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Chapter 1

(Garside monoids and groups

Throughout the whole chapter M will denote a monoid. Recall that a monoid always admits a unit 1.

1.1 Cancellative monoids
Definition 1.1.1. A monoid M is left-cancellative if for all a,b,c € M,
ab=ac =b=-c
It is right-cancellative if for all a,b,c € M,
ba=ca = b=c.
If M is both left- and right-cancellative, we say that M is cancellative.
Showing that a monoid is (left- or right-) cancellative is a difficult task in general.

Example 1.1.2. Every group G is in particular a cancellative monoid.

Example 1.1.3. Let M = ( z,y,2,t | zy = zt ). Then M is both left- and right-cancellative. To
prove this, notice that there is no defining relation in M of the form y---=--- ort--- =---. There is
also no relation of the form ---z =---, or --- 2 = ---. It follows that the positions in a word in which
one can apply a relation stay the same after application of a defining relation. That is, if z1xo - - - xy is
a word in z,y, z,t, and (i,7 + 1) are consecutive positions where a relation can be applied, i.e., z;x; 41
is the left or right hand side of the defining relation zy = zt, say x; = « and x;11 = y, then one can
neither apply a relation on x;_12; nor on x;;12;42, and the same stays true after replacing x; by «} = z
and x;1 by 2] = t. Left-cancellativity easily follows from this observation, showing that ab = ac
implies b = ¢ by induction on the length of a, where the length ¢(a) of an element a € M is defined
by {(a) = k, where ajas - - ap = a, with a; € {z,y, z,t} for all i. Note that this length is well-defined
since the defining relation of M is homogeneous, hence all the words in M representing a have the
same length. Right-cancellativity follows as the monoid is isomorphic to its opposite monoid.

Example 1.1.4. The monoid M = ( a,b,c | ab = ac ) is not left-cancellative. Indeed, as the defining
relation is homogeneous, there is a well-defined length function on M which assigns to any element
m € M the length of any word representing m. Then ab = ac has length two and b has length one.
But b # ¢ as no relation can be applied to the word b. However, we claim that M is right-cancellative

(see Exercise below). 9



Of course, one way to show that a monoid M is cancellative is to embed it into a group, but this
is a difficult task in general, and many known criteria to embed a monoid M into a group G require
one to first establish cancellativity of M.

Exercise 1.1.5. Show that M = ( a,b,c | ab = ac ) is right-cancellative.
Exercise 1.1.6. Let M = ( x,y | 22 = y? ). Show that M is left- and right-cancellative.

Cancellativity is obviously a necessary condition for embedding a monoid into a group. It turns
out that it is not sufficient, as the next counterexample (guven by Maltsev [9] in 1937) shows.

Example 1.1.7. Let M = ( a,b,¢,d,x,y,u,v | ax = by,cx = dy,au = bv). Then M is both left-
and right-cancellative, but does not embed into a group. To see this, consider any word z1x2 - - - xf.
Call a pair of successive positions (i,7 + 1) good if one can apply a relation z;x;41 = xjzj ;. Note
that any side of a relation ends with a letter in S1 = {z,y,u,v}, while it begins with a letter in
Sy ={a,b,c,d}. Since we have S; N Sy = 0, it follows that the set of good positions in x125 - - - z) and
T1Tg - - Ti_ 1 TG Tigo - - - S) are the same, and that if (i,7 4 1) and (4,7 + 1) are distinct good sets of
positions, then {i,7+ 1,7, 7+ 1} has cardinal 4. As a consequence, the set of good positions is constant
on words for any elements, and the order in which relations are applied to any word does not matter.
Left- and right-cancellativity follows easily, arguing as in Example [I.1.3] Now assume that M embeds
into a group G. Then in G we have

-1 1

dle=yz ' =b"la=vu"

from what we deduce that cu = dv in G. But cu,dv € M, while in M we have cu # dv, a contradiction.

In Section below, we shall establish a few criteria to check that a monoid is left- or right-
cancellative.

Lemma 1.1.8. If M is left-cancellative (respectively right-cancellative) and 1 is the only invertible
element in M, then the left-divisibility (resp. right-divisibility) relation on M is a partial order.

Proof. Reflexivity is clear as M has a unit 1 and transitivity is also clear (and both hold without the
cancellativity assumption and without the assumption on invertible elements). Let a,b € M such that
a left-divides b and b left-divides a. Then there are ¢,¢ € M satisfying ac = b and bc’ = a. Hence
we get b = ac = bc’c. By left-cancellativity this implies ¢/c = 1, hence ¢ = 1 = ¢/ as 1 is the only
invertible element in M. Hence a = b, and the left-divisibility relation is reflexive. The proof of the
right counterparts is similar. O

We end up the section with a proof that the monoid M = (a,b | aba = bab) is both left- and
right-cancellative. This is the braid monoid on three strands, one of the most basic examples of a
Garside monoid, and we will use it as a running example along the way. The proof below is based on
Garside’s original proof of the cancellativity of the positive braid monoid B, [7].

Proposition 1.1.9. The monoid B = (a,b | aba = bab) is both left- and right-cancellative.

Proof. Note that M := B;r is isomorphic to the opposite monoid M°P. It therefore suffices to show
that M is left-cancellative to also obtain right-cancellativity.

Since the defining relation aba = bab is homogeneous, every element x € M has a well-defined
length, given by the length of any word for x in the generating set S := {a,b}. We begin by showing
the following property (P): let X,Y € M and =z, y36 S such that X = yY. Then



1. If x =y, then X =Y.

2. If x # y, then there is Z € M such that X = yzZ and Y = xyZ.

We argue by induction on the length of X. If /(X) = 0, then X =1 =Y, but we also have z = y,
hence 1 holds. The second situation cannot appear. If £(X) = 1, then the second situation also cannot
appear, since we would have two word X and yY of length two representing the same element of M
but starting with a different letter, which is impossible since the single defining relation of M equates
two words of length three.

Hence assume that the result holds for all X such that £(X) < 1. Assume that ¢£(X) > 1. Consider
a sequence of elements zg = x,x1,%2,..., 2 =y € S and words Xo, X1, Xo, -+, X in S* such that
xoXo = 21X1 = -+ = 21 X1 = Xk, (as elements of M) where Xy is a word for X, X is a
word for Y, and such that every two successive words z; X; and x;41X;41 in the sequence differ by a
single application of the defining relation aba = bab. We then do a second induction, on k, to conclude
the proof of (P). Assume that k = 0. Then x = y, X =Y, and there is nothing to prove. Assume
that k£ = 1. Then one passes the word x¢Xp to the word x1X; by a single application of the relation
aba = bab. If the relation is applied inside Xy, then x = y, and X =Y since X is a word for X, X;
is a word for Y, and they differ by a single application of the relation aba = bab. If the relation is not
applied inside Xy, it is then applied at the beginning of the word x¢Xg, hence g = a and Xy begins
with ba, or xg = b and X begins with ab. Assume that x¢ = a, the other case is similar. We then have
the existence of a word W such that Xg = baW, and x¢Xg = abaW. The word x1X; is then given by
babW , hence we have X; = abW, which concludes the proof, taking for Z the element represented by
the word W.

Now assume that k£ > 2. Let 7 be any integer such that 0 < ¢ < k. We can thus apply (P) to both
the pairs of words (x0Xo, x;X;), and (z; X;, xxXk), as in every couple, the second word is obtained from
the first one by a number of applications of aba = bab which is less than k. Hence we have three cases:
if g = z; = g, then denoting by W the element represented by X; we have X = W and W =Y,
hence X =Y, which concludes the proof. If zy = x; but x; # xp, say o = a and xx = b (the other
case is similar), then there is an element Z € M such that W = baZ and Y = abZ and X = baZ.
If 9 # x; but z; = z; we have a similar situation. Finally, assume that z¢g # z; and z; # xp, say
xg = a = x and x; = b. Then there are Z1,Z> € M such that X = baZy, X; = abZy, X; = abZs,
Y = baZs. Now ¢(X;) < l(x;X;), hence by induction, applying the situation (1) twice we get that
abZy = abZs implies that bZ; = bZy, which implies that Z; = Zs. Setting Z := Z; = Z», we thus get
X =baZ; = baZ = baZy, =Y, which concludes the proof of property (P).

We now show that M is left-cancellative. Assume that x,y,z € M are such that zz = zy. We
argue by induction on ¢(z). If /(x) =0 then z =1 and z = y. If ¢(x) > 0, then thereisu e S,ve M
such that x = uv. We then have uvz = uvy. Since £(u) = 1, by property (P) we deduce that vz = vy.
Since ¢(v) = £(x) — 1, by induction we deduce that z = y. This concludes the proof. O

The above proof gives an insight of how difficult it can be to show that a monoid defined by
generators and relations is cancellative. There are very few general criteria to show such a property,
which is a difficult task in general. In Section below we will give some such criteria.

Exercise 1.1.10. Show that the monoid M = (a,b | abab = baba) is both left- and right-cancellative.
Exercise 1.1.11. Show that the monoid
M = {a,b,c | aba = bab, aca = cac, bcb = cbe, abca = beab = cabe)

is not cancellative.

4



1.2 Ore monoids

Definition 1.2.1 (Divisors and multiples). Let a,b,c € M. If ab = ¢ holds, we say that a is a lefi-
divisor (respectively, that b is a right-divisor) of ¢ and that c is a right-multiple of a (respectively a
left-multiple of b).

Theorem 1.2.2 (Ore’s Theorem). If M is cancellative, and if any two elements a,b € M admit a
common left-multiple, that is, if there is ¢ € M satisfying a’a = ¢ = b'b for some a',V' € M, then M
admits a group of (left-)fractions G(M) in which it embeds.

Proof. Set

G(M) = {(a,b) | a,be M}/ ~,
where ~ is the equivalence relation generated by (a,b) ~ (za,zb), v € M for all a,b,z € M. We will
denote by a~!'b the equivalence classe of the pair (a,b) in G(M). We begin by defining the product of

two fractions a~'b and ¢ 'd. To this end, consider a common left-multiple of b and ¢, that is, let ¥/, ¢/
such that b’b = ¢’c. We then set

(a™1b) - (¢ td) :== (V'a) "L (da).

We have to check that this is independent of the choices we made. We first show that it is independent
of the choice of common left-multiple of b and c. Hence let b”,¢” € M such that b”b = ¢”’c. Then
the two left-multiples bbb = ’c and V/b = /¢ themselves have a common left-multiple, say there is
x,y € M such that

2b'b = xd’c = yb'b = ydc,

and by right-cancellativity we get that xb” = yb’ and xc¢” = yc’. We thus get
(t'a)~H('d) = (yb'a)"H(yc'd) = (2b"a) "} (xc"d) = (b"a) " ("d),

which shows the claim. We also need to show that the product - is independent of the choices of
representatives (a,b) and (c, d) for the fractions a~'b and ¢~'d. Hence let z € M. We have

((za)~'xb) - (¢ 'd) = (bza) ',

where 5, ¢ are such that éc = bxb. Since this is a left-common multiple of b and ¢, we get by the already
proved property that (a~'b) - (¢~'d) does not depend on the chosen left-common multiple for b and ¢
that B

(bza)~'ed = (a7 'b) - (c71a).

Similary we show that (a=b) - ((wc)~1(2d)) = (a~'b) - (¢ d). Hence the product is well-defined.
To prove associativity, let xi_lyi, 1 = 1,2,3, be three fractions. Let a1, as such that a1y; = aszs.
Let af, as such that abys = ahxs. And let a,d’ such that aal = a’ap. We then have

(') - (23" 02) - (257 ys)) = (27 'm1) - ((ahwo) ' abys) = (d'arz1) ™' (aasys),

where the last equality holds true since a’a1y1 = aabxe. On the other hand we have

(7 "1) - (23 92)) - (25 ' ys) = ((a1w1) " agya) - (25 ys) = (d'arw1) ™" (adbys),

where the last equality holds true since a’asys = aa4xs. This shows associativity.
It is clear that the fraction 17'1 is the neutral element, and that every fraction ¢~ 'b has an inverse

b~ la. 5 O



Definition 1.2.3. A monoid satisfying the assumtions of Theorem is a (left) Ore monoid.

Proposition 1.2.4. Let M be a cancellative monoid in which any two pair of elements admit a common
left-multiple and let vpp : M — G(M) be the canonical embedding. Assume that G is a group and
f M — G is an injective morphism of monoids. Then there is a unique injective group morphism
0:G(M) — G such that pouvp = f.

Proof. Let (a,b) € G(M) and define ¢((a,b)) by f(a)~'f(b). It is clear that ¢ is well-defined. Let
(a1,b1), (az,by) € G(M). Consider a left-multiple b'b; = a’ag. We then have that (a1, b1)(ag,bs) =
(b'ay,a’bs). We thus have

¢((a1,b1)(az, b2)) = f(V'ar) ™" f(a'b).

On the other hand we have

o((ar,b1))e((az, b2)) = flar) " f(br) f(a2) " f(b2),

but since b'b; = a’az we deduce that, in G, we have f(b1)f(az)™t = f(')~! f(a’), hence we have

o((a1,b1)(az,b2)) = flar) fF(V) 7 f(a)) f(b2) = flar) ' f(br) faz) " f(b2) = @((a1, b1))e((az,b2)).

