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Chapter 1

Garside monoids and groups

Throughout the whole chapter M will denote a monoid. Recall that a monoid always admits a unit 1.

1.1 Cancellative monoids

De�nition 1.1.1. A monoid M is left-cancellative if for all a, b, c ∈M ,

ab = ac ⇒ b = c.

It is right-cancellative if for all a, b, c ∈M ,

ba = ca ⇒ b = c.

If M is both left- and right-cancellative, we say that M is cancellative.

Showing that a monoid is (left- or right-) cancellative is a di�cult task in general.

Example 1.1.2. Every group G is in particular a cancellative monoid.

Example 1.1.3. Let M = ⟨ x, y, z, t | xy = zt ⟩. Then M is both left- and right-cancellative. To
prove this, notice that there is no de�ning relation inM of the form y · · · = · · · , or t · · · = · · · . There is
also no relation of the form · · ·x = · · · , or · · · z = · · · . It follows that the positions in a word in which
one can apply a relation stay the same after application of a de�ning relation. That is, if x1x2 · · ·xk is
a word in x, y, z, t, and (i, i+ 1) are consecutive positions where a relation can be applied, i.e., xixi+1

is the left or right hand side of the de�ning relation xy = zt, say xi = x and xi+1 = y, then one can
neither apply a relation on xi−1xi nor on xi+1xi+2, and the same stays true after replacing xi by x′i = z
and xi+1 by x′i+1 = t. Left-cancellativity easily follows from this observation, showing that ab = ac
implies b = c by induction on the length of a, where the length ℓ(a) of an element a ∈ M is de�ned
by ℓ(a) = k, where a1a2 · · · ak = a, with ai ∈ {x, y, z, t} for all i. Note that this length is well-de�ned
since the de�ning relation of M is homogeneous, hence all the words in M representing a have the
same length. Right-cancellativity follows as the monoid is isomorphic to its opposite monoid.

Example 1.1.4. The monoid M = ⟨ a, b, c | ab = ac ⟩ is not left-cancellative. Indeed, as the de�ning
relation is homogeneous, there is a well-de�ned length function on M which assigns to any element
m ∈ M the length of any word representing m. Then ab = ac has length two and b has length one.
But b ̸= c as no relation can be applied to the word b. However, we claim that M is right-cancellative
(see Exercise 1.1.5 below).
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Of course, one way to show that a monoid M is cancellative is to embed it into a group, but this
is a di�cult task in general, and many known criteria to embed a monoid M into a group G require
one to �rst establish cancellativity of M .

Exercise 1.1.5. Show that M = ⟨ a, b, c | ab = ac ⟩ is right-cancellative.

Exercise 1.1.6. Let M = ⟨ x, y | x2 = y2 ⟩. Show that M is left- and right-cancellative.

Cancellativity is obviously a necessary condition for embedding a monoid into a group. It turns
out that it is not su�cient, as the next counterexample (guven by Maltsev [9] in 1937) shows.

Example 1.1.7. Let M = ⟨ a, b, c, d, x, y, u, v | ax = by, cx = dy, au = bv⟩. Then M is both left-
and right-cancellative, but does not embed into a group. To see this, consider any word x1x2 · · ·xk.
Call a pair of successive positions (i, i + 1) good if one can apply a relation xixi+1 = x′ix

′
i+1. Note

that any side of a relation ends with a letter in S1 = {x, y, u, v}, while it begins with a letter in
S2 = {a, b, c, d}. Since we have S1 ∩ S2 = ∅, it follows that the set of good positions in x1x2 · · ·xk and
x1x2 · · ·xi−1x

′
ix

′
i+1xi+2 · · · sk are the same, and that if (i, i+ 1) and (j, j + 1) are distinct good sets of

positions, then {i, i+1, j, j+1} has cardinal 4. As a consequence, the set of good positions is constant
on words for any elements, and the order in which relations are applied to any word does not matter.
Left- and right-cancellativity follows easily, arguing as in Example 1.1.3. Now assume that M embeds
into a group G. Then in G we have

d−1c = yx−1 = b−1a = vu−1

from what we deduce that cu = dv in G. But cu, dv ∈M , while inM we have cu ̸= dv, a contradiction.

In Section 1.6 below, we shall establish a few criteria to check that a monoid is left- or right-
cancellative.

Lemma 1.1.8. If M is left-cancellative (respectively right-cancellative) and 1 is the only invertible

element in M , then the left-divisibility (resp. right-divisibility) relation on M is a partial order.

Proof. Re�exivity is clear as M has a unit 1 and transitivity is also clear (and both hold without the
cancellativity assumption and without the assumption on invertible elements). Let a, b ∈M such that
a left-divides b and b left-divides a. Then there are c, c′ ∈ M satisfying ac = b and bc′ = a. Hence
we get b = ac = bc′c. By left-cancellativity this implies c′c = 1, hence c = 1 = c′ as 1 is the only
invertible element in M . Hence a = b, and the left-divisibility relation is re�exive. The proof of the
right counterparts is similar.

We end up the section with a proof that the monoid M = ⟨a, b | aba = bab⟩ is both left- and
right-cancellative. This is the braid monoid on three strands, one of the most basic examples of a
Garside monoid, and we will use it as a running example along the way. The proof below is based on
Garside's original proof of the cancellativity of the positive braid monoid B+

n [7].

Proposition 1.1.9. The monoid B+
3 = ⟨a, b | aba = bab⟩ is both left- and right-cancellative.

Proof. Note that M := B+
3 is isomorphic to the opposite monoid Mop. It therefore su�ces to show

that M is left-cancellative to also obtain right-cancellativity.
Since the de�ning relation aba = bab is homogeneous, every element x ∈ M has a well-de�ned

length, given by the length of any word for x in the generating set S := {a, b}. We begin by showing
the following property (P ): let X,Y ∈M and x, y ∈ S such that xX = yY . Then
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1. If x = y, then X = Y .

2. If x ̸= y, then there is Z ∈M such that X = yxZ and Y = xyZ.

We argue by induction on the length of X. If ℓ(X) = 0, then X = 1 = Y , but we also have x = y,
hence 1 holds. The second situation cannot appear. If ℓ(X) = 1, then the second situation also cannot
appear, since we would have two word xX and yY of length two representing the same element of M
but starting with a di�erent letter, which is impossible since the single de�ning relation of M equates
two words of length three.

Hence assume that the result holds for all X such that ℓ(X) ≤ 1. Assume that ℓ(X) > 1. Consider
a sequence of elements x0 = x, x1, x2, . . . , xk = y ∈ S and words X0, X1, X2, · · · , Xk in S∗ such that
x0X0 = x1X1 = · · · = xk−1Xk−1 = xkXk, (as elements of M) where X0 is a word for X, Xk is a
word for Y , and such that every two successive words xiXi and xi+1Xi+1 in the sequence di�er by a
single application of the de�ning relation aba = bab. We then do a second induction, on k, to conclude
the proof of (P ). Assume that k = 0. Then x = y,X = Y , and there is nothing to prove. Assume
that k = 1. Then one passes the word x0X0 to the word x1X1 by a single application of the relation
aba = bab. If the relation is applied inside X0, then x = y, and X = Y since X0 is a word for X, X1

is a word for Y , and they di�er by a single application of the relation aba = bab. If the relation is not
applied inside X0, it is then applied at the beginning of the word x0X0, hence x0 = a and X0 begins
with ba, or x0 = b and X0 begins with ab. Assume that x0 = a, the other case is similar. We then have
the existence of a word W such that X0 = baW , and x0X0 = abaW . The word x1X1 is then given by
babW , hence we have X1 = abW , which concludes the proof, taking for Z the element represented by
the word W .

Now assume that k ≥ 2. Let i be any integer such that 0 < i < k. We can thus apply (P ) to both
the pairs of words (x0X0, xiXi), and (xiXi, xkXk), as in every couple, the second word is obtained from
the �rst one by a number of applications of aba = bab which is less than k. Hence we have three cases:
if x0 = xi = xk, then denoting by W the element represented by Xi we have X = W and W = Y ,
hence X = Y , which concludes the proof. If x0 = xi but xi ̸= xk, say x0 = a and xk = b (the other
case is similar), then there is an element Z ∈ M such that W = baZ and Y = abZ and X = baZ.
If x0 ̸= xi but xi = xk we have a similar situation. Finally, assume that x0 ̸= xi and xi ̸= xk, say
x0 = a = xk and xi = b. Then there are Z1, Z2 ∈ M such that X = baZ1, Xi = abZ1, Xi = abZ2,
Y = baZ2. Now ℓ(Xi) < ℓ(xiXi), hence by induction, applying the situation (1) twice we get that
abZ1 = abZ2 implies that bZ1 = bZ2, which implies that Z1 = Z2. Setting Z := Z1 = Z2, we thus get
X = baZ1 = baZ = baZ2 = Y , which concludes the proof of property (P ).

We now show that M is left-cancellative. Assume that x, y, z ∈ M are such that xz = xy. We
argue by induction on ℓ(x). If ℓ(x) = 0 then x = 1 and z = y. If ℓ(x) > 0, then there is u ∈ S, v ∈M
such that x = uv. We then have uvz = uvy. Since ℓ(u) = 1, by property (P ) we deduce that vz = vy.
Since ℓ(v) = ℓ(x)− 1, by induction we deduce that z = y. This concludes the proof.

The above proof gives an insight of how di�cult it can be to show that a monoid de�ned by
generators and relations is cancellative. There are very few general criteria to show such a property,
which is a di�cult task in general. In Section 1.6 below we will give some such criteria.

Exercise 1.1.10. Show that the monoid M = ⟨a, b | abab = baba⟩ is both left- and right-cancellative.

Exercise 1.1.11. Show that the monoid

M = ⟨a, b, c | aba = bab, aca = cac, bcb = cbc, abca = bcab = cabc⟩

is not cancellative.
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1.2 Ore monoids

De�nition 1.2.1 (Divisors and multiples). Let a, b, c ∈ M . If ab = c holds, we say that a is a left-

divisor (respectively, that b is a right-divisor) of c and that c is a right-multiple of a (respectively a
left-multiple of b).

Theorem 1.2.2 (Ore's Theorem). If M is cancellative, and if any two elements a, b ∈ M admit a

common left-multiple, that is, if there is c ∈ M satisfying a′a = c = b′b for some a′, b′ ∈ M , then M
admits a group of (left-)fractions G(M) in which it embeds.

Proof. Set
G(M) := {(a, b) | a, b ∈M}/ ∼,

where ∼ is the equivalence relation generated by (a, b) ∼ (xa, xb), x ∈ M for all a, b, x ∈ M . We will
denote by a−1b the equivalence classe of the pair (a, b) in G(M). We begin by de�ning the product of
two fractions a−1b and c−1d. To this end, consider a common left-multiple of b and c, that is, let b′, c′

such that b′b = c′c. We then set

(a−1b) · (c−1d) := (b′a)−1(c′d).

We have to check that this is independent of the choices we made. We �rst show that it is independent
of the choice of common left-multiple of b and c. Hence let b′′, c′′ ∈ M such that b′′b = c′′c. Then
the two left-multiples b′′b = c′′c and b′b = c′c themselves have a common left-multiple, say there is
x, y ∈M such that

xb′′b = xc′′c = yb′b = yc′c,

and by right-cancellativity we get that xb′′ = yb′ and xc′′ = yc′. We thus get

(b′a)−1(c′d) = (yb′a)−1(yc′d) = (xb′′a)−1(xc′′d) = (b′′a)−1(c′′d),

which shows the claim. We also need to show that the product · is independent of the choices of
representatives (a, b) and (c, d) for the fractions a−1b and c−1d. Hence let x ∈M . We have

((xa)−1xb) · (c−1d) = (̃bxa)−1c̃d,

where b̃, c̃ are such that c̃c = b̃xb. Since this is a left-common multiple of b and c, we get by the already
proved property that (a−1b) · (c−1d) does not depend on the chosen left-common multiple for b and c
that

(̃bxa)−1c̃d = (a−1b) · (c−1d).

Similary we show that (a−1b) · ((xc)−1(xd)) = (a−1b) · (c−1d). Hence the product is well-de�ned.
To prove associativity, let x−1

i yi, i = 1, 2, 3, be three fractions. Let a1, a2 such that a1y1 = a2x2.
Let a′2, a

′
3 such that a′2y2 = a′3x3. And let a, a′ such that aa′2 = a′a2. We then have

(x−1
1 y1) · ((x−1

2 y2) · (x−1
3 y3)) = (x−1

1 y1) · ((a′2x2)−1a′3y3) = (a′a1x1)
−1(aa′3y3),

where the last equality holds true since a′a1y1 = aa′2x2. On the other hand we have

((x−1
1 y1) · (x−1

2 y2)) · (x−1
3 y3) = ((a1x1)

−1a2y2) · (x−1
3 y3) = (a′a1x1)

−1(aa′3y3),

where the last equality holds true since a′a2y2 = aa′3x3. This shows associativity.
It is clear that the fraction 1−11 is the neutral element, and that every fraction a−1b has an inverse

b−1a.
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De�nition 1.2.3. A monoid satisfying the assumtions of Theorem 1.2.2 is a (left) Ore monoid.

Proposition 1.2.4. LetM be a cancellative monoid in which any two pair of elements admit a common

left-multiple and let ιM : M −→ G(M) be the canonical embedding. Assume that G is a group and

f : M −→ G is an injective morphism of monoids. Then there is a unique injective group morphism

φ : G(M) −→ G such that φ ◦ ιM = f .

Proof. Let (a, b) ∈ G(M) and de�ne φ((a, b)) by f(a)−1f(b). It is clear that φ is well-de�ned. Let
(a1, b1), (a2, b2) ∈ G(M). Consider a left-multiple b′b1 = a′a2. We then have that (a1, b1)(a2, b2) =
(b′a1, a

′b2). We thus have
φ((a1, b1)(a2, b2)) = f(b′a1)

−1f(a′b2).

On the other hand we have

φ((a1, b1))φ((a2, b2)) = f(a1)
−1f(b1)f(a2)

−1f(b2),

but since b′b1 = a′a2 we deduce that, in G, we have f(b1)f(a2)−1 = f(b′)−1f(a′), hence we have

φ((a1, b1)(a2, b2)) = f(a1)f(b
′)−1f(a′)f(b2) = f(a1)

−1f(b1)f(a2)
−1f(b2) = φ((a1, b1))φ((a2, b2)).

Since it is clear that φ(1G(M)) = 1G, we deduce that φ is a group morphism, and by construction it is
clear that φ ◦ ιM = f . Given (a, b) ∈ G(M), we have

φ((a, b)) = 1 ⇔ f(a)−1f(b) = 1 ⇔ f(a) = f(b),

which, as f is injective, happens if and only if a = b. Hence φ is injective.
Uniqueness follows from the fact that, if φ′ is another group morphism such that φ′ ◦ ιM = f , then

φ′(a) = φ(a) for all a ∈M , yielding φ′(a, b) = φ′(a)−1φ′(b) and hence

φ((a, b)) = f(a)−1f(b) = φ′(a)−1φ′(b) = φ′((a, b)),

which concludes the proof.

