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Chapter 1

Introduction

1.1 Field of research and organization of the manuscript

This manuscript gathers a series of works all realized after my PhD thesis (defended in Septem-
ber 2014 in Amiens) and recently achieved for some of them. All these papers address several
problems through various motivations, nonetheless they all aim to study the structure and
properties of some classes of algebraic or sometimes slightly geometric objects all built using
(generalizations of) reflection groups.

Let K be a field which, for the sake of simplicity, we may assume of characteristic zero. Let
V be a finite-dimensional K-vector space. A reflection on V is a transformation s ∈ GL(V )
such that

1. codim(V s) = 1, where V s = {v ∈ V | s(v) = v},

2. s is of finite order.

If K = R or Q, then a reflection is necessarily of order 2, while for K = C the order may be
any integer k ≥ 2. A finite reflection group is a finite subgroup W ⊆ GL(V ) generated by
reflections.

A fundamental example is given by the symmetric group Sn. Indeed, letting Sn act on Kn

by permutation of the vectors of a chosen basis yields a realization of Sn as a reflection group,
since every transposition acts by a reflection, and the set of transpositions generates Sn. Note
that, when working over K = R or C, we may assume that W preserves an inner product.

A reflection group is often written W because a historically fundamental example of reflec-
tion groups is given by Weyl groups of connected reductive algebraic groups. In fact, finite
Weyl groups are examples of finite real reflection groups, that is, finite reflection groups over a
real vector space. The family of finite real reflection groups coincides with the family of finite
Coxeter groups. Coxeter groups are defined by generators and relations, as groups admitting a
presentation of a certain form where the generators are involutions. These generators turn out
to form a distinguished subset of the set of reflections in the case where the group is finite. For

9
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the symmetric group Sn, the presentation as a Coxeter group is the presentation

〈
s1, s2, . . . , sn−1

∣∣∣∣
s2i = 1, ∀i = 1, . . . , n− 1,

sisi+1si = si+1sisi+1 for 1 ≤ i < n− 1,
sisj = sjsi for all i, j with |i− j| > 1.

〉
(1.1.1)

In terms of permutations, the generator si corresponds to the simple transposition (i, i+ 1).

The theory of Coxeter groups is extremely powerful. Indeed, many fundamental tools that
originated in the study of finite Weyl groups, such as the (strong) Bruhat order, the technology
of root systems, the exchange lemma, and so forth, admit generalizations to all Coxeter groups,
that is, groups defined by the same kind of presentations as the one above, but without the
finiteness assumption. These groups still admit a realization as subgroups of some GL(V )
generated by reflections, which preserve a symmetric bilinear form (which is not an inner
product in general).

A second generalization of finite real reflection groups is given by finite complex reflection
groups, that is, finite reflection groups over a complex, finite-dimensional vector space.

Given a finite complex reflection group W acting on V , denoting by Ref(W ) the set of
reflections of W , one can consider the subset V reg = V \

⋃
s∈Ref(W ) V

s of V (which is stable by
W ), and the quotient V reg/W . By a theorem of Steinberg, the quotient map p : V reg ։ V reg/W
is a Galois covering, yielding a short exact sequence

1 −→ PW := π1(V
reg) −→ BW := π1(V

reg/W ) −→W −→ 1.

The group PW is called the pure braid group of W , while the group BW is called the (gen-
eralized) braid group of W .

For W = Sn acting on V = Cn, one has

V reg = {(x1, . . . , xn) ∈ V | xi 6= xj if i 6= j},

and V reg is thus identified with the set of subsets of Cn with n elements, that is,

V reg/W = {{x1, x2, . . . , xn} | xi 6= xj if i 6= j}.

An element of BW = π1(V
reg/W ) can thus be represented by a geometric braid β on n strands

as in Figure 1.1, the intersection of the horizontal plane z = t ∈ [0, 1] with the geometric braid
yielding the n elements of C given by β(t).

Originally, geometric braids were introduced by Artin [8] (see [9] for a more rigorous treat-
ment), who gave a definition of the n-strand braid group Bn as the group consisting of geometric
braids on n strands up to a suitable notion of isotopy, and where the product is given by vertical
concatenation of braids. As explained above, this group turns out to be isomorphic to BSn

.
Artin gave the following presentation by generators and relations for Bn.

〈
σ1, σ2, . . . , σn−1

∣∣∣∣
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n− 1,
σiσj = σjσi for all i, j with |i− j| > 1.

〉
(1.1.2)

Observe that this presentation is obtained from the presentation of Sn from (1.1.1) above by
removing the torsion relations s2i = 1 for all i = 1, . . . , n− 1. It turns out that for all finite real
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b b b b b b b

b

bz = 1

z = 0

Figure 1.1: A geometric braid on 7 strands.

reflection groups, that is, those finite complex reflection groups which can be realized over R,
the group BW is always obtained from the Coxeter presentation ofW by removing the relations
s2 = 1 where s is any generator. The situation is unfortunately more complicated in general
when the group is not real, where there is not a single canonical "Coxeter-like" presentation of
W in general.

Nevertheless, the fact that the presentation of a finite Coxeter group is canonical is true
without the finiteness assumption, and allows one to define a "braid group" attached to any
Coxeter group by removing torsion relations from the Coxeter presentation. Such a group is
usually called the Artin-Tits group or simply Artin group attached to W , still denoted BW .

The works we chose to present in this manuscript were collected in five different chapters,
corresponding to five (different, but often connected) families of mathematical structures at-
tached to (generalizations of) reflection groups and their generalized braid groups, coming after
a chapter of preliminaries.

1. Dual Coxeter systems and dual braid monoids (Chapter 3): we study (mostly finite)
Coxeter groups and their Artin groups via a so-called dual approach, which consists of
viewing a finite Coxeter group (respectively its Artin group) as generated by the whole
set of reflections (respectively a copy of the set of reflections), instead of just a Coxeter
generating set. Typically, in the Coxeter presentation of the symmetric group given above,
the set of generators is given by the simple transpositions, while the reflections are all the
transpositions. This approach has many applications in the study or Artin groups (word
problem, K(π, 1)-conjecture, ...), and in combinatorics (generalizations of noncrossing
partitions and other Catalan enumerated objects, ...).

2. Soergel bimodules (Chapter 4): Soergel bimodules form a monoidal category of graded
bimodules over a polynomial ring, categorifying the Iwahori-Hecke algebra of an arbitrary
Coxeter system (a deformation of the group algebra of W , which is a central object
in representation theory and low-dimensional topology). It contains many information
on representation theories of Lie theoretic objects, and can also be used to construct a
categorical action of any Artin group on a suitable triangulated category.

3. Reflection subgroups: structure, normalizer, braid group, Hecke algebra, ...
(Chapter 5): A reflection subgroup of a Coxeter group is a subgroup generated by a subset
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of the set of conjugates of the Coxeter generators. In the case where the group is finite,
this is nothing but a subgroup generated by reflections, and such subgroups can also be
considered in the complex case. In the case of an arbitrary Coxeter group, a reflection
subgroup still admits a structure of Coxeter group. It is natural, in all these situations, to
study various algebraic structures attached to a reflection subgroup (braid group, Hecke
algebra, normalizer, ...), and to study their relationship to the corresponding structures
of the ambient group.

4. On Garside structures for torus knot groups (Chapter 6): A Garside group is the
group of fractions of a monoid satisfying certain good "divisibility" conditions (called a
Garside monoid). Such a group has a solvable word problem, and is torsion-free, among
other highly nontrivial properties. Artin’s braid group Bn and more generally all Artin
groups of spherical type (that is, attached to a finite Coxeter group) are Garside groups,
and so are most of the complex braid groups. A Garside structure is not unique in
general, in the sense that one can have several nonisomorphic Garside monoids with the
same group of fractions. Another example of Garside groups is given by torus knot groups.
This provides one of the most accessible family of Garside groups, where natural questions
can be asked: classification of Garside structures, study of quotients playing the role of
"generalized reflection groups" as the symmetric group does for Bn, ...

5. Bruhat order on quotients (Chapter 7): The Bruhat order is a subtle way of ordering
a finite Weyl group of a connected reductive algebraic group G, given by the inclusion
of orbit closures of a Borel subgroup B acting on the flag variety G/B (these orbits are
indexed by the Weyl group W of G). It admits a generalization to arbitrary Coxeter
groups, via a combinatorial definition which can be given even in the case where there is
no algebraic group. There are several natural combinatorial generalizations or variations
of the Bruhat order on an arbitrary Coxeter group that one can define and study, and in
the case where the Coxeter group is the Weyl group of a reductive group, one can also
consider the action of spherical subgroups of G on the flag variety G/B, that is, subgroups
acting with finitely orbits. In such situations, it is natural to seek for a parametrization
of the orbits, and for a combinatorial criterion to describe the inclusion or orbit closures,
and see to what extent such orderings can be given for an arbitrary Coxeter group.

The five aforementioned topics where we present our results may seem of rather different
nature, and we confess that trying to present them in a unified way may look a bit artificial. We
therefore end this introductory chapter by briefly presenting the questions we were interested
in in a more personal and chronological way, after listing the relevant publications.

Some of the objects under study are then briefly presented in Chapter 2 below, before the
five chapters corresponding to the above five topics. In these chapters, the statements in which
I am involved are presented in gray coloured boxes, to locate them more easily.
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1.3 Chronological overview of results and approaches

Most of the objects considered in this overview are defined in the following chapters.

1.3.1 Questions raised by certain bases of Temperley-Lieb algebras

In my PhD thesis [72], I studied certain bases of Temperley-Lieb algebras, together with their
categorifications. Let Bn denote Artin’s n-strand braid group. There is a well-known group
homomorphism Bn −→ TL×

n , where TLn denotes the Temperley-Lieb algebra. Birman, Ko and
Lee considered a particular set of elements of Bn, which we will call the simple dual braids,
which are counted by the Catalan number Cn = 1

n+1

(
2n
n

)
. The simple dual braids generate

Bn, and a submonoid with particularly nice properties (called a Garside monoid), allowing
one to improve the solution to the word problem in Bn. The Catalan number Cn is also the
dimension of TLn, and it was observed by Zinno [143] that mapping the simple dual braids
to TLn through the above homomorphism yields a basis of TLn. My PhD supervisor had
observed on specific examples and conjectured that expanding elements of Zinno’s basis in the
canonical diagrammatic basis of TLn gives rise to some positivity properties (i.e., that under
suitable conventions, the polynomials occurring as coefficients of the base change matrix have
nonnegative coefficients). One of the aims of my PhD project was to prove this conjecture.

At that time (2011-2014), the so-called "categorification" program was being developed, with
the (already widely used, and not really new) idea that one way to show that a polynomial has
nonnegative coefficient is to interpret it as the (graded) character of a module, or in some cases,
as the Euler-Poincaré characteristic of a chain complex. This includes for instance, in particular
cases, Kazhdan-Lusztig polynomials [99], and such phenomenons also occur for instance in the
framework of cluster algebras [92].

Kazhdan-Lusztig polynomials appear in the framework of Hecke algebras attached to Cox-
eter groups [98]. Given a Coxeter groupW , the Hecke algebraHW is an algebra over A = Z[v±1]
that deforms the group algebra Z[X ], and has many applications in representation theory and
low-dimensional topology. In the particular case of the symmetric group (which is a Cox-
eter group), the above group homomorphism Bn −→ TL×

n factors through the Hecke algebra
Hn = HSn

. At the categorified level, one has geometric realizations of Hn as a convolution
algebra on the flag variety, and the theory of Soergel bimodules [136, 137, 65], which was also
being developed at that time, was providing an interesting tool to consider. Roughly speaking,
Soergel’s category is a monoidal, graded, Karoubian category of bimodules over a polynomial
ring R constructed using only some data attached to the (arbitrary) Coxeter system (W,S),
stable by direct sums, and such that the indecomposable bimodules are indexed up to isomor-
phism and grading shifts by the elements of w. Denoting by Bw the indecomposable Soergel
bimodule attached to w ∈ W , Soergel showed that the split Grothendieck ring of this cat-
egory is isomorphic to the Hecke algebra HW (with the parameter interpreted as a grading
shift), and conjectured that under this isomorphism, the class 〈Bw〉 of the bimodule Bw in the
Grothendieck ring coincides with the element C ′

w of the canonical basis {C ′
u}u∈W of Kazhdan

and Lusztig.
I did not manage to prove the positivity of Zinno’s basis in my PhD work, were I provided

a categorification of the Temperley-Lieb algebra by analogues of Soergel bimodules [73], and
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also established various combinatorial properties of Zinno’s bases [74, 76, 84] using properties
of reduced expressions of (fully commutative) permutations. The positivity was treated shortly
after the end of my PhD, using results which can be formulated in a more general framework
than the one introduced above.

To be more precise, concerning positivity, the following result of Dyer and Lehrer from
1990 [63], valid in an arbitrary finite Weyl group, previously conjectured by Dyer [55] in 1987
for an arbitrary Coxeter group, turned out to be useful. It states that, in the Hecke algebra
HW of a finite Weyl group, one has

T−1
x Ty ∈

∑

w∈W

Z≥0[v
±1]Cw, ∀x, y ∈ W, (1.3.1)

where {Tu}u∈W denotes the standard basis of HW (deforming the basis of Z[W ] given by the
elements ofW ) and {Cu}u∈W is another canonical basis (a slightly different, but similar basis, to
{C ′

u}u∈W–see Subsection 2.6 below for definitions). Three observations can be made in relation
with the aforementioned positivity question:

• As pointed out above, this property, conjectured for an arbitrary Coxeter group, was a
theorem for the symmetric group (and more generally for any finite Weyl group) [63],

• In the case where W = Sn, the Temperley-Lieb algebra TLn is a quotient of Hn := HW ,
and under suitable conventions on the quotient map, the diagrammatic basis of TLn is
the projection of the canonical basis {Cu}u∈W of Hn,

• The elements T−1
x Ty are in the image of the group homomorphism Bn −→ H×

n ; in other
words, they "come from braids" (uniquely determined if one believes the conjecture that
the above group homomorphism is injective).

