆. It is a general fact for
an additive category C that 〈C〉 ∼= 〈Kb(C)〉∆ (as abelian
groups).
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About the proof of (D2): categorification of

Artin groups

◮ Let Kb(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group 〈Kb(B)〉∆. It is a general fact for
an additive category C that 〈C〉 ∼= 〈Kb(C)〉∆ (as abelian
groups). Here ⊗R induces a total tensor product of
complexes ⊗tot

R compatible with this isomorphism.
Hence 〈Kb(B)〉∆ ∼= 〈B〉 (as A-algebras).
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About the proof of (D2): categorification of

Artin groups

◮ Let Kb(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group 〈Kb(B)〉∆. It is a general fact for
an additive category C that 〈C〉 ∼= 〈Kb(C)〉∆ (as abelian
groups). Here ⊗R induces a total tensor product of
complexes ⊗tot

R compatible with this isomorphism.
Hence 〈Kb(B)〉∆ ∼= 〈B〉 (as A-algebras).

◮ Rouquier showed that the complexes
Fs := 0 → Bs → R(1) → 0, s ∈ S (with Bs in cohom.
degree zero) admit an inverse Es for ⊗tot

R in Kb(B) and
that they satisfy the braid relations of W .



On positivity

properties in Hecke

algebras of

arbitrary Coxeter

groups

Thomas Gobet

Coxeter groups

and Artin groups

Hecke algebras

Positivity

properties and

Soergel bimodules

Main results

About the proof of (D2): categorification of

Artin groups

◮ Let Kb(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group 〈Kb(B)〉∆. It is a general fact for
an additive category C that 〈C〉 ∼= 〈Kb(C)〉∆ (as abelian
groups). Here ⊗R induces a total tensor product of
complexes ⊗tot

R compatible with this isomorphism.
Hence 〈Kb(B)〉∆ ∼= 〈B〉 (as A-algebras).

◮ Rouquier showed that the complexes
Fs := 0 → Bs → R(1) → 0, s ∈ S (with Bs in cohom.
degree zero) admit an inverse Es for ⊗tot

R in Kb(B) and
that they satisfy the braid relations of W . In fact,
viewed as functors on Kb(B) via Fs ⊗

tot
R −, they

provide a categorical action of B(W ) on Kb(B). This
action is conjecturally faithful (proven for finite W ).
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Categorifications of Mikado braids

◮ In particular, we get complexes of Soergel bimodules
categorifying every element β ∈ B(W ) (defined only up to
homotopy).
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Categorifications of Mikado braids

◮ In particular, we get complexes of Soergel bimodules
categorifying every element β ∈ B(W ) (defined only up to
homotopy).

◮ Every complex C• in Kb(B) admits a minimal complex
C•,min, that is, with no contractible summand of the form

0 → M
isom.
−−−→ M ′ → 0.
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Categorifications of Mikado braids

◮ In particular, we get complexes of Soergel bimodules
categorifying every element β ∈ B(W ) (defined only up to
homotopy).

◮ Every complex C• in Kb(B) admits a minimal complex
C•,min, that is, with no contractible summand of the form

0 → M
isom.
−−−→ M ′ → 0. This complex is unique up to

isomorphism of complexes.
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Categorifications of Mikado braids

◮ In particular, we get complexes of Soergel bimodules
categorifying every element β ∈ B(W ) (defined only up to
homotopy).

◮ Every complex C• in Kb(B) admits a minimal complex
C•,min, that is, with no contractible summand of the form

0 → M
isom.
−−−→ M ′ → 0. This complex is unique up to

isomorphism of complexes.

Theorem (G., 2016)

Let x, y ∈ W , β(x, y) := xy
−1, TxT

−1
y =

∑

w∈W qyx,wCw.
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Categorifications of Mikado braids

◮ In particular, we get complexes of Soergel bimodules
categorifying every element β ∈ B(W ) (defined only up to
homotopy).

◮ Every complex C• in Kb(B) admits a minimal complex
C•,min, that is, with no contractible summand of the form

0 → M
isom.
−−−→ M ′ → 0. This complex is unique up to

isomorphism of complexes.

Theorem (G., 2016)

Let x, y ∈ W , β(x, y) := xy
−1, TxT

−1
y =

∑

w∈W qyx,wCw.

1. Let w ∈ W . The bimodule Bw appears as a direct summand
in C•,min

β(x,y) either only in odd cohomological degrees or only in

even degrees.



On positivity

properties in Hecke

algebras of

arbitrary Coxeter

groups

Thomas Gobet

Coxeter groups

and Artin groups

Hecke algebras

Positivity

properties and

Soergel bimodules

Main results

Categorifications of Mikado braids

◮ In particular, we get complexes of Soergel bimodules
categorifying every element β ∈ B(W ) (defined only up to
homotopy).

◮ Every complex C• in Kb(B) admits a minimal complex
C•,min, that is, with no contractible summand of the form

0 → M
isom.
−−−→ M ′ → 0. This complex is unique up to

isomorphism of complexes.

Theorem (G., 2016)

Let x, y ∈ W , β(x, y) := xy
−1, TxT

−1
y =

∑

w∈W qyx,wCw.

1. Let w ∈ W . The bimodule Bw appears as a direct summand
in C•,min

β(x,y) either only in odd cohomological degrees or only in

even degrees.

2. The coefficient qyx,w gives the multiplicity of Bw in all

cohom. degrees of C•,min
β(x,y) together.
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categorifying every element β ∈ B(W ) (defined only up to
homotopy).

◮ Every complex C• in Kb(B) admits a minimal complex
C•,min, that is, with no contractible summand of the form

0 → M
isom.
−−−→ M ′ → 0. This complex is unique up to

isomorphism of complexes.

Theorem (G., 2016)

Let x, y ∈ W , β(x, y) := xy
−1, TxT

−1
y =

∑

w∈W qyx,wCw.

1. Let w ∈ W . The bimodule Bw appears as a direct summand
in C•,min

β(x,y) either only in odd cohomological degrees or only in

even degrees.

2. The coefficient qyx,w gives the multiplicity of Bw in all

cohom. degrees of C•,min
β(x,y) together. ⇒ qAx,w ∈ Z≥0[v

±1].
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◮ A key point in the proof of the theorem above is to
show that the complex C•,min

β(x,y) is linear, that is, that
every indecomposable summand in cohomological
degree i has graduation shift equal to i.
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◮ A key point in the proof of the theorem above is to
show that the complex C•,min

β(x,y) is linear, that is, that
every indecomposable summand in cohomological
degree i has graduation shift equal to i. It precisely
means that C•,min

β(x,y) lies in the heart of the canonical

t-structure on Kb(B).
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◮ A key point in the proof of the theorem above is to
show that the complex C•,min

β(x,y) is linear, that is, that
every indecomposable summand in cohomological
degree i has graduation shift equal to i. It precisely
means that C•,min

β(x,y) lies in the heart of the canonical

t-structure on Kb(B).

◮ Open problem: Understand the perverse cohomology
groups of the Rouquier complexes C•,min

β(x,y).



Thank you !
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