Since it is clear that go(lg(M)) = 1g, we deduce that ¢ is a group morphism, and by construction it is
clear that ¢ o tpy = f. Given (a,b) € G(M), we have

p((@b) =1 & fla)7'f(b) =1 & f(a) = f(b),

which, as f is injective, happens if and only if a = b. Hence ¢ is injective.
Uniqueness follows from the fact that, if ¢’ is another group morphism such that ¢’ oty = f, then
¢'(a) = ¢(a) for all a € M, yielding ¢'(a,b) = ¢'(a) "¢’ (b) and hence

p((a,0)) = fla)~ f(b) = ¢'(a) "1/ (b) = ¢'((a,])),
which concludes the proof. O

Corollary 1.2.5. Let M be a cancellative monoid in which any two pair of elements admit a common
left-multiple and let (S | R) be a presentation of M. Then (S | R), viewed as a group presentation, is
a presentation of G(M).

Proof. 1t is clear by construction that S generates G(M) as a group, and since M embeds into G(M),

—_——

the defining relations R also hold in G(M). It follows that G(M) is a quotient of G(M) := (S | R).
Since M embeds into G(M) and this map factors through G(M ), the monoid M also embeds into G(M).

by Proposition there is a unique (injective) group morphism ¢ : G(M) — G(M) making the
expected diagram commute. Both this morphism and the above quotient map send a generator s € §
to itself, hence the two maps are inverse to each other, and G(M) = G(M) = (S | R). O

Remark 1.2.6. If M is a cancellative monoid in which any pair of elements admit a common left-
multiple, one can similarly define a group of right-fractions of M in which M embeds. In particular,
if M is cancellative and any pair of elements admit both a common left-multiple and a common right-
multiple, then one gets two groups. By the universal property (Proposition , these groups are

then isomorphic.
6



Example 1.2.7. Consider the monoid Bgr from Proposition We already know from Proposi-
tion that Bgr is cancellative. We show that any pair x,y of elements of B:}f admit a common
left-multiple. To this end, consider the element A := aba = bab € B;r . We claim that A? is central in
B;' . Indeed, we have

aA? = a(aba)(aba) = a(bab)(aba) = (aba)(bab)a = A?a,

and we similarly show that bA? = AZb. Since a and b generate Bf we deduce that A? is central in
B . Now a and b both right-divide A (hence A?). It follows that, if « is any element and z129 - - - T
a word for z in S* (recall that S = {a,b}), then considering y1, %2, ..., yr such that y;z; = A? for all
i=1,...,k, we have using that A? is central that

YklUk—1° Y21 T1T Tk = YpYh—1 - - Yo A2 To - -z = APypyp—1 - YaTo - - - T
= A%ypyp_1 -y APy - ap = Atypyrg Yz - a

This shows that, for any = € M such that £(z) = k, the element A% is a left-multiple of 2. Hence
setting k := max{/(x),£(y)}, we get that A?¥ is a left-multiple of both 2 and y. In fact this bound can
be reduced to k, i.e., one can show that A* is already a left-multiple of both x and ¥ (see Exercisem

below). Applying Ore’s Theorem (Theorem above), we get that By embeds into its group of
(left-)fractions G(BY), and by Corollary this group has presentation (a,b | aba = bab).

Exercise 1.2.8. Let B = (a,b | aba = bab). Let x,y € Bf. Show that AF is both a common left-
and right-multiple of z and y, where k := max{{(z), {(y)}.

Exercise 1.2.9. Let Bf = (a,b | aba = bab) which, by Example above, is an Ore monoid. Write
the elements ab~'a, a®b~3 as fractions 2!y with =,y € B;‘.

1.3 Monoids with Noetherian divisibility

Definition 1.3.1 (Noetherian divisibility). We say that the divisibility in M is Noetherian if there
exists a function A : M — Zx>¢ satisfying Va,b € M, A(ab) > A(a) + A(b) and a # 1 = A(a) # 0.
We say that M is right-Noetherian (respectively left-Noetherian) if every strictly increasing sequence
of divisors with respect to left-divisibility (resp. right-divisibility) is finite. Note that if the divisibility
in M is Noetherian, then M is both left- and right-Noetherian.

Note that it implies that the only invertible element in M is 1 and that M is infinite for M # {1}.
In particular, by Lemma [[.1.8] in a cancellative monoid M with Noetherian divisibility, both left-
divisiblity and right-divisibility induce a partial order on M.

Example 1.3.2. Consider the monoid M = (a,b | aba = bab). Then M has Noetherian divisibility.
Indeed, since its defining relation is homogeneous, the function A defined on generators by A(a) =1 =
A(b) uniquely extends to a length function A : M — Z>¢ satisfying the assumtions of Definition m
Note that in this case we have A(zy) = A(z) + A(y) for all x,y € M. In fact M is the classical braid
monoid on three strands.

Example 1.3.3. Consider the monoid M = (a,b | aba = b?). Then M has Noetherian divisibility.
Indeed, setting A(a) = 1 and A(b) = 2, we obtain that the defining relation is homogeneous. As in the
previous case we thus have A\(zy) = A(z) + \(y) fo,; all z,y € M.



Example 1.3.4. Consider the monoid M = (a,b | aba = b). Then M is neither left- nor right-
Noetherian. Indeed we have
b = aba,ab = a’ba, a*b = a’ba, . . .,

Hence denoting by < the left-divisibility relation, we have
<adth<ab<---<a’b<ab<b,

and the above sequence is strictly decreasing as a’t'b # a’b for all i > 0: indeed the parity of the
number of a’s appearing in a word is constant on words for a given element of M. Hence M is not
right-Noetherian, and since M is symmetric we conclude that it is not left-Noetherian either.

Example 1.3.5. Consider the monoid M = (a,b | ababa = b*). Then for every € M, the number of
b’s appearing in any word for x is constant. It is clear that there is no length function A : M — Zxg
satisfying A(zy) = A(x) + A(y) for all z,y € M and = # 1 = A(z) # 0, as because of the relation
ababa = b? we would have A(a) = 0, while a # 1 (there is an obvious morphism from M to Z/37Z
sending b to 0 and a to 1). But one can show there is one such fonction satisfying A(xy) > A(x) + A(y),
given by

Mz) =sup{k | x = aras - - - ax, a; € {a,b}}.

Exercise 1.3.6. Let M = (a,b | aba = ba?b). Show that M does not have Noetherian divisibility.

Exercise 1.3.7. Show that the groups with the same presentations as the monoids M from Exam-

ples[1.3.2] and Exercise [1.3.6] are all isomorphic.

1.4 Garside monoids

Definition 1.4.1. Assume that M is a monoid having 1 as only invertible element, so that left- and
right-divisibility yield partial orders. Let a,b € M. We say that ¢ € M is a left-lem of a and b if there
are a’, b’ such that ¢ = d’a = V'b, and if whenever ¢’ is a common left-multiple of a and b, we have that
c right-divides ¢. We say that c is a right-gcd of a and b if it right-divides both a and b, and if any
common right-divisor of a and b right-divides c.

Definition 1.4.2 (Garside monoid). A Garside monoid is a pair (M, A) where M is a monoid with 1
and A is an element of M, satisfying the following five conditions

1. M is left- and right-cancellative,

2. The divisibility in M is Noetherian,

3. Any two elements in M admit a left- and right-lem, and a left- and right-ged,
4. the left- and right-divisors of the element A coincide and generate M,

5. The set of (left- or right-)divisors of A is finite.

Note that under these assumptions, the restrictions of left- and right-divisibility to the set of divisors
of A yield two lattice structures on this set. We denote the set of divisors of A by Div(A).



Definition 1.4.3. By Ore’s Theorem every Garside monoid (M, A) embeds into a group of
left-fractions, or a group of right-fractions. By Remark these two groups are isomorphic. We
denote the resulting group by G(M) and call it a Garside group. In other words, a Garside group is
the group of (left- or right-) fractions of a Garside monoid. The element A is called a Garside element
in M. More generally, an element A of a cancellative monoid M with Noetherian divisibility satisfying
the conditions 4 and 5 above will be called a Garside element.

Note that, given a Garside monoid M, the element A is not uniquely determined in general. But
we have:

Lemma 1.4.4. Let M be a Garside monoid and A, A" two Garside elements in M. Then the left-gcd
AN A" of A and A’ is equal to the right-ged A N A, and is a Garside element in M.

Proof. Since A Ap A’ is a left-divisor of both A and A’, and A, A’ are Garside elements in M, we
have that A Ay A’ is a right-divisor of both A and A’. Hence A A;, A’ <p A Ar A’. Hence there is an
element a € M such that A Ag A’ = aA A, A’ Similarly, we have A Ag A’ <; A A, A’, hence there
is b € M such that A Ap A" = A Ar A’b. Combining both yields

aA AR A'b= A NR A,

hence by Noetherian divisibility we obtain that A(a) = 0 = A(b), which forces a = 1 = b. Hence
AN AN =AAg A

Let z <; A Ap A’. Then v <; A,A’, hence x < A, A’ since A, A’ are Garside elements in M.
Conversely, one similarly shows that every right-divisor of A Ay A’ = A Ag A’ is also a left-divisor.
Hence both sets coincide.

Every atom it both a left- and right- divisor of any Garside element, hence denoting by S the set
of atoms of M, we have s <; A, A’ and s <p A, A’. It follows that the set S left- and -right divides
A Ap A, hence that Div(A Ap A') generates M.

It is finite since Div(A) is finite, and A Ap A" < A, O

Proposition 1.4.5. Let M be a Garside monoid with Garside element A. Let k > 1. Then A* is a
Garside element in M.

Proof. TBD O

Example 1.4.6. Let n > 1 and let M := ((N>g)",+). Then M is both left- and right-cancellative.
We have a = (a1,a9,...,a,) < b= (b1,ba,...,b,) if and only if a; < b; for all i = 1,...,n, where <
denotes either the left- or right-divisibility. In particular, one defines a length function A : M — Zxg
by Aa) = Y1, a; and we have A(ab) = A(a) + A(b) for all a,b € M. This establishes that < is
Noetherian. Given a,b € M, the element a V b = (max {a1, b1 }, max {az, b2}, ..., max {an,, by }) is both
a left- and right-lem of a and b, and a A b = (min {a1, b1 }, min {az, b2}, ..., min {an, b, }) is both a left-
and right-ged of a and b. Finally, consider the element A := (1,1,...,1) € M. The set of left- or
right-divisors of A is given by the set of elements of the form (e1,e9,...,&y), where ¢; € {0,1} for all
i =1,...,n. It is thus finite, and contains the element e; with zero entries except the i-th entry equal
to 1, for all ¢ = 1,...,n, which generates M since (a1, az,...,a,) = ej*e3? - - - e%n. This shows that M
is a Garside monoid, with group of fractions isomorphic to (Z",+).

Example 1.4.7. The monoid Bf = (a,b | aba = bab) from Proposition is a Garside monoid. We

have seen in Proposition that M is left- and right-cancellative. It has Noetherian divisibility since
9



the defining relation is homogeneous. We have seen in Example [I.2.7]that every pair of elements admits
a common left- or right-multiple but the existence of lcm and ged’s has not been established yet: we will
establish it in the next section. Finally, setting A := aba = bab, the set of left- and right-divisors of A
coincide, and is given by Div(A) = {1, a, b, ab, ba, aba}, which is finite and contains the generating set
{a,b} of M. Hence M is a Garside monoid, and by Corollary [1.2.5| we have G(M) = (a,b | aba = bab).

Proposition 1.4.8. Let (M,A) be a Garside monoid. There is a power of A which is central in M
(and hence in G(M)).

Proof. Let z € Div(A). Then y := Ax~! is also in Div(A). It follows that Ay~! € Div(A). But
Ay~t = AzA~!. Since Div(A) is finite, we have ADiv(A)A~! = Div(A), and there is a power k > of
A such that AF acts by conjugation on Div(A) as the identity. For such a k we thus have AFz = 2AF
for all s € Div(A). Since Div(A) generates M, we deduce that A* is central in M. O

Proposition 1.4.9. Fvery Garside group is torsion-free.

Proof. We extend the partial order < given by left-divisibility on M to G(M) by setting x < y if and
only if x71y € M. This yields a lattice order on G(M).
Let € G(M) and let n > 1 such that 2 = 1. Consider the element y := 1Az Az?A--- Ax" L
Then
zy=x(AAz AN A" D=z Az?AAZIA L =y,
=~

hence z = 1. O

1.5 Word problem and normal forms

The aim of this section is to explain why Garside groups have a solvable word problem.
Throughout the whole section we will denote by (M, A) a Garside monoid.

1.5.1 Solution to the word problem: basic approach

Definition 1.5.1. An element s of M is an atom if whenever z,y € M are such that s = zy, then
r=1lory=1.

