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Balanced elements and Garside groups

» Let G be a group, A C G a subset which generates GG as
monoid. Let {4 be the length function w.r.t. A. Say that z
is a left prefix (resp. right prefix) of y, written = <; y (resp
<, y) if La(z) + La(z™ly) = La(y) (resp.

Ca(z) +La(yz™") = La(y)).
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» An element g € G is balanced if the set of left and right
prefixes of g coincide.
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» Let G be a group, A C G a subset which generates GG as
monoid. Let {4 be the length function w.r.t. A. Say that z
is a left prefix (resp. right prefix) of y, written = <; y (resp
<, y) if La(z) + La(z™ly) = La(y) (resp.

Ca(z) +La(yz™") = La(y)).

» An element g € G is balanced if the set of left and right

prefixes of g coincide.

» If g € G is balanced, define a monoid M by taking a copy P
of the set P of prefixes of g as generators, and relations
uv =w if u,v,w € P, uv =w and {4(u) + la(v) = La(w).
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<, y) if La(z) + La(z™ly) = La(y) (resp.
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» An element g € G is balanced if the set of left and right
prefixes of g coincide.
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of the set P of prefixes of g as generators, and relations
uv =w if u,v,w € P, uv =w and {4(u) + la(v) = La(w).
Let G(M) be the group with the same presentation as M.
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» Let G be a group, A C G a subset which generates GG as
monoid. Let {4 be the length function w.r.t. A. Say that z
is a left prefix (resp. right prefix) of y, written = <; y (resp
<, y) if La(z) + La(z™ly) = La(y) (resp.

Ca(z) +La(yz™") = La(y)).

» An element g € G is balanced if the set of left and right
prefixes of g coincide.

» If g € G is balanced, define a monoid M by taking a copy P
of the set P of prefixes of g as generators, and relations
uv =w if u,v,w € P, uv =w and {4(u) + la(v) = La(w).
Let G(M) be the group with the same presentation as M.
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» Let G be a group, A C G a subset which generates GG as
monoid. Let {4 be the length function w.r.t. A. Say that z
is a left prefix (resp. right prefix) of y, written = <; y (resp
<, y)if La(z) +La(x™ly) = La(y) (resp.

Ca(a) + La(yz™") = La(y)).

» An element g € G is balanced if the set of left and right
prefixes of g coincide.

» If g € G is balanced, define a monoid M by taking a copy P
of the set P of prefixes of g as generators, and relations
uv =w if u,v,w € P, uv =w and {4(u) + la(v) = La(w).
Let G(M) be the group with the same presentation as M.

Theorem (Bessis)

Let A C G as above, and let g € G be balanced. If A C P and the
posets (P,<;), (P,<,) are lattices, then M is a (quasi-)Garside
monoid. As a consequence, the word problem in G(M) is solvable.
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«0O)>» «F»r «

DA

monoids

Dual and classical
generators of Artin
groups

Coxeter sortable
elements

Main result



Coxeter sortable
elements and dual
braid monoids

Thomas Gobet

Let (W,S) be a finite Coxeter system.
> letG=W,A=S5, g=wyp.
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> let G=W,A=S5, g =wy. Then wy is balanced

(with P =W), and (W, <;), (W, <,.) are lattices (left
and right weak Bruhat order).
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(with P =W), and (W, <;), (W, <,) are lattices (left
and right weak Bruhat order). The corresponding
Garside monoid M is the positive braid monoid BT,
and G(M) is isomorphic to the Artin-Tits group B. For
infinite W, there is no wy.
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and right weak Bruhat order). The corresponding
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and G(M) is isomorphic to the Artin-Tits group B. For
infinite W, there is no wy.

> Let G=W,A=T =U,ew wSw™, g a Coxeter
element in W (product of all the elements of S in some
order).
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Let (W, S) be a finite Coxeter system.

> let G=W,A=S5, g =wy. Then wy is balanced
(with P =W), and (W, <;), (W, <,) are lattices (left
and right weak Bruhat order). The corresponding
Garside monoid M is the positive braid monoid BT,
and G(M) is isomorphic to the Artin-Tits group B. For
infinite W, there is no wy.

