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» Let (W, S) be a Coxeter system, i.e., W is a group
generated by S = {s1,...,s,} with presentation
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» Let (W,S) be a Coxeter system, i.e., W is a group
generated by S = {s1,...,s,} with presentation
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» Denote by £: W — Z>( the length function, by
T = Uyew wSw™! the set of reflections of W and by
< the (strong) Bruhat order.
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» Let (W,S) be a Coxeter system, i.e., W is a group
generated by S = {s1,...,s,} with presentation
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m;; factors m; factors

where m;; = mj; € {2,3,... } U{oo}.

» Denote by £: W — Z>( the length function, by
T = Uyew wSw™! the set of reflections of W and by
< the (strong) Bruhat order.

» Let B(W) = B(W,S) be the Artin-Tits group attached
to (W, S), that is, B(W) is generated by a copy
{s1,...,8,} of the elements of S and has a presentation
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m;; factors m; factors

where m;; = mj; € {2,3,... } U{oo}.
» Denote by £: W — Z>( the length function, by

T = Uyew wSw™! the set of reflections of W and by
< the (strong) Bruhat order.

» Let B(W) = B(W,S) be the Artin-Tits group attached
to (W, S), that is, B(W) is generated by a copy
{s1,...,8,} of the elements of S and has a presentation
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» The symmetric group W = &,,, is a Coxeter group with g:ge;j;iﬁfgr“gjps
S:{SZ:(Z,’L—i-l) ‘ izl,...,n—l}, mij:3 if
li—jl =1 my=2if|i—j| >1
T = {transpositions}.
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» The symmetric group W = &,,, is a Coxeter group with
S:{SZ:(Z,l—i-l) ‘ izl,...,n—l}, mij:3 if
li—jl =1 my=2if|i—j| >1
T = {transpositions}.

» The corresponding group B(W) is the Artin braid
group B,, on n strands.
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» The symmetric group W = &,,, is a Coxeter group with Zf:;e;er;ﬁ';“gjps
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» The symmetric group W = &,,, is a Coxeter group with acff/ieéifr;“ffps
S:{SZ:(Z,Z—i-l) ‘ izl,...,n—l}, mij:3 if
i— g =1, miy=2if|i—j| > 1.
T = {transpositions}.
» The corresponding group B(W) is the Artin braid
group B,, on n strands.
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» Given w = 8189 - - S with £(w) = k, the lift s189- - - sk
in B(W) is well-defined and denoted by w.
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> Let A= Z[v,v7!]. Let H(W) = H(W,S) be the Hecke Thomas Gobet
algebra attached to (W, S), that is, the associative
unital A-algebra with a presentation

Hecke algebras

TsiTsj = Ts]-Tsi e
<T817“‘7T8n78ies mij mij >
T2 = (2= 1Ty, +v 2
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> Let A= Z[v,v7!]. Let H(W) = H(W,S) be the Hecke Thomas Gobet
algebra attached to (W, S), that is, the associative
unital A-algebra with a presentation
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To Ty, =T, Ts,
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T2 = (2= 1Ty, +v 2

» Since the T}, satisfy the braid relations, there is a group
homomorphism a : B(W) — H(W)*, a(s;) = Ts,.
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> Let A= Z[v,v7!]. Let H(W) = H(W,S) be the Hecke Thomas Gobet
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» Since the T}, satisfy the braid relations, there is a group
homomorphism a : B(W) — H(W)*, a(s;) = Ts,.

» Forwe W, let T, := a(w). The set {T3, }wew is a
basis of H(W) as an A-module, called standard.
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> Let A= Z[v,v7!]. Let H(W) = H(W,S) be the Hecke Thomas Gobet
algebra attached to (W, S), that is, the associative
unital A-algebra with a presentation

Hecke algebras

To Ty, =T, Ts,
<T817“‘7T8n7$ies mij mij >

T2 = (2= 1Ty, +v 2

» Since the T}, satisfy the braid relations, there is a group
homomorphism a : B(W) — H(W)*, a(s;) = Ts,.

» Forwe W, let T, := a(w). The set {T3, }wew is a
basis of H(W) as an A-module, called standard.

