Coxeter sortable elements and dual braid monoids

Thomas Gobet

The University of Sydney

Sydney, 5-9 August 2019. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

きょうかん 同一本語を本語をよるを

Let G be a group, A ⊆ G a subset which generates G as monoid. Let ℓ_A be the length function w.r.t. A. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

・ロト ・ 語 ト ・ ヨ ・ う へ ()・

Let G be a group, A ⊆ G a subset which generates G as monoid. Let ℓ_A be the length function w.r.t. A. Say that x is a *left prefix* (resp. *right prefix*) of y, written x ≤_l y (resp x ≤_r y) if ℓ_A(x) + ℓ_A(x⁻¹y) = ℓ_A(y) (resp. ℓ_A(x) + ℓ_A(yx⁻¹) = ℓ_A(y)).

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Let G be a group, A ⊆ G a subset which generates G as monoid. Let ℓ_A be the length function w.r.t. A. Say that x is a *left prefix* (resp. *right prefix*) of y, written x ≤_l y (resp x ≤_r y) if ℓ_A(x) + ℓ_A(x⁻¹y) = ℓ_A(y) (resp. ℓ_A(x) + ℓ_A(yx⁻¹) = ℓ_A(y)).
- An element g ∈ G is balanced if the set of left and right prefixes of g coincide.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Let G be a group, A ⊆ G a subset which generates G as monoid. Let ℓ_A be the length function w.r.t. A. Say that x is a *left prefix* (resp. *right prefix*) of y, written x ≤_l y (resp x ≤_r y) if ℓ_A(x) + ℓ_A(x⁻¹y) = ℓ_A(y) (resp. ℓ_A(x) + ℓ_A(yx⁻¹) = ℓ_A(y)).
- An element $g \in G$ is *balanced* if the set of left and right prefixes of g coincide.
- If g ∈ G is balanced, define a monoid M by taking a copy P of the set P of prefixes of g as generators, and relations uv = w if u, v, w ∈ P, uv = w and ℓ_A(u) + ℓ_A(v) = ℓ_A(w).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let G be a group, A ⊆ G a subset which generates G as monoid. Let ℓ_A be the length function w.r.t. A. Say that x is a *left prefix* (resp. *right prefix*) of y, written x ≤_l y (resp x ≤_r y) if ℓ_A(x) + ℓ_A(x⁻¹y) = ℓ_A(y) (resp. ℓ_A(x) + ℓ_A(yx⁻¹) = ℓ_A(y)).
- An element $g \in G$ is *balanced* if the set of left and right prefixes of g coincide.
- If g ∈ G is balanced, define a monoid M by taking a copy P of the set P of prefixes of g as generators, and relations
 uv = w if u, v, w ∈ P, uv = w and l_A(u) + l_A(v) = l_A(w). Let G(M) be the group with the same presentation as M.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let G be a group, A ⊆ G a subset which generates G as monoid. Let ℓ_A be the length function w.r.t. A. Say that x is a *left prefix* (resp. *right prefix*) of y, written x ≤_l y (resp x ≤_r y) if ℓ_A(x) + ℓ_A(x⁻¹y) = ℓ_A(y) (resp. ℓ_A(x) + ℓ_A(yx⁻¹) = ℓ_A(y)).
- An element $g \in G$ is *balanced* if the set of left and right prefixes of g coincide.
- If g ∈ G is balanced, define a monoid M by taking a copy P of the set P of prefixes of g as generators, and relations
 uv = w if u, v, w ∈ P, uv = w and ℓ_A(u) + ℓ_A(v) = ℓ_A(w). Let G(M) be the group with the same presentation as M.

Theorem (Bessis)

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let G be a group, A ⊆ G a subset which generates G as monoid. Let ℓ_A be the length function w.r.t. A. Say that x is a *left prefix* (resp. *right prefix*) of y, written x ≤_l y (resp x ≤_r y) if ℓ_A(x) + ℓ_A(x⁻¹y) = ℓ_A(y) (resp. ℓ_A(x) + ℓ_A(yx⁻¹) = ℓ_A(y)).
- An element $g \in G$ is *balanced* if the set of left and right prefixes of g coincide.
- If g ∈ G is balanced, define a monoid M by taking a copy P of the set P of prefixes of g as generators, and relations
 uv = w if u, v, w ∈ P, uv = w and ℓ_A(u) + ℓ_A(v) = ℓ_A(w). Let G(M) be the group with the same presentation as M.