Proposition 1.5.2. Let (M,A) be a Garside monoid. Then M admits the presentation
(u,u € DiV(A) |u-v=w if uv =w ). (1.5.1)

Proof. Set M’ := (u,u € Div(A) | u-v =w if uv = w ). Tt is clear that the defining relations of M’
are satisfied in M under the map u — u. We need to show that every relation in M is a consequence
of those relations. Hence let 1,29, ..., Tk, Y1,%2, ..., y¢ € Div(A) such that

T1x2 Tk = Y1Y2 - Ye- (1.5.2)

We proceed by induction on ¢(x129---xg). If {(x129---2) = 0, then both sides of are the
identity. If (z1xe---x) = 1, then all factors but one in either side are equal to 1, in which case
the result is also trivially true. Hence assume that ¢(xj2z2---xx) > 2. Since M is a lattice for left-
divisibility, let z be the least right-common multiple of x1 and y;. Then z must left-divide x5 - - - g,
since it has a word beginning by x; and a Wordlgeginning by y1. We thus have z129-- 7 = 22/



for some 2’ € M. Let ay,by € M such that 2 = z1a; = y1b;. Since A is a common right-multiple
of 1 and y;, we must have z < A, and hence z,a;,b; € Div(A). By left-cancellativity we have
Ty xp = a1z’ and yp - - - yp = by 2’. Now choose any word ujug - - - up, for 2. By induction, the relations
a U ug - - Up = T -+ - Tf and biugug - - - up = Yo - - - yp are consequences of the defining relations of M.
We can thus pass from iz --- 2} to ziajuiug - - - up only using defining relations of M’. Now the
relations x1a; = z and z = y; by are defining relations of M’. We can thus pass from zyajujus - - “up to
y1biuiug - - - up using defining relations of M'. Finally, as seen above we can pass from y1bjujus - - “Up
to y1y2 - - - y¢ using defining relations of M’. Hence the words zyxs - - -z} and y1ys - - - y¢ are related by
defining relations of M’ which concludes the proof. O

Corollary 1.5.3. Fvery Garside monoid is finitely presented.
Lemma 1.5.4. FEvery Garside monoid has finitely many atoms.

Proof. Every atom must be a generator of any presentation. Hence, by the above proposition, we have
that the set of atoms is included in the set of divisors of A, which is finite. O

Lemma 1.5.5. The lattice Div(A) (for left- or right-divisibility) can be calculated in finite time.

Proof. By Noetherian divisibility, the length of a word for A, defined as the maximal number of
elements of Div(A)\{1} appearing in a word for A, is bounded. It follows that there are only finitely-
many words for A, and these words can all be calculated starting from any word for A and applying
defining relations whenever it is possible, and then iterating with new obtained words. This gives a
finite set of prefixes of A, and prefixes representing the same elements can be identified since the graph
of expressions of any element can be calculated using exactly the same procedure as the one used above
for words for A. The poset of left divisors can thus be calculated. O

Theorem 1.5.6 (Solvability of the word problem in a Garside monoid, Brute force method). The
word problem in a Garside group is solvable, that is, there is an algorithm allowing one to determine
in finite time if a word in the elements of Div(A) UDiv(A)~! represents the identity or not.

Proof. Let x,y € Div(A). Consider the element 71y of G(M). Take any right-multiple z of z,y in
Div(A) (for instance, one can take z = A!). There exist 2/, 3’ € Div(A) such that z2’ = yy'. In G(M),
we then have 71y = :r’y’_l. We can thus "reverse" fractions in two elements of Div(A). Is follows
that any word x{'a5 --- 2}, x; € Div(A) and ¢ € {—1,1} for all ¢ = 1,...,k, can be transformed
into a word yqys - - - ygye;ll . -yk_l, still representing the same element of G(M), and with y; € Div(A)
for all i = 1,..., k. Since M embeds into G(M) (by Ore’s Theorem [1.2.2)), determining whether the
word y1ys - - - ygyéjrll “ee y,;l represents the identity or not amounts to determining whether, in M, we
have the equality y1y2 - Y¢r = YrYr—1- - Ye+1. But the number of words in Div(A) for the element x
represented by y1ys - - - yg is finite, as seen in the proof of Lemma [1.5.5] The set of words for a given
element can thus be calculated, hence it can be checked in finite time if y1yo- -y = yr -+ Yer1 by
calculating the graph of words for z starting from yiy2 - - - ye, and verifying at the end if yi - - yot1
appears in the obtained set of words or not. ]

1.5.2 Solution to the word problem: normal forms

Lemma 1.5.7. Let M be a Garside monoid. Let g € G(M). There is m > 0 such that A™g € M.
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Proof. Recall that the action of A by conjugation preserves Div(A). In other words, for every x €
Div(A), there is y € Div(A) such that 2A = Ay. Let 2252 - - - z7*, with 2; € Div(A) for all 4, and

g; € {£1} for all i, be a word representing g. We claim that, taking m = |[{i | ¢, = —1}|, we have
A™g € M. We argue by induction on m. If m = 0 then g = A’ € M. Assume that m > 1. Let
i1 be the smallest integer in {1,2,...,k} such that ¢; = —1. Using the above observation, we have

A" g g - -xil_la:i_ll = y1ys - - -yil_lyi_llAmfl, where we successively moved the m — 1 copies of A
to the right, and the y;’s are still divisors of A. We thus have

Ei1+1 €k

m _.€1 ..€E2
A i1 Tk

€ -1 Am—1
T Ty xk’k :AylZUZ"‘yil—lyil A €T

-1 -1, 8i1+1 €k
= 2122 Zi -1 Ay; A™ T ez e M,
——
eM €Div(A) €M by induction
which concludes the proof. O

Set M~! := {z~! | # € M} C G(M). Exactly the same proof as the one above (swapping the
roles of positive and negative exponents) shows that there is m’ > 0 such that A"™g e M~!. In
particular, since M N M~! = {1} because a Garside monoid has no intertible element distinct from 1,
we get the existence of m’ > 0 such that Am/g € M~1\{1} and hence AFg ¢ M for all k > m/ > 0.
Using this observation together with the lemma above, we conclude that, for all g € G(M), the set
{i € Z | A'g € M} has a minimal element, denoted —m(g). We thus have

g= A"y,

with z € M.

The proof of Lemma gives an algorithm to write any word in Div(A)UDiv(A)~! in the form
A~z for some x € M. The obtained m is not necessarily minimal, but we still kip this algorithm as
first step, and will possibly get rid of superfluous copies of A afterwards.

Secondly, we define a normal form of z € M as follows. If z # 1, set x; := ged(x,A) (left-
ged). By cancellativity, there is a uniquely defined 2} € M such that x12] = x. If y # 1, then set
x9 := ged(2), A). There is then a uniquely defined af, € M such that zizoz), = x. Iterating yields a
normal form zjzg - - -z for x with all the factors in Div(A). We call this the left-greedy normal form
of x € M.

Proposition 1.5.8 ((Charney) Local property of the normal form). Let x € M and x = x1z9- - xj
be a decomposition of x as a product of elements of Div(A). Then x1xo - - - xy is the left-greedy normal
form of x if and only if, for alli=1,...,k — 1, we have gcd(A, z;zi41) = ;.

Proof. For simplicity, given x € M, we write a(z) := ged(z, A) (left-ged). We shall first show that for
all x,y € M, we have the (important) equality

a(zy) = alza(y)). (1.5.3)

Let © = ajas - - - a be a decomposition of z as a product of simples (all distinct from 1). We proceed
by induction on k. If K = 0 then we have x = 1 hence we simply get a(y) = a(y) which holds true.
Hence assume that & > 1. Since a1 € Div(A), we have a1 < a(zy). Let w € M such that zy = a(xy)u
and b € Div(A) such that a(zy) = a1b. We have

aias - apy :1(21(a:y)u = aibu



from what, by left-cancellativity, letting =’ := ag - --ay, we deduce that =’y = as---ary = bu. By
induction we have that a(z'y) = a(2'a(y)), hence b < 2’a(y), hence

a(zy) = arby < a1z’ a(y) = za(y),

yielding a(zy) < a(za(y)).
Since zy = za(y)z for some z € M, it is clear that a(za(y)) < a(zy). This establishes (L.5.3).
We now prove the stated equivalence. Assume that r = z1x9 - - - 2 is the left-greedy normal form
of . We have

z; = ged(xiwigr - T, A) = (@i - - xg) = afxio(@ig1 - w1)) = (2iTip1) = ged(wiziq1, A).

Ny
([5.3)
Conversely, assume that © = x129 - - - xf is a decomposition of x where all factors are nontrivial simple el-
ements, and assume that ged(z;z41,A) = x; foralli = 1,2,...,k—1. We show that a(z;zit1 - zk) =
x; by decreasing induction on i. We have a(zy) = z and a(zg_17zx) = ged(xg—12x, A) = 1. Now
assume that ¢ < £k — 1. We have

a(xixipr - xg) = a(zia(xipr - xp)) = a(vizier) = ged(zizipr, A) = z;,
which concludes the proof. O

How to calculate the left-greedy normal form of an element of M

e Step 1: write g € G(M) in the form A"z where m < 0 and z € M: the algorithm is given in
the proof of Lemma Note that the obtained m is not necessarily m(g).

e Step 2: calculate the left-greedy normal form of € M. Thanks to the equality (1.5.3), it is
enough to be able to calculate a(xy) for z,y € Div(A). Indeed, given = € M and a decomposition
x = x1xe -+ Xk into a product of simples, we wish to calculate a(x). By repeated applications

of we have
a(rrxe - - x) = a(rra(rea(rsal- - a(xp_sa(zr_1a(xk))) -+ +))))

and a(xg) = xk. Thus we need to calculate y := a(zr_121) € Div(A), then we need to calculate
a(xg_2y) € Div(A), etc., and at each step we need to perform a calculation of the form a(uv)
with w,v € Div(A).

Lemma 1.5.9. Let z,5 € Div(A). Let 7 := z7'A € Div(A). Let z := ged(z,y). Then
alzy) = zz.

Proof. We have T = A and z < T, hence zz € Div(A). Moreover, since z < y, we have
xz < wxy, hence zz < a(zy). Hence there is 2’ € Div(A) such that zz2’ = a(xy). It follows
that 2z’ € Div(A), and by cancellativity, zz' < y, forcing 2z’ = 1 since z = ged(y, A). Hence
a(zy) = zz. O

This allows one to calculate a(z). On then calculates ' := a(z) 'z, and goes on calculating

a(z'), and so on.
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Definition 1.5.10. Let x,y € Div(A). We say that the product z-y is left-weighted if a(xy) = x.

Remark 1.5.11. The above algorithm to calculate the left-greedy normal form can be optimized.
Namely, given any decomposition x = z129 - - - as a product of simples, one can show that the
following algorithm gives the left-greedy normal form: take any two successive pairs of factors,
and make it left-weighted. If the second factor becomes trivial, remove it. Repeat until the
process terminates.

e Step 3: With Steps 1 and 2, we can write any g € G(M) in the form A™zx9 - -z for some
m > 0 and x € M, with z having a left-greedy normal form zjzs---x. The exponent m may
not be equal to m(g). But powers of A may be cancelled by first factors of the left-greedy
normal form equal to A. Namely, let ¢ be the smallest positive integer such that x; # A. Then
g = A"r120 -1, = A" g - 2. We then have m — i + 1 = m(g), and z;w,41 - - - Tp
is still in left-greedy normal form. Indeed, we then have A= =lg = g,2; 1 --- 23, and if the
exponent —m + ¢ — 1 was not minimal, this would mean that A < x;x;11---x, hence that
x; = ged(A, zjwipr - - xx) = A, contradicting x; # A.

We thus have another solution to the word problem:

Theorem 1.5.12 (Solution to the word problem in a Garside group using normal forms). Let M be
a Garside monoid. Any g € G(M) can be written uniquely in the form A™xixy---x, where m € 7Z,
z; € Div(A)N\{A,1} and satisfy a(xxir1) = x; for alli = 1,...,k — 1 (i.e., x129-- 2% 1S nOt a
right-multiple of A, and is a left-greedy normal form).

It can be shown that this solution is much more efficient from an algorithmical point of view than
the one given in Theorem moreover, it yields a normal form for every element in G(M), which
is not the case with the aforementioned solution.

1.6 Criteria

Definition 1.6.1. Let ( S | R) be a presentation of a monoid M. We say that the presentation (S | R)
is right-complemented if in R

e there is no relation of the form v = 1 for v a nonmepty word in §*,

e there is no relation of the form sa = sb with s € § and at least one word among a and b is
nonempty,

o for s,t € § with s # ¢, there is at most one relation of the form s--- = ¢---. One similarly
defines left-complemented presentations.

Example 1.6.2. 1. The presentation ( a,b | aba = bab ) of the monoid By is both left- and right-
complemented.

2. More generally, let n > 2 and consider the posilive braid monoid

(1.6.1)

Bt — < o1, 09 oy | FiOH10i = Oit10i0i41 for 1§i<n—1,>
n — ) sy Un— .

oi0j = ojo; for [i — j| > 1.

The presentation above if both left- and rig}fcll—complemented.



Given a right-complemented presentation, one can define a partial map 6 : S> — S* by setting
0(s,s) =1 for all s €S, 0(s,t) = a whenever s # t and there is a relation of the form sa = tb in R,
and 6(s,t) = 0 whenever s # t and there is no relation of the form s--- =t¢--- in R. This partial map
is the syntactic right-complement associated with the right-complemented presentation ( S | R).