» Each T, is invertible and {T;}l}wew is also a basis of
H(W), called costandard.
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» There is an involution ~: H(W) = H(W) st. 1 =0v"",
Tw = (Ty—1)~'. Forw € W, set H,, := v* )T,
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Kazhdan-Lusztig canonical bases propertes in Hacke
arb?:faerl;ra(isozZter
» There is an |nvolut|on HW) — ’H( )st. v=v"1, groups

Tw = (Tyy-1)~t. Forw € W, set H,, := v*(W)T,, Thomas Gobet

Theorem (Kazhdan-Lusztig, 1979)
Hecke algebras
» For any w € W, there is a unique C!, € H(W) such
that Cl, = C!, and Cl, € Hy, + Y, ., VZ[v]H,.

y<w
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» There is an |nvolut|on HW) — ’H( )st. =01 groups

Tw = (Tyy-1)~1. Forw € W, set H, :=v"")T,, Thomas Gobet

Theorem (Kazhdan-Lusztig, 1979)
Hecke algebras
» For any w € W, there is a unique C!, € H(W) such
that C!, = C! and C!, € H, + D y<w VL[] Hy.
» For any w € W, there is a unique C,, € H(W') such
that Cy = Cyy and Cyy € Hy + Y, _, v Z[v" ] H,,.

y<w
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Theorem (Kazhdan-Lusztig, 1979)

Hecke algebras

» For any w € W, there is a unique C., € H(W) such
that C!, = C! and C!, € H, + D y<w VL[] Hy.
» For any w € W, there is a unique C,, € H(W') such

that C_w = Cu) and Cu) 6 Hw + Zy<w U_IZ[U_I]HZJ'

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)
Let C), =", <., hywTy. Then hy., € Z>p[v].

y<w
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Theorem (Kazhdan-Lusztig, 1979)
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» For any w € W, there is a unique C., € H(W) such
that C!, = C! and C!, € H, + D y<w VL[] Hy.
» For any w € W, there is a unique C,, € H(W') such

that C_w = Cu) and Cu) 6 Hw + Zy<w U_IZ[U_I]HZJ'

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)
Let C), =", <., hywTy. Then hy., € Z>p[v].

y<w

» Proven for (finite and affine) Weyl groups by KL in
1980;
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» There is an |nvo|ut|on THW) — 'H( )st.v=0v"1, groups
Tw = (Tyy-1)~1. Forw € W, set H, :=v"")T,, Thomas Gobet

Theorem (Kazhdan-Lusztig, 1979)

Hecke algebras

» For any w € W, there is a unique C., € H(W) such
that C!, = C! and C!, € H, + D y<w VL[] Hy.
» For any w € W, there is a unique C,, € H(W') such

that C_w = Cu) and Cu) 6 Hw + Zy<w U_IZ[U_I]HZJ'

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)
Let C), =", <., hywTy. Then hy., € Z>p[v].

y<w
» Proven for (finite and affine) Weyl groups by KL in
1980; recently (2014) Elias and Williamson proved
Soergel's conjecture, which solves the general case.
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(D1) Forallw,y e W, C,,T, €Y e Zso[vE|Ts.
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(D1) Forallw,y € W, Co,Ty € 3,y Zso v T

(D2) Forallz,y € W, T,T; " € ¥ e Zzo[v=)C.

» (D1) for y = 1 is KL positivity conjecture.
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(D1) Forallw,y € W, Ci,Ty € 3, ey Zzo v Ty
(D2) Forall z,y € W, TgcTy’1 €D wew Z>o[vE]Cp-
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» (D1) for y = 1 is KL positivity conjecture.

» Dyer (1987): combinatorial proof of (D1) — (D2) for
universal Coxeter systems.
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» (D1) for y = 1 is KL positivity conjecture.
» Dyer (1987): combinatorial proof of (D1) — (D2) for

universal Coxeter systems.

» Dyer and Lehrer (1990): geometric proof of (D1) for finite
Weyl groups. Combinatorial proof that (D1) < (D2) for
finite Coxeter groups.
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(D1) for y = 1 is KL positivity conjecture.
Dyer (1987): combinatorial proof of (D1) — (D2) for

universal Coxeter systems.