One natural program, supported by several examples, to prove the positivity of Zinno’s basis
was thus to verify that the Birman, Ko and Lee simple dual braids in Bn can be written under
the form x−1y, where for w ∈ Sn, we denote by w its canonical positive lift in the Artin group
BW

∼= Bn attached to W ; the lift w has image Tw inside Hn, so that x−1y has image T−1
x Ty,

and Dyer and Lehrer’s result then applies. Note that, since Birman, Ko and Lee’s monoid was
generalized by Bessis [18] to arbitrary finite Coxeter groups, this question makes sense for an
arbitrary finite Coxeter group, not only for W = Sn.

During my PhD thesis, I was aware of 1.3.1, but had not been able to apply the above
program. I was also focused on the specific type A situation, and had not realized how rich
the content of 1.3.1 was; let me say a few more words about it, as it motivated an important
portion of my works from my first years of postdoc:

1. Specializing at y = 1, the content of 1.3.1 becomes the so-called positivity of inverse
Kazhdan-Lusztig polynomials, which had just been proven in full generality, i.e., for an
arbitrary Coxeter system, by Elias and Williamson [65] (where the positivity of classical
Kazhdan-Lusztig polynomials is also proven). Elias and Williamson’s proof uses the
bounded homotopy category of Soergel bimodules, and the positivity is obtained by taking
the Euler-Poincaré caracteristic of a chain complex of Soergel bimodules categorifying the
braid x−1y, yielding an explicit description of the coefficient of Cw as the (graded) number
of occurrences of the indecomposable Soergel bimodule Bw in the chain complex,
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2. The positive lifts w ∈ BW of the elements w ∈ W play a central role, when W is
finite, in the study of combinatorial problems on BW (word problem, conjugacy problem,
...), as they are the simple elements of the classical Garside structure on BW . This
means that they provide a generating set for BW which is of particular importance in the
aforementioned questions.

In view of these observations, there were (at least) two natural problems to investigate:
one problem was to try to show 1.3.1 (and other positivity properties) for arbitrary Coxeter
systems, using the breakthrough of Elias and Williamson [65] (see also [130] for a survey) relying
on Soergel’s framework [136, 137]. This is not related to the original problem of positivity of
Zinno’s basis anymore. Another problem was to try to explicit the somewhat mysterious link
between simple dual braids (generalizing Birman, Ko and Lee’s generators) and simple classical
braids (that is, elements of the form w, w ∈ W ), and especially to determine in spherical type
if simple dual braids can always be written as a quotient of two positive simple braids, which
implies the original motivating question on the positivity of Zinno’s basis in the particular type
A situation. We explain these two questions a bit more in details in the next two subsections.

1.3.2 Dyer’s conjectures, Soergel bimodules, and 2-braid groups

The results from this subsection are stated precisely in Section 4.1 in Chapter 4 below.

In addition to 1.3.1, Dyer also conjectured the following:

C ′
wTy ∈

∑

x∈W

Z≥0[v
±1]Tx, ∀w, y ∈ W. (1.3.2)

Specializing at y = 1, one gets nothing but the positivity of ordinary Kazhdan-Lusztig poly-
nomials. When W is finite, Dyer and Lehrer [63] showed in 1990 that (1.3.1) and (1.3.2) are
equivalent, and showed (1.3.2) to hold for any finite Weyl group.

At y = 1, property (1.3.2) is obtained by interpreting the expansion of C ′
w in the basis

{Tu}u∈W as the "character" of the indecomposable Soergel bimodule Bw attached to w, that
is, the coefficients of Tx is the graded multiplicity of some module Rx occurring in a canonical
filtration of Bw. To be defined, this filtration requires one to fix a total order refining the
(strong) Bruhat order, but the multiplicities are then shown to be independent of the chosen
total order.

During a conference in Bad Honnef in Germany in 2015, Wolfgang Soergel suggested to
me that I consider "twisted" filtrations of Soergel bimodules to establish (1.3.2) for arbitrary
Coxeter systems, that is, that I mimick his contruction of the filtrations, but replace the Bruhat
order by a "twisted" one. This led to a proof of (1.3.2) in general.

Unfortunately, for infinite W , there is no proof that (1.3.2) and (1.3.1) are equivalent. It
was thus interesting to also seek for a proof of (1.3.1) for arbitrary Coxeter systems. We can
obtain (1.3.1) in the same spirit as Elias and Williamson, using Rouquier’s categorical action of
the Artin group BW attached to an arbitrary Coxeter system on the triangulated category given
by the bounded homotopy category of Soergel bimodules [133, 132]. To each element of BW ,
one can associate (an equivalence class of) chain complexes, and the coefficient of Cw in (1.3.1)
counts the number of occurrences of the bimodule Bw appearing in a specific complex, called
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minimal, in the equivalence class of complexes attached to x−1y. Two properties are crucial
to deduce the positivity: a property of perversity or linearity of the minimal complex, and the
fact that, for a fixed w ∈ W , the indecomposable bimodule Bw appears either only in odd or
only in even cohomological degrees of the minimal complex.

1.3.3 Classical and dual simple generators of Artin groups of spherical
type

The results from this subsection are stated precisely in Section 3.1 from Chapter 3 below.

I understood a few weeks after the end of my PhD thesis how to establish, in type A, that
simple dual braids of Bn can always be written under the form x−1y. This was using a geometric
approach to the problem: in Artin’s n-strand braid group Bn, the elements of the form x−1y can
be characterized as those braids admitting a braid diagram where one can inductively remove
a strand lying above all the others until reaching the empty diagram–see Figure 1.2 for an
illustration. Using the "noncrossing partition" type models for simple dual braids in type A,
it was then easy to show that every simple dual braid has this geometric property, which we
called the "Mikado" property because of the similarity with the so-called Mikado game (which
seems to have another name in English...).

This gave rise to a joint article with François Digne [53], where we proved that simple dual
braids can be written under the form x−1y in Artin groups attached to any finite irreducible
Coxeter group except possibly type D, where we conjectured the result to still hold. Type
D was then obtained independently by Licata and Queffelec [104] using categorical actions of
Artin groups of types ADE on a suitable triangulated category, which also yields a new proof
of the result in types A and E, and by Baumeister and myself [13] using the same kind of
techniques as used with Digne in type A; this relies on the realization of the Artin group of
type D as an index two subgroup of a suitable quotient of an Artin group of type B, due to
Allcock [4].

The approaches to solve the problem in the various works mentioned in the previous para-
graph all furnish an algorithm to express a simple dual braid under the form x−1y, rather than
a closed formula. It should also be noted that the pair (x,y) is not unique in general. The
geometric characterization of braids of the form x−1y in type A allows one to establish the
following, a priori not trivial, property: denoting by S the set of Artin generators of Bn, every
braid of the form β = x−1y in type A admits a word in the generators S ∪ S−1 representing β,
which has the same length as the image of β in Sn with respect to the Coxeter generating set
of simple transpositions. Indeed, if we are given a braid diagram with the Mikado property, we
can readily convince ourselves that it is isotopic to a diagram where any two pairs of strands
cross at most once. And in fact, it is not difficult to show that every reduced expression of the
image of β in the symmetric group can be lifted to a word for β, where a Coxeter generator is
replaced by the corresponding Artin generator or its inverse (not every choice of exponents is
possible, of course).

Matthew Dyer gave me an algebraic explanation of this phenomenon, as well as a definition
of braids of the form x−1y in the spirit of the aforementioned principle of "lifting reduced
expressions". WhenW is finite, Dyer’s definition precisely yields the braids that can be written
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b b b b b b b

b b b b b b b

Figure 1.2: A Mikado braid in B7.

under the form x−1y (or xy−1, which is equivalent when W is finite), while for infinite W it
yields many more braids, which can still be expected to share the same kind of properties–for
instance positivity properties. Dyer’s definition involves choosing an element v ∈ W , and a
set A of positive roots with suitable properties (called biclosed). One then lifts any reduced
expression of v to BW , replacing a Coxeter group generator by the corresponding Artin one
or its inverse, using a rule involving the set A. The obtained element is independent of the
chosen reduced expression. In other words, these braids are "those for which Matsumoto’s
Lemma applies", in the sense that any two reduced words for these braids in S ∪ S−1 where
S denotes the set of Artin generators of BW can be related using a sequence of (mixed) braid
relations. These elements thus have their set of reduced words with respect to S ∪ S−1 in
canonical bijection with the set of S-reduced expressions of their image in the Coxeter group.

Even though the question of whether simple dual braids are of the form x−1y or not was
solved, I was not satisfied by the fact that one only had an algorithm to convert a simple dual
braid into one of the form x−1y. Using Dyer’s framework, one wonders on how to obtain a
simple dual braid β by "lifting" its image v = p(β) inW to BW using a biclosed set of roots. In
spherical type, biclosed sets of roots coincide with inversion sets of elements of W , hence there
is a bijection between W and such sets, and one thus looks for a canonical element u ∈ W such
that lifting v = p(β) using the inversion set of u yields the simple dual braid β. Here again,
such a u is not unique in general, but one can wonder if there exists a canonical one or not.

I positively answered this question as follows. Dual braid monoids are defined using a choice
c of standard Coxeter element in W , and for a simple dual braid β in this monoid, the element
v = p(β) turns out to be a generalized c-noncrossing partition, that is, an element lying below
c for the absolute order on W (a natural order on W required in the construction of dual braid
monoids–see Subsection 2.1.5 below for precise definitions). These c-noncrossing partitions are
in bijection with another subset of W introduced by Reading [126] and also depending on c,
the so-called c-sortable elements. I showed that, given a simple dual braid β and v = p(β), one
can take as element u the c-sortable element attached to the Kreweras complement v−1c of v
(which is also a c-noncrossing partition).

1.3.4 On the Hurwitz action in finite Coxeter groups

The results from this subsection are stated precisely in Section 3.2 from Chapter 3 below.
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Given a group G, one can define an action of the n-strand braid group Bn on the set of
n-tuples of elements of G by letting the standard Artin generator σi act as follows

σi : (g1, g2, . . . , gn) 7→ (g1, . . . , gi−1, gi+1, g
−1
i+1gigi+1, gi+2, . . . , gn).

First observe that such an action preserves the product from left to right of the elements in the
tuple. In particular, if G 6= {1}, there are always several orbits. It is thus natural to restrict
this action to the set of decompositions of a given element g as a product of n elements of G
(or of a generating set of G stable by conjugation).

In Bessis’ construction of the dual braid monoids [18] already mentioned in Subsection 1.3.3
above, such an action appears in the following specific situation. Consider a finite Coxeter
system (W,S), and let c = s1s2 · · · sn be a standard Coxeter element; here S = {s1, s2, . . . , sn}.
Then the product s1s2 · · · sn is reduced with respect to the generating set S of W , but it can
be shown to also be reduced with respect to the larger generating set T =

⋃
w∈W wSw−1 of all

conjugates of the elements of S, the so-called reflections of W . The set

RedT (c) = {(t1, t2, . . . , tn) ∈ T n | t1t2 · · · tn = c}

of T -reduced decompositions of c is stable by the Hurwitz action, since T is stable by conjuga-
tion. Bessis showed that when W is finite, the Hurwitz action on RedT (c) is transitive [18].

There are at least two reasons to consider this as an interesting result:

• Bessis uses it to show that a natural map between BW and the dual Artin group, defined
as the group of fractions G(B∗

c ) of the dual braid monoid B∗
c (which is a Garside monoid),

is surjective. Both groups appear to be isomorphic and this is an important step in the
proof1.

• An application of σi or its inverse replaces a subexpression (ti, ti+1) of a T -reduced expres-
sion by (ti+1, t

′), where t′ = ti+1titi+1, or by (t′, ti), where t′ = titi+1ti. These relations,
together with the relations t2 = 1 whenever t appears in a T -reduced expression of c
(which happens for all t in T when W is finite), yield a presentation of W . The transitiv-
ity of the Hurwitz action can then be considered as a kind of "dual"2 Matsumoto Lemma
for Coxeter elements, as it states that one can relate any two T -reduced expressions of a
Coxeter element using only these relations, sometimes called "dual braid relations".

The "dual Matsumoto property" mentioned in the second point above is only deduced for
Coxeter elements, and parabolic versions of such elements. It is not difficult to show that the
Hurwitz action is not transitive in general on RedT (w), w ∈ W . For instance, in type B2 with
classical generators s and t, for w equal to the longest element w0 = stst = tsts of W one has
two orbits {(s, tst), (tst, s)} and {(t, sts), (sts, t)}.

1For arbitrary W , one can still define a group generalizing G(B∗

c ), which is not Garside in general, but can
still be conjectured to be isomorphic to BW . Bessis’ result on the transitivity on the Hurwitz action on RedT (c)
can be shown to hold in arbitrary Coxeter systems [96, 12], and the surjectivity BW ։ G(B∗

c ) can be deduced
for arbitrary Coxeter systems (whether it is an isomorphism or not is open in general).

2The word "dual" here is used because, since Bessis’ paper [18], viewing a Coxeter group W as being
generated by all the reflections occuring in T -reduced expressions of a Coxeter element is sometimes called the
"dual approach" to Coxeter groups. For the origin of this terminology see [18, Section 5.1].
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In a joint work with Barbara Baumeister, Kieran Roberts and Patrick Wegener [14], initiated
after two visits in Bielefeld in 2014 and 2015, we characterized those elements w of finite Coxeter
groups such that the Hurwitz action is transitive on RedT (c). This happens if and only if w is a
so-called parabolic quasi-Coxeter element, that is, an element admitting a T -reduced expression
such that the reflections in this expression generate a parabolic subgroup of W .