One can show the following (see [5, Lemma 11.4.6]):

Lemma 1.6.3. Let (S| R) be a right-complemented presentation with syntactic right-complement 6.
There exists a unique (minimal) extension of 0 to a partial map still denoted 0 : (S*)?> — S* such that

O(s,s) =1VseS, (1.6.2)
0(bc,a) = 6(c,0(b,a)) Va,b,c € S*, (1.6.3)
0(a,bc) = 0(a,0)0(6(b,a),c) Va,b,c € S*, (1.6.4)
6(1,a) =a Va € §*, (1.6.5)
f(a,1) = 1 Va € S*. (1.6.6)

[ b [ ] c [ ]
al l@(b, a) [0(0 6(b,a))

0(a,b) 0(6(b,a),c)

Figure 1.1: Commutative diagram illustrating the relations 0(bc, a) = 6(c, 6(b, a)) and 0(a, bc) =
0(a,b)0(0(b,a),c). Arrows represent elements of the monoid and composition of arrows corre-
sponds to the product in M°P.

Definition 1.6.4. Let ( S | R) be a right-complemented presentation of a monoid M with syntactic
right-complement 6. We say that (S | R) satisfies the 0-cube condition holds for the triple (a,b,c) € S*
if 6(0(a,b),0(a,c)) and 6(0(b,a),0(b,c)) exist and define words in S* that are equivalent under R (if
the two words are equal, we say that the sharp 6-cube condition holds).

Definition 1.6.5 (Conditional lcm). We say that a left-cancellative (respectively right-cancellative)
monoid M with no nontrivial invertible element admits conditional right-lems (resp. admits conditional
left-lems) if any two elements of M that admit a common right-multiple (resp. left-multiple) admit a
common right-lem (resp. left-lem).

The following proposition is useful to show that a monoid presentation defines a left-cancellative
monoid:

Proposition 1.6.6 (see [5, Proposition 11.4.16]). If (S, R) is a right-complemented presentation of a
monotd M with syntactic right-complement 0, and if M s right-Noetherian and the 0-cube condition
holds for every triple of pairwise distinct elements of S, then M is left-cancellative, and admits condi-
tional right-lems. More precisely, v and v admit a common right-multiple if and only if O(u,v) exists
and, then, uf(u,v) = vl(v,u) represents the right-lem of these elements.

We also have the following:
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Lemma 1.6.7 (see [5, Lemma I1.2.22]). If M is cancellative and admits conditional right-lems (respec-
tively left-lems), then any two elements of M that admit a common left-multiple (resp. right-multiple)
admit a right-ged (resp. left-ged).

Proof. Let a,b € M admitting a common left-multiple, that is, let a/,b’ € M such that a’a = b'b. The
elements a’ and o’ then admit a common right-multiple, hence they admit a right-lem, say a’u = b'v = ¢,
and c is a left-divisor of a’a = b'b. It follows that there is d € M such that ud = a,vd = b, hence d is
a common right-divisor of a and b.

Now let d’ be a common right-divisor of a and b. There are thus ai,b; € M such that a1d’ = a,
bid' = b. then d'ayd’ = a’a = b'b = V/b1d’ hence a’a; = V'b;. Hence a’a; is a common right-multiple
of @’ and ¥, hence a right-multiple of their right lem, given by c¢. Hence there is b’ € M satisfying
a'a; = ch' = a’ul/, hence a3 = uh’. We then obtain

ud =a =a1d =uh'd
implying that d’ is a right-divisor of d. This shows that d is the right-ged of a and b. O

Example 1.6.8. Let Bf = ( a,b| aba = bab ). The presentation is right-complemented, with syntactic
right-complement 6 defined on pairs of distinct atoms by 6(a,b) = ba, 6(b,a) = ab. The sharp #-cube
condition is vacuously true, hence we obtain another proof that B; is left-cancellative. Moreover, we
have already seen that B;)r is an Ore monoid, hence that every pair of distinct elements admits a common
right-multiple. If follows that we have right-lcms in B§L , and since the presentation is symmetric we
also have left-lems. By the lemma above we thus also have left- and right-geds. Proposition is
particularly useful to calculate the lem of pairs of elements. Note that 6(a,b) = ba and 6(b,a) = ab.
For instance, we have

0(a>,b) = 0(a,f(a’,b))
We then have
0(a?,b) = 0(a, 0(a,b)) = 0(a,ba) = 0(a,b)d(A(b,a),a) = bab(ab,a) = babh(b,1) = ba,
hence 0(a?,b) = 0(a,ba) = ba. We thus have

(a®,b) = 6(a,ba) = ba.

1.7 Examples

Exercise 1.7.1. Explain why the free group F» on two generators is not a Garside group. Show that
Fy X Z is a Garside group.

Example 1.7.2. Consider the monoid B(I3(m))*, where m > 2, with m generators 1, x2,...,Zpn
satisfying the relations

T1T2 = T2X3 = " = LjLi+1 = = Tm—1Tm = TmI1-

We claim that it is a Garside monoid, with Garside element A = zj29. Since the defining relations
are homogeneous, it has Noetherian divisibility. The above relation shows that the set of left- and
right-divisors of A coincide, and are given by all the z;’s, 1, and A. The above presentation is right-
complemented and up to reordering the indices, f% is symmetric, hence it suffices to show that the



monoid is left-cancellative to obtain right-cancellativity for free. Hence let ¢, j, k be pairwise distinct
integers in {1,2,...,m}. Considering indices modulo m, we have

0(0(xi, z;), 0(zi, wp)) = O(iv1, wip1) = 1= 0(xj41,xj41) = 0(0(x;, 25), 0(x5, xk)),

hence the sharp #-cube condition holds true. It follows that the monoid is left-cancellative, and admits
conditional right-lems. But A acts on the x;’s via Az;A™! = x;_5, hence every word in the z;’s with
k elements is a left divisor of A¥. This shows that any pair of elements have a common right multiple,
hence right-lems exist. Since everything is symmetric we also get the existence of left-lems, and of
right- and left-gcds thanks to Lemma [1.6.7]

Exercise 1.7.3. Let n,m > 2. Consider the monoid
M= (21,22,...,Zn | T1T2 Ty = T2XTZ -+ TypT1] =+ = T T1T2 -~ Ty ),

where the indices are taken modulo n if necessary. Show that M is a Garside monoid. (When n and
m are coprime, the corresponding Garside group G(M) is the knot group of the (n, m)-torus knot).

Example 1.7.4. Consider the monoid M = ( a,b | aba = b* ). The assignment A(a) = 1, A(b) = 2
extends to a function A : M — Zxg such that A(zy) = M) + A(y) for all z,y € M, hence M
has Noetherian divisibility. The above presentation is right-complemented, and the sharp 6-cube
condition is vacuously true. It is thus left- and right-cancellative, and admits conditional left- and
right-lcms. The element A = b3 is a Garside element in b3: its set of left- (or right-)divisors is given by
{1,a,b,ab,b?, ba,bab,b3}. Every element which can be written as a product of k atoms is a left- and
right-divisor of A. Note that A is central here. It follows that every par of elements admits a common
left-multiple and a common right-multiple, hence that we have left- and right-lcms, and also left- and
right-geds.

Example 1.7.5. Consider the monoid M = (a,b, c| achb = ¢%, aca = bc ). We claim that M is a Garside
monoid. First, setting A(a) = 1, A(b) = 2, A(c) = 3, we get that the relations are homogeneous, hence
that M has Noetherian divisibility. The presentation above is right-complemented. The problem here
is that, working with this presentation, we see that the sharp 6-cube condition does not hold: indeed,
we have 6(6(a,b),0(a,c)) = 0(ca,cb) = 0(a,b) = ca, while 8(0(b,a),0(b,c)) is not defined since (b, c)
is not defined. We are typically in a situation where we must artificially enlarge the set of relations to
be able to successfully check the #-cube condition. Here we have no relation of the form b---=c---.
Note that in M, we have

beca = acaca = acbe = ¢,

hence we replace the above presentation by
M = {a,b,c| acb=c* aca = bc,bcca = ¢ ).

We now check the 6-cube condition. We have



e 0(0(c,a),0(c,b)) = 0(c,c?) =0(1,¢c) =c,
e 0(0(a,c),0(a,b)) = 6(cb,ca) = 0(b,a) = c.

It follows that the sharp #-cube condition holds, hence that M is left-cancellative, and admits con-
ditional right-lems. Note that the above presentations of M are not symmetric, hence we cannot
deduce right-cancellativity without further effort. The enlarged presentation that we used to show
left-cancellativity is unfortunately not left-complemented. Note that, in M, we have

acaca = acbe = ¢3 = cach,

hence we have

3

M = {a,b,c| acb = ¢*, aca = be,beca = ¢, acaca = cach ). (1.7.1)

The above presentation is now left-complemented, and can be used to check the sharp #-cube condition,
which we leave as an exercice. The monoid M is thus right-cancellative, and admits conditional left-
lems.

Consider the element A = ¢*. We claim that A is central in M. To show it, it suffices to show that
zA = Az for every x € {a,b,c}. For c this is trivial and we have

ac* = acacbe = acacaca = acbeea = c4a,

bet = bctach = *b.

The element c¢* is thus central, hence its set of left- and right-divisors coincide since if A = xy, we
have A = yx by cancellativity. Moreover, the defining relations show that every atoms left-divides A,
hence it is a Garside element in M. Existence of common multiples (and hence lems, and then geds)
then follow arguing as in the previous examples.

Exercise 1.7.6. Check that the monoid M from Example is right-cancellative by checking the
sharp f-cube condition for the presentation (|1.7.1). Identifify the left- and right-lem of the set S =
{a,b,c} of atoms.

In general it might be difficult to identify a Garside element and check that it satisfies the required
properties. In the following chapter, we develop a method to "lift" an element of a quotient group of
a candidate to be a Garside group with special properties.
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Chapter 2

Interval groups

2.1 Balanced elements

Let G be a group and A C G a family of elements such that 1 ¢ A and A generates G as a monoid.
For every a € A, let n, € Z>1 Consider the length function £4 on G attached to this set of generators
A and to the set of weights (n4)qeca, that is, given g € G the integer £4(g) is defined by

k
l4(g) = min {Z Na,

g=aias---ak, aieA}.
i=1

If n, =1 for all @ € A, this is simply the length of ¢ with respect to the generating set A (note that
we abuse notation and omit the dependency on (ng)qca to avoid too heavy notation). Define a partial
order <4 on G by

u<pav & La(u)+Lla(u ) =La(v).

In other word, we have u <4 v if there is a word of shortest possible length for v (also called an
A-reduced expression of v) which has an A-reduced expression of u as prefix. Similarly, one can define
a partial order <4 g by

u<psv & La(u)+La(vu™t) = L4(v).

Definition 2.1.1. Let GG, A be as above. We say that an element ¢ € G is balanced if
{9eGlg<act={9€Glg<arc}

We then denote by P, the above set.

Example 2.1.2. If G is commutative, then any element g € G is balanced.

Example 2.1.3. More generally, if A is stable by conjugation in G, that is, if gAg‘'—1 = A for all
g € A, then the partial orders <4 and <4 g coincide, hence every element of G is balanced.

Example 2.1.4. Consider the symmetric group G = &3, and take for A the set S = {(1,2),(2,3)} of
simple transpositions of G. The posets (G, <4) and (G, <4 ) are given in the pictures below. The
set of balanced elements of G is given by {1, s1, s2, 15251 }.
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2.2 Monoid attached to a balanced element

Let G, A be as in the previous section, and let ¢ € G a balanced element. We define a monoid M (F,)
generated by a copy {u | u € P.} of P, by

M(P.)=(uueP. |u-v=w ifu,v,w € P, uv =w and u <4 w}.

Note that the map ¢, : M(P.) — G, u +— u is a morphism of monoids. It follows that the subset
P.={u|ue€ P.} C M(P,) is in one-to-one correspondence with P..

Lemma 2.2.1 (Cancellativity with rest in Pc¢). Let u,v € P. and a € M(FP.). Then
(ua =va = u=wv) and (au=av = u="uv).

Proof. Tt suffices to take the images of the equalities in G via the morphism ¢, : M(P,.) — G, and
then cancel the images of a. O

Lemma 2.2.2 (Extension of the length function 4 to M (P.) and Noetherian divisibility). The length
function €4 on G extends to a length function £ on M(P.) via

Our -ug - up) = > Lalug).
=1

In particular, the monoid M(P,) has Noetherian divisibility.

Proof. This is immediate, as the defining relations of M (P,.) are homogeneous with respect to the
length function £ induced by £4 on generators. O

Lemma 2.2.3. 1. Let a € M(P.). Assume that {(a) = {(pc(a)) and pc(a) € P.. Then a = p.(a),
i.e., a € Pe.

2. If a € P and b is a left- or right-divisor of a, then b € Pe.

Proof. First note that, for all x € M(P.), we have £ 4(pc(z)) < {(x). It follows that, if £(a) = La(pc(a)),
then for any divisor x of a, we also have £(x) = £ (p.(x)).