Dyer and Lehrer (1990): geometric proof of (D1) for finite
Weyl groups. Combinatorial proof that (D1) < (D2) for
finite Coxeter groups.

Grojnowski and Haiman (2004): geometric proof of (D1) for
affine Weyl groups.



>

«F

Positivity
properties and
Soergel bimodules

Main results



About proof of KL positivity: Soergel bimodules

» Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.
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» Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.

> Let V be a real reflection faithful representation of
(W,S). Let R=0O(V) = S(V*).
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family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.

> Let V be a real reflection faithful representation of
(W, S). Let R=0O(V) = S(V*). Itis graded (we set
deg(V*) = 2) and W acts degreewise on R.
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About proof of KL positivity: Soergel bimodules

» Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra.
He then generalized these bimodules to arbitrary
Coxeter systems and linked them to KL positivity.

> Let V be a real reflection faithful representation of
(W, S). Let R=0O(V) = S(V*). Itis graded (we set
deg(V*) = 2) and W acts degreewise on R. For every
s€ S, set

Bs := R®ps R(1).

It is an (indecomposable) graded R-bimodule.
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About proof of KL positivity: Soergel bimodules  ,oniain e
arbiatlrgaerl))/racsoiter
groups
Thomas Gobet
» Soergel (1992) described the (equivariant) intersection
cohomology of Schubert varieties using a remarkable
family of graded bimodules over a polynomial algebra. -
He then generalized these bimodules to arbitrary emartis and

Coxeter systems and linked them to KL positivity. Socreel bimodules

> Let V be a real reflection faithful representation of
(W, S). Let R=0O(V) = S(V*). Itis graded (we set
deg(V*) = 2) and W acts degreewise on R. For every
s €5, set
Bs := R®ps R(1).

It is an (indecomposable) graded R-bimodule. The
category of graded R-bimodules is Krull-Schmidt.
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1. Letw = 81828k € W, k ={(w). There is a unique a:f:\er;ifr;f:ps
indecomposable summand B,, of Bs, ®r Bs, ®r -+ Qg Bs,

Hecke algebras
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Soergel bimodules, Il

Theorem (Soergel, 2007)

1. Letw = 8189 -8 € W, k=4{(w). There is a unique
indecomposable summand B,, of By, ®r Bs, ®r --- ®r Bs,
which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the B, (i), w € W, i € Z.
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Soergel bimodules, Il

Theorem (Soergel, 2007)

1. Letw = 8189 -8 € W, k=4{(w). There is a unique
indecomposable summand B,, of By, ®r Bs, ®r --- ®r Bs,
which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the B, (i), w € W, i € Z.

3. There is an isomorphism of rings £ : H(W) — (B, ®Rg),
E(C;) = (Bs), £(v) = (R(1)).
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Theorem (Soergel, 2007) Thomas Gobet

1. Letw =s182---sx € W, k ={(w). There is a unique
indecomposable summand B,, of By, ®r Bs, ®r --- ®r Bs,
which does not occur as a summand of a smaller product. Positivity

properties and

2. Let B be the Karoubian envelope of the category generated Soergel bimodules
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the B, (i), w € W, i € Z.

3. There is an isomorphism of rings £ : H(W) — (B, ®Rg),
E(CL) = (Bs), E(v) = (R(1)). Its inverse is given by
ch((B € B)) =3 cw YiezlB i Ra(i — £(z))o T,
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Theorem (Soergel, 2007) Thomas Gobet

1. Letw =s182---sx € W, k ={(w). There is a unique
indecomposable summand B,, of By, ®r Bs, ®r --- ®r Bs,

which does not occur as a summand of a smaller product. Positivity
i properties and
2. Let B be the Karoubian envelope of the category generated Soergel bimodules

by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the B, (i), w € W, i € Z.