> Let G=W,A=T =U,ew wSw™, g a Coxeter
element in W (product of all the elements of S in some
order). Then c is balanced (we write P, := P), it can
be shown that A C P,, and (P, <;), (P, <;) are
lattices. The corresponding Garside monoid M =: B} is
called the dual braid monoid, and G(M) is isomorphic
to B.
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Examples: Artin groups of spherical type

Let (W, S) be a finite Coxeter system.

> let G=W,A=S5, g =wy. Then wy is balanced
(with P =W), and (W, <;), (W, <,) are lattices (left
and right weak Bruhat order). The corresponding
Garside monoid M is the positive braid monoid BT,
and G(M) is isomorphic to the Artin-Tits group B. For
infinite W, there is no wy.

> Let G=W,A=T =U,ew wSw™, g a Coxeter
element in W (product of all the elements of S in some
order). Then c is balanced (we write P, := P), it can
be shown that A C P,, and (P, <;), (P, <;) are
lattices. The corresponding Garside monoid M =: B} is
called the dual braid monoid, and G(M) is isomorphic
to B. For infinite W, there are still Coxeter elements.
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a solvable word problem.
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Coxeter element. Then B can still be defined (c is
always balanced, in fact <,=<;=:<rp).

» Two questions which one can ask about B} and G(B}):

1. Is G(B}) isomorphic to B ?
2. Is B¥ a Garside monoid 7

> A positive answer to both questions implies that B has

a solvable word problem.

» Conjecture 1 is true for finite, affine and universal W.
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» Let (W, S) be an arbitrary Coxeter group, ¢ € W a
Coxeter element. Then B can still be defined (c is
always balanced, in fact <,=<;=:<rp).

» Two questions which one can ask about B} and G(B}):

1. Is G(B}) isomorphic to B ?
2. Is B¥ a Garside monoid 7

> A positive answer to both questions implies that B has
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» Let (W, S) be an arbitrary Coxeter group, ¢ € W a
Coxeter element. Then B can still be defined (c is
always balanced, in fact <,=<;=:<rp).

» Two questions which one can ask about B} and G(B}):

1. Is G(B}) isomorphic to B ?
2. Is B¥ a Garside monoid 7

> A positive answer to both questions implies that B has
a solvable word problem.

» Conjecture 1 is true for finite, affine and universal W.
Conjecture 2 is true for finite W, A, gvnd C, (for
suitable choices of Coxeter element), G2, universal W.
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A few open questions

» Let (W, S) be an arbitrary Coxeter group, ¢ € W a
Coxeter element. Then B can still be defined (c is
always balanced, in fact <,=<;=:<rp).

» Two questions which one can ask about B} and G(B}):

1. Is G(B}) isomorphic to B ?
2. Is B¥ a Garside monoid 7

> A positive answer to both questions implies that B has
a solvable word problem.

» Conjecture 1 is true for finite, affine and universal W.
Conjecture 2 is true for finite W, A, gvnd C, (for
suitable choices of Coxeter element), G2, universal W.
It fails for the other affine Artin groups. One always has
S C P,; this extends to a group homomorphism
B — G(B}).
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A few open questions

» Let (W, S) be an arbitrary Coxeter group, ¢ € W a
Coxeter element. Then B can still be defined (c is
always balanced, in fact <,=<;=:<rp).

» Two questions which one can ask about B} and G(B}):

1. Is G(B}) isomorphic to B ?
2. Is B¥ a Garside monoid 7

> A positive answer to both questions implies that B has
a solvable word problem.

» Conjecture 1 is true for finite, affine and universal W.
Conjecture 2 is true for finite W, A, gvnd C, (for
suitable choices of Coxeter element), G2, universal W.
It fails for the other affine Artin groups. One always has
S C P,; this extends to a group homomorphism
B — G(B}). This map is known to be surjective.