For the first point, we argue by induction on ¢(a). If ¢(a) = 0 then a is equal to 1 and the result
is trivial. Hence assume that ¢(a) > 1. Consider a decomposition a = bs, where s is an atom (that
is, a nontrivial element of M (FP,) which cannot be written as a product of two nontrivial elements
— such an element necessarily lies in P.). By the above observation we have £(b) = £4(¢c(b)), and
©e(b) <a pe(a). Since po(a) € P., we have ¢.(b) € P, as well, hence by induction we have b = ¢.(b).
Now since o(a) = @e(b)pe(s) and £a(e(a)) = £a(e(b))+La(pe(s)), we have that ge(a) = wo(b)- 2e(s)
is a defining relation of M (P.), from what we derive that

a=bc=@:b) - pc(s) =cla),

which concludes the proof of the first point.
Let us show the second point. For any decomposition a = xy, we have l4(p.(z)) = {(z) and
a(ee(y)) = L(y) by the observation made ad the beginning of the proof, and hence

la(pe(a)) = €(a) = L(zy) = U(z) + L(y) = La(pc(x)) + Lalpc(y)),

from what since ¢c(a) = @o(x)pc(y) we deduce that ¢.(z), pc(y) € P.. We conclude using the first
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Proposition 2.2.4 (Lifting the poset (P, <)). The bijection P. — P¢, u — u induces an isomor-
phism of posets between (P.,<4) and (P, <).

Proof. If u <4 v, then w := u~ v satisfies £4(u) + £a(w) = £4(v), hence w lies in P. and we have a
defining relation u - w = v of M(P,); in particular, we have u < v.

Conversely, assume that u,v € P, are such that u < v. Then there is a € M (P.) such that ua = v.
By Lemma we have a € P, hence a = w for some w € P.. We thus have {(z) = ¢(p.(x)) for
every z € {u,v,w}, and since £(v) = ¢(u) + ¢(w) we deduce that £4(u) + £a(w) = £4(v), hence that
u<a 0. O]

Proposition 2.2.5. We have
1. (P, <a) is a lattice if and only if (P.,<ar) is a lattice,
2. If (Pe, <a) (and hence also (P., <A r)) is a lattice, assume that X C M(P.) is a subset such that

(a) The length function € is bounded on X, that is, there is M > 0 such that {(x) < M for all
ze X.

(b) for all x € X, every left-divisor of x also lies in X,

(c) for every pair s,t of atoms of M (P.) and every x € X such that xs,xt € X, we have vz € X,
where z is the unique element of P¢ such that ¢.(z) is the right lem of ¢c(s) and @.(t).

Then there is y € M(P.) such that X = {a € M(F.) | a < y}.

Proof. The first point follows from the observation that, for z,y € P., we have x <4 y if and only if
Y <A,R T, Where T = e, y =yt

For the second point, let y € X be an element of maximal length in X. Assume for contradiction
that there is an element of X which is not a left-divisor of y. We can thus find x € X and s an atom
of M(P,) such that z < y but s £ y, zs € X. Choose such an = of maximal length. Since y has
maximal length among elements in X, we have £(z) < £(y). In particular, we have = < y, hence there
is an atom t such that ot < y. We have xs,xt € X, hence by assumption we have xz € X, where z
is the lift in P of the right-lem of ¢.(s) and ¢.(t) in P.. Note that, since zz is a right-multiple of xs
which does not left-divide ¥, it cannot be a left-divisor of y. But xt left-divides y, hence we can find
u € [xt,xz] and s’ an atom such that us’ € [xt,22], u < y, us’ £ y. We have us’ € X, us’ £ y, and
{(x) < l(us’), contradicting the choice of x as being maximal in X and not dividing y. O]

Corollary 2.2.6. Assume that (P.,<4) is a lattice. Let x,y € P.. There is a unique z € P such
that z <y and xz € P, and such that z is mazimal with respect to < for these properties.

Proof. This is obtained by applying point (2) of Proposition to the set X of elements u € M (P,)
such that v < y and zu € P.. The length function is bounded on X since X C P and ¢(z) < ¢(c)
for all x € P,.. Hence condition (a) is fulfilled. If v € X and v < u, then v < y and zv < zu, hence
by point (2) of Lemma we have zv € P.. This yields condition (b). Condition (c) follows from
the lattice property of (P, <) and the isomorphism of posets (P, <4) = (P, <): if s,t are atoms
such that u,us,ut all lie in X, then w,us,ut < y and us,ut € P.. By cancellativity with rest in
P. (Lemma , we thus have that u,us,ut < T, where T is the unique element of P, such that
2T = ¢. Writing T = uu/, we obtain that s,¢ < u/. We thus obtain (see Proposition that
©c(8), pe(t) <a we(u'), hence v < @ (u'), where v is the right-lem of .(s), @c(t). We thus have v < o’
again by Proposition [2.2.4] hence uv < uu’ =7, WﬂiCh yields uv € P, since divisors of elements of P,



are again in P.. But since us,ut < y, writing y = uy’ we have s,t < 1/, from what we deduce that
v < 1/. We thus have uv < uy’ =y, hence uv € X. O

Assume that (P.,<4) is a lattice. We define two applications
Q9,WwWy - PC X PC — PC

as follows: we set ag(z,y) = xz, where z is as in Corollary [2.2.6, Since z < y, there is a € P, such
that za = y. By cancellativity with rest in P, (Lemma [2.2.1)), the element a is well-defined. We set
wa(z,y) = a. Note that

zy = az(z, y)wa(z, ).

The aim now is to extend aq,ws into two applications
a:M(P,) — Pe, w: M(P.) — M(P.),

in such a way that, for z,y € P, we have a(xy) = as(z,y) and w(zy) = we(x,y). Roughly speaking,
the element a(z) will be the greatest left-divisor of x lying in P, and w(z, y) will be the unique element
in M(P;) such that z = a(x)w(x). It is not clear that «(z) is well-defined at this stage, and the same
can be observed for w(x,y): at this stage we only have cancellativity when the rest is in P..

Lemma 2.2.7. We begin by showing that, if a,b,x,ab € P, then
1. as(ab,z) = as(a,as(b, z)),
2. w(ab,z) = wa(a, as(b, z))ws(b, ).

Proof. We show 1. By definition of ay, we have that as(ab,z) = abu, where u is maximal such that
u < z and abu € Pc. In the same way ao(b, x) = bu, where v is maximal such that v < z and bv € Pe.
Since u < z and bu € P, by maximality of v we have u < v, hence bu < bv = ag(b, x). We thus have
abu < acs (b, x), hence abu < as(a, as(b, x)). Hence there is w € P such that abuw = as(a, as(b, x)).
But since ag(b, x) = bv, we deduce that abuw < abv, hence by cancellativity with rest in P, we obtain
that uvw < v < x. Since uw € P we must have w = 1, otherwise it contradicts the maximality of u.
We thus have
as(a, as(b,x)) = abu = aa(ab, x),

which concludes the proof of the first point.

We now show the second point. By the first point and the definition of wo, multiplying both sides
of the equality in point (2) by aa(ab, c) on the left yields abx. To conclude the proof, by cancellativity
with rest in P it suffices to show that the right hand side of (2) is in P.. We have ay(b, z) = bv with
v € P¢, and = vwa (b, z). Since ab lies in Pc, we get that wa(a,bv) is a right-divisor of v, hence

x = vwa(b, x) > wala, bv)ws (b, x) = wa(a, az(b, x))wa (b, z),
which concludes the proof since a divisor of an element of P, is also in Pe. O

Proposition 2.2.8. Assume that (P., <) is a lattice. There are uniquely defined applications « :
M(P.) — P¢, w: M(P.) — M(P.) such that

1. for z,y € P¢, we have a(zy) = aa(x,y) and w(zy) = wa(zx,y),
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2. for all x,y € M(P.), we have a(xy) = a(xa(y))E]
3. for all x,y € M(P,), we have w(xy) = w(za(y))w(y).
Moreover, for x € M(P,), we have that a(x) is the greatest left-divisor of x lying in Pe.

Proof. We identify M (P.) with sequences (a1, as,...,ax) of elements of P, modulo the relation

(al,. ey Qs Qi 15 Q3425 - - - ,ak) ~ (al,. . .,b,aH_g,.. . ,ak)

whenever b = a;a;41 is a defining relation of M (P.).
We define o and w inductively as follows: we set a(()) = 1, a(a) = a whenever a € P, and
whenever k > 2,
alay,ag, ... ar) = az(ar, a(ag, ..., ax)).

For w, we set w(()) =1 = w(a) for all a € P, and

w(al,ag, ey ak) = w(al,a((ag, ‘e ,ak))w((ag, NN ,ak)).

First, we need to verify that these applications are well-defined on M (P.), that is, that these definitions
are compatible with the equivalence relation ~. This will be shown by induction on the number of
terms in the sequence.

To see that the definition of w and « is compatible with the equivalence relation ~, by induction
on the number of terms in a sequence we can assume that the relation is applied at the beginning of
a sequence (ai,as,...,ax) of elements of P.. Hence assume that ajas = b is a defining relation of
M (P.). On one hand we have

alar,ag,...,ax) = ag(ar, afag, ... ax)),
on the other hand we have
a(b,ag, ... a;) = as(arag, as,...,ax) = as(arag, afas, ..., a)

By point 1 of Lemma above we thus have (b, as, ..., ax) = a(ai,a,...,ax).
Similarly, on one hand we have

w(ay,azg,...,a;) = ws(ar, alas, ..., ar))w(asg, ... ar) = wa(ar, a(asz,...,ar))ws(az, alas,. .., a))w(as,...

and
w(b,as,...,ar) = we(arazg,as,...,ar) = we(araz, alas,...,ar))w(as,...,ax).

It thus suffices to show that

wo(ay, afag, ..., ax))wa(az, a(as, ..., ar)) = we(arag, alas, ..., a)),

while holds true by combining the definition of a and point 2 of Lemma above.

We claim that a(x) is the greatest left-divisor of = lying in P.. We first show that a(z) < =z.
This is achieved by induction on the length of a sequence (x1,z2,---,x) such that z; € P, and
rix2--xp =x. If k=0o0r k=1 then a(x) = x. Assume that £ > 1. We have

a(r) = a(r, z2,. .., x) = ao(x1, (T2, ..., 2F)).

'Note that we recover (I.5.3).

23
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But
az(z1, a(x2, ..., 1)) < 2100225 .., W) < TYT2 - - - Ty

where the first divisibility relation holds by definition of g, and the second one by induction. We now
show that any element of P left-dividing x is also a left-divisor of a(x). Let a € P, be a left-divisor of
x. Let (a,ag,...,ar) be a sequence of elements of P, whose product is equal to . Then by definition
of @ we have

a(a,ag, ey ak) = ag(a, ag(ag, e ,ak))

which is a right-multiple of a.

The fact that a(zy) = a(za(y)) follows from an iterated application of the definition of « on
sequences, and the fact that © = a(z)w(x) is easy to show by induction on the number of terms in a
sequence. The equality w(zy) = w(za(y))w(y) is obtained by induction on the number of terms of a
sequence for x. O

Proposition 2.2.9. The following holds:
1. For all x € M(P,), we have x = a(x)w(x),
2. The monoid M(P,) is cancellative.

Proof. Let x € M(P.). Then a(z) < y for some y € M(P.). We claim that y is uniquely defined,
equal to w(x). We show it by induction on ¢(x). If ¢(z) = 0 then x = a(x) = y = 1. Hence assume
that £(z) > 0. We have

w(z) = wla(@)y) = wla(z)a(y))w(y),

but w(a(z)a(y)) = ws(a(z), aly)) and a(a(z)ay)) = ala(z)y) = a(), yielding w(a(@)a(y)) = aly).
We thus have w(z) = a(y)w(y) and by induction on length we have y = a(y)w(y). We deduce that
w(x) =y.

We now show that M(P,) is left-cancellative (the proof of right-cancellativity is similar). Let
a,b,c € M(P,) such that ab = ac. It suffices to show it for a € P.. We have a(ab) = ax for some
x < b, x € P¢, hence there is b’ € M(P,) such that b = zb’. Similarly, we have a(ac) = ay for some
y < ¢,y € P, hence there is ¢ € M(P,) such that y¢’ = ¢. But by cancellativity with rest in P, we
have y = . But we also have

a(ab)b’ = ab = a(ab)c,

forwing b’ = ¢/ = w(ab). We thus have b = zb/ = yc’ = ¢, which concludes the proof. O

Theorem 2.2.10. Assume that (P.,<4) is a lattice. Then the monoid M(P.) is a Garside monoid.

Proof. We already know that M (F,) is left- and right-cancellative (Proposition [2.2.9)), that it has
Noetherian divisibility (Lemma [2.2.2), and that the lift A := ¢ of ¢ in M(F,) is a Garside element
(Proposition [2.2.4)).

The only point which remains to be checked is that M (P,) has lem’s and ged’s. Let us show that
M(P.) has ged’s. Hence let x,y € M(P.). Let

X :={a€e M(P.) | a<uz,a<y}.

We show that X satisfies the assumtions of Proposition 2.2.5(2). If z € X and s,t at atoms such that
zs,2t € X, then we have zs, 2t < x. Writing x = 22/, by cancellativity we have s, < 2/. We then
have s,t < «a(z’) and we deduce that the lift 054the right lem of s and ¢ satisfies u < a(2') < 2.



Hence zu € X (since the same property but with the roles of x and y swapped must be true), and we
conclude using Proposition [2.2.5(2).