3. There is an isomorphism of rings € : H(W) — (B, ®g),
E(CL) = (Bs), E(v) = (R(1)). Its inverse is given by
ch((B € B)) =3 cw YiezlB i Ra(i — £(z))o T,

Conjecture (Soergel 2007; proven by Elias and
Williamson 2014)

E(Cl,) = (By,) forallwe W.

w
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Standard filtrations of Soergel bimodules

» Soergel's conjecture implies KL positivity for all W.
» The coefficients of the KL polynomials are interpreted
as graded multiplicities; more precisely
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Standard filtrations of Soergel bimodules

» Soergel's conjecture implies KL positivity for all W.
» The coefficients of the KL polynomials are interpreted
as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let wg = e, w1, ws, ... be an enumeration of W refining <.

Forx € W,
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» Soergel's conjecture implies KL positivity for all W.
» The coefficients of the KL polynomials are interpreted
as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let wg = e, w1, ws, ... be an enumeration of W refining <.

For x € W, let R, be the graded bimodule R with right
operation twisted by x.
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Standard filtrations of Soergel bimodules

» Soergel's conjecture implies KL positivity for all W.
» The coefficients of the KL polynomials are interpreted
as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let wg = e, w1, ws, ... be an enumeration of W refining <.

For x € W, let R, be the graded bimodule R with right
operation twisted by x. Each B € B has a unique filtration

0=BCB'CB*C...CB"=8B

with B /B~ = @ Ry, (np).
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Standard filtrations of Soergel bimodules

» Soergel's conjecture implies KL positivity for all W.
» The coefficients of the KL polynomials are interpreted
as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let wg = e, w1, ws, ... be an enumeration of W refining <.

For x € W, let R, be the graded bimodule R with right
operation twisted by x. Each B € B has a unique filtration

0=BCB'CB*C...CB"=8B

with B'/B'~" = @ R,,(n,). Moreover, the multiplicities
[B : R;(j)]are independent of the enumeration of W which
we chose.
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Standard filtrations of Soergel bimodules

» Soergel's conjecture implies KL positivity for all W.
» The coefficients of the KL polynomials are interpreted
as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let wg = e, w1, ws, ... be an enumeration of W refining <.

For x € W, let R, be the graded bimodule R with right
operation twisted by x. Each B € B has a unique filtration

0=BCB'CB*C...CB"=8B

with B'/B'~" = @ R,,(n,). Moreover, the multiplicities
[B : R;(j)]are independent of the enumeration of W which
we chose.

» It follows from Soergel's conjecture that these
multiplicities categorify the KL polynomials when
B = By,.
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Back to Dyer's conjectures propertes in Hacke
arbiatlrjgaerl))/racsoz;er
groups

Rewrite Thomas Gobet

(D1) For all w,y € W, CL,T, € 3 e Zso[v T

as Positivity
properties and
Soergel bimodules

(DY) For all w,y € W, Cy, € 3 e Zzo[vil]TxTy—l,

» This suggests to interpret the coefficients in (D1) as
graded multiplicities of alternative filtrations of Soergel
bimodules B,,. What can we try to modifiy in Soergel’s
approach to get alternative filtrations? Twist the
Bruhat order by y: define

u<yv < uy <vy.
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Results

Theorem (G., 2016)

» (D1') holds for arbitrary W.
» (D2) holds for arbitrary W.

(In particular (D1) — (D2) hold for arbitrary Coxeter groups).

» The orders <, are nice enough to ensure the existence
of Soergel filtrations (key point: they satisfy Deodhar’s
Z-property).
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» The orders <, are nice enough to ensure the existence
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About the proof of (D2): categorification of
Artin groups

» Let K°(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group (K®(B))a. It is a general fact for
an additive category C that (C) = (K*(C))a (as abelian

groups).
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Artin groups

» Let K°(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group (K®(B))a. It is a general fact for
an additive category C that (C) = (K*(C))a (as abelian
groups). Here ®p induces a total tensor product of
complexes ®4%9" compatible with this isomorphism.

Hence (K°(B))a = (B) (as .A-algebras).
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About the proof of (D2): categorification of
Artin groups

» Let K°(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group (K®(B))a. It is a general fact for
an additive category C that (C) = (K*(C))a (as abelian
groups). Here ®p induces a total tensor product of
complexes ®4%9" compatible with this isomorphism.
Hence (K°(B))a = (B) (as .A-algebras).