Corollary 1.2.5. Let M be a cancellative monoid in which any two pair of elements admit a common

left-multiple and let ⟨S | R⟩ be a presentation of M . Then ⟨S | R⟩, viewed as a group presentation, is

a presentation of G(M).

Proof. It is clear by construction that S generates G(M) as a group, and since M embeds into G(M),

the de�ning relations R also hold in G(M). It follows that G(M) is a quotient of G̃(M) := ⟨S | R⟩.
SinceM embeds intoG(M) and this map factors through G̃(M), the monoidM also embeds into G̃(M).

by Proposition 1.2.4, there is a unique (injective) group morphism φ : G(M) −→ G̃(M) making the
expected diagram commute. Both this morphism and the above quotient map send a generator s ∈ S
to itself, hence the two maps are inverse to each other, and G(M) ∼= G̃(M) = ⟨S | R⟩.

Remark 1.2.6. If M is a cancellative monoid in which any pair of elements admit a common left-
multiple, one can similarly de�ne a group of right-fractions of M in which M embeds. In particular,
if M is cancellative and any pair of elements admit both a common left-multiple and a common right-
multiple, then one gets two groups. By the universal property (Proposition 1.2.4), these groups are
then isomorphic.
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Example 1.2.7. Consider the monoid B+
3 from Proposition 1.1.9. We already know from Proposi-

tion 1.1.9 that B+
3 is cancellative. We show that any pair x, y of elements of B+

3 admit a common
left-multiple. To this end, consider the element ∆ := aba = bab ∈ B+

3 . We claim that ∆2 is central in
B+

3 . Indeed, we have

a∆2 = a(aba)(aba) = a(bab)(aba) = (aba)(bab)a = ∆2a,

and we similarly show that b∆2 = ∆2b. Since a and b generate B+
3 we deduce that ∆2 is central in

B+
3 . Now a and b both right-divide ∆ (hence ∆2). It follows that, if x is any element and x1x2 · · ·xk

a word for x in S∗ (recall that S = {a, b}), then considering y1, y2, . . . , yk such that yixi = ∆2 for all
i = 1, . . . , k, we have using that ∆2 is central that

ykyk−1 · · · y2y1x1x2 · · ·xk = ykyk−1 · · · y2∆2x2 · · ·xk = ∆2ykyk−1 · · · y2x2 · · ·xk
= ∆2ykyk−1 · · · y2∆2x2 · · ·xk = ∆4ykyk−1 · · · y3x3 · · ·xk
= · · · = (∆2)i−1yk · · · yixi · · ·xk = · · · = ∆2k.

This shows that, for any x ∈M such that ℓ(x) = k, the element ∆2k is a left-multiple of x. Hence
setting k := max{ℓ(x), ℓ(y)}, we get that ∆2k is a left-multiple of both x and y. In fact this bound can
be reduced to k, i.e., one can show that ∆k is already a left-multiple of both x and y (see Exercise 1.2.8
below). Applying Ore's Theorem (Theorem 1.2.2 above), we get that B+

3 embeds into its group of
(left-)fractions G(B+

3 ), and by Corollary 1.2.5 this group has presentation ⟨a, b | aba = bab⟩.

Exercise 1.2.8. Let B+
3 = ⟨a, b | aba = bab⟩. Let x, y ∈ B+

3 . Show that ∆k is both a common left-
and right-multiple of x and y, where k := max{ℓ(x), ℓ(y)}.

Exercise 1.2.9. Let B+
3 = ⟨a, b | aba = bab⟩ which, by Example 1.2.7 above, is an Ore monoid. Write

the elements ab−1a, a2b−3 as fractions x−1y with x, y ∈ B+
3 .

1.3 Monoids with Noetherian divisibility

De�nition 1.3.1 (Noetherian divisibility). We say that the divisibility in M is Noetherian if there
exists a function λ : M → Z≥0 satisfying ∀a, b ∈ M , λ(ab) ≥ λ(a) + λ(b) and a ̸= 1 ⇒ λ(a) ̸= 0.
We say that M is right-Noetherian (respectively left-Noetherian) if every strictly increasing sequence
of divisors with respect to left-divisibility (resp. right-divisibility) is �nite. Note that if the divisibility
in M is Noetherian, then M is both left- and right-Noetherian.

Note that it implies that the only invertible element in M is 1 and that M is in�nite for M ̸= {1}.
In particular, by Lemma 1.1.8, in a cancellative monoid M with Noetherian divisibility, both left-
divisiblity and right-divisibility induce a partial order on M .

Example 1.3.2. Consider the monoid M = ⟨a, b | aba = bab⟩. Then M has Noetherian divisibility.
Indeed, since its de�ning relation is homogeneous, the function λ de�ned on generators by λ(a) = 1 =
λ(b) uniquely extends to a length function λ :M −→ Z≥0 satisfying the assumtions of De�nition 1.3.1.
Note that in this case we have λ(xy) = λ(x) + λ(y) for all x, y ∈ M . In fact M is the classical braid
monoid on three strands.

Example 1.3.3. Consider the monoid M = ⟨a, b | aba = b2⟩. Then M has Noetherian divisibility.
Indeed, setting λ(a) = 1 and λ(b) = 2, we obtain that the de�ning relation is homogeneous. As in the
previous case we thus have λ(xy) = λ(x) + λ(y) for all x, y ∈M .
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Example 1.3.4. Consider the monoid M = ⟨a, b | aba = b⟩. Then M is neither left- nor right-
Noetherian. Indeed we have

b = aba, ab = a2ba, a2b = a3ba, . . . ,

Hence denoting by ≤ the left-divisibility relation, we have

· · · ≤ ai+1b ≤ aib ≤ · · · ≤ a2b ≤ ab ≤ b,

and the above sequence is strictly decreasing as ai+1b ̸= aib for all i ≥ 0: indeed the parity of the
number of a's appearing in a word is constant on words for a given element of M . Hence M is not
right-Noetherian, and since M is symmetric we conclude that it is not left-Noetherian either.

Example 1.3.5. Consider the monoid M = ⟨a, b | ababa = b2⟩. Then for every x ∈M , the number of
b's appearing in any word for x is constant. It is clear that there is no length function λ :M −→ Z≥0

satisfying λ(xy) = λ(x) + λ(y) for all x, y ∈ M and x ̸= 1 ⇒ λ(x) ̸= 0, as because of the relation
ababa = b2 we would have λ(a) = 0, while a ̸= 1 (there is an obvious morphism from M to Z/3Z
sending b to 0 and a to 1). But one can show there is one such fonction satisfying λ(xy) ≥ λ(x)+λ(y),
given by

λ(x) = sup{k | x = a1a2 · · · ak, ai ∈ {a, b}}.

Exercise 1.3.6. Let M = ⟨a, b | aba = ba2b⟩. Show that M does not have Noetherian divisibility.

Exercise 1.3.7. Show that the groups with the same presentations as the monoids M from Exam-
ples 1.3.2, 1.3.3 and Exercise 1.3.6 are all isomorphic.

1.4 Garside monoids

De�nition 1.4.1. Assume that M is a monoid having 1 as only invertible element, so that left- and
right-divisibility yield partial orders. Let a, b ∈M . We say that c ∈M is a left-lcm of a and b if there
are a′, b′ such that c = a′a = b′b, and if whenever c′ is a common left-multiple of a and b, we have that
c right-divides c′. We say that c is a right-gcd of a and b if it right-divides both a and b, and if any
common right-divisor of a and b right-divides c.

De�nition 1.4.2 (Garside monoid). A Garside monoid is a pair (M,∆) where M is a monoid with 1
and ∆ is an element of M , satisfying the following �ve conditions

1. M is left- and right-cancellative,

2. The divisibility in M is Noetherian,

3. Any two elements in M admit a left- and right-lcm, and a left- and right-gcd,

4. the left- and right-divisors of the element ∆ coincide and generate M ,

5. The set of (left- or right-)divisors of ∆ is �nite.

Note that under these assumptions, the restrictions of left- and right-divisibility to the set of divisors
of ∆ yield two lattice structures on this set. We denote the set of divisors of ∆ by Div(∆).
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De�nition 1.4.3. By Ore's Theorem 1.2.2, every Garside monoid (M,∆) embeds into a group of
left-fractions, or a group of right-fractions. By Remark 1.2.6, these two groups are isomorphic. We
denote the resulting group by G(M) and call it a Garside group. In other words, a Garside group is
the group of (left- or right-) fractions of a Garside monoid. The element ∆ is called a Garside element

inM . More generally, an element ∆ of a cancellative monoidM with Noetherian divisibility satisfying
the conditions 4 and 5 above will be called a Garside element.

Note that, given a Garside monoid M , the element ∆ is not uniquely determined in general. But
we have:

Lemma 1.4.4. Let M be a Garside monoid and ∆,∆′ two Garside elements in M . Then the left-gcd

∆ ∧L ∆′ of ∆ and ∆′ is equal to the right-gcd ∆ ∧R ∆′, and is a Garside element in M .

Proof. Since ∆ ∧L ∆′ is a left-divisor of both ∆ and ∆′, and ∆, ∆′ are Garside elements in M , we
have that ∆∧L ∆′ is a right-divisor of both ∆ and ∆′. Hence ∆∧L ∆′ ≤R ∆∧R ∆′. Hence there is an
element a ∈ M such that ∆ ∧R ∆′ = a∆ ∧L ∆′. Similarly, we have ∆ ∧R ∆′ ≤L ∆ ∧L ∆′, hence there
is b ∈M such that ∆ ∧L ∆′ = ∆ ∧R ∆′b. Combining both yields

a∆ ∧R ∆′b = ∆ ∧R ∆′,

hence by Noetherian divisibility we obtain that λ(a) = 0 = λ(b), which forces a = 1 = b. Hence
∆ ∧L ∆′ = ∆ ∧R ∆′.

Let x ≤L ∆ ∧L ∆′. Then x ≤L ∆,∆′, hence x ≤R ∆,∆′ since ∆,∆′ are Garside elements in M .
Conversely, one similarly shows that every right-divisor of ∆ ∧L ∆′ = ∆ ∧R ∆′ is also a left-divisor.
Hence both sets coincide.

Every atom it both a left- and right- divisor of any Garside element, hence denoting by S the set
of atoms of M , we have s ≤L ∆,∆′ and s ≤R ∆,∆′. It follows that the set S left- and -right divides
∆ ∧L ∆′, hence that Div(∆ ∧L ∆′) generates M .

It is �nite since Div(∆) is �nite, and ∆ ∧L ∆′ ≤ ∆.

Proposition 1.4.5. Let M be a Garside monoid with Garside element ∆. Let k ≥ 1. Then ∆k is a

Garside element in M .

Proof. TBD

Example 1.4.6. Let n ≥ 1 and let M := ((N≥0)
n,+). Then M is both left- and right-cancellative.

We have a = (a1, a2, . . . , an) ≤ b = (b1, b2, . . . , bn) if and only if ai ≤ bi for all i = 1, . . . , n, where ≤
denotes either the left- or right-divisibility. In particular, one de�nes a length function λ :M −→ Z≥0

by λ(a) =
∑n

i=1 ai and we have λ(ab) = λ(a) + λ(b) for all a, b ∈ M . This establishes that ≤ is
Noetherian. Given a, b ∈M , the element a∨ b = (max {a1, b1},max {a2, b2}, . . . ,max {an, bn}) is both
a left- and right-lcm of a and b, and a∧ b = (min {a1, b1},min {a2, b2}, . . . ,min {an, bn}) is both a left-
and right-gcd of a and b. Finally, consider the element ∆ := (1, 1, . . . , 1) ∈ M . The set of left- or
right-divisors of ∆ is given by the set of elements of the form (ε1, ε2, . . . , εn), where εi ∈ {0, 1} for all
i = 1, . . . , n. It is thus �nite, and contains the element ei with zero entries except the i-th entry equal
to 1, for all i = 1, . . . , n, which generates M since (a1, a2, . . . , an) = ea11 e

a2
2 · · · eann . This shows that M

is a Garside monoid, with group of fractions isomorphic to (Zn,+).

Example 1.4.7. The monoid B+
3 = ⟨a, b | aba = bab⟩ from Proposition 1.1.9 is a Garside monoid. We

have seen in Proposition 1.1.9 thatM is left- and right-cancellative. It has Noetherian divisibility since
9



the de�ning relation is homogeneous. We have seen in Example 1.2.7 that every pair of elements admits
a common left- or right-multiple but the existence of lcm and gcd's has not been established yet: we will
establish it in the next section. Finally, setting ∆ := aba = bab, the set of left- and right-divisors of ∆
coincide, and is given by Div(∆) = {1, a, b, ab, ba, aba}, which is �nite and contains the generating set
{a, b} of M . Hence M is a Garside monoid, and by Corollary 1.2.5 we have G(M) ∼= ⟨a, b | aba = bab⟩.

Proposition 1.4.8. Let (M,∆) be a Garside monoid. There is a power of ∆ which is central in M
(and hence in G(M)).

Proof. Let x ∈ Div(∆). Then y := ∆x−1 is also in Div(∆). It follows that ∆y−1 ∈ Div(∆). But
∆y−1 = ∆x∆−1. Since Div(∆) is �nite, we have ∆Div(∆)∆−1 = Div(∆), and there is a power k ≥ of
∆ such that ∆k acts by conjugation on Div(∆) as the identity. For such a k we thus have ∆kx = x∆k

for all s ∈ Div(∆). Since Div(∆) generates M , we deduce that ∆k is central in M .

Proposition 1.4.9. Every Garside group is torsion-free.

Proof. We extend the partial order ≤ given by left-divisibility on M to G(M) by setting x ≤ y if and
only if x−1y ∈M . This yields a lattice order on G(M).

Let x ∈ G(M) and let n ≥ 1 such that xn = 1. Consider the element y := 1 ∧ x ∧ x2 ∧ · · · ∧ xn−1.
Then

xy = x(1 ∧ x ∧ x2 ∧ · · · ∧ xn−1) = x ∧ x2 ∧ · · · ∧ xn−1 ∧ xn︸︷︷︸
=1

= y,

hence x = 1.

1.5 Word problem and normal forms

The aim of this section is to explain why Garside groups have a solvable word problem.
Throughout the whole section we will denote by (M,∆) a Garside monoid.

1.5.1 Solution to the word problem: basic approach

De�nition 1.5.1. An element s of M is an atom if whenever x, y ∈ M are such that s = xy, then
x = 1 or y = 1.