We now show the existence of lem’s. We first show that for every x € Pg, there is 2/ € P, such
that A = Ax’. Indeed, let y such that zy = A. Since y is also a left-divisor of A, there is 2’ such
that yz’ = A. We then have zA = xyz’ = Ax’. It follows that A has a power A" which is central
in M(P,). Tt follows that every element from M (P,) is a left-divisor of a power of A, hence x and y
have a common right-multiple. To conclude the proof, it suffices to take the ged of the right-common
multiples of z and y. O
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Chapter 3

Examples

3.1 Artin groups of spherical type: classical Garside structure
3.1.1 Coxeter groups
Let S be a finite set. For s,t € S, let my; € Z>1 U {400} such that
e my,=1,forall s €S,
e mgy =my, > 2forall s,tes.
To this data, one attaches a group W defined by the presentation
W={(S](st)"t =1, Vs,t €S ).

Note that the fact that m, o = 1 tells us that s> =1for all s € S. We can thus rewrite the presentation
as

s2=1,Vse S,
W:<S‘ sts--- = {st--. ,Vs#t65.>
—— ——

ms,¢ factors my, s factors

Definition 3.1.1. A data (ms;)stcs as above is a Cozeter matriz. A group W as above is a Cozeter
group. A pair (W, S) as above is a Cozeter system.

Example 3.1.2. Let W = &,,, and let S = {s1,s2,...,50,-1}, where s; = (i,i + 1) are the simple
transpositions. They satisfy the relations

s2=1Vi=1,...,n—1,
8iSj = 858; if ‘Z —j’ > 1,
S$iSi4+15i = Si+15iSi+1 Vi = 1, NN 2.
These are the defining relations of a Coxeter group W' and since the simple transpositions generate

Sy, there is a surjective group homomorphism W’ — W. One can show (see Exercise below) that
this homomorphism is an isomorphism, which shows that the symmetric group is a Coxeter group.

Exercise 3.1.3. Show that the map W/ — &,, from Example above is an isomorphism. Hint:
show by induction on n that [W’'| < nl. 96



Definition 3.1.4. Let (W, S) be a Coxeter system. The length function {g : W — Z>¢ with respect
to the generating set S is the (classical) length function on W. Given s1,89,...,8; € S, we say that
the word sys9 - - s, € S* is a reduced expression for an element w € W if k = fg(w) and in W we have
the equality w = s1s9 - - sg.-

The following fundamental theorem gives various characterizations of Coxeter groups:

Theorem 3.1.5 (Characterizations of Coxeter groups). Let W be a group generated by a finite set S
of involutions. Let R := J, ey wSw™! denote all the conjugates of the elements of S. The following
are equivalent:

1. (W,S) is a Coxeter system,

2. (Exchange Lemma) if s189--- Sk 18 a reduced expression of w € W and s € S is such that
ls(sw) < Lg(w), then there isi € {1,2,...,k} such that sw = $1---5;_15;Si+1 - - Sk, where the
hat denotes omission,

3. There exists a function N : W — P(R) satisfying the following two properties,
(a) N(s)={s} forallseS,
(b) N(zy) = N(z) + oN(y)x=! for all x,y € W, where + denotes symmetric difference,

4. (Mastumoto’s Lemma) For w € W, s € S, we have ls(sw) # ls(w), and any two reduced
expressions for w can be transformed one into the other using a sequence of braid relations, that
is, relations of the form

St — tS ,
<~ S~

m factors m factors

where s #t € S and m denotes the order of st in W.

Proof. We do not give a full proof, but leave some implications as exercices.
(1) = (3). Define a map N : S* — P(R) as follows by induction on the length of a word. Set

N(s) = {s} for s € S and given any word sys2---sx € S*, set N(s182---sk) 1= {81}—&-81]\7(82 e Sk)S1-
We thus have

N(8182 s Sk) = {81} + {818281} + {8182838281} + ...+ {5152 ccSEpSk—1-°"" 5251}.

If x,y € S, it follows that N(zy) = N(x) + zN(y)z~!. Tt remains to show that N is invariant under
the defining relations of W. Assume that © = wywy € S* and let 2’ = wyssws. Then we have

N(z') = N(w1) + wi N (sswo)w; " = N(wy) + w1 (N(ss) + 55N (ws)ss~ Hwi .
But N(ss) = {s} + {s} = 0 and 55 = 1, hence

N(z') = N(w1) + wiN(wo)w; ' = N(wiws) = N(x).

Now assume that st --- = ts--- is a defining relation of W, with s # ¢t € S. In particular both sides have
mg ¢ factors. Let x = wyst---wy and 2/ = wats - - - wy. We wish to show as above that N(z) = N(a/).
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Decomposing N (x') as above, we see that it suffices to show that N(st---) = N(ts---). This holds
true as, if my, is even, we have

N(st--)={s}+{stsd- -+ {st---s}+{ts -t} +-- + {tst} + {t},
where the two middle terms have mg; — 1 factors. This is symmetric in s and ¢, hence N(st---) =
N(ts---). Now if mg, is odd, we have
N(stoo) = {s}+{sts} -+ {stosh+ -+ {tst) + {t},
=ts-t

where the middle term has m,; factors, hence is equal to either side of the defining relation. Again
this is symmetric in s and t.

We lave the other implications as exercises (see Exercises to below). O
Exercise 3.1.6. Deduce from Theorem that every Coxeter group has a solvable word problem.
Exercise 3.1.7. Show the implication (3) = (2) of Theorem To this end

1. First show that |[N(w)| = ¢(w),

2. Then show that {(sw) < (w) = {(sw) < L(w),

3. Conclude.

Exercise 3.1.8. Show the implication (2) = (4) of Theorem by showing the following: let
f:8* — M be a morphism of monoids, where M is a monoid. Show that if f(st---) = f(ts---) for
every defining relation of W, then f is constant on reduced expressions of elements of W. Show it by
induction on the length of a reduced expression.

Exercise 3.1.9. Show the implication (4) = (1) of Theorem by showing the following: if G is a
group and f : S* — G is a morphism of monoids such that f(s)? =1 for all s € S and f is constant
on braid relations, then f factors through a group morphism W — G.

Exercise 3.1.10. Show that the symmetric group &,, is a Coxeter group by considering the set S
of simple transposition, the set R of transpositions, and showing that the function N : W — P(R)
defined by

N(w) = {(i,j) | i <jand w™' (i) > w™'(j)}

satisfies the properties from point (3) of Theorem

Exercise 3.1.11. Let (W,S) be a Coxeter system and let I C S. Let W; be the subgroup of W
generated by I and let {7 : W — Z>( be the length function with respect to I.

1. Show that, for w € Wy, we have {;(w) = ls(w),

2. Show that (Wr,I) is a Coxeter system,

3. Show that if w = s1s9--- s is a reduced expression of w € Wr, then s; € [ foralli=1,... k.
Proposition 3.1.12. Let (W, S) be a Cozeter system. Let wy € W. The following are equivalent

1. We have lg(swo) < Ls(wg) for all s € S, 08



2. We have lg(w) + £s(w™two) = Ls(wp) for all w € W,

3. wqo has mazimal length among all elements of W. Moreover, if any of the above conditions is
satisfies, then wq is unique and involutive, and W is finite.

Proof. 1t is clear that (i7) implies (i4¢) and that (¢i7) implies (4).

Let us show that (i) implies (7). We argue by induction on ¢s(w). For w = 1 the result is clear,
hence assume that {g(w) > 1. Let s € S such that {g(sw) < £g(w). Setting v = sw we then have
w = sv and £g(w) = £s5(s) +Ls(v) = £s(v)+1. By induction, we have £5(v)+£s(v"1wo) = £g(wp). Let
$182 -+ S¢Sey1 -+ - Sk be a reduced expression of wg, where sysg2--- 8/ is a reduced expression of v and
Sei1- - sk is a reduced expression of v~ lwg. By (1) we have that £g(swp) < £g(wp). By the exchange
lemma, there is ¢ € {1,2,...,k} such that swop = s1---5;---s,. If i < ¢, then lg(sv) = lg(v) — 1,
a contradiction, since sv = w and fg(w) = fg(v) + 1. Hence writing v/ = spi1---5; - S, we have
that ss1---8pSpy1---8 -+ 8k is a reduced expression of wg, and it begins with a reduced expression
ss1 -+ s of sv = w. We thus have £g(w) + £s(wlwy) = £s(wp), as expected.

Let wg be an element satisfying condition (#i). Then £5(w3) = £g(wp) — £s(wo) = 0, hence w3 = 1.
If wy also satisfies condition (i), then £g(wow)) = £s(wp) — £g(wy), which is zero by condition (i47).
Hence wow) = 1, hence w) = wy ' = wp.

Finally, if (i) is satisfied, then £g(swo) < £g(wp) for all s € S. It follows that S C N(wp) which is
finite, hence S is finite, and by (iii) we get that W is finite. O

Corollary 3.1.13. Let (W,S) be a finite Cozeter group and wqy be its unique element of mazimal
length. Then
W={weW|w<gw}={weW | w<gprw}

In particular, wy is balanced.

Proof. The fact that W = {w € W | w <g wyp} is point (ii) of Proposition [3.1.12} Since v <g w if and
only if v <gp u™!, and wy is involutive, we get that {w € W | w <g g wo} = W~! = W, which
concludes the proof. ]

Proposition 3.1.14. Let (W, S) be a Cozeter group partially order with the order <g (called the left
weak order). Then any pair x,y or elements of W admits a meet, that is, an element z € W such that

1. z<gx and z <g y,
2. if we W satisfies w <g x and w <g y, then w < z.
Such an element is of course unique.

Proof. The proof is by induction on ¢(z). If {(z) = 0, then = = 1, and z = 1 satisfies the two points
above.

Hence assume that £(z) > 0. If there is no w € W\{1} such that w <g z and w <g y, then z =1
satisfies the two assumptions. Otherwise, there is w # 1 such that w <g z, w <g y. Let z be such an
element of maximal length, and let w be another element satisfying w <g y and w <g . We have to
show that w <g z.

Firstly, assume that s <g x and s <g y. Then we claim that s <g 2. To this end, it suffices to
consider two reduced decompositions s153 - - sis| -+ 5, and s1s2- - - spsY - - - s, of & and y respectively,
such that sysy--- s is a reduced decomposition of z. If s £g z, then by the exchange condition we

have that ssq---sgs) - s, -} is a reduced expr2eSsion of z and ss1 -+ spsy -+ s7 -+ s, is a reduced



decomposition of y. But then ssj - - - s is reduced, hence £g(sz) = £g(z)+1 and sz < x,y, contradicting
the maximality of the length of z. Hence s <g z.

If w =1 then w <g z, hence assume that w # 1. There is s € S such that {g(sw) < lg(w). We
then have sw <g sz, sy and {g(sz) = ¢g(x) — 1. By induction, there is u € W such that u <g sz, sy
and v <g wu for all v € W such that v <g sz and v <g sy. We thus have sw < u. Now by the
previous paragraph, we also have s <g z. Hence we also have sz <g sz, sy, and hence sz <g u. Now
since u <g sz, we have su <g x, and similarly we have su <g y. Hence fg(su) < ¢g(z). But we also
showed that sz <g u. We hence have ¢g(sz) = lg(z) — 1 > lg(su) — 1 = £g(u), forcing sz = u. Hence
sw <g sz, which implies that w <g z. O

Corollary 3.1.15. Assume that (W, S) is finite. Then (W, <g) is a lattice.

Proof. By Proposition [3.1.14] we have the existence of meets. Using Proposition [3.1.12] we deduce the
existence of joins: every pair x,y of elements of W admits at least one z € W such that x <g z,y <g 2
(namely z = wy), and for the join, just take the meet of all such 2’s. O

Corollary 3.1.16. Let G=W, A= S, c =wy. Then M(PF,) is a Garside monoid.

Proof. This is an immediate consequence of Corollaries [3.1.15] [3.1.13| and Theorem [2.2.10 O

We admit the following result:

Proposition 3.1.17. Let (W, S) be a Cozeter system. Let s,s' € S with s # s'. Then in W we have
s # s’ and the order of ss' is precisely mg ¢ .

3.1.2 The classical Artin monoid of spherical type

Proposition 3.1.18 (Classical Garside structure on Artin groups of spherical type). The Garside
group G(M) where M = M(PF,) is as in Corollary is isomorphic to the Artin group By of type
W, which has presentation

By ={s,se S| st--- = ts--, }

ms,t factors mg,s factors

Proof. Recall the presentation of G(M(P.)) from Proposition [1.5.2] (combined with Corollary [1.2.5).
We first show that the map By — G(M(F,)), s — s extends to a group homomorphism, which is
therefore surjective as the set {s | s € S} is precisely the set of atoms of M (P.). To this end, it suffices
to show that £g( iﬂ/ ) = mgs:. This is a consequence of Proposition [3.1.17|above. Indeed, assume

ms,¢ factors
that £g(st---) < mgy. Then there is a reduced word for w = st--- of length m’ < mg;. Since w € Wy
for I = {s,t}, this is still a word in s and ¢, and the parity of its length is the same as the parity of m ;.
In both cases, using the fact that s and t are involutions, it yields a relation of the form st--- =ts---,
with m” < mg; on both sides, from what we deduce that (st)™" = 1, a contradiction. This shows that
we get a surjective group homomorphism By — G(M (F.)).