Theorem (Bessis)

Let $A \subseteq G$ as above, and let $g \in G$ be balanced. If $A \subseteq P$ and the posets (P, \leq_l) , (P, \leq_r) are lattices, then M is a (quasi-)Garside monoid. As a consequence, the word problem in G(M) is solvable.

・ロト・日本・日本・日本・日本・1000

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

Let (W, S) be a finite Coxeter system.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

Let (W, S) be a finite Coxeter system.

• Let G = W, A = S, $g = w_0$.

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

Let (W, S) be a finite Coxeter system.

▶ Let G = W, A = S, $g = w_0$. Then w_0 is balanced (with P = W), and (W, \leq_l) , (W, \leq_r) are lattices (left and right weak Bruhat order).

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Let (W, S) be a finite Coxeter system.

Let G = W, A = S, g = w₀. Then w₀ is balanced (with P = W), and (W, ≤_l), (W, ≤_r) are lattices (left and right weak Bruhat order). The corresponding Garside monoid M is the positive braid monoid B⁺, and G(M) is isomorphic to the Artin-Tits group B. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

(日) (日) (日) (日) (日) (日) (日) (日)

Let (W, S) be a finite Coxeter system.

 Let G = W, A = S, g = w₀. Then w₀ is balanced (with P = W), and (W, ≤_l), (W, ≤_r) are lattices (left and right weak Bruhat order). The corresponding Garside monoid M is the positive braid monoid B⁺, and G(M) is isomorphic to the Artin-Tits group B. For infinite W, there is no w₀. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

・ロト・西ト・山田・山田・山口・

- Let G = W, A = S, g = w₀. Then w₀ is balanced (with P = W), and (W, ≤_l), (W, ≤_r) are lattices (left and right weak Bruhat order). The corresponding Garside monoid M is the positive braid monoid B⁺, and G(M) is isomorphic to the Artin-Tits group B. For infinite W, there is no w₀.
- Let G = W, A = T = ⋃_{w∈W} wSw⁻¹, g a Coxeter element in W (product of all the elements of S in some order).

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let G = W, A = S, g = w₀. Then w₀ is balanced (with P = W), and (W, ≤_l), (W, ≤_r) are lattices (left and right weak Bruhat order). The corresponding Garside monoid M is the positive braid monoid B⁺, and G(M) is isomorphic to the Artin-Tits group B. For infinite W, there is no w₀.
- ▶ Let G = W, $A = T = \bigcup_{w \in W} wSw^{-1}$, g a Coxeter element in W (product of all the elements of S in some order). Then c is balanced (we write $P_c := P$), it can be shown that $A \subseteq P_c$, and (P_c, \leq_r) , (P_c, \leq_l) are lattices.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let G = W, A = S, g = w₀. Then w₀ is balanced (with P = W), and (W, ≤_l), (W, ≤_r) are lattices (left and right weak Bruhat order). The corresponding Garside monoid M is the positive braid monoid B⁺, and G(M) is isomorphic to the Artin-Tits group B. For infinite W, there is no w₀.
- Let G = W, A = T = ⋃_{w∈W} wSw⁻¹, g a Coxeter element in W (product of all the elements of S in some order). Then c is balanced (we write P_c := P), it can be shown that A ⊆ P_c, and (P_c, ≤_r), (P_c, ≤_l) are lattices. The corresponding Garside monoid M =: B^{*}_c is called the *dual braid monoid*, and G(M) is isomorphic to B.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let G = W, A = S, g = w₀. Then w₀ is balanced (with P = W), and (W, ≤_l), (W, ≤_r) are lattices (left and right weak Bruhat order). The corresponding Garside monoid M is the positive braid monoid B⁺, and G(M) is isomorphic to the Artin-Tits group B. For infinite W, there is no w₀.
- Let G = W, A = T = ⋃_{w∈W} wSw⁻¹, g a Coxeter element in W (product of all the elements of S in some order). Then c is balanced (we write P_c := P), it can be shown that A ⊆ P_c, and (P_c, ≤_r), (P_c, ≤_l) are lattices. The corresponding Garside monoid M =: B^{*}_c is called the *dual braid monoid*, and G(M) is isomorphic to B. For infinite W, there are still Coxeter elements.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

• Let (W, S) be an arbitrary Coxeter group, $c \in W$ a Coxeter element.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T). Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements nd Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

・ロト (四) (日) (日) (日) (日) (日)

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:

1. Is $G(B_c^*)$ isomorphic to B ?

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

<ロト 4回ト 4 目ト 4 目ト 目 9 へ (?)</p>

Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).