Proposition 1.5.2. Let (M,∆) be a Garside monoid. Then M admits the presentation

⟨u, u ∈ Div(∆) | u · v = w if uv = w ⟩. (1.5.1)

Proof. Set M ′ := ⟨u, u ∈ Div(∆) | u · v = w if uv = w ⟩. It is clear that the de�ning relations of M ′

are satis�ed in M under the map u 7→ u. We need to show that every relation in M is a consequence
of those relations. Hence let x1, x2, . . . , xk, y1, y2, . . . , yℓ ∈ Div(∆) such that

x1x2 · · ·xk = y1y2 · · · yℓ. (1.5.2)

We proceed by induction on ℓ(x1x2 · · ·xk). If ℓ(x1x2 · · ·xk) = 0, then both sides of (1.5.2) are the
identity. If ℓ(x1x2 · · ·xk) = 1, then all factors but one in either side are equal to 1, in which case
the result is also trivially true. Hence assume that ℓ(x1x2 · · ·xk) ≥ 2. Since M is a lattice for left-
divisibility, let z be the least right-common multiple of x1 and y1. Then z must left-divide x1x2 · · ·xk,
since it has a word beginning by x1 and a word beginning by y1. We thus have x1x2 · · ·xk = zz′
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for some z′ ∈ M . Let a1, b1 ∈ M such that z = x1a1 = y1b1. Since ∆ is a common right-multiple
of x1 and y1, we must have z ≤ ∆, and hence z, a1, b1 ∈ Div(∆). By left-cancellativity we have
x2 · · ·xk = a1z

′ and y2 · · · yℓ = b1z
′. Now choose any word u1u2 · · ·up for z′. By induction, the relations

a1u1u2 · · ·up = x2 · · ·xk and b1u1u2 · · ·up = y2 · · · yℓ are consequences of the de�ning relations of M ′.
We can thus pass from x1x2 · · ·xk to x1a1u1u2 · · ·up only using de�ning relations of M ′. Now the
relations x1a1 = z and z = y1b1 are de�ning relations of M ′. We can thus pass from x1a1u1u2 · · ·up to
y1b1u1u2 · · ·up using de�ning relations of M ′. Finally, as seen above we can pass from y1b1u1u2 · · ·up
to y1y2 · · · yℓ using de�ning relations of M ′. Hence the words x1x2 · · ·xk and y1y2 · · · yℓ are related by
de�ning relations of M ′, which concludes the proof.

Corollary 1.5.3. Every Garside monoid is �nitely presented.

Lemma 1.5.4. Every Garside monoid has �nitely many atoms.

Proof. Every atom must be a generator of any presentation. Hence, by the above proposition, we have
that the set of atoms is included in the set of divisors of ∆, which is �nite.

Lemma 1.5.5. The lattice Div(∆) (for left- or right-divisibility) can be calculated in �nite time.

Proof. By Noetherian divisibility, the length of a word for ∆, de�ned as the maximal number of
elements of Div(∆)\{1} appearing in a word for ∆, is bounded. It follows that there are only �nitely-
many words for ∆, and these words can all be calculated starting from any word for ∆ and applying
de�ning relations whenever it is possible, and then iterating with new obtained words. This gives a
�nite set of pre�xes of ∆, and pre�xes representing the same elements can be identi�ed since the graph
of expressions of any element can be calculated using exactly the same procedure as the one used above
for words for ∆. The poset of left divisors can thus be calculated.

Theorem 1.5.6 (Solvability of the word problem in a Garside monoid, Brute force method). The

word problem in a Garside group is solvable, that is, there is an algorithm allowing one to determine

in �nite time if a word in the elements of Div(∆) ∪Div(∆)−1 represents the identity or not.

Proof. Let x, y ∈ Div(∆). Consider the element x−1y of G(M). Take any right-multiple z of x, y in
Div(∆) (for instance, one can take z = ∆ !). There exist x′, y′ ∈ Div(∆) such that xx′ = yy′. In G(M),
we then have x−1y = x′y′−1. We can thus "reverse" fractions in two elements of Div(∆). Is follows
that any word xϵ11 x

ϵ2
2 · · ·xϵkk , xi ∈ Div(∆) and ϵi ∈ {−1, 1} for all i = 1, . . . , k, can be transformed

into a word y1y2 · · · yℓy−1
ℓ+1 · · · y

−1
k , still representing the same element of G(M), and with yi ∈ Div(∆)

for all i = 1, . . . , k. Since M embeds into G(M) (by Ore's Theorem 1.2.2), determining whether the
word y1y2 · · · yℓy−1

ℓ+1 · · · y
−1
k represents the identity or not amounts to determining whether, in M , we

have the equality y1y2 · · · yℓ = ykyk−1 · · · yℓ+1. But the number of words in Div(∆) for the element x
represented by y1y2 · · · yk is �nite, as seen in the proof of Lemma 1.5.5. The set of words for a given
element can thus be calculated, hence it can be checked in �nite time if y1y2 · · · yℓ = yk · · · yℓ+1 by
calculating the graph of words for x starting from y1y2 · · · yℓ, and verifying at the end if yk · · · yℓ+1

appears in the obtained set of words or not.

1.5.2 Solution to the word problem: normal forms

Lemma 1.5.7. Let M be a Garside monoid. Let g ∈ G(M). There is m ≥ 0 such that ∆mg ∈M .
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Proof. Recall that the action of ∆ by conjugation preserves Div(∆). In other words, for every x ∈
Div(∆), there is y ∈ Div(∆) such that x∆ = ∆y. Let xε11 x

ε2
2 · · ·xεkk , with xi ∈ Div(∆) for all i, and

εi ∈ {±1} for all i, be a word representing g. We claim that, taking m = |{i | εi = −1}|, we have
∆mg ∈ M . We argue by induction on m. If m = 0 then g = ∆0g ∈ M . Assume that m ≥ 1. Let
i1 be the smallest integer in {1, 2, . . . , k} such that εi = −1. Using the above observation, we have
∆m−1x1x2 · · ·xi1−1x

−1
i1

= y1y2 · · · yi1−1y
−1
i1

∆m−1, where we successively moved the m − 1 copies of ∆
to the right, and the yi's are still divisors of ∆. We thus have

∆mxε11 x
ε2
2 · · ·xεkk = ∆y1y2 · · · yi1−1y

−1
i1

∆m−1x
εi1+1

i1+1 · · ·xεkk
= z1z2 · · · zi1−1︸ ︷︷ ︸

∈M

∆y−1
i1−1︸ ︷︷ ︸

∈Div(∆)

∆m−1x
εi1+1

i1+1 · · ·xεkk︸ ︷︷ ︸
∈M by induction

∈M,

which concludes the proof.

Set M−1 := {x−1 | x ∈ M} ⊆ G(M). Exactly the same proof as the one above (swapping the
roles of positive and negative exponents) shows that there is m′ ≥ 0 such that ∆−m′

g ∈ M−1. In
particular, since M ∩M−1 = {1} because a Garside monoid has no intertible element distinct from 1,
we get the existence of m′ ≥ 0 such that ∆m′

g ∈ M−1\{1} and hence ∆kg /∈ M for all k ≥ m′ ≥ 0.
Using this observation together with the lemma above, we conclude that, for all g ∈ G(M), the set
{i ∈ Z | ∆ig ∈M} has a minimal element, denoted −m(g). We thus have

g = ∆m(g)x,

with x ∈M .
The proof of Lemma 1.5.7 gives an algorithm to write any word in Div(∆)∪Div(∆)−1 in the form

∆−mx for some x ∈M . The obtained m is not necessarily minimal, but we still kip this algorithm as
�rst step, and will possibly get rid of super�uous copies of ∆ afterwards.

Secondly, we de�ne a normal form of x ∈ M as follows. If x ̸= 1, set x1 := gcd(x,∆) (left-
gcd). By cancellativity, there is a uniquely de�ned x′1 ∈ M such that x1x′1 = x. If y ̸= 1, then set
x2 := gcd(x′1,∆). There is then a uniquely de�ned x′2 ∈ M such that x1x2x′2 = x. Iterating yields a
normal form x1x2 · · ·xk for x with all the factors in Div(∆). We call this the left-greedy normal form

of x ∈M .

Proposition 1.5.8 ((Charney) Local property of the normal form). Let x ∈ M and x = x1x2 · · ·xk
be a decomposition of x as a product of elements of Div(∆). Then x1x2 · · ·xk is the left-greedy normal

form of x if and only if, for all i = 1, . . . , k − 1, we have gcd(∆, xixi+1) = xi.

Proof. For simplicity, given x ∈M , we write α(x) := gcd(x,∆) (left-gcd). We shall �rst show that for
all x, y ∈M , we have the (important) equality

α(xy) = α(xα(y)). (1.5.3)

Let x = a1a2 · · · ak be a decomposition of x as a product of simples (all distinct from 1). We proceed
by induction on k. If k = 0 then we have x = 1 hence we simply get α(y) = α(y) which holds true.
Hence assume that k ≥ 1. Since a1 ∈ Div(∆), we have a1 ≤ α(xy). Let u ∈M such that xy = α(xy)u
and b ∈ Div(∆) such that α(xy) = a1b. We have

a1a2 · · · aky = α(xy)u = a1bu
12



from what, by left-cancellativity, letting x′ := a2 · · · ak, we deduce that x′y = a2 · · · aky = bu. By
induction we have that α(x′y) = α(x′α(y)), hence b ≤ x′α(y), hence

α(xy) = a1b1 ≤ a1x
′α(y) = xα(y),

yielding α(xy) ≤ α(xα(y)).
Since xy = xα(y)z for some z ∈M , it is clear that α(xα(y)) ≤ α(xy). This establishes (1.5.3).
We now prove the stated equivalence. Assume that x = x1x2 · · ·xk is the left-greedy normal form

of x. We have

xi = gcd(xixi+1 · · ·xk,∆) = α(xixi+1 · · ·xk) =︸︷︷︸
(1.5.3)

= α(xiα(xi+1 · · ·xk)) = α(xixi+1) = gcd(xixi+1,∆).

Conversely, assume that x = x1x2 · · ·xk is a decomposition of x where all factors are nontrivial simple el-
ements, and assume that gcd(xixi+1,∆) = xi for all i = 1, 2, . . . , k−1. We show that α(xixi+1 · · ·xk) =
xi by decreasing induction on i. We have α(xk) = xk and α(xk−1xk) = gcd(xk−1xk,∆) = xk−1. Now
assume that i < k − 1. We have

α(xixi+1 · · ·xk) =︸︷︷︸
(1.5.3)

α(xiα(xi+1 · · ·xk)) = α(xixi+1) = gcd(xixi+1,∆) = xi,

which concludes the proof.

How to calculate the left-greedy normal form of an element of M

� Step 1: write g ∈ G(M) in the form ∆mx where m ≤ 0 and x ∈ M : the algorithm is given in
the proof of Lemma 1.5.7. Note that the obtained m is not necessarily m(g).

� Step 2: calculate the left-greedy normal form of x ∈ M . Thanks to the equality (1.5.3), it is
enough to be able to calculate α(xy) for x, y ∈ Div(∆). Indeed, given x ∈M and a decomposition
x = x1x2 · · ·xk into a product of simples, we wish to calculate α(x). By repeated applications
of (1.5.3) we have

α(x1x2 · · ·xk) = α(x1α(x2α(x3α(· · ·α(xk−2α(xk−1α(xk))) · · · ))))

and α(xk) = xk. Thus we need to calculate y := α(xk−1xk) ∈ Div(∆), then we need to calculate
α(xk−2y) ∈ Div(∆), etc., and at each step we need to perform a calculation of the form α(uv)
with u, v ∈ Div(∆).

Lemma 1.5.9. Let x, y ∈ Div(∆). Let x := x−1∆ ∈ Div(∆). Let z := gcd(x, y). Then

α(xy) = xz.

Proof. We have xx = ∆ and z ≤ x, hence xz ∈ Div(∆). Moreover, since z ≤ y, we have
xz ≤ xy, hence xz ≤ α(xy). Hence there is z′ ∈ Div(∆) such that xzz′ = α(xy). It follows
that zz′ ∈ Div(∆), and by cancellativity, zz′ ≤ y, forcing z′ = 1 since z = gcd(y,∆). Hence
α(xy) = xz.

This allows one to calculate α(x). On then calculates x′ := α(x)−1x, and goes on calculating
α(x′), and so on.

13



De�nition 1.5.10. Let x, y ∈ Div(∆). We say that the product x·y is left-weighted if α(xy) = x.

Remark 1.5.11. The above algorithm to calculate the left-greedy normal form can be optimized.
Namely, given any decomposition x = x1x2 · · ·xk as a product of simples, one can show that the
following algorithm gives the left-greedy normal form: take any two successive pairs of factors,
and make it left-weighted. If the second factor becomes trivial, remove it. Repeat until the
process terminates.

� Step 3: With Steps 1 and 2, we can write any g ∈ G(M) in the form ∆mx1x2 · · ·xk for some
m ≥ 0 and x ∈ M , with x having a left-greedy normal form x1x2 · · ·xk. The exponent m may
not be equal to m(g). But powers of ∆ may be cancelled by �rst factors of the left-greedy
normal form equal to ∆. Namely, let i be the smallest positive integer such that xi ̸= ∆. Then
g = ∆mx1x2 · · ·xk = ∆m+i−1xixi+1 · · ·xk. We then have m − i + 1 = m(g), and xixi+1 · · ·xk
is still in left-greedy normal form. Indeed, we then have ∆−m+i−1g = xixi+1 · · ·xk, and if the
exponent −m + i − 1 was not minimal, this would mean that ∆ ≤ xixi+1 · · ·xk, hence that
xi = gcd(∆, xixi+1 · · ·xk) = ∆, contradicting xi ̸= ∆.

We thus have another solution to the word problem:

Theorem 1.5.12 (Solution to the word problem in a Garside group using normal forms). Let M be

a Garside monoid. Any g ∈ G(M) can be written uniquely in the form ∆mx1x2 · · ·xk, where m ∈ Z,
xi ∈ Div(∆)\{∆, 1} and satisfy α(xixi+1) = xi for all i = 1, . . . , k − 1 (i.e., x1x2 · · ·xk is not a

right-multiple of ∆, and is a left-greedy normal form).

It can be shown that this solution is much more e�cient from an algorithmical point of view than
the one given in Theorem 1.5.6; moreover, it yields a normal form for every element in G(M), which
is not the case with the aforementioned solution.

1.6 Criteria

De�nition 1.6.1. Let ⟨ S | R⟩ be a presentation of a monoidM . We say that the presentation ⟨ S | R⟩
is right-complemented if in R

� there is no relation of the form u = 1 for u a nonmepty word in S∗,

� there is no relation of the form sa = sb with s ∈ S and at least one word among a and b is
nonempty,

� for s, t ∈ S with s ̸= t, there is at most one relation of the form s · · · = t · · · . One similarly
de�nes left-complemented presentations.

Example 1.6.2. 1. The presentation ⟨ a, b | aba = bab ⟩ of the monoid B+
3 is both left- and right-

complemented.

2. More generally, let n ≥ 2 and consider the positive braid monoid

B+
n =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣ σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n− 1,
σiσj = σjσi for |i− j| > 1.

〉
. (1.6.1)

The presentation above if both left- and right-complemented.
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Given a right-complemented presentation, one can de�ne a partial map θ : S2 −→ S∗ by setting
θ(s, s) = 1 for all s ∈ S, θ(s, t) = a whenever s ̸= t and there is a relation of the form sa = tb in R,
and θ(s, t) = ∅ whenever s ̸= t and there is no relation of the form s · · · = t · · · in R. This partial map
is the syntactic right-complement associated with the right-complemented presentation ⟨ S | R⟩.