Conversely, we need to construct a map G(M(P;)) — Bw which is an inverse to the one con-
structed above. Let u € P.. Let s1s2--- s, be a reduced decomposition of u, and define a map by
U > S1S2 - -Sk. We first need to show that this map is well-defined: this follows from Matsumoto’s
Lemma: if s}s)---s) is another reduced expression, then one passes from one decomposition to the

other only using braid relations, which are the defining relations of Byy. Hence the map is well-defined.
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Now, if u,v € P. = W are such that w = wv with £g(w) = €s(u) + £s(v), then choosing a reduced
decomposition sy - - sgs] -+ s, of w where s;---sp and s} -+ -], are reduced decompositions of u and
v respectively, we get that both w and u - v are sent to s1sg--- s8] - - - sy, hence the map is a group
morphism. It is clear that both maps are inverse to each other. O

Corollary 3.1.19. Artin groups of spherical type have a solvable word problem, and are torsion free.

Exercise 3.1.20. In the case where W = &,,, determine the center of Byy.

3.2 Artin groups of spherical type: dual Garside structure

In this subsection, we present an alternative Garside structure for the n-strand braid group. It is built
as an interval group from &,,, using the set of generators T' consisting of all the transpositions, instead
of the set S of simple transpositions.

The results of this section generalize to Coxeter groups of spherical type, i.e., finite Coxeter groups,
taking as set 1" the set of all the conjugates of elements of S. Since the general case is much more
involve, we do not present it here. We mostly follow the treatment of Brady [1].

Consider the length function /7 : &,, — Z>¢. Denote by <r the partial order defined on &,, by

u<pv & lp(u) +lr(utv) = lp(v).
It is called the absolute order on &,,.

Proposition 3.2.1. Let w € &,,. Let k be the number of orbits of the action of w on {1,2,...,n}.
Then

1. bp(w) =n—k,

2. If w = cica- - - ¢ is the cycle decomposition of w (without counting 1-cycles), then

y4
tr(w) = lr(c;)
=1

Proof. Observe that the orbits of w correspond to the supports of the various cycles occurring in the
decomposition of w as a product of disjoint cycles (including 1-cycles). When multiplying w by a
transposition (7, j), two situations may appear: if i,j belong to the support of the same cycle ¢ of w,
then (i, j)w has one more cycle than w, because ¢ gets breaked into two cycles. If i belongs to the
support of a cycle ¢; and j belongs to the support of a cycle ca with ¢; # co, then (7, j)w has one cycle
less than w since c¢; and ca get merged.

Now the identity has n orbits. It follows from the observation above that, if w has k orbits, then
at least n — k transpositions are needed to get w, hence {r(w) > n — k.

Now let w = cyca--- ¢y be the cycle decomposition of w, where we do not count 1-cycles. In
particular, denoting m the number of fixed points of w, we have m + ¢ = k. If ¢; is a k;-cycle, say
¢i = (j1,J2, - - Jr,), then ¢; = (j1,42)(Ja, 33) - - - (k. —1, Jx; ), hence £p(c;) < k; — 1. It follows that

4 l )4
br(w) <Y lp(er) <D (ki—1)=—l+> ki=—l+n—m=n—k,
i=1 i=1 i=1
yielding the second inequality. Hence ¢7(w) = n — k. This proves the first point, and in the above
inequality we have equalities everywhere, which yiﬁds the second point. O



Lemma 3.2.2. If1 <i; <ig <--- <ig <mn, then u:= (i1,42,...,1) <7 (1,2,...,n) = w.

1

Proof. The permutation v~ w is given by

(1,..., 00— Lyigin+1,...,n—1,n)(i1, ... 02 — )iz, ... is — 1) ... (ip_1, ..., ik — 1).

By Proposition above, we have f(u"'w) =n — k, r(u) = k — 1, and ¢p(w) = n — 1. This
concludes the proof. ]

Lemma 3.2.3. Let 1 < i< j<nandw € &,. Then (i,j) <p w if and only if i and j belong to the
support of the same cycle of w.

Proof. If i and j belong to the same cycle of w, then (7,j)w has one cycle more than w, hence
¢p((i,j)w) = €p(w) — 1 by Proposition [3.2.1, Conversely, if i and j belong to different cycles of w,
then (4, j)w has one cycle less than w, hence ¢7((i, j)w) = bp(w) + 1. O

Corollary 3.2.4. Let u,v € &, be such that u <p v. Let ¢ be a cycle of u. Then there is a cycle ¢ of
v such that supp(c) C supp(c).

Proof. Assume not. Then there is a cycle ¢ of u with two integers ¢,j in its support, belonging to
different cycles of v. By the previous lemma we thus have (i,7) <7 u, (i,7) €7 v, contradicting
u <p . ]

Corollary 3.2.5. Let I1,, denote the set of partitions of the set {1,2,...,n}. Define a map p: S, —
IT,, by sending a permutation to the partition whose blocks are the supports of its cycles (including
1-cycles). Then p is a map of posets.

Definition 3.2.6. Let u,v be two cycles in &,, such that supp(u) C supp(v). We say that u is ordered
consistently with v if for all i, 7, k, we have (i, j, k) <p u = (i,4,k) <p v.

Lemma 3.2.7. Let 1 <i < j<k<n. Then (i,k,j) £7 (1,2,...,n).

Proof. One checks that (i,k,7)"1(1,2,...,n) is again an n-cycle, hence has reflection length equal to
n—1. ]

Lemma 3.2.8. Let u,v € &, be two cycles such that supp(u) C supp(v). Then u <p v if and only if
u s ordered consistently with v.

Proof. If w <p v, then by transitivity of <. we obtain that w is ordered consistently with v.

Assume that u is ordered consistently with v. Up to relabelling, we can assume that v = (1,2,..., k)
and that the support of w is given by integers ¢1,%9,...,4¢ such that 1 =43 < iy < --- < iy < k. By
Lemma ifu = (1,4da,...,14), then we are done. Ifnot, then v has the form (1,42,...,4;,4j414p,...)
for some j > 1 and p > 1. By Lemma again, we have w := (1,%j414p, 9j4+1) <7 u, while w L7 v
by Lemma [3.2.7] contradicting the assumption. O

Proposition 3.2.9. Let w € &,. Then w is T-balanced, and if we denote by P, the set of prefizes of
w, the restriction of the map p from Corollary[3.2. is injective.

Proof. The fact that every permutation is balanced follows immediately from the fact that T is stable
by conjugation.
The statement on the injectivity of the restriction of p is a corollary of Corollary and

Lemma [3.2.8 29 O



Definition 3.2.10. Let u,v € &,, with u <7 v and supp(u) C supp(v). We say that u has crossing
cycles with respect to v if there are four distinct integers 4, j, k,lin {1,2,...,n} such that (i, j, k,¢) <rp v,
(Z'v k)7 (]af) <7 u but (i,j, k, l) £1 u.

Lemma 3.2.11. Let 1 <i<j<k<{<m. Then (i,k)(j,¢) £r (1,2,...,m).

Proof. One checks that ((i,%)(5,1))71(1,2,...,m) is again an m-cycle, hence has reflection length equal
tom — 1. O

Proposition 3.2.12. Ifu,v € &, with u <7 v, then u has no crossing cycle with respect to v.

Proof. Assume that there are four distinct integers ¢,7,k,¢ in {1,2,...,n} such that (i,5,k,¢) <p v
and (i,k), (j,¢) <7 u. We know that 4,7,k and ¢ are in the support of the same cycle of v, hence up
to relabelling we can assume that this cycle is (1,2,...,m) and that 1 <i < j < k < ¢ < m. Now
since (i,k) <7 u, we have that ¢ and k belong to the same cycle ¢; of u, and j, ¢ belong to the same
cycle cg of u. If ¢ = ¢y then we are done. Hence assume that ¢y # co. Then (i,k)(j,¢) < c1ca < u, a
contradiction, since (i,k)(j,¢) €7 (1,2,...,m). O

Theorem 3.2.13. Let u,v € &,,. Then u <p v if and only if the three following conditions are
satisfied:

1. Each cycle of u is contained in some cycle of v,
2. Each cycle of u is ordered consistently with the cycle of v which contains it,

3. u has no crossing cycles with respect to v.

Proof. If w <r v, then the three conditions given above hold true by Corollary Lemma [3.2.8
and Proposition [3.2.12]

Conversely, assume that the above three conditions hold true. Using the fact that the reflection
length is additive on the cycles and condition 1, we can assume that v consists of a single cycle. Hence
let u = cyca - - - ¢ be the cycle decomposition of u, with each cycle ¢; ordered consistently with respect
to v. We argue by induction on k. If & = 1 then ¢; <7 v by Lemma [3.2.8] Up to relabelling, we
can assume that v = (1,2,...,n), and since ¢; is ordered consistently with v, we can assume that
c1 = (41,12, ...,1p) where 1 =i; <ig < --- < iy <n. We thus have ¢; <7 v and

cito=(1,2,... 99 — V)(ig,... 03 — 1) -~ (ig,...,n).

Now, we show that each of the cycles ca, ..., ¢k is contained in some cycle of cl_lv. If not, then there
are 7,7 (i < j) belonging to some cycle ¢, of cflv, and belonging to different cycles of cflv (they
cannot be fixed by cl_lv as they would be fixed by v, hence by u). Note that i and j cannot belong
to {1,42,...,1p}. Inspecting the form of the cycle decomposition of cflv which has been calculated
above, we see that there are a,b with a < b such that 1 < i, < i < 4, < j. But this yields (4,7) <7 ¢,
(iayip) <7 c1. This implies that u has crossing cycles with respect to v, a contradiction. Indeed, by
Lemma we would have (iq, 1,14, J) <7 .

We can thus assume that cl_lu = cyC3 - - - ¢y 18 & product of disjoint cycles each of which is contained
in a cycle of cl_lv. Moreover, it stays consistently ordered with respect to the cycle containing it, in
view of the form of cl_lv. Furthermore, if cl_lu had crossing cycles with respect to cl_lv, it would have
crossing cycles with respect to v. Hence by induction, we deduce that ¢; 'u <7 ¢; 'v. We thus have

tr(v) = lr(er) + Lr(c; ) = bp(er) + Lr(u™ ) + bp(cy M) = Lr(u) + br(uto),

hence u <7 v, which concludes the proof. 33 ]



Corollary 3.2.14. Let u,v € &,, such that u,v <p (1,2,...,n). Then
u<rv < pu) Cpv).

Proof. The condition p(u) C p(v) simply means that each cycle of u is contained in a cycle of v. Hence
by Theorem [3.2.13| the implication ” = ” holds true. Conversely, applying the same Theorem, using
that u,v <p (1,2,...,n) implies that both Conditions 2 and 3 are fulfilled if p(u) C p(v). O

Corollary 3.2.15. The poset P, ={uec &, | u<rc=(1,2,...,n)} endowed with the restriction of
<7 is a lattice.

Proof. We have seen that the restriction of the map p to P. is injective. By the corollary above, the
partial order <7 on P corresponds to the inclusion of partitions. The image of p p, is precisely the
set of noncrossing partitions: a partition is said to be noncrossing if it does not contain distinct blocks
Bi,Bs and i < j < k < ¢ with i,k € By and j,¢ € Bs. This is precisely saying that one has no crossing
cycles with repect to (1,2,...,n). The noncrossing partitions form a lattice, with meet operation given
by inclusion. O

Corollary 3.2.16. Let c = (1,2,...,n). Let <p be as above. Then M(F.) is a Garside monoid.

Proposition 3.2.17. The n-strand braid group B,, is isomorphic to the group with generating set a;j,
1 <11 <7 <n and relations
Qjj Ak = kG, = QikQ5j,
foralll <i<j<k<mnand
QijQL] = AglQij
forall<i<j<k<l<norl<i<k<l<j<n.
Proof. The map ¢ : G — B,,, where G is the group defined by the presentation above, is defined
on generators by a;;j — 0041+ - aj_laj__12 e 02-_1. On checks that these images satisfy the required
relations, which defined a surjective homomorphism G — By, as the o;’s are the images of a;(q1)-
This is a technical check which we do not handle here.
We build the inverse map, sending o; to a;(;11) for all i. We have

@5 i4+1Ai4+1,i4+205i+1 = Ai+1,i4+205i+20i i+1 = Qi4+1,i4+20Q5 5+1Ai41,i+2
by applying twice the first relation. For ¢, j such that ¢ + 1 < j we have
Aiyit105,5+1 = G, j+104,i4+1

by the second type of relations. We thus obtain a well-defined group homomorphism ¢ : B, — G.
It is clear that ¢ oty = Id since it sends o; to g;. To show that ¢ is an isomorphism, it suffices to
show that v is surjective. Let 1 <4 < j with j + 1 < n. Using the first kind if relations we have that
Qi j+1 = a;;+1ai,jaj7j+1. Hence by induction on |i — j| we seen that a; ; can be expressed as a product
of aj r+1 and their inverses, which shows surjectivity of 1. O

Lemma 3.2.18. The map sending a;; to (i,j) extends to a well-defined and surjective group homo-
morphism B, — G(P,).
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Proof. For all 1 <i < j <k <n, one has

(1,4, k) = (1,5) (G, k) = G, k) (k) = (k) (G9)-

Similarly, for 1 <i<j<k<l<norl<i<k<l<j<n,thesets {i,j} and {k,[} are noncrossing,
and hence

(i,j) (kvl) = (Z7j)(k7l) = (k,l)(l,j) = (k7l) (i,j),
which shows that the map extends to a well-defined group homomorphism.
Surjectivity is clear since M (FP,) is generated by lifts (4, j) of transpositions. O

Lemma 3.2.19. The group G(P,) is isomorphic to the group with generators [t|, for t a transposition,
and relations

t][ta] -+ [tn—1] = [@1l[g2] - - - [gn—1]

whenever t1ty - th_1 =Cc=qi1q2 " qn_1.