• Two questions which one can ask about B_c^* and $G(B_c^*)$:

1. Is $G(B_c^*)$ isomorphic to B ? 2. Is B_c^* a Garside monoid ? Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements nd Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:
 - 1. Is $G(B_c^*)$ isomorphic to B ? 2. Is B_c^* a Garside monoid ?
- ► A positive answer to both questions implies that *B* has
 - a solvable word problem.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements nd Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:
 - 1. Is $G(B_c^*)$ isomorphic to B ?
 - 2. Is B_c^* a Garside monoid ?
- A positive answer to both questions implies that B has a solvable word problem.
- ► Conjecture 1 is true for finite, affine and universal W.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements nd Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:
 - 1. Is $G(B_c^*)$ isomorphic to B ?
 - 2. Is B_c^* a Garside monoid ?
- A positive answer to both questions implies that B has a solvable word problem.
- ► Conjecture 1 is true for finite, affine and universal W. Conjecture 2 is true for finite W, Ã_n and C̃_n (for suitable choices of Coxeter element), G̃₂, universal W.

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:
 - 1. Is $G(B_c^*)$ isomorphic to B ?
 - 2. Is B_c^* a Garside monoid ?
- A positive answer to both questions implies that B has a solvable word problem.
- ► Conjecture 1 is true for finite, affine and universal W. Conjecture 2 is true for finite W, Ã_n and C̃_n (for suitable choices of Coxeter element), G̃₂, universal W. It fails for the other affine Artin groups.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements nd Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:
 - 1. Is $G(B_c^*)$ isomorphic to B ?
 - 2. Is B_c^* a Garside monoid ?
- A positive answer to both questions implies that B has a solvable word problem.
- Conjecture 1 is true for finite, affine and universal W. Conjecture 2 is true for finite W, Ã_n and C̃_n (for suitable choices of Coxeter element), G̃₂, universal W. It fails for the other affine Artin groups. One always has S ⊆ P_c; this extends to a group homomorphism B → G(B^{*}_c).

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements nd Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

- Let (W, S) be an arbitrary Coxeter group, c ∈ W a Coxeter element. Then B^{*}_c can still be defined (c is always balanced, in fact ≤_r=≤_l=:≤_T).
- Two questions which one can ask about B_c^* and $G(B_c^*)$:
 - 1. Is $G(B_c^*)$ isomorphic to B ?
 - 2. Is B_c^* a Garside monoid ?
- A positive answer to both questions implies that B has a solvable word problem.
- Conjecture 1 is true for finite, affine and universal W. Conjecture 2 is true for finite W, Ã_n and C̃_n (for suitable choices of Coxeter element), G̃₂, universal W. It fails for the other affine Artin groups. One always has S ⊆ P_c; this extends to a group homomorphism B → G(B^{*}_c). This map is known to be surjective.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

きょうかん 同一本語を本語をよるを

Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

< ロ > < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < ○ < ○</p>

Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

・ロト (四) (日) (日) (日) (日) (日)

► Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. In that case, B^{*}_c is generated by T ⊆ P_c.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

► Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. In that case, B^{*}_c is generated by T ⊆ P_c.

Lemma (Dyer)

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

くしゃ 前々 ふかく 小 マット・

► Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. In that case, B^{*}_c is generated by T ⊆ P_c.

Lemma (Dyer)

Let $x, y \in W$. Let $N(y) = \{t \in T \mid \ell_S(ty) < \ell_S(y)\}$. Let $s_1s_2 \cdots s_k$ be a reduced expression of x.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

► Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. In that case, B^{*}_c is generated by T ⊆ P_c.