One can show the following (see [5, Lemma II.4.6]):

Lemma 1.6.3. Let ⟨S| R⟩ be a right-complemented presentation with syntactic right-complement θ.
There exists a unique (minimal) extension of θ to a partial map still denoted θ : (S∗)2 −→ S∗ such that

θ(s, s) = 1 ∀s ∈ S, (1.6.2)

θ(bc, a) = θ(c, θ(b, a)) ∀a, b, c ∈ S∗, (1.6.3)

θ(a, bc) = θ(a, b)θ(θ(b, a), c) ∀a, b, c ∈ S∗, (1.6.4)

θ(1, a) = a ∀a ∈ S∗, (1.6.5)

θ(a, 1) = 1 ∀a ∈ S∗. (1.6.6)

• • •

• • •

a
b

θ(a, b)

θ(b, a)

c

θ(θ(b, a), c)

θ(c, θ(b, a))

Figure 1.1: Commutative diagram illustrating the relations θ(bc, a) = θ(c, θ(b, a)) and θ(a, bc) =
θ(a, b)θ(θ(b, a), c). Arrows represent elements of the monoid and composition of arrows corre-
sponds to the product in Mop.

De�nition 1.6.4. Let ⟨ S | R⟩ be a right-complemented presentation of a monoid M with syntactic
right-complement θ. We say that ⟨ S | R⟩ satis�es the θ-cube condition holds for the triple (a, b, c) ∈ S∗

if θ(θ(a, b), θ(a, c)) and θ(θ(b, a), θ(b, c)) exist and de�ne words in S∗ that are equivalent under R (if
the two words are equal, we say that the sharp θ-cube condition holds).

De�nition 1.6.5 (Conditional lcm). We say that a left-cancellative (respectively right-cancellative)
monoidM with no nontrivial invertible element admits conditional right-lcms (resp. admits conditional

left-lcms) if any two elements of M that admit a common right-multiple (resp. left-multiple) admit a
common right-lcm (resp. left-lcm).

The following proposition is useful to show that a monoid presentation de�nes a left-cancellative
monoid:

Proposition 1.6.6 (see [5, Proposition II.4.16]). If ⟨S,R⟩ is a right-complemented presentation of a

monoid M with syntactic right-complement θ, and if M is right-Noetherian and the θ-cube condition

holds for every triple of pairwise distinct elements of S, then M is left-cancellative, and admits condi-

tional right-lcms. More precisely, u and v admit a common right-multiple if and only if θ(u, v) exists
and, then, uθ(u, v) = vθ(v, u) represents the right-lcm of these elements.

We also have the following:
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Lemma 1.6.7 (see [5, Lemma II.2.22]). If M is cancellative and admits conditional right-lcms (respec-

tively left-lcms), then any two elements of M that admit a common left-multiple (resp. right-multiple)

admit a right-gcd (resp. left-gcd).

Proof. Let a, b ∈M admitting a common left-multiple, that is, let a′, b′ ∈M such that a′a = b′b. The
elements a′ and b′ then admit a common right-multiple, hence they admit a right-lcm, say a′u = b′v = c,
and c is a left-divisor of a′a = b′b. It follows that there is d ∈ M such that ud = a, vd = b, hence d is
a common right-divisor of a and b.

Now let d′ be a common right-divisor of a and b. There are thus a1, b1 ∈ M such that a1d′ = a,
b1d

′ = b. then a′a1d′ = a′a = b′b = b′b1d
′ hence a′a1 = b′b1. Hence a′a1 is a common right-multiple

of a′ and b′, hence a right-multiple of their right lcm, given by c. Hence there is h′ ∈ M satisfying
a′a1 = ch′ = a′uh′, hence a1 = uh′. We then obtain

ud = a = a1d
′ = uh′d′

implying that d′ is a right-divisor of d. This shows that d is the right-gcd of a and b.

Example 1.6.8. Let B+
3 = ⟨ a, b | aba = bab ⟩. The presentation is right-complemented, with syntactic

right-complement θ de�ned on pairs of distinct atoms by θ(a, b) = ba, θ(b, a) = ab. The sharp θ-cube
condition is vacuously true, hence we obtain another proof that B+

3 is left-cancellative. Moreover, we
have already seen thatB+

3 is an Ore monoid, hence that every pair of distinct elements admits a common
right-multiple. If follows that we have right-lcms in B+

3 , and since the presentation is symmetric we
also have left-lcms. By the lemma above we thus also have left- and right-gcds. Proposition 1.6.6 is
particularly useful to calculate the lcm of pairs of elements. Note that θ(a, b) = ba and θ(b, a) = ab.
For instance, we have

θ(a3, b) = θ(a, θ(a2, b))

We then have

θ(a2, b) = θ(a, θ(a, b)) = θ(a, ba) = θ(a, b)θ(θ(b, a), a) = baθ(ab, a) = baθ(b, 1) = ba,

hence θ(a2, b) = θ(a, ba) = ba. We thus have

θ(a3, b) = θ(a, ba) = ba.

1.7 Examples

Exercise 1.7.1. Explain why the free group F2 on two generators is not a Garside group. Show that
F2 × Z is a Garside group.

Example 1.7.2. Consider the monoid B(I2(m))∗, where m ≥ 2, with m generators x1, x2, . . . , xm
satisfying the relations

x1x2 = x2x3 = · · · = xixi+1 = · · · = xm−1xm = xmx1.

We claim that it is a Garside monoid, with Garside element ∆ = x1x2. Since the de�ning relations
are homogeneous, it has Noetherian divisibility. The above relation shows that the set of left- and
right-divisors of ∆ coincide, and are given by all the xi's, 1, and ∆. The above presentation is right-
complemented and up to reordering the indices, it is symmetric, hence it su�ces to show that the
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monoid is left-cancellative to obtain right-cancellativity for free. Hence let i, j, k be pairwise distinct
integers in {1, 2, . . . ,m}. Considering indices modulo m, we have

θ(θ(xi, xj), θ(xi, xk)) = θ(xi+1, xi+1) = 1 = θ(xj+1, xj+1) = θ(θ(xj , xi), θ(xj , xk)),

hence the sharp θ-cube condition holds true. It follows that the monoid is left-cancellative, and admits
conditional right-lcms. But ∆ acts on the xi's via ∆xi∆

−1 = xi−2, hence every word in the xi's with
k elements is a left divisor of ∆k. This shows that any pair of elements have a common right multiple,
hence right-lcms exist. Since everything is symmetric we also get the existence of left-lcms, and of
right- and left-gcds thanks to Lemma 1.6.7.

Exercise 1.7.3. Let n,m ≥ 2. Consider the monoid

M = ⟨ x1, x2, . . . , xn | x1x2 · · ·xm = x2x3 · · ·xmx1 = · · · = xmx1x2 · · ·xm−1 ⟩,

where the indices are taken modulo n if necessary. Show that M is a Garside monoid. (When n and
m are coprime, the corresponding Garside group G(M) is the knot group of the (n,m)-torus knot).

Example 1.7.4. Consider the monoid M = ⟨ a, b | aba = b2 ⟩. The assignment λ(a) = 1, λ(b) = 2
extends to a function λ : M −→ Z≥0 such that λ(xy) = λ(x) + λ(y) for all x, y ∈ M , hence M
has Noetherian divisibility. The above presentation is right-complemented, and the sharp θ-cube
condition is vacuously true. It is thus left- and right-cancellative, and admits conditional left- and
right-lcms. The element ∆ = b3 is a Garside element in b3: its set of left- (or right-)divisors is given by
{1, a, b, ab, b2, ba, bab, b3}. Every element which can be written as a product of k atoms is a left- and
right-divisor of ∆. Note that ∆ is central here. It follows that every par of elements admits a common
left-multiple and a common right-multiple, hence that we have left- and right-lcms, and also left- and
right-gcds.

Example 1.7.5. Consider the monoidM = ⟨ a, b, c | acb = c2, aca = bc ⟩. We claim thatM is a Garside
monoid. First, setting λ(a) = 1, λ(b) = 2, λ(c) = 3, we get that the relations are homogeneous, hence
that M has Noetherian divisibility. The presentation above is right-complemented. The problem here
is that, working with this presentation, we see that the sharp θ-cube condition does not hold: indeed,
we have θ(θ(a, b), θ(a, c)) = θ(ca, cb) = θ(a, b) = ca, while θ(θ(b, a), θ(b, c)) is not de�ned since θ(b, c)
is not de�ned. We are typically in a situation where we must arti�cially enlarge the set of relations to
be able to successfully check the θ-cube condition. Here we have no relation of the form b · · · = c · · · .
Note that in M , we have

bcca = acaca = acbc = c3,

hence we replace the above presentation by

M = ⟨ a, b, c | acb = c2, aca = bc, bcca = c3 ⟩.

We now check the θ-cube condition. We have

� θ(θ(a, b), θ(a, c)) = θ(ca, cb) = θ(a, b) = ca,

� θ(θ(b, a), θ(b, c)) = θ(c, cca) = θ(1, ca) = ca,

� θ(θ(b, c), θ(b, a)) = θ(cca, c) = θ(ca, 1) = 1,

� θ(θ(c, b), θ(c, a)) = θ(c2, c) = θ(c, 1) = 1,
17



� θ(θ(c, a), θ(c, b)) = θ(c, c2) = θ(1, c) = c,

� θ(θ(a, c), θ(a, b)) = θ(cb, ca) = θ(b, a) = c.

It follows that the sharp θ-cube condition holds, hence that M is left-cancellative, and admits con-
ditional right-lcms. Note that the above presentations of M are not symmetric, hence we cannot
deduce right-cancellativity without further e�ort. The enlarged presentation that we used to show
left-cancellativity is unfortunately not left-complemented. Note that, in M , we have

acaca = acbc = c3 = cacb,

hence we have
M = ⟨ a, b, c | acb = c2, aca = bc, bcca = c3, acaca = cacb ⟩. (1.7.1)

The above presentation is now left-complemented, and can be used to check the sharp θ-cube condition,
which we leave as an exercice. The monoid M is thus right-cancellative, and admits conditional left-
lcms.

Consider the element ∆ = c4. We claim that ∆ is central in M . To show it, it su�ces to show that
x∆ = ∆x for every x ∈ {a, b, c}. For c this is trivial and we have

ac4 = acacbc = acacaca = acbcca = c4a,

bc4 = bc2acb = c4b.

The element c4 is thus central, hence its set of left- and right-divisors coincide since if ∆ = xy, we
have ∆ = yx by cancellativity. Moreover, the de�ning relations show that every atoms left-divides ∆,
hence it is a Garside element in M . Existence of common multiples (and hence lcms, and then gcds)
then follow arguing as in the previous examples.

Exercise 1.7.6. Check that the monoid M from Example 1.7.5 is right-cancellative by checking the
sharp θ-cube condition for the presentation (1.7.1). Identi�fy the left- and right-lcm of the set S =
{a, b, c} of atoms.

In general it might be di�cult to identify a Garside element and check that it satis�es the required
properties. In the following chapter, we develop a method to "lift" an element of a quotient group of
a candidate to be a Garside group with special properties.
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Chapter 2

Interval groups

2.1 Balanced elements

Let G be a group and A ⊆ G a family of elements such that 1 /∈ A and A generates G as a monoid.
For every a ∈ A, let na ∈ Z≥1 Consider the length function ℓA on G attached to this set of generators
A and to the set of weights (na)a∈A, that is, given g ∈ G the integer ℓA(g) is de�ned by

ℓA(g) = min

{
k∑

i=1

nai

∣∣∣∣ g = a1a2 · · · ak, ai ∈ A

}
.

If na = 1 for all a ∈ A, this is simply the length of g with respect to the generating set A (note that
we abuse notation and omit the dependency on (na)a∈A to avoid too heavy notation). De�ne a partial
order ≤A on G by

u ≤A v ⇔ ℓA(u) + ℓA(u
−1v) = ℓA(v).

In other word, we have u ≤A v if there is a word of shortest possible length for v (also called an
A-reduced expression of v) which has an A-reduced expression of u as pre�x. Similarly, one can de�ne
a partial order ≤A,R by

u ≤A v ⇔ ℓA(u) + ℓA(vu
−1) = ℓA(v).

De�nition 2.1.1. Let G,A be as above. We say that an element c ∈ G is balanced if

{g ∈ G | g ≤A c} = {g ∈ G | g ≤A,R c}.

We then denote by Pc the above set.

Example 2.1.2. If G is commutative, then any element g ∈ G is balanced.

Example 2.1.3. More generally, if A is stable by conjugation in G, that is, if gAg‘−1 = A for all
g ∈ A, then the partial orders ≤A and ≤A,R coincide, hence every element of G is balanced.

Example 2.1.4. Consider the symmetric group G = S3, and take for A the set S = {(1, 2), (2, 3)} of
simple transpositions of G. The posets (G,≤A) and (G,≤A,R) are given in the pictures below. The
set of balanced elements of G is given by {1, s1, s2, s1s2s1}.
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2.2 Monoid attached to a balanced element

Let G,A be as in the previous section, and let c ∈ G a balanced element. We de�ne a monoid M(Pc)
generated by a copy {u | u ∈ Pc} of Pc by

M(Pc) = ⟨u, u ∈ Pc | u · v = w if u, v, w ∈ Pc, uv = w and u ≤A w}.

Note that the map φc :M(Pc) −→ G, u 7→ u is a morphism of monoids. It follows that the subset
Pc = {u | u ∈ Pc} ⊆M(Pc) is in one-to-one correspondence with Pc.

Lemma 2.2.1 (Cancellativity with rest in Pc). Let u, v ∈ Pc and a ∈M(Pc). Then

(ua = va ⇒ u = v) and (au = av ⇒ u = v).

Proof. It su�ces to take the images of the equalities in G via the morphism φc : M(Pc) → G, and
then cancel the images of a.

Lemma 2.2.2 (Extension of the length function ℓA to M(Pc) and Noetherian divisibility). The length
function ℓA on G extends to a length function ℓ on M(Pc) via

ℓ(u1 · u2 · · · · · uk) =
k∑

i=1

ℓA(ui).

In particular, the monoid M(Pc) has Noetherian divisibility.

Proof. This is immediate, as the de�ning relations of M(Pc) are homogeneous with respect to the
length function ℓ induced by ℓA on generators.

Lemma 2.2.3. 1. Let a ∈ M(Pc). Assume that ℓ(a) = ℓ(φc(a)) and φc(a) ∈ Pc. Then a = φc(a),
i.e., a ∈ Pc.

2. If a ∈ Pc and b is a left- or right-divisor of a, then b ∈ Pc.

Proof. First note that, for all x ∈M(Pc), we have ℓA(φc(x)) ≤ ℓ(x). It follows that, if ℓ(a) = ℓA(φc(a)),
then for any divisor x of a, we also have ℓ(x) = ℓA(φc(x)).