In a short note [77], I then showed that parabolic quasi-Coxeter elements are precisely those
elements of finite Coxeter groups admitting a decomposition generalizing the decomposition
of permutations in the symmetric group into products of cycles with disjoint support. In the
symmetric group, where every element has such a decomposition, every element is indeed a
parabolic quasi-Coxeter element (and even a parabolic Coxeter element).

1.3.5 Extended and generalized Soergel categories

The results from this subsection are stated precisely from Section 4.2 in Chapter 4 below.

During a winterschool in Denmark in March 2013, Elias and Williamson presented their
results from [65]; they gave several open questions and the following one was source of interest
to me. Given a Coxeter system (W,S), the monoidal category B of Soergel bimodules already
mentioned in Subsection 1.3.2 above is a category of graded R-bimodules over some polynomial
ring R depending onW and equipped with an action ofW respecting the grading; this category
is generated in a suitable sense by R-bimodules of the form Bs := R ⊗Rs R, where s ∈ S and
Rs denotes the graded subring of elements of R which are fixed by s. It is possible to define
such a bimodule for every t ∈ T , i.e., for every reflection. Elias and Williamson indicated that
it was unknown what the split Grothendieck ring of the category BT generated (in the same
sense as B) by this larger set of generating bimodules was, even in type A2.

The "dual" nature of this question, even if, unlike in the previous subsections, there is no
choice of standard Coxeter element here, naturally triggered my curiosity. Shortly after the
winterschool, I convinced myself that it was possible to give a full description of the indecom-
posable objets in the category BT in type A2, but could not obtain a description for A3 and not
even for any other dihedral group. Two years later, during the AMS and EMS joint meeting in
Porto in June 2015, I discussed with Anne-Laure Thiel, who turned out to also have thought
about this question, and had also obtained a description of the indecomposable objects of BT

in type A2, using a different method. We decided to join our efforts.
After several attempts and many extensive computations, we realized that we were not able

to give any precise description of the split Grothendieck ring of BT beyond type A2, and that
it was not even clear that such a ring would be of finite rank as a Z[v±1]-module in types A3 or
B2. By the time I am writing these lines, I would be tempted to conjecture that this module
is always of infinite rank if W is irreducible and of types different from A1 or A2. We decided
to submit a short note with the full description of the indecomposables and a presentation by
generators and relations of the split Grothendieck ring of BT in type A2 [86].

To some extent, the aforementioned question consists of adopting a point of view where we
see a Coxeter group W as being generated by the whole set of reflections T , instead of just a
simple system S. When considering more generally finite complex reflection groups, the notion
of "simple system" that we have for real groups is not canonically defined in general, and it is
thus more natural in several cases to consider the whole set of reflections, instead of a minimal
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one which may not be canonical. Our failure to describe the category BT outside type A2 led
us to finally wonder if a first step would not be to consider non necessarily real groups, but of
rank one, that is, in the complex case, finite cyclic groups.

We thus began to be interested in constructing and describing a Soergel category for cyclic
groups in 2018. When viewed as a reflection group, a cyclic group is generated by a reflection s
of order d ≥ 2. Already in the very particular case of such groups, it is not clear at all what the
correct definition of the equivalent of the Soergel bimodule Bs = R⊗Rs R should be. One still
has a natural polynomial ring R = S(V ∗), where V is the natural module for W , but the naive
algebraic definition of Bs as R⊗Rs R gives rise to a category whose K0 is a free Z[v±1]-module
of rank 2 for every cyclic group, while one would expect something related to the Hecke algebra
of W as defined in [34], which is a deformation of the group algebra ofW . We therefore defined
Bs as a ring of regular functions on a union of graphs, also generalizing a description of Bs

holding in the real case, but which yields a bimodule nonisomorphic to R⊗Rs R when d > 2.
We obtained a complete description of the split Grothendieck ring of the category generated

by such a bimodule in this situation, yielding a commutative algebra AW that is an extension
of a version of the Hecke algebra HW of the cyclic group W , of rank |W |(|W | − 1) + 1 when
|W | > 2. The algebra AW also contains a copy of the group algebra of W , and is generically
semisimple if defined over the complex numbers. This gave rise to the article [87]. Note that
this category has a single generating bimodule, that is, we took one generator per distinguished
reflection (see Subsection 2.2 below for precise definitions).

The category that we defined for cyclic groups can be defined for an arbitrary complex
reflection group W ; whether it can be understood or not is a story for another day.

1.3.6 Reflection subgroups: structure, normalizer, Hecke algebras, ...

The results from this subsection are stated precisely in Chapter 5 below.

Finite real reflection groups are finite subgroups of GLn(R) which can be generated by
reflections. They coincide with finite Coxeter groups. The latter are defined by generators and
relations, and many features of finite real reflection groups can be generalized to arbitrary, in
particular not necessarily finite, Coxeter groups. This includes properties such as the exchange
lemma, the weak order, the Bruhat order, etc. Arbitrary Coxeter groups still admit a faithful
representation as subgroups of GLn(R) generated by reflections (but they do not preserve an
inner product in general). See Subsection 2.1 below for a short introduction to Coxeter groups.

When the Coxeter group W is finite, the conjugates of its generating set S is precisely
the set of elements acting as reflections if the group is viewed as a real reflection group. In
the infinite case, one still calls reflections the conjugates of the elements of the simple system
S. A fundamental theorem independently proven by Deodhar [50] and Dyer [57] states that
every subgroup of a Coxeter group W generated by a (possibly infinite) set of reflection still
admits a canonical structure of Coxeter group–note that, for finite Coxeter groups, this is just
a consequence of the characterization of finite Coxeter groups as finite real reflection groups.

Another possible generalization of finite real reflection groups, still mentioned in the previ-
ous section, is given by finite complex reflection groups. That is, finite subgroups of GLn(C)
generated by reflections. Recall that a reflection is an invertible linear transformation of finite
order, whose set of fixed points is a hyperplane. In particular, when working over a complex
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vector space, reflections need not have order 2. In this setting as well, one can consider reflec-
tion subgroups, that is, subgroups generated by a set of reflections from the ambient group. Of
course, every real reflection group can be realized over the complex numbers, but the converse
is not true.

The rank of a Coxeter group W is the size of its set S of generators coming from its Coxeter
presentation. For a complex reflection group, one defines the rank as the dimension of the
complex vector space on which the group acts as a reflection group, after removing if necessary
the subspace consisting of those vectors which are fixed by the whole group. In the case of
finite real reflection groups which form the intersection of the above two families, one can show
that these two notions coincide.

In the above two generalizations of finite real reflection groups, namely arbitrary Coxeter
groups and finite complex reflection groups, several natural questions on properties of their
reflection subgroups can be formulated, including for instance the following (we do not pretend
this list to be exhaustive at all):

• What can be said about the rank of a reflection subgroup? Are there reflection subgroups
of a given rank which are maximal with respect to certain properties?

• What is the link between the Hecke algebra or (generalized) braid group of a reflection
subgroup and those of the ambiant group?

• What are the properties of left or right cosets modulo a reflection subgroup?

• What is the structure of the normalizer of a reflection subgroup?

Some of the above questions have their origins in questions coming from representation
theory, where certain families of reflection subgroups (such as standard parabolic subgroups of
Weyl groups) naturally appear.

My first interest for reflection subgroups came when trying to better understand the quasi-
Coxeter elements mentioned in Subsection 1.3.4 above. In fact, every element w of a finite
Coxeter group is a quasi-Coxeter element in at least one reflection subgroup of W , and the
number of Hurwitz orbits on RedT (w) is in bijection with the number of reflection subgroups
in which w is a quasi-Coxeter element.

The structure of normalizers of parabolic subgroups of Coxeter groups has been widely
studied (see Section 5.1 below for a bit of context). In connection with questions on Yokonuma-
Hecke algebras, Ivan Marin defined a notion of braid group and Hecke algebra of a normalizer
of a (full) reflection subgroup of a finite complex reflection group [110]. During a visit of Marin
when I was a postdoc in Sydney in 2019, together with Anthony Henderson we tried to elucidate
the structure of this braid group and Hecke algebra, in the case of a reflection subgroup of a
finite real reflection group, i.e., a finite Coxeter group.

It is easily seen that the normalizer of a reflection subgroup W0 of an arbitrary Coxeter
group W can always be written as a semidirect product of W0 and a complement U0 stabilizing
a set of roots. When W is finite, we showed that the braid group of the normalizer always
decomposes as a semidirect product of the braid group of W0 with U0. This allowed us to
construct a "standard basis" of the Hecke algebra of the normalizer.
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In the case of finite complex reflection groups, a reflection subgroup does not necessarily
admit a complement inside its normalizer, but it does admit a complement if it is parabolic,
as shown by Muraleedaran and Taylor [118]. But unlike in the real case, even in the parabolic
case, the braid group of the normalizer does not necessarily decompose as a semidirect product.
Together with Ivan Marin, we showed that, when the reflection subgroup is parabolic, one
always has a semidirect (or crossed) product decomposition at the level of the Hecke algebra of
the normalizer, provided the field of definition of the Hecke algebra is large enough. Explicit
conditions on the field to ensure such a decomposition were provided for the infinite series of
finite complex reflection groups, and for some of the exceptional groups.

Another family of reflection subgroups which interested me, in connection with "dual"
questions, is the family of dihedral reflection subgroups of a Coxeter group W . Dyer showed
that, given any pair t, t′ of distinct reflections ofW , there is a unique maximal dihedral reflection
subgroup of W containing both t and t′ (dihedral means here that the Coxeter generating set
has two generators). Such a subgroup can be seen as a generalization of the "parabolic closure"
of a reflection subgroup of rank 2. Dyer recently generalized this result [62].

I gave a new proof of Dyer’s theorem on the existence of maximal dihedral reflection sub-
groups, not using root systems, and used it to give a new proof of a recent theorem of Delucchi,
Paolini and Salvetti [47], stating that the interval between the identity and a Coxeter element in
the absolute order on a Coxeter group of rank three is a lattice. This was achieved by showing
the more general result that any interval of length 3 in the absolute order on a Coxeter group
is a lattice.

1.3.7 On torus knot groups, their Garside structures, their quotients

The results from this subsection are stated precisely in Chapter 6 below.

Dual braid monoids, which are fundamental examples of Garside monoids, were a central
object in study in my PhD thesis (in type A). I have thus been rapidly exposed to Garside
theory and related questions, without however getting closely interested at that time in the
general aspects of Garside groups and monoids.

Roughly speaking, a Garside group is an infinite group which is the group of fractions of a
finitely generated monoid, called Garside monoid, with particularly good divisibility properties.
These properties ensure, among others, that the word and conjugacy problems in the Garside
group are solvable, and that the group is torsion free. See section 2.5 below for precise definitions
and some properties.

Shortly after I began my postdoc in Sydney in January 2018, a question from the reference
book on Garside theory [43] triggered my attention:

Question 1.3.1 ([43, Chapter IX, Question 30]). Is the submonoid Mn of Artin’s braid group
Bn generated by the elements σ1, σ1σ2, . . . , σ1σ2 · · ·σn−1 a Garside monoid? If not, is it finitely
presented?

For n = 3, the answer is positive. This is related to an open problem suggested by Birman
and Brendle [22, Open Problem 10], which asks if there are other Garside structures for Bn that
the classical and dual one (for sufficiently large n). In fact, a given Garside group G can have
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several nonisomorphic Garside monoids which have G as group of fractions, and it is natural
to try to classify such monoids. Depending for instance on the chosen monoid, one can get a
better solution to the word problem in the Garside group. For n = 3, at least four Garside
monoids are known, but for n ≥ 4, to the best of our knowledge, only the classical and dual
one are known.

I had unsuccessfully tried to obtain answers to Question 1.3.1 at the beginning of 2018. Two
years later, I was asked if I would like to contribute to a special issue of Journal of Algebra in
honour of Patrick Dehornoy. I decided to have a look at my notes from two years before, and
began to investigate this question again. I realized that I was able to say more.

I constructed a new Garside structure on a group which was already known to be a Garside
group, namely the torus knot group G(n − 1, n). This group is an extension of Artin’s braid
group Bn, and the Garside monoid M(n − 1, n) that I constructed projects onto Mn via the
quotient map G(n − 1, n) ։ Bn (which is an isomorphism when n = 3). It is not hard to see
that Mn cannot be a Garside monoid when n ≥ 4 because, even if every pair of elements has
common multiples, in general we do not have a least one. Somehow what the above construction
says is that in order to get a Garside structure, one needs to "enlarge" Bn into G(n − 1, n).
This also suggests that the "correct" framework to generalize the exotic Garside structure given
by M3 is not Artin’s braid groups Bn, but rather torus knot groups (the same happens with
another known Garside structure on B3).

I later generalized my Garside structure to all torus knot groups G(n,m), where n,m ≥ 2
are coprime and n < m [82]. It is worth mentioning that in the constructed Garside monoid
M(n,m), the Garside element is central, and the left and right lcms of the atoms are never equal
to the Garside element (in some cases also, the left and right lcms of the atoms are not equal).
The lattice of divisors of the Garside element is mysterious in general. Together with Baptiste
Rognerud, we described this lattice for the monoids M(n− 1, n), and showed that in this case,
the number of elements in the lattice is given by F2n, where F0 = 0, F1 = 1, F2 = 1, F3 = 2, . . .
is the Fibonacci sequence.