Lemma (Dyer)

Let $x, y \in W$. Let $N(y) = \{t \in T \mid \ell_S(ty) < \ell_S(y)\}$. Let $s_1s_2 \cdots s_k$ be a reduced expression of x. The element

 $x_{N(y)} := \sigma_1^{\varepsilon_1} \sigma_2^{\varepsilon_2} \cdots \sigma_k^{\varepsilon_k} \in B,$

where $\varepsilon_i = -1$ if $s_k s_{k-1} \cdots s_i s_{i+1} \cdots s_k \in N(y)$, $\varepsilon_i = 1$ otherwise,

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

・ロト・西ト・山田・山田・山口・

► Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. In that case, B^{*}_c is generated by T ⊆ P_c.

Lemma (Dyer)

Let $x, y \in W$. Let $N(y) = \{t \in T \mid \ell_S(ty) < \ell_S(y)\}$. Let $s_1s_2 \cdots s_k$ be a reduced expression of x. The element

 $x_{N(y)} := \sigma_1^{\varepsilon_1} \sigma_2^{\varepsilon_2} \cdots \sigma_k^{\varepsilon_k} \in B,$

where $\varepsilon_i = -1$ if $s_k s_{k-1} \cdots s_i s_{i+1} \cdots s_k \in N(y)$, $\varepsilon_i = 1$ otherwise, is indep. of the choice of reduced expression of x.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

・ロト・(部・・モト・モー・)の()~

► Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. In that case, B^{*}_c is generated by T ⊆ P_c.

Lemma (Dyer)

Let $x, y \in W$. Let $N(y) = \{t \in T \mid \ell_S(ty) < \ell_S(y)\}$. Let $s_1s_2 \cdots s_k$ be a reduced expression of x. The element

 $x_{N(y)} := \sigma_1^{\varepsilon_1} \sigma_2^{\varepsilon_2} \cdots \sigma_k^{\varepsilon_k} \in B,$

where $\varepsilon_i = -1$ if $s_k s_{k-1} \cdots s_i s_{i+1} \cdots s_k \in N(y)$, $\varepsilon_i = 1$ otherwise, is indep. of the choice of reduced expression of x.

• If y = 1, x_{\emptyset} is just the positive lift of x in $B^+ \subseteq B$.

・ロト ・ 西 ト ・ 田 ト ・ 田 ト ・ 日 ト

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

► Hence finding a way to express the elements P_c in terms of the classical Artin group generators is an important question. Even for finite W there is no known nice expression for the elements of P_c in B. In that case, B^{*}_c is generated by T ⊆ P_c.

Lemma (Dyer)

Let $x, y \in W$. Let $N(y) = \{t \in T \mid \ell_S(ty) < \ell_S(y)\}$. Let $s_1s_2 \cdots s_k$ be a reduced expression of x. The element

 $x_{N(y)} := \sigma_1^{\varepsilon_1} \sigma_2^{\varepsilon_2} \cdots \sigma_k^{\varepsilon_k} \in B,$

where $\varepsilon_i = -1$ if $s_k s_{k-1} \cdots s_i s_{i+1} \cdots s_k \in N(y)$, $\varepsilon_i = 1$ otherwise, is indep. of the choice of reduced expression of x.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

・ロト・西・・田・・田・・日・

• Let $c = s_1 s_2 \cdots s_n$ be a reduced decomposition of a Coxeter element in W. Let

$$c^{\infty} = s_1 s_2 \cdots s_n | \cdots$$

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Dual and classical generators of Artin groups

Coxeter sortable elements

• Let $c = s_1 s_2 \cdots s_n$ be a reduced decomposition of a Coxeter element in W. Let

$$c^{\infty} = s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | \cdots$$

► For every w ∈ W, define the c-sorting word w_c for w as the lexicographically first reduced expression of w appearing as a subword of c[∞]. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▶ Let c = s₁s₂ ··· s_n be a reduced decomposition of a Coxeter element in W. Let

$$c^{\infty} = s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | \cdots$$

For every w ∈ W, define the c-sorting word w_c for w as the lexicographically first reduced expression of w appearing as a subword of c[∞]. Decompose it as w_c = w₁|w₂| · · · |w_k, where w_i is the subword coming from the *i*-th copy of c and k is maximal s.t. w_k ≠ Ø. Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

▶ Let c = s₁s₂ ··· s_n be a reduced decomposition of a Coxeter element in W. Let

$$c^{\infty} = s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n| \cdots$$

For every w ∈ W, define the c-sorting word w_c for w as the lexicographically first reduced expression of w appearing as a subword of c[∞]. Decompose it as w_c = w₁|w₂|···|w_k, where w_i is the subword coming from the *i*-th copy of c and k is maximal s.t. w_k ≠ Ø. Since every letter of S appears in w_i at most once, we may view w_i as a subset of S.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