For the �rst point, we argue by induction on ℓ(a). If ℓ(a) = 0 then a is equal to 1 and the result
is trivial. Hence assume that ℓ(a) > 1. Consider a decomposition a = bs, where s is an atom (that
is, a nontrivial element of M(Pc) which cannot be written as a product of two nontrivial elements
� such an element necessarily lies in Pc). By the above observation we have ℓ(b) = ℓA(φc(b)), and
φc(b) ≤A φc(a). Since φc(a) ∈ Pc, we have φc(b) ∈ Pc as well, hence by induction we have b = φc(b).
Now since φc(a) = φc(b)φc(s) and ℓA(φc(a)) = ℓA(φc(b))+ℓA(φc(s)), we have that φc(a) = φc(b)·φc(s)
is a de�ning relation of M(Pc), from what we derive that

a = bc = φc(b) · φc(s) = φc(a),

which concludes the proof of the �rst point.
Let us show the second point. For any decomposition a = xy, we have ℓA(φc(x)) = ℓ(x) and

ℓA(φc(y)) = ℓ(y) by the observation made ad the beginning of the proof, and hence

ℓA(φc(a)) = ℓ(a) = ℓ(xy) = ℓ(x) + ℓ(y) = ℓA(φc(x)) + ℓA(φc(y)),

from what since φc(a) = φc(x)φc(y) we deduce that φc(x), φc(y) ∈ Pc. We conclude using the �rst
point.
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Proposition 2.2.4 (Lifting the poset (Pc,≤)). The bijection Pc −→ Pc, u 7→ u induces an isomor-

phism of posets between (Pc,≤A) and (Pc,≤).

Proof. If u ≤A v, then w := u−1v satis�es ℓA(u) + ℓA(w) = ℓA(v), hence w lies in Pc and we have a
de�ning relation u · w = v of M(Pc); in particular, we have u ≤ v.

Conversely, assume that u, v ∈ Pc are such that u ≤ v. Then there is a ∈M(Pc) such that ua = v.
By Lemma 2.2.3, we have a ∈ Pc, hence a = w for some w ∈ Pc. We thus have ℓ(x) = ℓ(φc(x)) for
every x ∈ {u, v, w}, and since ℓ(v) = ℓ(u) + ℓ(w) we deduce that ℓA(u) + ℓA(w) = ℓA(v), hence that
u ≤A v.

Proposition 2.2.5. We have

1. (Pc,≤A) is a lattice if and only if (Pc,≤A,R) is a lattice,

2. If (Pc,≤A) (and hence also (Pc,≤A,R)) is a lattice, assume that X ⊆M(Pc) is a subset such that

(a) The length function ℓ is bounded on X, that is, there is M > 0 such that ℓ(x) ≤ M for all

x ∈ X.

(b) for all x ∈ X, every left-divisor of x also lies in X,

(c) for every pair s, t of atoms ofM(Pc) and every x ∈ X such that xs, xt ∈ X, we have xz ∈ X,

where z is the unique element of Pc such that φc(z) is the right lcm of φc(s) and φc(t).

Then there is y ∈M(Pc) such that X = {a ∈M(Pc) | a ≤ y}.

Proof. The �rst point follows from the observation that, for x, y ∈ Pc, we have x ≤A y if and only if
y ≤A,R x, where x = x−1c, y = y−1c.

For the second point, let y ∈ X be an element of maximal length in X. Assume for contradiction
that there is an element of X which is not a left-divisor of y. We can thus �nd x ∈ X and s an atom
of M(Pc) such that x ≤ y but xs ̸≤ y, xs ∈ X. Choose such an x of maximal length. Since y has
maximal length among elements in X, we have ℓ(x) < ℓ(y). In particular, we have x < y, hence there
is an atom t such that xt ≤ y. We have xs, xt ∈ X, hence by assumption we have xz ∈ X, where z
is the lift in Pc of the right-lcm of φc(s) and φc(t) in Pc. Note that, since xz is a right-multiple of xs
which does not left-divide y, it cannot be a left-divisor of y. But xt left-divides y, hence we can �nd
u ∈ [xt, xz] and s′ an atom such that us′ ∈ [xt, xz], u ≤ y, us′ ̸≤ y. We have us′ ∈ X, us′ ̸≤ y, and
ℓ(x) < ℓ(us′), contradicting the choice of x as being maximal in X and not dividing y.

Corollary 2.2.6. Assume that (Pc,≤A) is a lattice. Let x, y ∈ Pc. There is a unique z ∈ Pc such

that z ≤ y and xz ∈ Pc, and such that z is maximal with respect to ≤ for these properties.

Proof. This is obtained by applying point (2) of Proposition 2.2.5 to the set X of elements u ∈M(Pc)
such that u ≤ y and xu ∈ Pc. The length function is bounded on X since X ⊆ Pc and ℓ(x) ≤ ℓ(c)
for all x ∈ Pc. Hence condition (a) is ful�lled. If u ∈ X and v ≤ u, then v ≤ y and xv ≤ xu, hence
by point (2) of Lemma 2.2.3 we have xv ∈ Pc. This yields condition (b). Condition (c) follows from
the lattice property of (Pc,≤) and the isomorphism of posets (Pc,≤A) ∼= (Pc,≤): if s, t are atoms
such that u, us, ut all lie in X, then u, us, ut ≤ y and us, ut ∈ Pc. By cancellativity with rest in
Pc (Lemma 2.2.1), we thus have that u, us, ut ≤ x, where x is the unique element of Pc such that
xx = c. Writing x = uu′, we obtain that s, t ≤ u′. We thus obtain (see Proposition 2.2.4) that
φc(s), φc(t) ≤A φc(u

′), hence v ≤ φc(u
′), where v is the right-lcm of φc(s), φc(t). We thus have v ≤ u′

again by Proposition 2.2.4, hence uv ≤ uu′ = x, which yields uv ∈ Pc since divisors of elements of Pc21



are again in Pc. But since us, ut ≤ y, writing y = uy′ we have s, t ≤ y′, from what we deduce that
v ≤ y′. We thus have uv ≤ uy′ = y, hence uv ∈ X.

Assume that (Pc,≤A) is a lattice. We de�ne two applications

α2, ω2 : Pc ×Pc −→ Pc

as follows: we set α2(x, y) = xz, where z is as in Corollary 2.2.6. Since z ≤ y, there is a ∈ Pc such
that za = y. By cancellativity with rest in Pc (Lemma 2.2.1), the element a is well-de�ned. We set
ω2(x, y) = a. Note that

xy = α2(x, y)ω2(x, y).

The aim now is to extend α2, ω2 into two applications

α :M(Pc) −→ Pc, ω :M(Pc) −→M(Pc),

in such a way that, for x, y ∈ Pc, we have α(xy) = α2(x, y) and ω(xy) = ω2(x, y). Roughly speaking,
the element α(x) will be the greatest left-divisor of x lying in Pc, and ω(x, y) will be the unique element
in M(Pc) such that x = α(x)ω(x). It is not clear that α(x) is well-de�ned at this stage, and the same
can be observed for ω(x, y): at this stage we only have cancellativity when the rest is in Pc.

Lemma 2.2.7. We begin by showing that, if a, b, x, ab ∈ Pc, then

1. α2(ab, x) = α2(a, α2(b, x)),

2. ω(ab, x) = ω2(a, α2(b, x))ω2(b, x).

Proof. We show 1. By de�nition of α2, we have that α2(ab, x) = abu, where u is maximal such that
u ≤ x and abu ∈ Pc. In the same way α2(b, x) = bv, where v is maximal such that v ≤ x and bv ∈ Pc.
Since u ≤ x and bu ∈ Pc, by maximality of v we have u ≤ v, hence bu ≤ bv = α2(b, x). We thus have
abu ≤ aα2(b, x), hence abu ≤ α2(a, α2(b, x)). Hence there is w ∈ Pc such that abuw = α2(a, α2(b, x)).
But since α2(b, x) = bv, we deduce that abuw ≤ abv, hence by cancellativity with rest in Pc we obtain
that uw ≤ v ≤ x. Since uw ∈ Pc we must have w = 1, otherwise it contradicts the maximality of u.
We thus have

α2(a, α2(b, x)) = abu = α2(ab, x),

which concludes the proof of the �rst point.
We now show the second point. By the �rst point and the de�nition of ω2, multiplying both sides

of the equality in point (2) by α2(ab, c) on the left yields abx. To conclude the proof, by cancellativity
with rest in Pc it su�ces to show that the right hand side of (2) is in Pc. We have α2(b, x) = bv with
v ∈ Pc, and x = vω2(b, x). Since ab lies in Pc, we get that ω2(a, bv) is a right-divisor of v, hence

x = vω2(b, x) ≥R ω2(a, bv)ω2(b, x) = ω2(a, α2(b, x))ω2(b, x),

which concludes the proof since a divisor of an element of Pc is also in Pc.

Proposition 2.2.8. Assume that (Pc,≤) is a lattice. There are uniquely de�ned applications α :
M(Pc) −→ Pc, ω :M(Pc) −→M(Pc) such that

1. for x, y ∈ Pc, we have α(xy) = α2(x, y) and ω(xy) = ω2(x, y),
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2. for all x, y ∈M(Pc), we have α(xy) = α(xα(y)),1

3. for all x, y ∈M(Pc), we have ω(xy) = ω(xα(y))ω(y).

Moreover, for x ∈M(Pc), we have that α(x) is the greatest left-divisor of x lying in Pc.

Proof. We identify M(Pc) with sequences (a1, a2, . . . , ak) of elements of Pc modulo the relation

(a1, . . . , ai, ai+1, ai+2, . . . , ak) ∼ (a1, . . . , b, ai+2, . . . , ak)

whenever b = aiai+1 is a de�ning relation of M(Pc).
We de�ne α and ω inductively as follows: we set α(()) = 1, α(a) = a whenever a ∈ Pc, and

whenever k ≥ 2,
α(a1, a2, . . . , ak) = α2(a1, α(a2, . . . , ak)).

For ω, we set ω(()) = 1 = ω(a) for all a ∈ Pc, and

ω(a1, a2, . . . , ak) = ω(a1, α((a2, . . . , ak))ω((a2, . . . , ak)).

First, we need to verify that these applications are well-de�ned onM(Pc), that is, that these de�nitions
are compatible with the equivalence relation ∼. This will be shown by induction on the number of
terms in the sequence.

To see that the de�nition of ω and α is compatible with the equivalence relation ∼, by induction
on the number of terms in a sequence we can assume that the relation is applied at the beginning of
a sequence (a1, a2, . . . , ak) of elements of Pc. Hence assume that a1a2 = b is a de�ning relation of
M(Pc). On one hand we have

α(a1, a2, . . . , ak) = α2(a1, α(a2, . . . , ak)),

on the other hand we have

α(b, a3, . . . , ak) = α2(a1a2, a3, . . . , ak) = α2(a1a2, α(a3, . . . , ak)

By point 1 of Lemma 2.2.7 above we thus have α(b, a3, . . . , ak) = α(a1, a2, . . . , ak).
Similarly, on one hand we have

ω(a1, a2, . . . , ak) = ω2(a1, α(a2, . . . , ak))ω(a2, . . . , ak) = ω2(a1, α(a2, . . . , ak))ω2(a2, α(a3, . . . , ak))ω(a3, . . . , ak),

and
ω(b, a3, . . . , ak) = ω2(a1a2, a3, . . . , ak) = ω2(a1a2, α(a3, . . . , ak))ω(a3, . . . , ak).

It thus su�ces to show that

ω2(a1, α(a2, . . . , ak))ω2(a2, α(a3, . . . , ak)) = ω2(a1a2, α(a3, . . . , ak)),

while holds true by combining the de�nition of α and point 2 of Lemma 2.2.7 above.
We claim that α(x) is the greatest left-divisor of x lying in Pc. We �rst show that α(x) ≤ x.

This is achieved by induction on the length of a sequence (x1, x2, · · · , xk) such that xi ∈ Pc and
x1x2 · · ·xk = x. If k = 0 or k = 1 then α(x) = x. Assume that k > 1. We have

α(x) = α(x1, x2, . . . , xk) = α2(x1, α(x2, . . . , xk)).

1Note that we recover (1.5.3).
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But
α2(x1, α(x2, . . . , xk)) ≤ x1α(x2, . . . , xk) ≤ x1x2 · · ·xk,

where the �rst divisibility relation holds by de�nition of α2, and the second one by induction. We now
show that any element of Pc left-dividing x is also a left-divisor of α(x). Let a ∈ Pc be a left-divisor of
x. Let (a, a2, . . . , ak) be a sequence of elements of Pc whose product is equal to x. Then by de�nition
of α we have

α(a, a2, . . . , ak) = α2(a, α2(a2, . . . , ak))

which is a right-multiple of a.
The fact that α(xy) = α(xα(y)) follows from an iterated application of the de�nition of α on

sequences, and the fact that x = α(x)ω(x) is easy to show by induction on the number of terms in a
sequence. The equality ω(xy) = ω(xα(y))ω(y) is obtained by induction on the number of terms of a
sequence for x.

Proposition 2.2.9. The following holds:

1. For all x ∈M(Pc), we have x = α(x)ω(x),

2. The monoid M(Pc) is cancellative.

Proof. Let x ∈ M(Pc). Then α(x) ≤ y for some y ∈ M(Pc). We claim that y is uniquely de�ned,
equal to ω(x). We show it by induction on ℓ(x). If ℓ(x) = 0 then x = α(x) = y = 1. Hence assume
that ℓ(x) > 0. We have

ω(x) = ω(α(x)y) = ω(α(x)α(y))ω(y),

but ω(α(x)α(y)) = ω2(α(x), α(y)) and α(α(x)α(y)) = α(α(x)y) = α(x), yielding ω(α(x)α(y)) = α(y).
We thus have ω(x) = α(y)ω(y) and by induction on length we have y = α(y)ω(y). We deduce that
ω(x) = y.

We now show that M(Pc) is left-cancellative (the proof of right-cancellativity is similar). Let
a, b, c ∈ M(Pc) such that ab = ac. It su�ces to show it for a ∈ Pc. We have α(ab) = ax for some
x ≤ b, x ∈ Pc, hence there is b′ ∈ M(Pc) such that b = xb′. Similarly, we have α(ac) = ay for some
y ≤ c, y ∈ Pc, hence there is c′ ∈ M(Pc) such that yc′ = c. But by cancellativity with rest in Pc we
have y = x. But we also have

α(ab)b′ = ab = α(ab)c′,

forwing b′ = c′ = ω(ab). We thus have b = xb′ = yc′ = c, which concludes the proof.

Theorem 2.2.10. Assume that (Pc,≤A) is a lattice. Then the monoid M(Pc) is a Garside monoid.

Proof. We already know that M(Pc) is left- and right-cancellative (Proposition 2.2.9), that it has
Noetherian divisibility (Lemma 2.2.2), and that the lift ∆ := c of c in M(Pc) is a Garside element
(Proposition 2.2.4).

The only point which remains to be checked is that M(Pc) has lcm's and gcd's. Let us show that
M(Pc) has gcd's. Hence let x, y ∈M(Pc). Let

X := {a ∈M(Pc) | a ≤ x, a ≤ y}.

We show that X satis�es the assumtions of Proposition 2.2.5(2). If z ∈ X and s, t at atoms such that
zs, zt ∈ X, then we have zs, zt ≤ x. Writing x = zz′, by cancellativity we have s, t ≤ z′. We then
have s, t ≤ α(z′) and we deduce that the lift u of the right lcm of s and t satis�es u ≤ α(z′) ≤ z′.
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Hence zu ∈ X (since the same property but with the roles of x and y swapped must be true), and we
conclude using Proposition 2.2.5(2).