In the article [79] published in the volume in honour of Patrick Dehornoy, I gave a conjectural
presentation of Mn as a quotient of M(n − 1, n), generalizing a conjecture formulated by
Dehornoy for n = 4. I realized in September 2022 that my conjecture (and thus Dehornoy’s
conjecture as well) was false. This was published as an addendum [80] to the article [79].

I have also been interested by certain quotients of torus knot groups, obtained by adding
torsion on atoms in certain homogeneous Garside structures (which are not the ones I introduced
in [79, 82]). In fact, when submitting the article for the volume in honour of Dehornoy, I had
not realized that the extension of Bn I was considering was isomorphic to the torus knot group
G(n−1, n); this was pointed out to me later by a referee of the paper. In between, I had noticed
that, for n = 4, the natural quotient of my group which was corresponding, when n = 3, to the
symmetric group S3, was the exceptional complex reflection group G12, and that for n = 5 the
analogous quotient was infinite. This motivated the following question; to be a bit more precise,
recall that torus knot groups G(n,m) are usually defined by the presentation 〈 x, y | xn = ym 〉
which has a minimal number of generators (and is Garside), but if one wants a presentation
generalizing Artin’s presentation of B3, one rather considers the following presentation, where
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in the knot groups the generators correspond to meridians:

G(n,m) ∼= 〈 x1, x2, . . . , xn | x1x2 · · ·︸ ︷︷ ︸
m factors

= x2x3 · · ·︸ ︷︷ ︸
m factors

= · · · = xnx1 · · ·︸ ︷︷ ︸
m factors

〉, (1.3.3)

where indices are taken modulo n. The aforementioned quotients are thus of the following form.
Let k ≥ 2 and define

W (k, n,m) :=

〈
x1, x2, . . . , xn

∣∣∣∣
xki = 1 for all i = 1, . . . , n,

x1x2 · · ·︸ ︷︷ ︸
m factors

= x2x3 · · ·︸ ︷︷ ︸
m factors

= · · · = xnx1 · · ·︸ ︷︷ ︸
m factors

〉
. (1.3.4)

I called such groups toric reflection groups. These groups are infinite in general. For instance, for
any k ≥ 2 they include the quotient of the 3-strand braid group B3 by the relations σk

1 = σk
2 = 1,

which is nothing but W (k, 2, 3). This quotient was shown by Coxeter to be infinite [39] if and
only if k ≥ 6.

I initiated a study of these groups [81]. To be more precise, I have shown that they belong
to a family of groups generalizing complex reflection groups of rank two, called J-groups, in-
troduced by Achar and Aubert [2] and defined as certain normal closures inside certain groups
defined by generators and relations. In particular, this gives a presentation by generators and
relations for certain J-groups. Achar and Aubert showed that a group is a finite J-group if and
only if it is a finite complex reflection group of rank 2. This motivates the name toric reflection
groups. One can deduce that a group G is a finite toric reflection group if and only if it is a
finite complex reflection group of rank two with a single orbit of reflecting hyperplanes.

I also showed that every toric reflection group has a cyclic center, and that the quotient
of a toric reflection group by its center is isomorphic to the alternating subgroup of a Coxeter
group of rank three. This allows one to classify toric reflection groups. As a corollary of the
classification result, one shows that no two nonisomorphic torus knot groups can have the same
toric reflection group as quotient obtained by adding torsion on the meridians, and thus, that
the torus knot group can be seen to play the role of the "braid group" of a toric reflection group.
In the case where the toric reflection group is finite, one recovers its complex braid group.

It is tempting to try to generalize the study of such groups. For instance, toric reflection
groups are certain J-groups, and it is natural to wonder if one can obtain presentations by
generators and relations for other families of J-groups (ideally for all J-groups), or generalize
these results to complex reflection groups of rank greater than 2. One can then try to construct
an analogue of the "braid group" of such groups, and check whether it is a Garside group or
not. This is the topic of the PhD thesis of my student Igor Haladjian (begun in September
2022).

1.3.8 Spherical quotients and generalized Bruhat orders

The last chapter of this thesis is devoted to a topic where reflection groups still appear. I began
working on this when I was a postdoc in Nancy in 2017, and together with my collaborators
there we are still currently working on the many open questions remaining. The results are
stated precisely in Chapter 7 below.
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The strong Bruhat order is a partial order which can be defined on an arbitrary Coxeter
group, but its original definition was given in the particular case where the Coxeter group is the
finite Weyl group of a connected, reductive algebraic group. Given such a reductive group, one
can consider the quotient by a Borel subgroup; it can be equipped with a structure of smooth,
projective algebraic variety, called the generalized flag variety. The Borel subgroup acts on the
flag variety with finitely many orbits, parametrized by the elements of the Weyl group. The
Bruhat order then describes the inclusion of orbits closures. Several critera involving only the
combinatorics of the Weyl group can be taken as a generalization to arbitrary Coxeter systems3.

Instead of considering combinatorial generalizations of the Bruhat order as above to cases
where there is no more (known) flag variety, one can also consider other closed subgroups of
a connected, reductive algebraic group acting with finitely orbits on the flag variety (such a
subgroup is called spherical), and

• Seek for a parametrization of the orbits,

• Find a combinatorial criterion for the description of orbit closures, possibly involving (a
subset, or a quotient of) the Weyl group.

Together with Pierre-Emmanuel Chaput and Lucas Fresse, we considered the above "generalized
Bruhat order" obtained by letting the centralizer of a 2-nilpotent matrix act on the flag variety
of the general linear group over an algebraically closed field of characteristic zero. This subgroup
is known to be spherical, and we gave a parametrization of the orbits in a family of situations
including the above one, as well as a combinatorial criterion for orbit closures involving a
quotient of the Weyl group of type A by a subgroup also admitting a structure of Coxeter group,
given by the subgroup of fixed points of an automorphism of Coxeter group of a disconnected
standard parabolic subgroup. This has a natural generalization to arbitrary Coxeter groups
together with a choice of standard parabolic subgroup with automorphism of Coxeter group, in
the sense that one can define a "Bruhat order" on the set of cosets of such a subgroup of fixed
points. It is natural to wonder in which cases such a "Bruhat order" comes from an inclusion
of orbit closures...

Together with Nathan Chapelier, we investigated in 2021 some natural questions involving
such fixed-point subgroups, such as the behaviour of elements of minimal length in cosets, and
the restriction of the Bruhat order on the ambient group to such cosets [36].

It is natural to extend these results to "subgroups of a Coxeter group admitting a canonical
structure of Coxeter group" (a family of subgroups which is yet yo define precisely and unam-
bigously...), and to see under which conditions one can mimick the constructions of Deodhar [49]
of parabolic Kazhdan-Lusztig polynomials.

3We do not know what a reasonable generalization of the Bruhat order to complex reflection groups could
be.



Chapter 2

Preliminaries

The aim of this section is to recall some of the objects used in the next chapters.

2.1 Coxeter groups and their Coxeter subgroups

Most of the results cited here may be found in basic references on Coxeter groups, such as [27,
1, 24, 95].

2.1.1 Coxeter matrices and Coxeter groups

Definition 2.1.1 (Coxeter matrix). Let S be a set. A Coxeter matrix is a matrix (ms,t)s,t∈S
with coefficients in Z≥1 ∪ {∞}, where

• ms,s = 1, ∀s ∈ S,

• ms,t = mt,s ∈ Z≥2 ∪ {∞} if s, t ∈ S with s 6= t.

One can attach to a Coxeter matrix a Coxeter graph Γ, which is a labelled graph whose
vertices are in one-to-one correspondence with the elements of S, and there is an edge between
s and t if and only if ms,t ≥ 3; this edge has no label if ms,t = 3, and label ms,t otherwise.

Given two letters a, b and an integer m ≥ 2, denote by P (a, b;m) the word defined by

P (a, b;m) =

{
(ab)k if m = 2k
(ab)ka if m = 2k + 1.

Definition 2.1.2 (Coxeter group). Let S be a set. Fix a Coxeter matrix (ms,t)s,t∈S. The
Coxeter group attached to this matrix is the group defined by the presentation

W = 〈 s ∈ S | (st)ms,t = 1, ∀s, t ∈ S such that ms,t 6= ∞ 〉. (2.1.1)

We may rewrite the presentation in the form
〈

s ∈ S
s2 = 1, ∀s ∈ S,
P (s, t;ms,t) = P (t, s;mt,s), ∀s, t ∈ S s.t. s 6= t and ms,t 6= ∞

〉
. (2.1.2)
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The pair (W,S) is called a Coxeter system, and S is the simple system (or Coxeter generating
set) ofW . The rank ofW is |S|. The groupW is irreducible if the corresponding Coxeter graph
is connected. It is simply-laced if ms,t ≤ 3 for all s, t ∈ S. It is universal if ms,t = ∞ whenever
s 6= t.

Example 2.1.3. The symmetric group Sn with its presentation (1.1.1) is a Coxeter group.

Remark 2.1.4. It is clear from the definition that there is a group homomorphism W −→
Z/2Z, sending every generator s to 1. In particular, s 6= 1 in a Coxeter group. It is less obvious
that distinct elements s, t from the set S we started with are not identified in the group W .
This can be seen for instance using a faithful representation ofW inside GL|S|(R) (introduced in
Theorem 2.1.13 below), as a corollary of the fact that the order of st insideW is precisely equal
to ms,t. Note that an algebraic proof of this fact avoiding the use of the faithful representation
is also possible (see [116]).

Definition 2.1.5 (Isomorphism of Coxeter groups). Let (W1, S1) and (W2, S2) be Coxeter
systems. We say that W1 and W2 are isomorphic as Coxeter groups, if there is a bijection
ϕ : S1 −→ S2 extending to a group isomorphism.

It follows from Remark 2.1.4 that two Coxeter groups are isomorphic as Coxeter groups if
and only if, up to a permutation of the elements of their generating sets, they have the same
Coxeter matrix.

Remark 2.1.6. To be isomorphic as Coxeter groups is much stronger than to be isomorphic as
abstract groups. It can happen that Coxeter groups which are nonisomorphic as Coxeter groups
become isomorphic as abstract groups. For finite Coxeter groups, there is a classification of
such isomorphisms, but in general the question is still open, and known as "The Isomorphism
Problem for Coxeter Groups".

Definition 2.1.7 (Reflection). Let (W,S) be a Coxeter system. The set T :=
⋃

w∈W wSw−1 is
the set of reflections of W .

One can show that T is infinite if and only ifW is infinite. The reason for such a terminology
comes from the following result of Coxeter.

Theorem 2.1.8. Let G be a group. Then G is a finite Coxeter group if and only if it can
be realized as a finite real reflection group, that is, a finite subgroup of GLn(R) for some n
generated by elements of order 2 fixing a hyperplane in Rn. In this case, the set of elements
acting as reflections coincide with the set T .

Denote by ℓ = ℓS the length function W −→ Z≥0 with respect to the generating set S of
W , and by ℓT the one with respect to the generating set T .

Definition 2.1.9 (Reduced expressions). Let (W,S) be a Coxeter system. Let s1, s2, . . . , sk
(respectively t1, t2, . . . , tk) be elements of S (respectively T ), and let w ∈ W such that w =
s1s2 · · · sk (respectively t1t2 · · · tk). If ℓ(w) = k (respectively ℓT (w) = k), we say that the
word s1s2 · · · sk (respectively the word t1t2 · · · tk) is an S-reduced expression of w (respectively
a T -reduced expression of w).
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Note that, since the defining relations of (W,S) preserve the parity of the length of a word,
for every t ∈ T we get that ℓ(t) is odd. Hence, for w ∈ W , we cannot have ℓ(tw) (or ℓ(wt))
equal to ℓ(w). Also note that ℓT (w) ≤ ℓS(w), and that (−1)ℓ(w) = (−1)ℓT (w), for all w ∈ W .

Definition 2.1.10 (Alternating subgroup). The kernel of the group homomorphism W −→
Z/2Z sending each generator s ∈ S to 1 is the alternating subgroup of W , denoted W+. It is
also the subgroup of W consisting of those w ∈ W such that ℓ(w) is even.

Proposition 2.1.11 (Inversions). Given a Coxeter system (W,S), there is a unique application
N :W −→ P(T ) such that

1. N(s) = {s} for all s ∈ S,

2. N(xy) = N(x) + (xN(y)x−1) for all x, y ∈ W , where + denotes symmetric difference.

The set N(w) is the set of left inversions of w. The right inversions of w ∈ W may be defined
as the left inversions of w−1.

Proposition 2.1.12. Let w ∈ W . Then

N(w) = {t ∈ T | ℓ(tw) < ℓ(w)},

and |N(w)| = ℓ(w).

2.1.2 Geometric representation and root systems

Let (W,S) be a Coxeter system. Let V =
⊕

s∈S Rαs be a vector space with a basis indexed by
the elements of S. Define a symmetric bilinear form B on V by defining it on the basis vectors
by

B(αs, αt) =

{
−cos(π/ms,t) if ms,t 6= ∞

−1 if ms,t = ∞
.

Assign to each s ∈ S the linear transformation σs of V defined by

v 7→ v − 2B(αs, v)αs.

Theorem 2.1.13 (Geometric representation). The assignment s 7→ σs extends to a faithful
representation ρ of W in GL(V ) ∼= GL|S|(R).

Note that σs (and hence any conjugate) acts on V by a reflection (in the sense that σ2
s = 1

and that σs fixes exactly a hyperplane). This explains the terminology from Definition 2.1.7.
We abusively still denote by w the endomorphism ρ(w). Define

Φ = {w(αs) | s ∈ S, w ∈ W},

and
Φ+ = {β ∈ Φ | β =

∑

s∈S

λsαs with λs ≥ 0 ∀s ∈ S}.
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Theorem 2.1.14 (Generalized root systems). One has

1. Φ = Φ+
·
∪ (−Φ+),

2. The set T is in bijection with Φ+. To t ∈ T written under the form wsw−1, s ∈ S,
w ∈ W , one associates the unique element in {w(αs),−w(αs)} lying in Φ+.