Coxeter sortable
elements and dual
braid monoids

Thomas Gobet

Dual braid
monoids



Coxeter sortable
elements

Main result

DA



Dual generators inside classical Artin groups

» Hence finding a way to express the elements P, in
terms of the classical Artin group generators is an
important question.
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» Hence finding a way to express the elements P, in
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» Hence finding a way to express the elements P, in

terms of the classical Artin group generators is an

important question. Even for finite W there is no

known nice expression for the elements of P. in B. In

that case, B} is generated by T C P.. gDe“nae'rjt"fr;fiii\ffi'n

groups

Lemma (Dyer)

Let x,y € W. Let N(y) ={t € T | ls(ty) < ls(y)}. Let
$182 - - - S be a reduced expression of x. The element

— 5E1 €2 €k
IN(y) = 0105 --0," € B,

where g =—1 ifsksk_l © 088541 Sk € N(y), g =1
otherwise, is indep. of the choice of reduced expression of x.

» If y =1, zy is just the positive lift of z in BT C B.
One can show that (uv™!) N, = uwvw_l.
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» Let ¢ = s152-- -8, be a reduced decomposition of a
Coxeter element in W. Let
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» For every w € W, define the c-sorting word w. for was
the lexicographically first reduced expression of w ataen
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» Let ¢ = s152-- -8, be a reduced decomposition of a
Coxeter element in W. Let
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» For every w € W, define the c-sorting word w, for w as
the lexicographically first reduced expression of w
appearing as a subword of ¢®. Decompose it as
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from the i-th copy of ¢ and k is maximal s.t. wy, # 0.
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» Let ¢ = s152-- -8, be a reduced decomposition of a
Coxeter element in W. Let

COO :5152'"Sn|5]_82"'Sn|5152”’5n‘5182"'5n|”’ .

» For every w € W, define the c-sorting word w, for w as
the lexicographically first reduced expression of w
appearing as a subword of ¢®. Decompose it as
we = wi|ws] - - - |wg, where w; is the subword coming
from the i-th copy of ¢ and k is maximal s.t. wy, # 0.
Since every letter of S appears in w; at most once, we
may view w; as a subset of S.

Coxeter sortable
elements and dual
braid monoids

Thomas Gobet

Coxeter sortable
elements



Coxeter sortable elements

» Let ¢ = s152-- -8, be a reduced decomposition of a
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» For every w € W, define the c-sorting word w, for w as
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Coxeter sortable elements

» Let ¢ = s152-- -8, be a reduced decomposition of a
Coxeter element in W. Let

COO :5152'"Sn|5152"'Sn|5152”’5n‘5182"'5n|”’ .

» For every w € W, define the c-sorting word w, for w as
the lexicographically first reduced expression of w
appearing as a subword of ¢®. Decompose it as
we = wi|ws] - - - |wg, where w; is the subword coming
from the i-th copy of ¢ and k is maximal s.t. wy, # 0.
Since every letter of S appears in w; at most once, we
may view w; as a subset of S.

Definition (Reading)

An element w € W is c-sortable if wy, C w1 C -+ C wy.
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Coxeter sortable elements and dual braid monoids

Theorem (Reading)

Let w be c-sortable, let Cov(w) := wDg(w)w=!. There is a
unique u € P, such that (Cov(w)) = (t € T | t <p u). The

assignment w — nc.(w) := u defines a bijection between the
set of c-sortable elements and P..
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Theorem (G.)

Let v € P.. Let y = nc; ' (z7c).
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Coxeter sortable elements and dual braid monoids

Theorem (Reading)

Let w be c-sortable, let Cov(w) := wDg(w)w=!. There is a
unique u € P, such that (Cov(w)) = (t € T | t <p u). The

assignment w — nc.(w) := u defines a bijection between the
set of c-sortable elements and P,.

Theorem (G.)

Let x € P.. Let y = nc;'(z71c). Then x = zy(y).

» It gives a canonical expression for any simple dual braid
in terms of the classical generators of B, and gives a
new proof of the fact that every x € P, we be written
in the form uwvw_l (Digne-G., Baumeister-G.,
Licata-Queffelec).
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