We now show the existence of lcm's. We �rst show that for every x ∈ Pc, there is x′ ∈ Pc such
that x∆ = ∆x′. Indeed, let y such that xy = ∆. Since y is also a left-divisor of ∆, there is x′ such
that yx′ = ∆. We then have x∆ = xyx′ = ∆x′. It follows that ∆ has a power ∆n which is central
in M(Pc). It follows that every element from M(Pc) is a left-divisor of a power of ∆, hence x and y
have a common right-multiple. To conclude the proof, it su�ces to take the gcd of the right-common
multiples of x and y.
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Chapter 3

Examples

3.1 Artin groups of spherical type: classical Garside structure

3.1.1 Coxeter groups

Let S be a �nite set. For s, t ∈ S, let ms,t ∈ Z≥1 ∪ {+∞} such that

� ms,s = 1, for all s ∈ S,

� ms,t = mt,s ≥ 2 for all s, t ∈ S.

To this data, one attaches a group W de�ned by the presentation

W = ⟨ S | (st)ms,t = 1, ∀s, t ∈ S ⟩.

Note that the fact that ms,s = 1 tells us that s2 = 1 for all s ∈ S. We can thus rewrite the presentation
as

W =

〈
S

∣∣∣∣ s2 = 1, ∀s ∈ S,
sts · · ·︸ ︷︷ ︸

ms,t factors

= tst · · ·︸ ︷︷ ︸
mt,s factors

, ∀s ̸= t ∈ S.

〉

De�nition 3.1.1. A data (ms,t)s,t∈S as above is a Coxeter matrix. A group W as above is a Coxeter

group. A pair (W,S) as above is a Coxeter system.

Example 3.1.2. Let W = Sn, and let S = {s1, s2, . . . , sn−1}, where si = (i, i + 1) are the simple
transpositions. They satisfy the relations

s2i = 1 ∀i = 1, . . . , n− 1,

sisj = sjsi if |i− j| > 1,

sisi+1si = si+1sisi+1 ∀i = 1, . . . , n− 2.

These are the de�ning relations of a Coxeter group W ′ and since the simple transpositions generate
Sn, there is a surjective group homomorphismW ′ ↠W . One can show (see Exercise 3.1.3 below) that
this homomorphism is an isomorphism, which shows that the symmetric group is a Coxeter group.

Exercise 3.1.3. Show that the map W ′ ↠ Sn from Example 3.1.2 above is an isomorphism. Hint:
show by induction on n that |W ′| ≤ n!.
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De�nition 3.1.4. Let (W,S) be a Coxeter system. The length function ℓS :W −→ Z≥0 with respect
to the generating set S is the (classical) length function on W . Given s1, s2, . . . , sk ∈ S, we say that
the word s1s2 · · · sk ∈ S∗ is a reduced expression for an element w ∈W if k = ℓS(w) and in W we have
the equality w = s1s2 · · · sk.

The following fundamental theorem gives various characterizations of Coxeter groups:

Theorem 3.1.5 (Characterizations of Coxeter groups). Let W be a group generated by a �nite set S
of involutions. Let R :=

⋃
w∈W wSw−1 denote all the conjugates of the elements of S. The following

are equivalent:

1. (W,S) is a Coxeter system,

2. (Exchange Lemma) if s1s2 · · · sk is a reduced expression of w ∈ W and s ∈ S is such that

ℓS(sw) ≤ ℓS(w), then there is i ∈ {1, 2, . . . , k} such that sw = s1 · · · si−1ŝisi+1 · · · sk, where the

hat denotes omission,

3. There exists a function N :W −→ P(R) satisfying the following two properties,

(a) N(s) = {s} for all s ∈ S,

(b) N(xy) = N(x)
·
+ xN(y)x−1 for all x, y ∈W , where

·
+ denotes symmetric di�erence,

4. (Mastumoto's Lemma) For w ∈ W , s ∈ S, we have ℓS(sw) ̸= ℓS(w), and any two reduced

expressions for w can be transformed one into the other using a sequence of braid relations, that

is, relations of the form

st · · ·︸ ︷︷ ︸
m factors

= ts · · ·︸ ︷︷ ︸
m factors

,

where s ̸= t ∈ S and m denotes the order of st in W .

Proof. We do not give a full proof, but leave some implications as exercices.
(1) ⇒ (3). De�ne a map N : S∗ −→ P(R) as follows by induction on the length of a word. Set

N(s) = {s} for s ∈ S and given any word s1s2 · · · sk ∈ S∗, set N(s1s2 · · · sk) := {s1}
·
+s1N(s2 · · · sk)s1.

We thus have

N(s1s2 · · · sk) = {s1}
·
+ {s1s2s1}

·
+ {s1s2s3s2s1}

·
+ . . .

·
+ {s1s2 · · · sksk−1 · · · s2s1}.

If x, y ∈ S∗, it follows that N(xy) = N(x)
·
+ xN(y)x−1. It remains to show that N is invariant under

the de�ning relations of W . Assume that x = w1w2 ∈ S∗ and let x′ = w1ssw2. Then we have

N(x′) = N(w1)
·
+ w1N(ssw2)w

−1
1 = N(w1)

·
+ w1(N(ss) + ssN(w2)ss

−1)w−1
1 .

But N(ss) = {s}
·
+ {s} = ∅ and ss = 1, hence

N(x′) = N(w1)
·
+ w1N(w2)w

−1
1 = N(w1w2) = N(x).

Now assume that st · · · = ts · · · is a de�ning relation ofW , with s ̸= t ∈ S. In particular both sides have
ms,t factors. Let x = w1st · · ·w2 and x′ = w2ts · · ·w2. We wish to show as above that N(x) = N(x′).
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Decomposing N(x′) as above, we see that it su�ces to show that N(st · · · ) = N(ts · · · ). This holds
true as, if ms,t is even, we have

N(st · · · ) = {s}
·
+ {sts} · · ·

·
+ {st · · · s}

·
+ {ts · · · t}

·
+ · · ·

·
+ {tst}

·
+ {t},

where the two middle terms have ms,t − 1 factors. This is symmetric in s and t, hence N(st · · · ) =
N(ts · · · ). Now if ms,t is odd, we have

N(st · · · ) = {s}
·
+ {sts} · · ·

·
+ {st · · · s︸ ︷︷ ︸

=ts···t

}
·
+ · · ·

·
+ {tst}

·
+ {t},

where the middle term has ms,t factors, hence is equal to either side of the de�ning relation. Again
this is symmetric in s and t.

We lave the other implications as exercises (see Exercises 3.1.7 to 3.1.9 below).

Exercise 3.1.6. Deduce from Theorem 3.1.5 that every Coxeter group has a solvable word problem.

Exercise 3.1.7. Show the implication (3) ⇒ (2) of Theorem 3.1.5. To this end

1. First show that |N(w)| = ℓ(w),

2. Then show that ℓ(sw) ≤ (w) ⇒ ℓ(sw) < ℓ(w),

3. Conclude.

Exercise 3.1.8. Show the implication (2) ⇒ (4) of Theorem 3.1.5 by showing the following: let
f : S∗ −→M be a morphism of monoids, where M is a monoid. Show that if f(st · · · ) = f(ts · · · ) for
every de�ning relation of W , then f is constant on reduced expressions of elements of W . Show it by
induction on the length of a reduced expression.

Exercise 3.1.9. Show the implication (4) ⇒ (1) of Theorem 3.1.5 by showing the following: if G is a
group and f : S∗ −→ G is a morphism of monoids such that f(s)2 = 1 for all s ∈ S and f is constant
on braid relations, then f factors through a group morphism W −→ G.

Exercise 3.1.10. Show that the symmetric group Sn is a Coxeter group by considering the set S
of simple transposition, the set R of transpositions, and showing that the function N : W −→ P(R)
de�ned by

N(w) = {(i, j) | i < j and w−1(i) > w−1(j)}

satis�es the properties from point (3) of Theorem 3.1.5.

Exercise 3.1.11. Let (W,S) be a Coxeter system and let I ⊆ S. Let WI be the subgroup of W
generated by I and let ℓI :WI −→ Z≥0 be the length function with respect to I.

1. Show that, for w ∈WI , we have ℓI(w) = ℓS(w),

2. Show that (WI , I) is a Coxeter system,

3. Show that if w = s1s2 · · · sk is a reduced expression of w ∈WI , then si ∈ I for all i = 1, . . . , k.

Proposition 3.1.12. Let (W,S) be a Coxeter system. Let w0 ∈W . The following are equivalent

1. We have ℓS(sw0) < ℓS(w0) for all s ∈ S,
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2. We have ℓS(w) + ℓS(w
−1w0) = ℓS(w0) for all w ∈W ,

3. w0 has maximal length among all elements of W . Moreover, if any of the above conditions is

satis�es, then w0 is unique and involutive, and W is �nite.

Proof. It is clear that (ii) implies (iii) and that (iii) implies (i).
Let us show that (i) implies (ii). We argue by induction on ℓs(w). For w = 1 the result is clear,

hence assume that ℓS(w) > 1. Let s ∈ S such that ℓS(sw) < ℓS(w). Setting v = sw we then have
w = sv and ℓS(w) = ℓS(s)+ℓS(v) = ℓS(v)+1. By induction, we have ℓS(v)+ℓS(v−1w0) = ℓS(w0). Let
s1s2 · · · sℓsℓ+1 · · · sk be a reduced expression of w0, where s1s2 · · · sℓ is a reduced expression of v and
sℓ+1 · · · sk is a reduced expression of v−1w0. By (1) we have that ℓS(sw0) < ℓS(w0). By the exchange
lemma, there is i ∈ {1, 2, . . . , k} such that sw0 = s1 · · · ŝi · · · sk. If i ≤ ℓ, then ℓS(sv) = ℓS(v) − 1,
a contradiction, since sv = w and ℓS(w) = ℓS(v) + 1. Hence writing v′ = sℓ+1 · · · ŝi · · · sk, we have
that ss1 · · · sℓsℓ+1 · · · ŝi · · · sk is a reduced expression of w0, and it begins with a reduced expression
ss1 · · · sk of sv = w. We thus have ℓS(w) + ℓS(w

−1w0) = ℓS(w0), as expected.
Let w0 be an element satisfying condition (ii). Then ℓS(w2

0) = ℓS(w0)− ℓS(w0) = 0, hence w2
0 = 1.

If w′
0 also satis�es condition (ii), then ℓS(w0w

′
0) = ℓS(w0) − ℓS(w

′
0), which is zero by condition (iii).

Hence w0w
′
0 = 1, hence w′

0 = w−1
0 = w0.

Finally, if (i) is satis�ed, then ℓS(sw0) < ℓS(w0) for all s ∈ S. It follows that S ⊆ N(w0) which is
�nite, hence S is �nite, and by (iii) we get that W is �nite.

Corollary 3.1.13. Let (W,S) be a �nite Coxeter group and w0 be its unique element of maximal

length. Then

W = {w ∈W | w ≤S w0} = {w ∈W | w ≤S,R w0}.

In particular, w0 is balanced.

Proof. The fact that W = {w ∈W | w ≤S w0} is point (ii) of Proposition 3.1.12. Since v ≤S u if and
only if v−1 ≤S,R u−1, and w0 is involutive, we get that {w ∈ W | w ≤S,R w0} = W−1 = W , which
concludes the proof.

Proposition 3.1.14. Let (W,S) be a Coxeter group partially order with the order ≤S (called the left

weak order). Then any pair x, y or elements of W admits a meet, that is, an element z ∈W such that

1. z ≤S x and z ≤S y,

2. if w ∈W satis�es w ≤S x and w ≤S y, then w ≤ z.

Such an element is of course unique.

Proof. The proof is by induction on ℓ(x). If ℓ(x) = 0, then x = 1, and z = 1 satis�es the two points
above.

Hence assume that ℓ(x) > 0. If there is no w ∈ W\{1} such that w ≤S x and w ≤S y, then z = 1
satis�es the two assumptions. Otherwise, there is w ̸= 1 such that w ≤S x, w ≤S y. Let z be such an
element of maximal length, and let w be another element satisfying w ≤S y and w ≤S x. We have to
show that w ≤S z.

Firstly, assume that s ≤S x and s ≤S y. Then we claim that s ≤S z. To this end, it su�ces to
consider two reduced decompositions s1s2 · · · sks′1 · · · s′ℓ and s1s2 · · · sks′′1 · · · s′′m of x and y respectively,
such that s1s2 · · · sk is a reduced decomposition of z. If s ̸≤S z, then by the exchange condition we
have that ss1 · · · sks′1 · · · ŝ′i · · · s′ℓ is a reduced expression of x and ss1 · · · sks′′1 · · · ŝ′′j · · · s′′m is a reduced
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decomposition of y. But then ss1 · · · sk is reduced, hence ℓS(sz) = ℓS(z)+1 and sz ≤ x, y, contradicting
the maximality of the length of z. Hence s ≤S z.

If w = 1 then w ≤S z, hence assume that w ̸= 1. There is s ∈ S such that ℓS(sw) < ℓS(w). We
then have sw ≤S sx, sy and ℓS(sx) = ℓS(x) − 1. By induction, there is u ∈ W such that u ≤S sx, sy
and v ≤S u for all v ∈ W such that v ≤S sx and v ≤S sy. We thus have sw ≤ u. Now by the
previous paragraph, we also have s ≤S z. Hence we also have sz ≤S sx, sy, and hence sz ≤S u. Now
since u ≤S sx, we have su ≤S x, and similarly we have su ≤S y. Hence ℓS(su) ≤ ℓS(z). But we also
showed that sz ≤S u. We hence have ℓS(sz) = ℓS(z)− 1 ≥ ℓS(su)− 1 = ℓS(u), forcing sz = u. Hence
sw ≤S sz, which implies that w ≤S z.

Corollary 3.1.15. Assume that (W,S) is �nite. Then (W,≤S) is a lattice.

Proof. By Proposition 3.1.14, we have the existence of meets. Using Proposition 3.1.12, we deduce the
existence of joins: every pair x, y of elements ofW admits at least one z ∈W such that x ≤S z, y ≤S z
(namely z = w0), and for the join, just take the meet of all such z's.

Corollary 3.1.16. Let G =W , A = S, c = w0. Then M(Pc) is a Garside monoid.

Proof. This is an immediate consequence of Corollaries 3.1.15, 3.1.13 and Theorem 2.2.10.

We admit the following result:

Proposition 3.1.17. Let (W,S) be a Coxeter system. Let s, s′ ∈ S with s ̸= s′. Then in W we have

s ̸= s′ and the order of ss′ is precisely ms,s′ .

3.1.2 The classical Artin monoid of spherical type

Proposition 3.1.18 (Classical Garside structure on Artin groups of spherical type). The Garside

group G(M) where M =M(Pc) is as in Corollary 3.1.16 is isomorphic to the Artin group BW of type

W , which has presentation

BW = {s, s ∈ S | st · · ·︸ ︷︷ ︸
ms,t factors

= ts · · ·︸ ︷︷ ︸
mt,s factors

}.