Proof. Let G be the group with the above presentation. We construct a map G(M(P.)) — G, by
sending each generator u to [t1]-- - [tx], where tito - - t; is a T-reduced expression of u € P,. We first
show that the set-theoretic wap defined on generators. If qiqs - - - g is another T-reduced decomposition
of u, then setting v := u~'c, and choosing any T-reduced decomposition of w, say r1---Tp_1_k, we
have
[ta] - [tl[ra] -+ [rn—a—i] = laa] -~ [aw][ra] -+ [rn—1-i]

since both ¢y -+ -tgry - rp_1_p and q1 -+ - qur1 - - - rp_1_ are T-reduced decompositions of ¢. Cancelling
the k first factors in both sides of the above equality yields [t1] - - [tx] = [¢1] - - - [gx], which is what we
wanted to show.

Now assume that u v = w is a defining relation of M (FP,). Choosing a T-reduced decomposition of
w obtained by concatenating two reduced decompositions of v and v, and taking images by the above
map, shows that images still satisfy the above relation.

We built the inverse map by sending each generator [t] to t. Given two reduced decompositions
tity---tp—1 and qiq2---gn—1 of ¢, we have t1 to---tp,—1 = q1 ¢2---qn—1 by construction of M(F,),
hence we obtain a well-defined group homomorphism. It is ‘clear that each ¢ is sent to itself by the
composition, and the same holds true for [t], hence the two maps are inverse to each other.

O]

We use the above Lemma to build a surjective map 6 from G(M(P.)) to By, as follows. We send
every generator [t] = [(4, j)] to a; j. To show that it is well-defined, it suffices to show that one can pass
from any T-reduced decomposition tits - - - t,,—1 of ¢ to any other T-reduced decomposition qi1q2 - - - ¢n—1
of ¢ by only using the defining relations of the presentation of Proposition [3.2.17] To this end, it is
enough to show it by choosing for q1¢o - - - ¢—1 the T-reduced decomposition syss - s,—1 of ¢. This is
done in the following Lemma:

Lemma 3.2.20. For any set t1 = (i1,71)y- - tn—1 = (in—1,Jn—1) of n — 1 transpositions satisfying
t1---th—1 = ¢, one can transform the T-reduced decomposition tits---t,_1 into s1S2---Sp—1 only by
applying sequences of moves of the form

(1,3)(5, k) < (4, k) (i, k) > (i, k) (3, )
for1<i<j<k<nand
(1, 5)(k, 1) < (k, 1) (4, )

f0r1§i<j<k:<l§n0r1§i<k:<<j§n.35



Proof. We argue by induction on n. If n = 2 then there is nothing to show since ¢ = (1,2) which
is a transposition. Hence assume that n > 3, and that any T-reduced word for (2,3,...,n) can be
transformed into sg - - - s,_1 by the substitutions in the statement.

Let k£ be maximal such that 1 occurs in the support of t;. Note that such a k must exist since ¢
has no fixed point. It suffices to show that we can transform ¢its---¢; into a sequence of the form
(1,2)g2 - - - qx, only using the substitutions from the statement.

We want to show that the rightmost occurrence of 1 in transpositions can be moved to the very
left, i.e., that we can assume that & = 1.

Hence assume that k& # 1. Consider the sequence t;_1tx, which we write as (a,b)(c, d), with
a<bl=c<d. Ifa,b,c,dare all distinct, then we know that {a, b} and {c, d} are noncrossing, hence
tr_1tr = tptr—1 and the leftmost occurrence of 1 can be moved to the left.

If a,b, c,d are not distinct, then we consider four cases separately.

If a = ¢, then (1,b)(1,d) = (1,d,b) and d < b otherwise (1,d,b) is not in P.. But we can use the
transformation (1,6)(1,d) = (1,d)(d,b) to move the rightmost occurrence of 1 to the left.

If a = d, then the product is (d,b)(1,d) = (1,b,d), hence b < d, a contradiction since d = a < b.

If b =c, then a < b= ¢ =1, which cannot occur.

If b = d, then (a,b)(1,b) = (1,a,b) hence a < b. But we can use a substitution (a,b)(1,b) =
(1,a)(a,b) and the rightmost occurrence of 1 has moved to the left.

Hence we can apply defining relations so that the rightmost occurrence of 1 lies in the first trans-
position. But since ¢ send 1 to 2, we must have that this first transposition is (1,2), hence we have
reached the situation which allows us to apply the induction hypothesis. O

3.3 Torus knot groups
Let n,m > 2 and consider the group
G(n,m)=(z,y |z" =y™).

Let M(n,m) denote the monoid with the same presentation.
When n and m are coprime, the group G(n,m) is the knot group of the torus knot T;, 1.

Proposition 3.3.1. The monoid M(n,m) is a Garside monoid.

Proof. The fact that the divisibility is Noetherian is obtained by extending the assignment x +— m,
y — n to alength function on M = M (n, m). Since M has two generators and the presentation 2™ = y™
is both left- and right-complemented, we have that M is both left- and right-cancellative, since the
sharp #-cube condition is vacuously true. We also get the existence of conditional lem’s. It is clear that
the set of left- and right-divisors of A = 2" = y™ is given by {2’ | i =0,...,n} U{y’ |i=0,...,m},
which is finite and contains the generating set {x,y}. Since A is central is a left- and right-multiple
of both z and y, every pair of elements of M admits a power of A as common left- or right-multiple.
The existence of lem’s follows since we have conditional lem’s, and the existence of ged’s follows as well

(Lemma [1.6.7)). O

Exercise 3.3.2. Let n,m > 2.

1. If n and m are coprime, show that the group G(n,m) is isomorphic to the group G(M) from
Exercise [.7.3
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2. Show that the statement of point 1 is false in general when n and m are not coprime.

Question 3.3.3. Do the groups G(n, m) admit a (non-trivial) realization as interval groups ?
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Chapter 4

An application in representation theory

The aim of this chapter is to show an example on how Garside-theoretic properties can be useful
to show that a representation of a Garside group is faithful. We will show that the reduced Burau
representation of a spherical and dihedral Artin-Tits group is faithful, following Lehrer and Xi [§].

Let (W, S) be a finite Coxeter system of rank two (that is, with |S| = 2). Denote S = {s,t}. Note
that W is isomorphic to a dihedral group. One has 2¢(wg) = |W/|. Recall that the Artin group By
attached to W is a Garside group. Note that

wozst...:ts...7

where each product has ¢(wq) factors. This yields two reduced expressions of wy.
Set m = {(wg). Let A = R[v*!] and consider a free A-module M of rank 2, with basis Ej, F;.
Define A-linear operators T, T; on M by their action on the basis elements as follows:

TsEs = qFs, TsEy = 7q_1Et + Es, Ti1Es = *q_lEs +cky, TiEy = qEy,

where ¢ = 4 cos?(m/m). This yields the following matrices of the operators

e 1 _[-¢" 0
M‘g_[O —Q‘l}’Mt_[ c q}

The action of the elements T;Ts and T,T; is represented by the matrices

-1 —q! c—1 ¢
cq c—1|"|—eqg7t -1\’
Proposition 4.0.1. The mairices My and M; satisfy the defining relation of By . In other words,

they define a representation p : Byy — GLo(A).

The proof will be derived from the following Lemma

Lemma 4.0.2. Let ( = *™/™. Let k > 1. Denote by [k] the real number CCF We have

¢—¢1
_[-H-k-1  —¢ ' ] e+ k1) kY
(M) = | gy ey MO = TG i e+ 1)
e [W+k+1 gl o[~ W) K
WMS= 1"t = -y MOMT= | err) 7 g+ k1)



Proof. Note that ¢ = ¢ + (! 4+ 2. We argue by induction on k. For k = 1 we recover the matrix which
was calculated above. We have

_ _ [ =k=1 =g k] ][ =gt
B R R N | P
_ [[k] +[k—1] —clk] ¢ '(2[k] + [k —1] - C[k])}
cqlk + 1] —[k]+clk+1] - [k+1] |’
Now using the eqality [k] + [k — 1] — c[k] = —[k] — [k + 1], which is a straightforward computation using

the equation ¢ = ¢ + (™! + 2 and valid for all £ > 1, we get that

wmmﬁﬂz[%m—w+u <ﬂ*%+ﬂ]_

cqlk + 1] [k+1]+ [k +2]

We then have

e 1 )[-K-[k-1 —¢ ']

My (M, M,)* = g _ql] [ cqlk] (K] 4(-1 [k + 1]}

_ [—alk] — qlk — 1] + cq[k] [k +1] }
—clk] —q ([K] + [k +1])

_ [a((R] + [k +1]) [k +1] ]
—c[k] —g (K] + [k +1])]

The remaining calculations are performed similarly, and left to the reader. O

Note that, if m = 2m/, then
m —[m' —1] 0 =1 0| _ m!
(M Mg)™ = [ 0 ' +1]| = | 0 = (MsM)™,

which proves Proposition in that case.
Now consider the case where m = 2m’ + 1. In this case we have [m/] + [m’ + 1] = 0, and we get

that - 1
’ 0 —|m 0 m +1 /
mo_ — _ m
which also shows Proposition in this case.
Write A := W\{wop, 1}. Note that, for every element w € A, there is a single s € S such that
{(sw) = ¢(w) — 1, which we denote L(w). Similarly there is a single s € S such that ¢(ws) = ¢(w) — 1,

which we denote by R(w).
For w € W, we denote by T, the image of w by p.

Lemma 4.0.3. Let we A. Letr € S. Then
TwEr — fsEs + ftEta

where fs, f € A and for r1 € S, we have deg(fr,) < 0 unless r = R(w) and r1 = L(w), in which case
we have f,, = A\qg+ lower degree terms, where A > 0.

Proof. This is an immediate consequence of Lem%g O



Corollary 4.0.4. Let wy,...,w, be elements of A. Then for r € S we have
Twlng t T’war = hsEs + htEt,

where hg,hy € A and for ri € S, we have deg(h,,) < p — 1 unless 1 = R(wp), 1 = L(w1) and
L(w;) = R(wi—1) for i = 2,3,...,p. In the case where the three conditions are satisfied, we have
hy, = agP+ lower degree terms, where a > 0.

Proof. This follows immediately from the previous lemma, applied repeteadly. O

Theorem 4.0.5 (Faithfulness of the Burau representation of dihedral type). Let (W, S) be a Coxeter
system of dihedral type. Define a representation ¢ : By — GlLa(A) by s — qTs. Then ¢ is faithful.

Proof. Recall that By is a Garside group (Corollary [3.1.16| and Proposition [3.1.18]). In particular,
every element of By can be written as a fraction 2=y, where z,y € BIJ/Fv- To show that ¢ is faithful,

it thus suffices to show that B, is faithful.

Recall the Garside normal form of elements of a Garside monoid. In our case, the simple elements
of By are in bijection with W and are given by positively lifting any reduced expression of any element
of W. Let x € By and denote a(x) the first term of the Garside normal form of z. If z # 1 and
a(z) # A, then o(z) is the lift of some element of A. Elements of A have a unique reduced expression,
hence a(z) has a unique atom among {s,t} that right-divides it, say s. Consider y = w(x). If y # 1,
then a(y) # A, hence the second term of the Garside normal form of x is again the lift of some element
of Y. It thus has a single atom left-dividing it, and this atom must be s: otherwise a(x)t would be a
simple element left-dividing z, contradicting the maximality of a(z).

We thus have that, if x € By and A is not a left-divisor of z, then the Garside normal form
T = x129 - x of x satisfies:

1. Every element z1 is the positive lift of an element y; € A,
2. L(:EZ) = R({L‘i_l) for all i = 2, ey k.

Consider elements x,y € B{,FV such that ¢(z) = ¢(y). We claim that either z =y =1, or x and y
have a non-trivial common left divisor.

To this end, consider the Garside normal forms x = z1xs--- 2 and y = y1ys - - - yo. First suppose
that x; = A for some j. Then z; = A, which yields the claim, unless y = 1. But note that
det(p(x)) = +¢*®) which forces = 1 if y = 1. We can thus assume that for all j = 1,..., k, we
have x; # A, and that for all j =1,...,¢, we have y; # A.

By the corollary above, the coefficient of E, in ¢(z)(Es + E¢) has greater degree if r = L(x1).
Hence L(z1) = L(y1). This proves the claim.

We deduce the theorem: if ¢(x) = ¢(y), then writing z = a2z’ and y = ay’ with a = ged(z,vy),
we get that o(z') = ¢(y'), where 2/ and ¢’ have no non trivial common left divisor, which yields
' =19 =1, and thus z = v. O

Question 4.0.6. Do the torus knot groups G(n,m) admit an analogue of Burau representation ? If
yes, is it faithful ?
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