» Rouquier showed that the complexes
F;:=0— B; — R(1) - 0, s € S (with By in cohom.
degree zero) admit an inverse E; for ®'%* in K°(B) and
that they satisfy the braid relations of W.
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About the proof of (D2): categorification of
Artin groups

» Let K°(B) be the bounded homotopy category of B. It
is a triangulated category and as such, it has a
Grothendieck group (K®(B))a. It is a general fact for
an additive category C that (C) = (K*(C))a (as abelian
groups). Here ®p induces a total tensor product of
complexes ®4%9" compatible with this isomorphism.
Hence (K°(B))a = (B) (as .A-algebras).

» Rouquier showed that the complexes
F;:=0— B; — R(1) - 0, s € S (with By in cohom.
degree zero) admit an inverse E; for ®'%* in K°(B) and
that they satisfy the braid relations of W. In fact,
viewed as functors on K°(B) via Fy ®@'%t —, they
provide a categorical action of B(W) on K°(B). This
action is conjecturally faithful (proven for finite W).
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Categorifications of Mikado braids

» In particular, we get complexes of Soergel bimodules
categorifying every element § € B(W) (defined only up to
homotopy).

» Every complex C* in K°(B) admits a minimal complex
C*™7 that is, with no contractible summand of the form

isom.

0—- M —7 M —0.
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0— M —= M’ — 0. This complex is unique up to
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» In particular, we get complexes of Soergel bimodules
categorifying every element 5 € B(W') (defined only up to
homotopy).

» Every complex C* in K°(B) admits a minimal complex
C*™7 that is, with no contractible summand of the form
isom.

0— M —= M’ — 0. This complex is unique up to
isomorphism of complexes.

Theorem (G., 2016)
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Categorifications of Mikado braids

» In particular, we get complexes of Soergel bimodules
categorifying every element 5 € B(W') (defined only up to
homotopy).

» Every complex C* in K°(B) admits a minimal complex
C*™7 that is, with no contractible summand of the form
isom.

0— M —= M’ — 0. This complex is unique up to
isomorphism of complexes.

Theorem (G., 2016)
Letz,y e W, Bz, y) :==xy~ ', T.T, ' =3 cw @%.uCu-

1. Letw € W. The bimodule B,, appears as a direct summand

in C[;’(‘;‘i;) either only in odd cohomological degrees or only in

even degrees.

2. The coefficient qJ ,,, gives the multiplicity of B, in all

e min

cohom. degrees of C' 8(z) together.
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» Every complex C* in K°(B) admits a minimal complex
C*™7 that is, with no contractible summand of the form
isom.

0— M —= M’ — 0. This complex is unique up to
isomorphism of complexes. VR

Theorem (G., 2016)
Letz,y e W, Bz, y) :==xy~ ', T.T, ' =3 cw @%.uCu-

1. Letw € W. The bimodule B,, appears as a direct summand
in C[;’(‘;”;) either only in odd cohomological degrees or only in
even degrees.

2. The coefficient qJ ,,, gives the multiplicity of B, in all
cohom. degrees of C/;’(’;i;) together. = ¢, € Z>o[vF!].
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Linearity of complexes

> A key point in the proof of the theorem above is to
show that the complex CB( 1; is linear, that is, that
every indecomposable summand in cohomological
degree ¢ has graduation shift equal to 7.
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show that the complex CB( ; is linear, that is, that
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degree ¢ has graduation shift equal to 7. It precisely
means that C"(?;m) lies in the heart of the canonical

t-structure on K°(B).
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> A key point in the proof of the theorem above is to
show that the complex CB( 1; is linear, that is, that
every indecomposable summand in cohomological
degree ¢ has graduation shift equal to 7. It precisely Main results
means that C;(?;l;) lies in the heart of the canonical

t-structure on K°(B).
» Open problem: Understand the perverse cohomology

. (] mln
groups of the Rouquier complexes 8"



Thank you !
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