Proof. Recall the presentation of G(M(Pc)) from Proposition 1.5.2 (combined with Corollary 1.2.5).
We �rst show that the map BW −→ G(M(Pc)), s 7→ s extends to a group homomorphism, which is
therefore surjective as the set {s | s ∈ S} is precisely the set of atoms of M(Pc). To this end, it su�ces
to show that ℓS( st · · ·︸ ︷︷ ︸

ms,t factors

) = ms,t. This is a consequence of Proposition 3.1.17 above. Indeed, assume

that ℓS(st · · · ) < ms,t. Then there is a reduced word for w = st · · · of length m′ < ms,t. Since w ∈WI

for I = {s, t}, this is still a word in s and t, and the parity of its length is the same as the parity of ms,t.
In both cases, using the fact that s and t are involutions, it yields a relation of the form st · · · = ts · · · ,
with m′′ < ms,t on both sides, from what we deduce that (st)m

′′
= 1, a contradiction. This shows that

we get a surjective group homomorphism BW −→ G(M(Pc)).
Conversely, we need to construct a map G(M(Pc)) −→ BW which is an inverse to the one con-

structed above. Let u ∈ Pc. Let s1s2 · · · sk be a reduced decomposition of u, and de�ne a map by
u 7→ s1s2 · · · sk. We �rst need to show that this map is well-de�ned: this follows from Matsumoto's
Lemma: if s′1s

′
2 · · · s′k is another reduced expression, then one passes from one decomposition to the

other only using braid relations, which are the de�ning relations of BW . Hence the map is well-de�ned.
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Now, if u, v ∈ Pc = W are such that w = uv with ℓS(w) = ℓS(u) + ℓS(v), then choosing a reduced
decomposition s1 · · · sℓs′1 · · · s′m of w where s1 · · · sℓ and s′1 · · · s′m are reduced decompositions of u and
v respectively, we get that both w and u · v are sent to s1s2 · · · sℓs′1 · · · s′m, hence the map is a group
morphism. It is clear that both maps are inverse to each other.

Corollary 3.1.19. Artin groups of spherical type have a solvable word problem, and are torsion free.

Exercise 3.1.20. In the case where W = Sn, determine the center of BW .

3.2 Artin groups of spherical type: dual Garside structure

In this subsection, we present an alternative Garside structure for the n-strand braid group. It is built
as an interval group from Sn, using the set of generators T consisting of all the transpositions, instead
of the set S of simple transpositions.

The results of this section generalize to Coxeter groups of spherical type, i.e., �nite Coxeter groups,
taking as set T the set of all the conjugates of elements of S. Since the general case is much more
involve, we do not present it here. We mostly follow the treatment of Brady [1].

Consider the length function ℓT : Sn −→ Z≥0. Denote by ≤T the partial order de�ned on Sn by

u ≤T v ⇔ ℓT (u) + ℓT (u
−1v) = ℓT (v).

It is called the absolute order on Sn.

Proposition 3.2.1. Let w ∈ Sn. Let k be the number of orbits of the action of w on {1, 2, . . . , n}.
Then

1. ℓT (w) = n− k,

2. If w = c1c2 · · · cℓ is the cycle decomposition of w (without counting 1-cycles), then

ℓT (w) =

ℓ∑
i=1

ℓT (ci)

.

Proof. Observe that the orbits of w correspond to the supports of the various cycles occurring in the
decomposition of w as a product of disjoint cycles (including 1-cycles). When multiplying w by a
transposition (i, j), two situations may appear: if i, j belong to the support of the same cycle c of w,
then (i, j)w has one more cycle than w, because c gets breaked into two cycles. If i belongs to the
support of a cycle c1 and j belongs to the support of a cycle c2 with c1 ̸= c2, then (i, j)w has one cycle
less than w since c1 and c2 get merged.

Now the identity has n orbits. It follows from the observation above that, if w has k orbits, then
at least n− k transpositions are needed to get w, hence ℓT (w) ≥ n− k.

Now let w = c1c2 · · · cℓ be the cycle decomposition of w, where we do not count 1-cycles. In
particular, denoting m the number of �xed points of w, we have m + ℓ = k. If ci is a ki-cycle, say
ci = (j1, j2, . . . , jki), then ci = (j1, j2)(j2, j3) · · · (jki−1, jki), hence ℓT (ci) ≤ ki − 1. It follows that

ℓT (w) ≤
ℓ∑

i=1

ℓT (ci) ≤
ℓ∑

i=1

(ki − 1) = −ℓ+
ℓ∑

i=1

ki = −ℓ+ n−m = n− k,

yielding the second inequality. Hence ℓT (w) = n − k. This proves the �rst point, and in the above
inequality we have equalities everywhere, which yields the second point.
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Lemma 3.2.2. If 1 ≤ i1 < i2 < · · · < ik ≤ n, then u := (i1, i2, . . . , ik) ≤T (1, 2, . . . , n) =: w.

Proof. The permutation u−1w is given by

(1, . . . , i1 − 1, ik, ik + 1, . . . , n− 1, n)(i1, . . . , i2 − 1)(i2, . . . , i3 − 1) . . . (ik−1, . . . , ik − 1).

By Proposition 3.2.1 above, we have ℓ(u−1w) = n − k, ℓT (u) = k − 1, and ℓT (w) = n − 1. This
concludes the proof.

Lemma 3.2.3. Let 1 ≤ i < j ≤ n and w ∈ Sn. Then (i, j) ≤T w if and only if i and j belong to the

support of the same cycle of w.

Proof. If i and j belong to the same cycle of w, then (i, j)w has one cycle more than w, hence
ℓT ((i, j)w) = ℓT (w) − 1 by Proposition 3.2.1. Conversely, if i and j belong to di�erent cycles of w,
then (i, j)w has one cycle less than w, hence ℓT ((i, j)w) = ℓT (w) + 1.

Corollary 3.2.4. Let u, v ∈ Sn be such that u ≤T v. Let c be a cycle of u. Then there is a cycle c′ of
v such that supp(c) ⊆ supp(c′).

Proof. Assume not. Then there is a cycle c of u with two integers i,j in its support, belonging to
di�erent cycles of v. By the previous lemma we thus have (i, j) ≤T u, (i, j) ̸≤T v, contradicting
u ≤T v.

Corollary 3.2.5. Let Πn denote the set of partitions of the set {1, 2, . . . , n}. De�ne a map p : Sn −→
Πn by sending a permutation to the partition whose blocks are the supports of its cycles (including

1-cycles). Then p is a map of posets.

De�nition 3.2.6. Let u, v be two cycles in Sn such that supp(u) ⊆ supp(v). We say that u is ordered
consistently with v if for all i, j, k, we have (i, j, k) ≤T u⇒ (i, j, k) ≤T v.

Lemma 3.2.7. Let 1 ≤ i < j < k ≤ n. Then (i, k, j) ̸≤T (1, 2, . . . , n).

Proof. One checks that (i, k, j)−1(1, 2, . . . , n) is again an n-cycle, hence has re�ection length equal to
n− 1.

Lemma 3.2.8. Let u, v ∈ Sn be two cycles such that supp(u) ⊆ supp(v). Then u ≤T v if and only if

u is ordered consistently with v.

Proof. If u ≤T v, then by transitivity of ≤T , we obtain that u is ordered consistently with v.
Assume that u is ordered consistently with v. Up to relabelling, we can assume that v = (1, 2, . . . , k)

and that the support of u is given by integers i1, i2, . . . , iℓ such that 1 = i1 < i2 < · · · < iℓ ≤ k. By
Lemma 3.2.2, if u = (1, i2, . . . , ik), then we are done. If not, then u has the form (1, i2, . . . , ij , ij+1+p, . . . )
for some j ≥ 1 and p ≥ 1. By Lemma 3.2.2 again, we have w := (1, ij+1+p, ij+1) ≤T u, while w ̸≤T v
by Lemma 3.2.7, contradicting the assumption.

Proposition 3.2.9. Let w ∈ Sn. Then w is T -balanced, and if we denote by Pw the set of pre�xes of

w, the restriction of the map p from Corollary 3.2.5 is injective.

Proof. The fact that every permutation is balanced follows immediately from the fact that T is stable
by conjugation.

The statement on the injectivity of the restriction of p is a corollary of Corollary 3.2.4 and
Lemma 3.2.8.
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De�nition 3.2.10. Let u, v ∈ Sn with u ≤T v and supp(u) ⊆ supp(v). We say that u has crossing
cycles with respect to v if there are four distinct integers i, j, k, l in {1, 2, . . . , n} such that (i, j, k, ℓ) ≤T v,
(i, k), (j, ℓ) ≤T u but (i, j, k, l) ̸≤T u.

Lemma 3.2.11. Let 1 ≤ i < j < k < ℓ ≤ m. Then (i, k)(j, ℓ) ̸≤T (1, 2, . . . ,m).

Proof. One checks that ((i, k)(j, l))−1(1, 2, . . . ,m) is again anm-cycle, hence has re�ection length equal
to m− 1.

Proposition 3.2.12. If u, v ∈ Sn with u ≤T v, then u has no crossing cycle with respect to v.

Proof. Assume that there are four distinct integers i, j, k, ℓ in {1, 2, . . . , n} such that (i, j, k, ℓ) ≤T v
and (i, k), (j, ℓ) ≤T u. We know that i, j, k and ℓ are in the support of the same cycle of v, hence up
to relabelling we can assume that this cycle is (1, 2, . . . ,m) and that 1 ≤ i < j < k < ℓ ≤ m. Now
since (i, k) ≤T u, we have that i and k belong to the same cycle c1 of u, and j, ℓ belong to the same
cycle c2 of u. If c1 = c2 then we are done. Hence assume that c1 ̸= c2. Then (i, k)(j, ℓ) ≤ c1c2 ≤ u, a
contradiction, since (i, k)(j, ℓ) ̸≤T (1, 2, . . . ,m).

Theorem 3.2.13. Let u, v ∈ Sn. Then u ≤T v if and only if the three following conditions are

satis�ed:

1. Each cycle of u is contained in some cycle of v,

2. Each cycle of u is ordered consistently with the cycle of v which contains it,

3. u has no crossing cycles with respect to v.

Proof. If u ≤T v, then the three conditions given above hold true by Corollary 3.2.4, Lemma 3.2.8,
and Proposition 3.2.12.

Conversely, assume that the above three conditions hold true. Using the fact that the re�ection
length is additive on the cycles and condition 1, we can assume that v consists of a single cycle. Hence
let u = c1c2 · · · ck be the cycle decomposition of u, with each cycle ci ordered consistently with respect
to v. We argue by induction on k. If k = 1 then c1 ≤T v by Lemma 3.2.8. Up to relabelling, we
can assume that v = (1, 2, . . . , n), and since c1 is ordered consistently with v, we can assume that
c1 = (i1, i2, . . . , iℓ) where 1 = i1 < i2 < · · · < iℓ ≤ n. We thus have c1 ≤T v and

c−1
1 v = (1, 2, . . . , i2 − 1)(i2, . . . , i3 − 1) · · · (iℓ, . . . , n).

Now, we show that each of the cycles c2, . . . , ck is contained in some cycle of c−1
1 v. If not, then there

are i, j (i < j) belonging to some cycle cm of c−1
1 v, and belonging to di�erent cycles of c−1

1 v (they
cannot be �xed by c−1

1 v as they would be �xed by v, hence by u). Note that i and j cannot belong
to {1, i2, . . . , iℓ}. Inspecting the form of the cycle decomposition of c−1

1 v which has been calculated
above, we see that there are a, b with a < b such that 1 ≤ ia < i < ib < j. But this yields (i, j) ≤T cm,
(ia, ib) ≤T c1. This implies that u has crossing cycles with respect to v, a contradiction. Indeed, by
Lemma 3.2.8 we would have (ia, i, ib, j) ≤T v.

We can thus assume that c−1
1 u = c2c3 · · · cm is a product of disjoint cycles each of which is contained

in a cycle of c−1
1 v. Moreover, it stays consistently ordered with respect to the cycle containing it, in

view of the form of c−1
1 v. Furthermore, if c−1

1 u had crossing cycles with respect to c−1
1 v, it would have

crossing cycles with respect to v. Hence by induction, we deduce that c−1
1 u ≤T c

−1
1 v. We thus have

ℓT (v) = ℓT (c1) + ℓT (c
−1
1 v) = ℓT (c1) + ℓT (u

−1v) + ℓT (c
−1
1 v) = ℓT (u) + ℓT (u

−1v),

hence u ≤T v, which concludes the proof.
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Corollary 3.2.14. Let u, v ∈ Sn such that u, v ≤T (1, 2, . . . , n). Then

u ≤T v ⇔ p(u) ⊆ p(v).

Proof. The condition p(u) ⊆ p(v) simply means that each cycle of u is contained in a cycle of v. Hence
by Theorem 3.2.13 the implication ” ⇒ ” holds true. Conversely, applying the same Theorem, using
that u, v ≤T (1, 2, . . . , n) implies that both Conditions 2 and 3 are ful�lled if p(u) ⊆ p(v).

Corollary 3.2.15. The poset Pc = {u ∈ Sn | u ≤T c = (1, 2, . . . , n)} endowed with the restriction of

≤T is a lattice.

Proof. We have seen that the restriction of the map p to Pc is injective. By the corollary above, the
partial order ≤T on Pc corresponds to the inclusion of partitions. The image of p|Pc

is precisely the
set of noncrossing partitions: a partition is said to be noncrossing if it does not contain distinct blocks
B1, B2 and i < j < k < ℓ with i, k ∈ B1 and j, ℓ ∈ B2. This is precisely saying that one has no crossing
cycles with repect to (1, 2, . . . , n). The noncrossing partitions form a lattice, with meet operation given
by inclusion.

Corollary 3.2.16. Let c = (1, 2, . . . , n). Let ≤T be as above. Then M(Pc) is a Garside monoid.

Proposition 3.2.17. The n-strand braid group Bn is isomorphic to the group with generating set aij,
1 ≤ i < j ≤ n and relations

aijajk = ajkaik = aikaij ,

for all 1 ≤ i < j < k ≤ n and

aijakl = aklaij

for all 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l < j ≤ n.

Proof. The map φ : G −→ Bn, where G is the group de�ned by the presentation above, is de�ned
on generators by aij 7→ σiσi+1 · · ·σj−1σ

−1
j−2 · · ·σ

−1
i . On checks that these images satisfy the required

relations, which de�ned a surjective homomorphism G −→ Bn, as the σi's are the images of ai(i+1).
This is a technical check which we do not handle here.

We build the inverse map, sending σi to ai(i+1) for all i. We have

ai,i+1ai+1,i+2ai,i+1 = ai+1,i+2ai,i+2ai,i+1 = ai+1,i+2ai,i+1ai+1,i+2

by applying twice the �rst relation. For i, j such that i+ 1 < j we have

ai,i+1aj,j+1 = aj,j+1ai,i+1

by the second type of relations. We thus obtain a well-de�ned group homomorphism ψ : Bn −→ G.
It is clear that φ ◦ ψ = Id since it sends σi to σi. To show that ϕ is an isomorphism, it su�ces to
show that ψ is surjective. Let 1 ≤ i < j with j + 1 ≤ n. Using the �rst kind if relations we have that
ai,j+1 = a−1

j,j+1ai,jaj,j+1. Hence by induction on |i− j| we seen that ai,j can be expressed as a product
of ak,k+1 and their inverses, which shows surjectivity of ψ.