▶ Let c = s₁s₂ ··· s_n be a reduced decomposition of a Coxeter element in W. Let

$$c^{\infty} = s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | \cdots$$

For every w ∈ W, define the c-sorting word w_c for w as the lexicographically first reduced expression of w appearing as a subword of c[∞]. Decompose it as w_c = w₁|w₂|···|w_k, where w_i is the subword coming from the *i*-th copy of c and k is maximal s.t. w_k ≠ Ø. Since every letter of S appears in w_i at most once, we may view w_i as a subset of S.

Definition (Reading)

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▶ Let c = s₁s₂ ··· s_n be a reduced decomposition of a Coxeter element in W. Let

$$c^{\infty} = s_1 s_2 \cdots s_n |s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | \cdots$$

For every w ∈ W, define the c-sorting word w_c for w as the lexicographically first reduced expression of w appearing as a subword of c[∞]. Decompose it as w_c = w₁|w₂|···|w_k, where w_i is the subword coming from the *i*-th copy of c and k is maximal s.t. w_k ≠ Ø. Since every letter of S appears in w_i at most once, we may view w_i as a subset of S.

Definition (Reading)

An element $w \in W$ is *c*-sortable if $w_k \subseteq w_{k-1} \subseteq \cdots \subseteq w_1$.

(日) (日) (日) (日) (日) (日) (日) (日)

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements Ind Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Coxeter sortable elements and dual braid monoids

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

Coxeter sortable elements and dual braid monoids

Theorem (Reading)

Let w be c-sortable, let $Cov(w) := wD_R(w)w^{-1}$.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

くしゃ 前々 ふかく 小 マット・

Let w be c-sortable, let $Cov(w) := wD_R(w)w^{-1}$. There is a unique $u \in P_c$ such that $(Cov(w)) = \langle t \in T | t \leq_T u \rangle$.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

Let w be c-sortable, let $Cov(w) := wD_R(w)w^{-1}$. There is a unique $u \in P_c$ such that $(Cov(w)) = \langle t \in T | t \leq_T u \rangle$. The assignment $w \mapsto nc_c(w) := u$ defines a bijection between the set of c-sortable elements and P_c .

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ● のの⊙

Let w be c-sortable, let $Cov(w) := wD_R(w)w^{-1}$. There is a unique $u \in P_c$ such that $(Cov(w)) = \langle t \in T | t \leq_T u \rangle$. The assignment $w \mapsto nc_c(w) := u$ defines a bijection between the set of c-sortable elements and P_c .

Theorem (G.)

Let
$$x \in P_c$$
. Let $y = nc_c^{-1}(x^{-1}c)$.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ● のの⊙

Let w be c-sortable, let $Cov(w) := wD_R(w)w^{-1}$. There is a unique $u \in P_c$ such that $(Cov(w)) = \langle t \in T | t \leq_T u \rangle$. The assignment $w \mapsto nc_c(w) := u$ defines a bijection between the set of c-sortable elements and P_c .

Theorem (G.)

Let
$$x \in P_c$$
. Let $y = \operatorname{nc}_c^{-1}(x^{-1}c)$. Then $\mathbf{x} = x_{N(y)}$.

Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements

Main result

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ● のの⊙

Let w be c-sortable, let $Cov(w) := wD_R(w)w^{-1}$. There is a unique $u \in P_c$ such that $(Cov(w)) = \langle t \in T | t \leq_T u \rangle$. The assignment $w \mapsto nc_c(w) := u$ defines a bijection between the set of c-sortable elements and P_c .

Theorem (G.)

Let
$$x \in P_c$$
. Let $y = \operatorname{nc}_c^{-1}(x^{-1}c)$. Then $\mathbf{x} = x_{N(y)}$.

It gives a canonical expression for any simple dual braid in terms of the classical generators of B, and gives a new proof of the fact that every x ∈ P_c we be written in the form u_∅v_∅⁻¹ (Digne-G., Baumeister-G., Licata-Queffelec). Coxeter sortable elements and dual braid monoids

Thomas Gobet

Balanced elements and Garside groups

Dual braid monoids

Dual and classical generators of Artin groups

Coxeter sortable elements