Denote by αt the image of t ∈ T under the bijection T ≃
−→ Φ+.

The following proposition justifies the use of the term "inversions" for elements of N(w):

Proposition 2.1.15 (Geometric interpretation of inversions). For w ∈ W , we have N(w) =
{t ∈ T | w−1(αt) ∈ Φ−}.

Definition 2.1.16. Let A ⊆ Φ+. We say that A is closed if for all α, β ∈ A, we have (R>0α +
R>0β)∩Φ+ ⊆ A. It is coclosed if Φ+\A is closed. It is biclosed if it is both closed and coclosed.
We say that A ⊆ T is biclosed if ΦA := {αt | t ∈ A} is biclosed.

One has the following characterization of finite biclosed sets of roots (see for instance [61,
Lemma 4.1 (iv)]).

Lemma 2.1.17. Let A ⊆ T be finite. Then A is biclosed if and only if there exists w ∈ W
such that A = N(w).

2.1.3 Finite Coxeter groups

Finite Coxeter groups can be characterized as follows.

Proposition 2.1.18. Let (W,S) be a Coxeter system. Let w0 ∈ W . The following are equiva-
lent

1. ℓ(w0s) < ℓ(w0), for all s ∈ S,

2. ℓ(w0w) = ℓ(w0)− ℓ(w), for all w ∈ W ,

3. w0 has maximal length among the elements of W .

If such an element w0 exists, then it is unique and it is an involution, and W is finite. The
element w0 is then called the longest element of W .

An alternative terminology for a finite Coxeter group is a spherical Coxeter group, or a
Coxeter group of spherical type. Finite irreducible Coxeter groups are classified in four infinite
families An (n ≥ 2), Bn (n ≥ 2), Dn (n ≥ 4), I2(m) (m ≥ 3), and six exceptional groups
E6, E7, E8, F4, H3, H4, given by the following diagrams (the subscript denotes the rank of the
Coxeter system, hence the number of vertices of the graph). These types are defined by the
following Coxeter graphs

An = , Bn =
4 , Dn = ,

I2(m) =
m , E6 = , E7 = , E8 = ,
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F4 =
4 , H3 =

5 , H4 =
5 .

Note that A2 = I2(3) and B2 = I2(4). Note that the symmetric group Sn given in Exam-
ple 2.1.3 corresponds to type An−1.

2.1.4 Reflection subgroups and other "Coxeter subgroups"

Let (W,S) be an arbitrary Coxeter system.

Definition 2.1.19. A reflection subgroup of W is a subgroup of W generated by a subset of T .

It is well-known that the reflection subgroup WI generatedy by a subset I ⊆ S, called
standard parabolic subgroup, is again a Coxeter group, with simple system I. Hence such
reflection subgroups, as well as their conjugates, called parabolic subgroups, are themselves
Coxeter groups.

In general, there are many more reflection subgroups than parabolic subgroups, and they
turn out to still admit a canonical structure of Coxeter group.

Theorem 2.1.20 (Deodhar, 1989, [50], Dyer, 1990, [57]). Let A ⊆ T , and let WA be the
subgroup of W generated by A. Then WA is a Coxeter group, with canonical set of Coxeter
generators given by

χ(WA) := {t ∈ T ∩WA | N(t) ∩WA = {t}}.

Moreover, the set TA of reflections of WA is equal to WA ∩ T .

Ideally, one would like to have a good notion of Coxeter subgroup of a Coxeter group.
Considering every abstract subgroup H of W admitting a generating set yielding a Coxeter
presentation seems to be a too general question, and some compatibility between the generating
system of H and that of W should be expected; it seems that such a theory is still missing,
while there are several important families of subgroups of Coxeter groups admitting canonical
structures of Coxeter groups (and often, sharing similar properties). Parabolic subgroups, and
more generally reflection subgroups, form such a family. Another well-known family can be
constructed as follows. Let (W,S) be a Coxeter system, and let θ be an automorphism of
Coxeter group of (W,S). Consider the subgroup W θ of θ-fixed points of W , that is, let

W θ = {w ∈ W | θ(w) = w}.

It was observed by several authors that W θ is again a Coxeter system, with a simple system
built as follows. Let {Oi}i∈I denote the set of orbits for the action of θ on S. Let

J := {i ∈ I | the standard parabolic subgroup WOi
is finite},

where WOi
is the standard parabolic subgroup generated by Oi ⊆ S.

Let Sθ := {w0,j | j ∈ J}, where w0,j denotes the longest element of WOj
.

Theorem 2.1.21 (Steinberg, 1967, [140], Hée, 1991, [91], Mühlherr, 1993, [117], Lusztig, 2003,
[106]). The pair (W θ, Sθ) is a Coxeter system.

In general, the subgroup W θ is not a reflection subgroup of W . Such Coxeter systems natu-
rally appear for instance in certain representation theoretic questions. They are also frequently
used to generalize constructions known for simply-laced Coxeter systems to non simply-laced
ones, by realizing the latter as W θ’s inside simply laced W ’s.
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2.1.5 Partial orders

Let (W,S) be a Coxeter system. There are several ways to partially order a Coxeter group.

Definition 2.1.22 (Weak order). The (right) weak order on W is defined by u ≤S v if and
only if ℓS(u) + ℓS(u

−1v) = ℓS(v). In other words, we have u ≤S v if and only if v admits an
S-reduced expression with a prefix which is an S-reduced expression of u. One can similarly
define a left weak order ≤′

S by u ≤′
S v if and only if ℓS(vu−1) + ℓS(u) = ℓS(v).

Definition 2.1.23 (Bruhat order). The (strong) Bruhat order on W is the transitive closure
of the relation defined by x < xt whenever x ∈ W , t ∈ T , and ℓ(x) < ℓ(xt).

Originally, the Bruhat order appeared in the study of inclusions of Schubert varieties. These
are Zariski closures of B-orbits on B = G/B, where G is a connected reductive algebraic group
and B is a Borel subgroup. As a consequence of the Bruhat decomposition, the B-orbits (and
hence their closures) are parametrized by the Weyl group W of G, which is a Coxeter group.
Denoting by Cw (resp. Xw) the corresponding B-orbit (resp. its closure), for u, v ∈ W one has
u ≤ v if and only if Xu ⊆ Xv.

There are several characterizations of the strong Bruhat order (see for instance [24, Corollary
2.2.3]).

Proposition 2.1.24. Let u, v ∈ W . The following are equivalent:

1. u ≤ v,

2. There is an S-reduced expression of v admitting a subexpression which is an S-reduced
expression of u,

3. Every S-reduced expression of v admits a subexpression which is an S-reduced expression
of u.

The above characterization shows that, even if the whole set of reflections is used to define
the strong Bruhat order, it has a natural description in terms of the classical generating system
S of W .

On the other hand, every Coxeter group is generated by the bigger set T of reflections, and
there are some contexts in which it is useful to see a Coxeter group as being generated by the
whole set T of reflections. One can then mimick the definition of the (left) weak order:

Definition 2.1.25 (Absolute order). Let u, v ∈ W . We define a partial order ≤T on W by
u ≤T v if and only if ℓT (u) + ℓT (u

−1v) = ℓT (v).

Since the set T is invariant under conjugation, there is no need to distinguish between a
"left" and a "right" weak order: both yield the same partial order. Concerning a "strong"
order, the following proposition shows that the absolute order in fact satisfies the analogue of
the second characterization of Proposition 2.1.24.

Lemma 2.1.26. Let u, v ∈ W . The following are equivalent:

1. u ≤T v,

2. There is a T -reduced expression of v admitting a subexpression which is a T -reduced
expression of u.



CHAPTER 2. PRELIMINARIES 33

2.1.6 "Dual" results

Several results presented in this thesis are in the spirit of what is sometimes called the "dual"
approach to Coxeter systems. It was initiated by Bessis [18] in link with Garside structures on
spherical type Artin groups (see Sections 2.3 and 2.5 below). Roughly speaking, it consists of
vieweingW , where (W,S) is a Coxeter system, as being generated by the whole set of reflections
T , instead of just a simple system S. While the original motivation for this was lying with
Garside structures on Artin groups, it revealed several rich combinatorial structures associated
to a (finite) Coxeter group, such as generalizations of the noncrossing partition lattices, and
other interesting combinatorial objects. See for instance [7].

In the dual setting, let us begin by giving criteria to determine ℓT (w), w ∈ W . In the case
of a finite Coxeter group, we have the following, which is due to Carter. It is perhaps the first
result which is "dual" in nature.

Theorem 2.1.27 (Carter’s Lemma, 1972, [35, Lemmas 1 - 3]). Let (W,S) be a finite Coxeter
group, and let V be its geometric representation as defined in 2.1.2 above. For w ∈ W , let
V w = {v ∈ V | w(v) = v}. Then

1. ℓT (w) = dim(V )− dim(V w), for all w ∈ W .

2. For all t ∈ T , w ∈ W , we have t ≤T w ⇔ V w ⊆ V t.

3. Given w ∈ W and t1, t2, . . . , tk ∈ T such that w = t1t2 · · · tk, we have ℓT (w) = k if and
only if the roots {αti}

k
i=1 are linearly independent.

This theorem does not generalize to arbitrary W , where typically the reflection length can
be unbounded in general [54]. In affine types one can derive an analogous formula (see [103]).

For arbitrary Coxeter systems, we have the following.

Theorem 2.1.28 (Dyer, 2001, [60, Theorem 1.1]). Let (W,S) be an arbitrary Coxeter system.
Let w ∈ W . Let s1s2 · · · sk be any S-reduced expression of w. Then ℓT (w) is equal to the minimal
number of letters to delete in the word s1s2 · · · sk to get a word representing the identity.

Example 2.1.29. Let W be of type Ã2, that is, S = {s, t, u} and mqr = 3 for all q 6= r.
Let w = stustu. One checks using Theorem 2.1.28 above that ℓT (w) = 4. In particular,
the reflection length of an element can exceed the rank |S| of the Coxeter system, which by
Theorem 2.1.27 cannot happen when W is finite, as |S| = dim(V ).

One may consider the absolute order ≤T as the analogue of (both the left and) right weak
order ≤S in the dual approach. It is a basic result in the classical approach that the poset
(W,≤S) is a lattice when W is a finite Coxeter group, with maximal element given by w0.

In the dual setting, however, there are several maximal elements in the poset (W,≤T ) in
general when W is finite.

Definition 2.1.30. Let (W,S) be a Coxeter system. A standard Coxeter element c in W is a
product of all the elements of S in some order. A Coxeter element is a product of the form
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s1s2 · · · sn, where S ′ := {s1, s2, · · · , sn} is a subset of T =
⋃

w∈W wSw−1 such that (W,S ′) is a
Coxeter system1.

If c is a standard Coxeter element, then ℓS(c) = ℓT (c) = |S| (this can be seen for instance
using Theorem 2.1.28 above). In particular, by Theorem 2.1.27, the reflection length of c in a
finite Coxeter group is maximal, and any two distinct Coxeter elements are maximal in (W,≤T ).
When W is finite, every reflection t ∈ T satisfies t ≤T c.

In the classical approach, we thus have that (W,≤S) is the interval [1, w0]S in the right weak
order on a finite Coxeter group W . It is part of the elementary theory of finite Coxeter groups
that (W,≤S) forms a lattice. In the dual approach, the lattice (W,≤T ) cannot be a lattice, but
fixing a choice of standard Coxeter element c and denoting by [1, c]T the interval between 1 and
c in the absolute order, we have the following.

Theorem 2.1.31 (Bessis, 2003, [18, Fact 2.3.1], Brady-Watt, 2008, [28, Theorem 7.8], Reading,
2011, [127, Corollary 8.6]). Let (W,S) be finite. The poset [1, c]T is a lattice.

Unlike for the lattice property of (W,≤S), the above result is very hard to show. Bessis’
original proof is case-by-case, relying on the classification of finite Coxeter groups. Brady and
Watt’s and Reading’s proofs are uniform.

Theorem 2.1.31 is especially interesting for at least two reasons

• It implies that the interval group G([1, c]T ) built from the poset [1, c]T is a Garside group
(see Section 2.5 below for definitions), and it turns out to be isomorphic to the Artin
group BW of W (see Section 2.3 below),

• In type An, as previously observed by Biane [21], the lattice [1, c]T is isomorphic to the
lattice of noncrossing partitions of {1, 2, . . . , n + 1}. It therefore defines an analogue of
the noncrossing partition lattice for every finite Coxeter group.

Remark 2.1.32. In a finite Coxeter group, any two standard Coxeter elements happen to
be conjugate to each other [71, Theorem 3.1.4]. Since the generating set T is invariant under
conjugation, the isomorphy type of the poset [1, c]T is thus independent of the choice of standard
Coxeter element.

2.2 Complex reflection groups

The results cited here may be found in basic references on complex reflection groups, such
as [32, 101].

Let V be a finite-dimensional C-vector space. A reflection on V is an element s ∈ GL(V )
such that s has finite order and Hs := ker(s− Id) has codimension 1.

A finite complex reflection group is a finite subgroup W ⊆ GL(V ) generated by reflections.
We say that W is irreducible if the W -module V is irreducible. Every finite complex reflection
group is a direct product of irreducible ones.

1There are many possible definitions of Coxeter elements, all of which are not equivalent. We do not want to
discuss this here as it is not really relevant for the results that will be presented here, but the interested reader
can look for instance at [129].
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Note that, unlike in the real case, reflections may not be of order 2. We denote by Ref(W )
the set of reflections of W .