Lemma 3.2.18. The map sending ai,j to (i, j) extends to a well-de�ned and surjective group homo-

morphism Bn −→ G(Pc).
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Proof. For all 1 ≤ i < j < k ≤ n, one has

(i, j, k) = (i, j) (j, k) = (j, k) (i, k) = (i, k) (i, j).

Similarly, for 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l < j ≤ n, the sets {i, j} and {k, l} are noncrossing,
and hence

(i, j) (k, l) = (i, j)(k, l) = (k, l)(i, j) = (k, l) (i, j),

which shows that the map extends to a well-de�ned group homomorphism.
Surjectivity is clear since M(Pc) is generated by lifts (i, j) of transpositions.

Lemma 3.2.19. The group G(Pc) is isomorphic to the group with generators [t], for t a transposition,

and relations

[t1][t2] · · · [tn−1] = [q1][q2] · · · [qn−1]

whenever t1t2 · · · tn−1 = c = q1q2 · · · qn−1.

Proof. Let G be the group with the above presentation. We construct a map G(M(Pc)) −→ G, by
sending each generator u to [t1] · · · [tk], where t1t2 · · · tk is a T -reduced expression of u ∈ Pc. We �rst
show that the set-theoretic wap de�ned on generators. If q1q2 · · · qk is another T -reduced decomposition
of u, then setting v := u−1c, and choosing any T -reduced decomposition of w, say r1 · · · rn−1−k, we
have

[t1] · · · [tk][r1] · · · [rn−1−k] = [q1] · · · [qk][r1] · · · [rn−1−k]

since both t1 · · · tkr1 · · · rn−1−k and q1 · · · qkr1 · · · rn−1−k are T -reduced decompositions of c. Cancelling
the k �rst factors in both sides of the above equality yields [t1] · · · [tk] = [q1] · · · [qk], which is what we
wanted to show.

Now assume that u v = w is a de�ning relation of M(Pc). Choosing a T -reduced decomposition of
w obtained by concatenating two reduced decompositions of u and v, and taking images by the above
map, shows that images still satisfy the above relation.

We built the inverse map by sending each generator [t] to t. Given two reduced decompositions
t1t2 · · · tn−1 and q1q2 · · · qn−1 of c, we have t1 t2 · · · tn−1 = q1 q2 · · · qn−1 by construction of M(Pc),
hence we obtain a well-de�ned group homomorphism. It is clear that each t is sent to itself by the
composition, and the same holds true for [t], hence the two maps are inverse to each other.

We use the above Lemma to build a surjective map θ from G(M(Pc)) to Bn, as follows. We send
every generator [t] = [(i, j)] to ai,j . To show that it is well-de�ned, it su�ces to show that one can pass
from any T -reduced decomposition t1t2 · · · tn−1 of c to any other T -reduced decomposition q1q2 · · · qn−1

of c by only using the de�ning relations of the presentation of Proposition 3.2.17. To this end, it is
enough to show it by choosing for q1q2 · · · qn−1 the T -reduced decomposition s1s2 · · · sn−1 of c. This is
done in the following Lemma:

Lemma 3.2.20. For any set t1 = (i1, j1), . . . , tn−1 = (in−1, jn−1) of n − 1 transpositions satisfying

t1 · · · tn−1 = c, one can transform the T -reduced decomposition t1t2 · · · tn−1 into s1s2 · · · sn−1 only by

applying sequences of moves of the form

(i, j)(j, k) ↔ (j, k)(i, k) ↔ (i, k)(i, j)

for 1 ≤ i < j < k ≤ n and

(i, j)(k, l) ↔ (k, l)(i, j)

for 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k << j ≤ n.
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Proof. We argue by induction on n. If n = 2 then there is nothing to show since c = (1, 2) which
is a transposition. Hence assume that n ≥ 3, and that any T -reduced word for (2, 3, . . . , n) can be
transformed into s2 · · · sn−1 by the substitutions in the statement.

Let k be maximal such that 1 occurs in the support of tk. Note that such a k must exist since c
has no �xed point. It su�ces to show that we can transform t1t2 · · · tk into a sequence of the form
(1, 2)q2 · · · qk, only using the substitutions from the statement.

We want to show that the rightmost occurrence of 1 in transpositions can be moved to the very
left, i.e., that we can assume that k = 1.

Hence assume that k ̸= 1. Consider the sequence tk−1tk, which we write as (a, b)(c, d), with
a < b, 1 = c < d. If a, b, c, d are all distinct, then we know that {a, b} and {c, d} are noncrossing, hence
tk−1tk = tktk−1 and the leftmost occurrence of 1 can be moved to the left.

If a, b, c, d are not distinct, then we consider four cases separately.
If a = c, then (1, b)(1, d) = (1, d, b) and d < b otherwise (1, d, b) is not in Pc. But we can use the

transformation (1, b)(1, d) = (1, d)(d, b) to move the rightmost occurrence of 1 to the left.
If a = d, then the product is (d, b)(1, d) = (1, b, d), hence b < d, a contradiction since d = a < b.
If b = c, then a < b = c = 1, which cannot occur.
If b = d, then (a, b)(1, b) = (1, a, b) hence a < b. But we can use a substitution (a, b)(1, b) =

(1, a)(a, b) and the rightmost occurrence of 1 has moved to the left.
Hence we can apply de�ning relations so that the rightmost occurrence of 1 lies in the �rst trans-

position. But since c send 1 to 2, we must have that this �rst transposition is (1, 2), hence we have
reached the situation which allows us to apply the induction hypothesis.

3.3 Torus knot groups

Let n,m ≥ 2 and consider the group

G(n,m) = ⟨ x, y |xn = ym ⟩.

Let M(n,m) denote the monoid with the same presentation.
When n and m are coprime, the group G(n,m) is the knot group of the torus knot Tn,m.

Proposition 3.3.1. The monoid M(n,m) is a Garside monoid.

Proof. The fact that the divisibility is Noetherian is obtained by extending the assignment x 7→ m,
y 7→ n to a length function onM =M(n,m). SinceM has two generators and the presentation xn = ym

is both left- and right-complemented, we have that M is both left- and right-cancellative, since the
sharp θ-cube condition is vacuously true. We also get the existence of conditional lcm's. It is clear that
the set of left- and right-divisors of ∆ = xn = ym is given by {xi | i = 0, . . . , n} ∪ {yi | i = 0, . . . ,m},
which is �nite and contains the generating set {x, y}. Since ∆ is central is a left- and right-multiple
of both x and y, every pair of elements of M admits a power of ∆ as common left- or right-multiple.
The existence of lcm's follows since we have conditional lcm's, and the existence of gcd's follows as well
(Lemma 1.6.7).

Exercise 3.3.2. Let n,m ≥ 2.

1. If n and m are coprime, show that the group G(n,m) is isomorphic to the group G(M) from
Exercise 1.7.3.

36



2. Show that the statement of point 1 is false in general when n and m are not coprime.

Question 3.3.3. Do the groups G(n,m) admit a (non-trivial) realization as interval groups ?
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Chapter 4

An application in representation theory

The aim of this chapter is to show an example on how Garside-theoretic properties can be useful
to show that a representation of a Garside group is faithful. We will show that the reduced Burau
representation of a spherical and dihedral Artin-Tits group is faithful, following Lehrer and Xi [8].

Let (W,S) be a �nite Coxeter system of rank two (that is, with |S| = 2). Denote S = {s, t}. Note
that W is isomorphic to a dihedral group. One has 2ℓ(w0) = |W |. Recall that the Artin group BW

attached to W is a Garside group. Note that

w0 = st · · · = ts · · · ,

where each product has ℓ(w0) factors. This yields two reduced expressions of w0.
Set m = ℓ(w0). Let A = R[v±1] and consider a free A-module M of rank 2, with basis Es, Et.

De�ne A-linear operators Ts, Tt on M by their action on the basis elements as follows:

TsEs = qEs, TsEt = −q−1Et + Es, TtEs = −q−1Es + cEt, TtEt = qEt,

where c = 4 cos2(π/m). This yields the following matrices of the operators

Ms =

[
q 1
0 −q−1

]
, Mt =

[
−q−1 0
c q

]
.

The action of the elements TtTs and TsTt is represented by the matrices[
−1 −q−1

cq c− 1

]
,

[
c− 1 q
−cq−1 −1

]
,

Proposition 4.0.1. The matrices Ms and Mt satisfy the de�ning relation of BW . In other words,

they de�ne a representation ρ : BW −→ GL2(A).

The proof will be derived from the following Lemma

Lemma 4.0.2. Let ζ = e2iπ/m. Let k ≥ 1. Denote by [k] the real number ζk−ζ−k

ζ−ζ−1 . We have

(MtMs)
k =

[
−[k]− [k − 1] −q−1[k]

cq[k] [k] + [k + 1]

]
, Ms(MtMs)

k =

[
q([k] + [k + 1]) [k + 1]

−c[k] −q−1([k] + [k + 1])

]

(MsMt)
k =

[
[k] + [k + 1] q[k]
−cq−1[k] −[k]− [k − 1]

]
, Mt(MsMt)

k =

[
−q−1([k] + [k + 1]) −[k]

c[k + 1] q([k] + [k + 1])

]
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Proof. Note that c = ζ + ζ−1+2. We argue by induction on k. For k = 1 we recover the matrix which
was calculated above. We have

(MtMs)
k+1 = (MtMs)

k(MtMs) =

[
−[k]− [k − 1] −q−1[k]

cq[k] [k] + [k + 1]

] [
−1 −q−1

cq c− 1

]
=

[
[k] + [k − 1]− c[k] q−1(2[k] + [k − 1]− c[k])

cq[k + 1] −[k] + c[k + 1]− [k + 1]

]
,

Now using the eqality [k]+ [k−1]− c[k] = −[k]− [k+1], which is a straightforward computation using
the equation c = ζ + ζ−1 + 2 and valid for all k ≥ 1, we get that

(MtMs)
k+1 =

[
−[k]− [k + 1] −q−1[k + 1]
cq[k + 1] [k + 1] + [k + 2]

]
.

We then have

Ms(MtMs)
k =

[
q 1
0 −q−1

] [
−[k]− [k − 1] −q−1[k]

cq[k] [k] + [k + 1]

]
=

[
−q[k]− q[k − 1] + cq[k] [k + 1]

−c[k] −q−1([k] + [k + 1])

]
=

[
q([k] + [k + 1]) [k + 1]

−c[k] −q−1([k] + [k + 1])

]
.

The remaining calculations are performed similarly, and left to the reader.

Note that, if m = 2m′, then

(MtMs)
m′

=

[
−[m′ − 1] 0

0 [m′ + 1]

]
=

[
−1 0
0 −1

]
= (MsMt)

m′
,

which proves Proposition 4.0.1 in that case.
Now consider the case where m = 2m′ + 1. In this case we have [m′] + [m′ + 1] = 0, and we get

that

Mt(MsMt)
m′

=

(
0 −[m′]

c[m′ + 1] 0

)
=

(
0 [m′ + 1]

−c[m′] 0

)
=Ms(MtMs)

m′
,

which also shows Proposition 4.0.1 in this case.

Write A := W\{w0, 1}. Note that, for every element w ∈ A, there is a single s ∈ S such that
ℓ(sw) = ℓ(w)− 1, which we denote L(w). Similarly there is a single s ∈ S such that ℓ(ws) = ℓ(w)− 1,
which we denote by R(w).

For w ∈W , we denote by Tw the image of w by ρ.

Lemma 4.0.3. Let w ∈ A. Let r ∈ S. Then

TwEr = fsEs + ftEt,

where fs, ft ∈ A and for r1 ∈ S, we have deg(fr1) ≤ 0 unless r = R(w) and r1 = L(w), in which case

we have fr1 = λq+ lower degree terms, where λ > 0.

Proof. This is an immediate consequence of Lemma 4.0.2.
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Corollary 4.0.4. Let w1, . . . , wp be elements of A. Then for r ∈ S we have

Tw1Tw2 · · ·TwpEr = hsEs + htEt,

where hs, ht ∈ A and for r1 ∈ S, we have deg(hr1) ≤ p − 1 unless r = R(wp), r1 = L(w1) and

L(wi) = R(wi−1) for i = 2, 3, . . . , p. In the case where the three conditions are satis�ed, we have

hr1 = αqp+ lower degree terms, where α > 0.

Proof. This follows immediately from the previous lemma, applied repeteadly.

Theorem 4.0.5 (Faithfulness of the Burau representation of dihedral type). Let (W,S) be a Coxeter

system of dihedral type. De�ne a representation φ : BW −→ GL2(A) by s 7→ qTs. Then φ is faithful.

Proof. Recall that BW is a Garside group (Corollary 3.1.16 and Proposition 3.1.18). In particular,
every element of BW can be written as a fraction x−1y, where x, y ∈ B+

W . To show that φ is faithful,
it thus su�ces to show that φ|B+

W
is faithful.

Recall the Garside normal form of elements of a Garside monoid. In our case, the simple elements
of BW are in bijection withW and are given by positively lifting any reduced expression of any element
of W . Let x ∈ BW and denote α(x) the �rst term of the Garside normal form of x. If x ̸= 1 and
α(x) ̸= ∆, then α(x) is the lift of some element of A. Elements of A have a unique reduced expression,
hence α(x) has a unique atom among {s, t} that right-divides it, say s. Consider y = ω(x). If y ̸= 1,
then α(y) ̸= ∆, hence the second term of the Garside normal form of x is again the lift of some element
of Y . It thus has a single atom left-dividing it, and this atom must be s: otherwise α(x)t would be a
simple element left-dividing x, contradicting the maximality of α(x).

We thus have that, if x ∈ BW and ∆ is not a left-divisor of x, then the Garside normal form
x = x1x2 · · ·xk of x satis�es:

1. Every element x1 is the positive lift of an element yi ∈ A,

2. L(xi) = R(xi−1) for all i = 2, . . . , k.

Consider elements x, y ∈ B+
W such that φ(x) = φ(y). We claim that either x = y = 1, or x and y

have a non-trivial common left divisor.
To this end, consider the Garside normal forms x = x1x2 · · ·xk and y = y1y2 · · · yℓ. First suppose

that xj = ∆ for some j. Then x1 = ∆, which yields the claim, unless y = 1. But note that
det(φ(x)) = ±q2ℓ(x), which forces x = 1 if y = 1. We can thus assume that for all j = 1, . . . , k, we
have xj ̸= ∆, and that for all j = 1, . . . , ℓ, we have yj ̸= ∆.

By the corollary above, the coe�cient of Er in φ(x)(Es + Et) has greater degree if r = L(x1).
Hence L(x1) = L(y1). This proves the claim.

We deduce the theorem: if φ(x) = φ(y), then writing x = ax′ and y = ay′ with a = gcd(x, y),
we get that φ(x′) = φ(y′), where x′ and y′ have no non trivial common left divisor, which yields
x′ = y′ = 1, and thus x = y.

Question 4.0.6. Do the torus knot groups G(n,m) admit an analogue of Burau representation ? If
yes, is it faithful ?
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