The finite irreducible complex reflection groups were classified by Shephard and Todd [135]
in 1954. They fall into an infinite, three-parameter family, and 34 "exceptional" groups.

To be more precise, let d, e, r be three positive integers. Let Diagr(de) be the group of r× r
diagonal matrices with diagonal entries in the group µde de (de)-th roots of unity. Consider the
group homomorphism detd : Diagr(de) −→ µe, X 7→ (det(X))d. The kernel K(de, e, r) of this
map is then the subgroup of diagonal r×r matrices with nonzero entries in µde and determinant
in µd.

Now one defines G(de, e, r) := 〈K(de, e, r),Sr〉 = K(de, e, r)⋊Sr, where we abuse notation
and denote by Sr the isomorphic finite subgroup of GLr(C) of permutation matrices.

The group G(de, e, r) can thus be identified with the group of monomial r× r matrices with
entries in µde and product of the nonzero entries in µd.

Theorem 2.2.1 (Shephard-Todd classification, 1954, [135]). The finite irreducible complex
reflection groups are precisely

1. The G(de, e, n),

2. 34 exceptional groups denoted G4, G5, . . . , G37.

Note that every finite Coxeter group is a real reflection group, which can thus be realized
as well over the complex numbers. All the finite Coxeter groups are thus part of the above
classification: An is G(1, 1, n+ 1), Bn is G(2, 1, n), Dn is G(2, 2, n), I2(m) is G(m,m, 2), E6 =
G35, E7 = G36, E8 = G37, F4 = G28, H3 = G23, H4 = G30.

Definition 2.2.2. Let W be a complex reflection group. A reflection subgroup of W is a
subgroup of W generated by reflections.

Definition 2.2.3. Let W be a complex reflection group. Let X ⊆ V be a subset. A subgroup
of the form FixW (X) := {w ∈ W | w(x) = x, ∀x ∈ X} is called a parabolic subgroup of W .

Theorem 2.2.4 (Steinberg, 1964, [139, Theorem 1.5]). Let W be a complex reflection group in
V = Cn. Let v ∈ V . Then FixW ({v}) is a reflection subgroup of W , generated by the reflections
in W whose reflecting hyperplane contains v.

Corollary 2.2.5. A parabolic subgroup FixW (X) of a complex reflection W is a reflection
subgroup of W , generated by the reflections in W whose hyperplane contains X.

In the real case, that is, in the case where W can be realized over Rn, by Theorem 2.1.8
W is a Coxeter group, and in that case one can show that the above definition of parabolic
subgroups coincides with the one given in section 2.1.

2.3 Artin groups

Definition 2.3.1 (Artin group). Let S be a finite set and (ms,t)s,t∈S be a Coxeter matrix over
S. The Artin-Tits group or simply Artin group BW = B(W,S) attached to the Coxeter system
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(W,S) is the group generated by a copy S = {s | s ∈ S} of S and defined by the presentation
obtained from Presentation 2.1.2 by removing the relations (s2 = 1, ∀s ∈ S), that is

BW = 〈 s, s ∈ S P (s, t;ms,t) = P (t, s;mt,s), ∀s, t ∈ S s.t. s 6= t and ms,t 6= ∞ 〉. (2.3.1)

The quotient map BW ։ W that sends s to s for every s ∈ S will usually be denoted p. If W
is finite, the group BW is said to be of spherical type.

Example 2.3.2. If W is the symmetric group Sn, then BW is isomorphic to Artin’s braid
group Bn on n-strands.

Example 2.3.3. If the Coxeter system (W,S) is universal, that is, if ms,t = ∞ whenever s 6= t,
s, t ∈ S, then BW is isomorphic to the free group on |S| generators.

Artin groups are conjectured to have solvable word and conjugacy problems, to be torsion
free, to satisfy the K(π, 1)-conjecture. They are also conjectured to have a trivial center when
associated to an infinite, irreducible Coxeter group. It is also an open problem to determine
whether they are linear or not. All the above questions are solved for Artin’s braid group on
n strands Bn, and more generally for Artin groups of spherical type, i.e., attached to a finite
Coxeter group, as well as for other important families of Artin groups. But all of them are open
in general.

In fact, there are very few results which, at the time of writing, are solved for arbitrary
Artin groups. One of them is the following. Let

B+
W = 〈 s, s ∈ S P (s, t;ms,t) = P (t, s;mt,s), ∀s, t ∈ S s.t. s 6= t and ms,t 6= ∞ 〉+, (2.3.2)

where the + as exponent indicates that we consider the monoid defined by this presentation.
It is the positive Artin monoid.

Theorem 2.3.4 (Paris, 2002, [121, Theorem 1.1]). The natural map B+
W −→ BW is an embed-

ding.

Definition 2.3.5 (Canonical positive lifts of elements of W in BW ). An important feature of
Artin groups is the following. In a Coxeter group, the so-called Matsumoto Lemma states that
any two S-reduced expressions of an element w ∈ W can be related by a sequence of braid
moves, that is, a sequence of applications of relations of the form P (s, t;ms,t) = P (t, s;mt,s)
for s, t ∈ S, s 6= t. A solution to the word problem in an arbitrary Coxeter group can easily be
deduced from this property.

Since these relations are the defining relations of BW , it follows that the canonical quotient
map p has a set-theoretic section W →֒ BW (or B+

W ), where any w with S-reduced expression
s1 · · · sk is sent to s1 · · · sk. We denote by W the image of W under this injection, and by w

the image of w ∈ W . We call such an element the (canonical) positive lift of w.

2.4 Complex braid groups

Let W ⊆ GLn(C) be a finite complex reflection group with set H of reflecting hyperplanes.
There is an action of W on the complement V reg := Cn \

⋃
H∈HH , and the (complex) braid



CHAPTER 2. PRELIMINARIES 37

group BW of W is defined by BW := π1(V
reg/W ). The covering V reg ։ V reg/W is Galois as a

corollary of Steinberg’s theorem 2.2.4, hence there is a short exact sequence

1 −→ PW := π1(V
reg) −→ BW = π1(V

reg/W ) −→W −→ 1.

We denote by p : BW ։ W the quotient map. Its kernel PW is the pure braid group of W .
Finally, H is in bijection with the set of distinguished reflections, namely the reflections s ∈ W
whose non-trivial eigenvalue is equal to ζm for ζm = e2πi/m ∈ C× and m is equal to the order of
the cyclic subgroup fixing Ker(s−1) pointwise (a parabolic subgroup). In the real case, one can
show that BW is isomorphic to the Artin group of W , and that p coincides with the canonical
quotient map. Hence the notation is consistent.

The group BW contains an important central element, which we denote by zBW
. When W

is irreducible, its center Z(W ) is cyclic of some order m, generated by ζmId. In this setting,
zBW

is the homotopy class in X/W of the path t 7→ exp(2πit/m)x0, where x0 ∈ X is the chosen
base-point. Finally, BW also contains as remarkable elements the braided reflections associated
to the reflections of W (see for instance [34] for their precise geometric definition).

2.5 Garside groups

Artin’s braid group on n strands, that is, the Artin group Bn = BSn
attached to the symmetric

group, has long been known to have a solvable word problem. Already Artin gave a well-
known solution to the word problem in 1925 [8] (made rigourous in 1948 [9]), using a faithful
representation of Bn by automorphisms of the free group Fn. Recall that a finitely generated
group defined by generators and relations is said to have a solvable word problem if there is an
algorithm allowing one to determine in finite time whether a given word in the generators (and
their inverses) represents the identity or not. Another fundamental question which one can ask
for such a group is the conjugacy problem: is there an algorithm allowing one to determine in
finite time if any two elements of the group are conjugate to each other?

For Artin’s braid group Bn, the conjugacy problem was solved by Garside in 1969 [70]; as a
byproduct of his approach, a new solution to the word problem was also given (later improved
by several authors), a new method to determine the center of Bn, and developments of his
approach also yielded new proofs that Bn is torsion-free, originally obtained by Fadell and
Neuwirth [67] in 1962 as a corollary of a particular case of what became known as the K(π, 1)-
conjecture for Artin groups (a still open problem in general). Garside’s approach turned out to
be an adapted framework to generalize many properties of Bn to Artin groups of spherical type,
as observed by Brieskorn-Saito [30] and independently by Deligne [45] shortly after Garside’s
work appeared.

A central result on which Garside’s approach is based is a proof of Theorem 2.3.4 above
in the case of Bn. He also showed that Bn is the group of fractions of B+

n , hence that every
element of Bn can be written as a fraction in two elements of B+

n . Together with an algorithm
to explicitly convert any word in the generating set of Bn into a fraction in two elements of
B+
n , it solves the word problem in Bn: if β = xy−1 is an element of Bn with x, y ∈ B+

n , then
β = 1 if and only if x = y in B+

n (because of the embedding B+
n →֒ Bn), and in B+

n which has a
homogeneous presentation, the word problem is trivial, hence one can check whether x equals



38 CHAPTER 2. PRELIMINARIES

y or not in B+
n in finite time. Garside’s algorithm to convert any word into a fraction relies on

the existence of a fundamental element ∆ ∈ B+
n with several properties, which has a central

power.
Dehornoy and Paris [44] axiomatized the properties used by Garside as follows2. Given a

monoid M and two elements a, b ∈ M , we say that a is a left-divisor (respectively a right-
divisor) of b is there exists c ∈M such that ac = b (respectively ca = b). In this setting we say
that b is a right-multiple (respectively a left-multiple) of a.

Definition 2.5.1 (Garside monoid and Garside group). A Garside monoid is a pair (M,∆)
where M is a monoid and ∆ is an element of M , satisfying the following five conditions:

1. M is left- and right-cancellative, that is, (ab = ac⇒ b = c, ∀a, b, c ∈ M) and (ba = ca ⇒
b = c, ∀a, b, c ∈M),

2. The divisibility in M is Noetherian, i.e., there exists a function λ :M → Z≥0 such that

∀a, b ∈M,λ(ab) ≥ λ(a) + λ(b) and a 6= 1 ⇒ λ(a) 6= 0.

3. Any two elements in M admit a left- and right-lcm, and a left- and right-gcd,

4. The left- and right-divisors of the element ∆ coincide and generate M ,

5. the set of (left- or right-)divisors of ∆ is finite.

If the five conditions above are satisfied, then M admits a group of fractions G(M) in which it
embeds. Such a group is a Garside group, and every presentation of M yields a presentation of
G if viewed as a group presentation. If (M,∆) satisfies the four first conditions, then it is said
to be a quasi-Garside monoid, and its group of fractions is then a quasi-Garside group.

We often abuse notation and writeM instead of (M,∆). Given a group G, a Garside monoid
(M,∆) such that G(M) ∼= G is sometimes called a Garside structure for G.

Remark 2.5.2. The second condition implies thatM has no nontrivial invertible element, and
hence, using cancellativity, that the left- or right-divisibility relations define partial orders on
M . It thus makes sense to talk about "lcm’s" and "gcd’s" as done in point 3 if the conditions
in the first two points are satisfied.

Definition 2.5.3 (Simple elements). In a Garside monoid (M,∆), the set of left- (equivalently
right-) divisors of ∆, often denoted Div(∆), is the set of simple elements of (M,∆) (abusively
of M).

It is difficult in general to check the five properties defining a Garside monoid, but this has
strong consequences. Among other remarkable properties (see [43] for more on the topic), one
has the following.

Proposition 2.5.4. Every Garside group has a solvable word problem, and is torsion free.
2The original definition was a bit more restrictive, but the definition of Garside monoid given here is the one

used by most authors nowadays.
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The following is one of the main examples of a Garside structure.

Theorem 2.5.5. Let (W,S) be a finite Coxeter system, and let w0 be the longest element of
W . The pair (B+

W ,∆), where ∆ is the canonical positive lift of w0 (see Definition 2.3.5), is a
Garside monoid. In particular, every Artin group of spherical type is a Garside group.

Definition 2.5.6 (Classical simple braids). The simple elements of the above Garside structure
turn out to be the canonical positive lifts w of elements w of W , also called classical simple
braids.

The second example is an alternative Garside monoid for Artin groups of spherical type.

Definition 2.5.7 (Dual braid monoids). Let (W,S) be a finite Coxeter system, with set of
reflections T . Let c be a standard Coxeter element. Recall from Section 2.1.6 that every
reflection t ∈ T satisfies t ≤T c. Consider a copy Tc = {tc | t ∈ T} of the set T and define a
monoid B∗

c by
B∗

c = 〈 Tc | tct
′
c = t′′c tc whenever tt

′ = t′′t and tt′ ≤T c 〉
+.

We call B∗
c the dual braid monoid attached to (W,S) and c.

Up to isomorphism, the monoid B∗
c does not depend on the choice of standard Coxeter

element c (this follows easily from the fact that two standard Coxeter elements are conjugate
and that T is stable under conjugation).

Theorem 2.5.8 (Bessis, 2003, [18]). Let (W,S) be a finite Coxeter system, with S = {s1, s2, . . . , sn},
and let c = s1s2 · · · sn. Set ∆ := (s1)c(s2)c · · · (sn)c. The pair (B∗

c ,∆) is a Garside monoid,
with corresponding Garside group G(B∗

c ) isomorphic to BW . This isomorphism sends (si)c to
si for all i = 1, . . . , n (the (si)c’s do not generate B∗

c in general, but they generate G(B∗
c )).

To prove Theorem 2.5.8, Bessis generalized a construction made by Birman, Ko and Lee [23]
in type An, also interpreting it in the framework of Garside monoids and groups.

Definition 2.5.9 (Simple dual braids). The simple elements of (B∗
c ,∆) are the simple dual

braids.

We will say more about the set of simple elements of B∗
c using the approach of interval

groups below.

Example 2.5.10. Let W = {s1, s2} be of type A2, with si identified with the simple transpo-
sition (i, i+1). Let c = s1s2. Write t := s1s2s1 = (1, 3). Since ℓT (c) = 2, to find all the defining
relations of B∗

c , we need to find all the products of two reflections which are equal to c. We
have s1s2 = s2t = ts1 = c. Writing x = (s1)c, y = (s2)c, and z = tc, we thus have

B∗
c = 〈 x, y, z | xy = yz = zx 〉+.

Thanks to the above theorem, this is also a presentation of B3, if viewed as a group presentation.
In terms of the classical generators of Bn we have x = σ1, y = σ2, z = σ1σ2σ

−1
1 .
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Checking that a pair (M,∆) is a Garside monoid is a difficult task in general. Techniques
were developed for instance in [44, 41, 43]. Often, one typically needs to enlarge a presentation
by adding redundant relations to be able to apply such methods. In some contexts, the approach
of so-called interval groups is helpful. Let us recall it here.

Let G be a group, and let A be a subset of G which generates G as a monoid. Consider
the length function ℓA : G −→ Z≥0 with respect to this set of generators. Define a partial
order ≤A on G by setting u ≤A v ⇔ ℓA(u) + ℓA(u

−1v) + ℓA(v), that is, if there is an A-
reduced decomposition of v having an A-reduced decomposition of u as prefix. Similarly, define
u ≤′

A v ⇔ ℓA(vu
−1) + ℓA(u) = ℓA(v).

Definition 2.5.11. In the above setting, an element c ∈ G is A-balanced if

L(c) := {u ∈ G | u ≤A c} = {u ∈ G | u ≤′
A c} =: R(c).

Let G,A be as above and let c ∈ G be A-balanced. Denote by [1, c]A the set L(c), which
coincides with the set R(c). The notation comes from the fact that L(c) (or R(c)) is an
interval in (G,≤A) (or (G,≤′

A)); they are nonisomorphic in general as posets. Consider a copy
X = {u | u ∈ [1, c]A} and define a monoid M([1, c]A) by generators and relations by

M([1, c]A) := 〈 u ∈ X | u · v = w if uv = w and u ≤A w 〉.

Let G([1, c]A) denote the group with the same presentation. One has the following.

Theorem 2.5.12 (Bessis, 2004, [18, Theorem 0.5.2]). Let c ∈ G be A-balanced. Then (L(c),≤A)
is a lattice if and only if (R(c),≤′

A) is a lattice, and in this case, if L(c) = R(c) is finite, then
M([1, c]A) is a Garside monoid, with Garside element c and set of simplesX. The corresponding
Garside group G([1, c]A) = G(M([1, c]A)) is called the interval (Garside) group attached to the
interval [1, c]A. Without the finiteness assumption on L(c), the conclusion remains true with
"Garside" replaced by "quasi-Garside".

This theorem is a tool to generate many Garside monoids. The classical and dual Garside
structures on Artin groups of spherical type given in Theorems 2.5.5 and 2.5.8 above can be
realized in this way. In fact, this is one way to show that B+

W and B∗
c are Garside monoids.

Theorem 2.5.13. Let W be a finite Coxeter group with longest element w0, and let c ∈ W be
a standard Coxeter element. Then

B+
W

∼= M([1, w0]S), and B∗
c
∼=M([1, c]T ).

As already mentioned, the set of simples of B+
W is the set of canonical positive lifts of

elements of W , hence it is in bijection with W . In the dual setting, the set X of simples
is in bijection with the interval NC(W, c) := [1, c]T in the absolute order, which forms the
generalized noncrossing partitions, counted by the generalized Catalan numbers. In type An

with c = s1s2 · · · sn, one get a bijection between elements from NC(W, c) and noncrossing
partitions of the set {1, 2, . . . , n + 1} by mapping each element x ∈ NC(W, c) to the partition
given by the various supports of the cycles occurring in the cycle decomposition of x.
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The simples form a generating set of a Garside monoid which is not minimal in general, but
very useful for instance to solve the word problem, as there are normal forms for the elements of
a Garside monoid and the corresponding Garside group which can be calculated very efficiently
using this set of generators. A minimal generating set of a Garside monoid M is given by its
set of atoms, that is, those elements x such that x 6= 1 and x = ab ⇒ a = 1 or b = 1. In B+

W ,
the set of atoms is given by S = {s | s ∈ S}, and in B∗

c , it is given by the set Tc = {tc | t ∈ T}.
Note that BW viewed as Garside group of M([1, c]T ) has more generators than viewed as

Garside group of M([1, w0]S), if we take as generators the sets of atoms of the corresponding
monoids. One method to express the generators Tc of BW in terms of the generators of the set
S is to use the Hurwitz action (see Section 1.3.4 above). Roughly speaking, one can start from
the decomposition

c = (s1)c(s2)c · · · (sn)c = s1s2 · · · sn,

representing it under the form (s1, s2, . . . , sn), and apply Hurwitz moves. For instance, one can
"move s2 into the first position" without changing the product, that is

(s1, s2, . . . , sn) → (s2, s
−1
2 s1s2, . . . , sn),

and s−1
2 s1s2 then turns out to be the generator (s1s2s1)c, expressed in terms of the generators

S. It can be shown that every reflection in T can be obtained by applying such moves at the
level of the Coxeter group, that is, on (s1, s2, . . . , sn), and that this lifts at the level of BW .
See [18] or [53, Section 3.3] for more details.

2.6 Hecke algebras

2.6.1 Coxeter groups

Definition 2.6.1. Let (W,S) be an arbitrary Coxeter system and let A = Z[v±1]. The Hecke
algebra (or Iwahori-Hecke algebra) HW of W is the quotient of the group algebra A[BW ] by the
relations

s2 = (v−2 − 1)s+ v−2, for all s ∈ S. (2.6.1)

When specializing v to 1, we get the group algebra of W over Z. In fact, one has a natural
basis of HW deforming the basis of Z[W ] consisting of the group elements of W :

Proposition 2.6.2. The algebra HW is a free A-module with basis {Tw}w∈W , where Tw is the
image of the canonical positive lift w ∈ BW of w in HW .

The images of the generators s of BW inside HW will thus usually be denoted Ts. The basis
{Tw}w∈W is usually called the standard basis of HW . The elements Ts, s ∈ S are all invertible
because of the relation (2.6.1), hence every Tw is invertible. It is readily checked that the set
{T−1

w−1}w∈W is also a basis of HW , called the costandard basis.
To state some results in a cleaner way, it will be useful to renormalize the standard basis

by setting Hw := vℓ(w)Tw, for all w ∈ W .
There is a unique semilinear involution ¯ : HW → HW , called the bar involution, such that

v = v−1, Tw = (Tw−1)−1. Kazhdan and Lusztig prove the following.
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Theorem 2.6.3 (Kazhdan and Lusztig, 1979, [98, Theorem 1.1]). Let (W,S) be an arbitrary
Coxeter system and denote by ≤ the (strong) Bruhat order on W .

1. For any w ∈ W , there is a unique element C ′
w ∈ HW such that C ′

w = C ′
w and C ′

w ∈
Hw +

∑
y<w vZ[v]Hy.

2. For any w ∈ W , there is a unique element Cw ∈ HW such that Cw = Cw and Cw ∈
Hw +

∑
y<w v

−1Z[v−1]Hy.

It follows that {Cw}w∈W and {C ′
w}w∈W are bases of HW , called canonical bases. The coeffi-

cients of C ′
w when expressed in the standard basis became known as Kazhdan-Lusztig polyno-

mials. Kazhdan and Lusztig conjectured that these polynomials have nonnegative coefficients,
which was proven in full generality by Elias and Williamson [65] as a corollary of Soergel’s
conjecture (see Subsection 2.7.1 below).

2.6.2 Complex reflection groups

Let W be a finite complex reflection group, and let BW be its braid group. We recall from [34]
the construction of the Hecke algebra HW of W over some commutative ring K. It is defined
using parameters ui,s ∈ K× for s running over the set of the distinguished reflections of W ,
where 0 ≤ i < o(s) and ui,s = ui,t when s, t belong to the same conjugacy class. Then HW

is the quotient of K[BW ] by the relations
∏o(s)−1

i=0 (σ − ui,s) = 0 for every braided reflection σ
associated to s – so that its most general definition ring is the ring of Laurent polynomials
A = Z[u±1

i,s ].
If W is real, we essentially recover the definition from the previous section, except that we

gave only one parameter in the real case (the definition given in the real case, where every
reflection has order 2, corresponds to choices of parameters u0,s = −1 and u1,s = v−2, for every
distinguished reflection).

We have an analogue of Proposition 2.6.2, which is the so-called Broué-Malle-Rouquier
freeness conjecture [34, Section 4.C], which is now a theorem, as a combination of the work of
many authors.

Theorem 2.6.4 ([5, 6, 33, 107, 108, 112, 38, 111, 141]). The algebra HW is a free A-module
of rank |W |.

2.7 Hecke categories and categorification of Artin groups

2.7.1 Soergel bimodules

Let (W,S) be a Coxeter system and V a reflection faithful representation of (W,S) over R in
the sense of [137, Definition 1.5]. Let R := O(V ) ∼= S(V ∗) be the coordinate ring of V . In
particular R comes equipped with an action of W and a Z-graduation with the convention that
deg(V ∗) = 2.

Let R denote the category of Z-graded R ⊗R R-modules which are finitely generated from
the left and from the right (we call "left" action the action of R ⊗R 1 and "right" action the
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action of 1⊗RR). The category R is a monoidal category via ⊗R. It satisfies the Krull-Schmidt
property (see [137, Remark 1.3]). For M ∈ R and i ∈ Z denote by Mi the homogeneous
component of degree i of M . Given M ∈ R and i ∈ Z, we denote by M(i) the element of R
equal toM as R⊗RR-module but with graduation shifted by i, that is, such thatM(i)j =Mi+j

for all j ∈ Z. We define the graded rank of free graded right R-module M as the element of
Z[v±1] given by

rkM := dim(M/MR>0),

where for a finite-dimensional Z-graded vector space U we denote by dim(U) the graded dimen-
sion

∑
i∈Z(dimUi)v

i ∈ Z[v±1] of U and R>0 denotes the ideal of polynomials without constant
term. We denote by rkM the graded rank of M after substitution of v by v−1.

Given B,B′ ∈ R, we denote by Hom(B,B′) the morphisms in the category R, that is, the
homomorphisms of bimodules B → B′ which are homogeneous of degree zero. We furthermore
set

Hom•(B,B′) :=
⊕

i∈Z

Hom(B,B′(i)).

Notice that it comes equipped with a structure of graded R-bimodule.

To every s ∈ S we associate the bimodule Bs := R ⊗Rs R(1) ∈ R, where Rs ⊆ R is the
graded subring of s-invariant functions. For x ∈ W , we denote by Rx the element of R equal
to R as left R-module but with right action twisted by x, that is, r · r′ = rx(r′), for r ∈ Rx,
r′ ∈ R. Denote by 〈R,⊗R〉 the split Grothendieck ring of R, endowed with a Z[v±1]-algebra
structure via v · 〈M〉 = 〈M(1)〉 for M ∈ R. Soergel showed the following, usually referred to
as Soergel’s categorification theorem.

Theorem 2.7.1 (Soergel, 2007, [137, Theorems 1.10 and 5.3]). Let (W,S) be a Coxeter system.

1. There is a unique homomorphism of Z[v±1]-algebras

E : HW → 〈R,⊗R〉

such that E(v) = 〈R[1]〉 and E(vTs + v) = 〈Bs〉 for every s ∈ S.

2. The homomorphism E has a left inverse

ch : 〈R,⊗R〉 → HW

given by ch(〈B〉) =
∑

x∈W rk(Hom•(B,Rx))Tx, for B ∈ R.

This theorem implies that HW is isomorphic to the split Grothendieck ring 〈B〉 of the
additive monoidal category B generated by tensor products Bs ⊗R Bt · · · ⊗R Bu (called Bott-
Samelson bimodules; here st · · ·u is any finite word in the elements of S) and stable by direct
sums, direct summands and graduation shifts (so that 〈B〉 is a Z[v±1]-algebra). By definition
an object of B is a Soergel bimodule. Hence indecomposable Soergel bimodules are (shifts of)
indecomposable direct summands of tensor products Bs ⊗R Bt ⊗R · · · ⊗R Bu. For simplicity we
may write tensor products over R by juxtaposition. Given B ∈ B, we will sometimes abuse
notation and simply denote ch(〈B〉) by 〈B〉.
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Soergel shows that indecomposable Soergel bimodules are (up to shifts and isomorphism)
indexed by elements ofW (see [137, Theorem 6.16]). The indecomposable bimodule Bw indexed
by w ∈ W may be described as follows: let st · · ·u be a reduced expression for w. Then there
is a unique indecomposable direct summand Bw of BsBt · · ·Bu which does not occur as a
direct summand of a tensor product Bs1Bs2 · · ·Bsk for k < ℓ(w). The Bott-Samelson bimodule
BsBt · · ·Bu depends on the reduced expression chosen for w, but it turns out that the direct
summand Bw does not, up to isomorphism.

Soergel made the following conjecture, proven by Elias and Williamson [65]:

Theorem 2.7.2 (Soergel’s conjecture, 2007, [137, Conjecture 1.13]). For any w ∈ W , we have
E(C ′

w) = 〈Bw〉.

It has as an immediate corollary that the polynomials hx,w which are the coefficients of
Hx = vℓ(x)Tx when expressing C ′

w in the basis {Hx}x∈W have nonnegative coefficients, since

C ′
w = E−1(〈Bw〉) = ch(〈Bw〉) =

∑

x∈W

rk(Hom•(Bw, Rx))Tx,

and rkHom•(Bw, Rx) has nonnegative coefficients by definition of the graded rank. This was a
major conjecture of Kazhdan and Lusztig [98].

2.7.2 Categorical braid group action on complexes of Soergel bimod-
ules

We denote by Kb(R) (resp. Kb(B)) the homotopy category of bounded complexes of bimodules
in R (resp. B). The monoidal structure on R and B induces a monoidal structure on the
corresponding homotopy categories via the total tensor product of complexes, which we will
simply denote by juxtaposition. Given a complex

C : . . .→ i−1C → iC → i+1C → . . . ∈ Kb(R),

We denote by C[j], where j ∈ Z, the complex C shifted in homological degree by j, that is,
such that iC[j] = j+iC. Let us consider the following indecomposable complexes in Kb(B):

Fs = 0 −→ Bs
µs
−→ R(1) −→ 0,

Es = 0 −→ R(−1)
ηs
−→ Bs −→ 0,

where Bs sits in both cases in homological degree zero. Here µs is the multiplication map
µs(a ⊗ b) = ab, and ηs(r) = 1

2
(r ⊗ fs + rfs ⊗ 1) for any r ∈ R, where fs is a nonzero linear

form vanishing on the hyperplane Hs ⊆ V of s. The functors Fs ⊗ − and Es ⊗ − define
mutually inverse equivalences of Kb(R), categorifying (a quotient of) the braid group of the
Coxeter system in spherical type, see [133], [132]; Rouquier indeed proved that the Fs satisfy
the braid relations and conjectured that these functors and their inverses categorify the whole
braid group and not just a quotient. The conjecture holds in type An as a consequence of
the work of Khovanov and Seidel [100], and was later proven by Jensen [97] in spherical type,
following ideas from Brav and Thomas [29].
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Given β ∈ BW represented by the word sε11 sε22 · · · sεkk , where εi ∈ {±1} for all i, denote by
Fβ the complex Ds1 ⊗Ds2 ⊗· · ·⊗Dsk , where Dsi = Fsi if εi = 1 and Dsi = Esi if εi = −1. Note
that this object depends on the chosen word, but two equivalent words yield complexes which
are canonically isomorphic in Kb(B) (see [133, Section 9.3.1]). We can replace Fβ by a minimal
complex in Kb(B), that is, a complex obtained from Fβ by removing all contractible direct
summands (see [65, Section 6.1]; a minimal complex is isomorphic to the starting complex in
Kb(B) and any two miminal complexes turn out to be isomorphic as complexes of bimodules).
We will denote by Fmin

β the minimal Rouquier complex attached to the braid β. If β = x for
some x ∈ W , we simply denote Fβ = Fx by Fx.

Following Elias and Williamson [65], denote by Kb(B)≥0 the full subcategory ofKb(B) whose
objects are those complexes with minimal complex F satisfying the following property: for any
i ∈ Z such that iF is nonzero and any indecomposable summand B in iF , there exists x ∈ W ,
k ≤ i such that B ∼= Bx(k). Similarly, denote by Kb(B)≤0 the full subcategory of Kb(B) whose
objects are those complexes with minimal complex satisfying the following property: for any
i ∈ Z such that iF is nonzero and any indecomposable summand B in iF , there exists x ∈ W ,
k ≥ i such that B ∼= Bx(k). In other words, roughly speaking, Kb(B)≥0 (resp. Kb(B)≤0)
consists of those complexes with minimal complex F having indecomposable Soergel bimodules
with shifts at most (resp. at least) i occurring in homological degree i.

A complex C ∈ Kb(B) is called perverse (or linear) if C ∈ Kb(B)≥0 ∩Kb(B)≤0.



46 CHAPTER 2. PRELIMINARIES



Chapter 3

Dual Coxeter systems and dual braid
monoids
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This chapter collects several works all realized between 2015 and 2018, which study dual
Coxeter systems and Artin groups of spherical type. It is separated into two main sections.

The motivation for the study in Section 3.1 below was to understand certain positivity
properties of images of simple elements of the dual Garside structures on Artin groups of
spherical type inside Hecke or Temperley-Lieb type algebras. It naturally lead to the following
fundamental question:

Question 3.0.1. How can one express the simple elements of dual braid monoids in terms of
the classical Artin group generators?

Section 3.2 addresses a few questions on T -reduced expressions of elements of finite Coxeter
groups. In that section, we present a characterization of elements having the "dual" Mat-
sumoto property in terms of the Hurwitz action of Artin’s braid group on the set of T -reduced
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expressions of the elements. We also show that these elements naturally admit a decomposition
generalizing the cycle decomposition of the symmetric group.

3.1 Classical versus dual generators of Artin groups of spher-
ical type

Recall that, for a spherical Coxeter system (W,S), there are (at least) two Garside structures
on the corresponding Artin group BW : the classical one, where the Garside monoid is B+

W ,
and the dual one, where the monoid B∗

c depends on a choice c of standard Coxeter element in
W , and has set Tc of generators in one-to-one correspondence with the reflections in W ; these
generators are subject to the dual braid relations, that is, the relations of the form t1t2 = t2t3
whenever t1, t2, t3 ∈ T , t1 6= t2, and t1t2 ≤T c. Also recall that every element w ∈ W admits a
canonical positive lift w ∈ B+

W ⊆ BW , obtained by "lifting" any S-reduced expression of w to
B+

W .

3.1.1 Simple dual braids as quotients of positive simple braids

Let (W,S) be a Coxeter system. Let BW be the attached Artin group.
Together with Digne, we proved the following result.

Theorem 3.1.1 (Digne-G., 2017, [53, Theorems 5.12, 6.6, 7.1]). Let W be a finite irreducible
Coxeter group of type different from Dn, and let c be a standard Coxeter element in W . Let
B∗

c be the corresponding dual braid monoid. Let u be a simple element of B∗
c . Then, inside

BW , the element u can be written in the form x−1y, for some x, y ∈ W .

In types An and Bn, the proof uses a geometric interpretation of elements of the form x−1y.
We had no similar description for type Dn when we wrote the paper, and conjectured the result
to also hold in type Dn:

Conjecture 3.1.2 (Digne-G., 2017, [53, Conjecture 8.7]). The result of Theorem 3.1.1 also
holds if W has type Dn, and thus in every finite (not necessarily irreducible) Coxeter group W .

Licata and Queffelec [104], and independently Baumeister and myself [13], later proved this
conjecture.

Theorem 3.1.3 (Baumeister-G., 2017, [13, Theorem 1.1], Licata-Queffelec, 2021, [104, Theo-
rem 5.1]). Conjecture 3.1.2 is true.

Licata and Queffelec use categorical actions of (dual) Artin groups of spherical and simply-
laced types; in particular, they also give new proofs of Theorem 3.1.1 in types A and E. In
the joint work with Baumeister, we used an approach similar to the one in the joint work
with Digne, based on geometric properties of braids. To be more precise, in [53], the proof of
Theorem 3.1.1 in type An uses the following geometric characterization of braids of the form
x−1y, which motivated the name "Mikado braids" (see Figure 1.2 below for an example).
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Proposition 3.1.4 (Digne-G., 2017, [53, Theorem 5.8]). Let Bn be Artin’s n-strand braid
group. Let β ∈ Bn. The following are equivalent:

1. There are x, y ∈ Sn such that β = x−1y,

2. There are x, y ∈ Sn such that β = xy−1,

3. The braid β admits a braid diagram where one can inductively remove all strands by
removing at each step a strand lying above all the others.

4. The braid β is f -realizable in the sense of Dehornoy [40].

We call a braid β satisfying any of the above equivalent conditions a Mikado braid.

Since Artin groups of type Bn can be realized inside Artin groups of type A2n−1
1, one can

derive similar pictural characterizations in type Bn. They are used to prove Theorem 3.1.1 in
type Bn in [53]. In type Dn, in [13] we used a realization of the Artin group of type Dn as a
subgroup of index two of a suitable quotient of an Artin group of type Bn, which also allows to
get a geometrical description of elements of the form x−1y. This is based on an observation of
Allcock, which we reformulate algebraically in the proposition below.

Recall that, if W is a Coxeter group of type Bn with simple system S = {s0, s1, . . . , sn−1},
where s1, s2, . . . , sn−1 denote the generators of the standard parabolic subgroup of type An−1,
then the Coxeter group of type Dn can be realized as a (non parabolic) reflection subgroup W ′

of W with simple system {s0s1s0, s1, s2, . . . , sn−1}.

Proposition 3.1.5 (Allcock, 2002, [4, Section 4]). Let W be a Coxeter group of type Bn, with
simple system as above. Let BW be the quotient of the Artin group BW by the relation s0

2 = 1.
Then the Artin group of type Dn is isomorphic to the index-two subgroup of BW generated by
{s0s1s0, s1, s2, . . . , sn−1}.

Note that the quotient map BW −→W factors through BW . Denote by π the induced map
from BW to W . We then showed the following.

Proposition 3.1.6 (Baumeister-G., 2017, [13, Theorem 3.3]). Let W ′ be the Coxeter group
of type Dn, viewed inside the Coxeter group W of type Bn. View BW ′ inside BW as in Propo-
sition 3.1.5. Then the elements of BW ′ which are of the form x−1y (for the type Dn Artin
group structure) coincide with the elements β ∈ BW such that the following two conditions are
satisfied:

• β is the image of an element of the form u−1v in BW (for the type Bn Artin group
structure) under the quotient map BW ։ BW ,

• π(β) ∈ W ′.

1In fact, if θ denotes the unique nontrivial automorphism of Coxeter group of a Coxeter group W of type
A2n−1, thenW θ, which as recalled in Section 2.1 is also a Coxeter group, happens to be of type Bn. Moreover, as
shown in [115, Corollary 4.4], this can be lifted at the level of Artin monoids and groups: one has B(+)

W θ ⊆ B
(+)
W

.
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Proposition 3.1.6 allows us to deduce geometric representations of elements of the form x−1y

by using such representations in type Bn, but where one is also allowed to invert some of the
crossings (because of the relation s20 = 1). We use this to deduce Conjecture 3.1.2 in type Dn.

Using results of Dyer and Lehrer [63], we deduce the following from Theorems 3.1.3 and 3.1.1.

Corollary 3.1.7. Let (W,S) be a Coxeter system of spherical type and let c be a standard
Coxeter element in W . The image of any simple dual braid u ∈ B∗

c inside the Hecke algebra
HW under the composition B∗

c ⊆ BW −→ H×
W , when expressed in Kazhdan and Lusztig’s basis

{Cw}w∈W , has coefficients which are polynomials with nonnegative coefficients.

In type An, the simple elements of B∗
c yield a basis of the Temperley-Lieb quotient TLn of

HW , and positivity properties of this basis can also be derived under suitable conventions on
the quotient map (see [53, Theorem 8.16]). Proving such positivity properties was the original
motivation for the above theorems.

Note that it is clear from point 3 of Proposition 3.1.4 above that every braid β satisfying
the condition in point 3 admits a braid diagram where any two strands cross at most once, and
hence, that the length of β with respect to the generating set S ∪ S−1 of Bn is the same as the
Coxeter length of p(β) in Sn, where p : Bn −→ Sn is the quotient map. This property is not
obvious at all if one starts from a braid of the form x−1y, since concatenating a word for x−1

with a word for y yields a word which is much longer in general that the length of the image
of x−1y in Sn. It is also easy to convince oneself that one can in fact "lift" any S-reduced
expression of p(β) in a word for β, where by "lifting" we mean replace every letter si in the
S-reduced expression by either si or s−1

i .
In spherical type, the elements which can be written in the form x−1y coincide with the

elements which can be written in the form xy−1, but in general the two sets are distinct.
Matthew Dyer informed me at the time we were writing [53] that he had an alternative definition
for braids of the form x−1y using this philosophy of "lifting" reduced expressions, holding in
an arbitrary Artin group. When BW is finite, his definition precisely yields braids of the form
x−1y (equivalently xy−1), but it yields many more elements when BW is attached to an infinite
Coxeter group W , strictly containing both sets of elements of the form x−1y and elements of
the form xy−1. His definition is presented in the next subsection.

3.1.2 Generalized Mikado braids

The following construction is borrowed from [56, Lemma 9.1]. Let (W,S) be an arbitrary
Coxeter system and let A ⊆ T be biclosed. Let x ∈ W and let s1s2 · · · sk be an S-reduced
expression of x. Set

xA := sε11 sε22 · · · sεkk ∈ BW ,

where for all i = 1, . . . , k, we set εi =
{

−1 if sksk−1 · · · si · · · sk ∈ A
1 otherwise.

Lifted reduced expressions as above may be considered as reduced expressions associated to
a biclosed set A2.

2One can define an A-twisted length function ℓA : W −→ Z as in [59] by ℓA(x) = ℓ(x)− 2|N(x−1) ∩A|. We
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Lemma 3.1.8 (Dyer, [56, Sections 9.1 and 9.4]). Let A ⊆ T be biclosed, let x, y ∈ W . Then

1. The element xA is independent of the chosen reduced expression for x.

2. One has (xy−1)N(y) = xy−1.

3. One has (x−1y)T\N(y−1) = x−1y.

In particular, one has x∅ = x and (x−1)T = x−1.

Definition 3.1.9 (Generalized Mikado braids). We call a braid of the form xA a (generalized)
Mikado braid.

When W is finite, biclosed sets of reflections coincide with inversion sets (Lemma 2.1.17),
hence in type An (more generally for finite W ) we exactly get the braids of the form xy−1 (or
x−1y, which is equivalent), but in general there are many more such braids, and they share or
are expected to share the same kind of properties as the braids of the form x−1y and xy−1 (for
example positivity properties)–see Example 3.1.12 below. Also note that, when W is infinite,
there are braids of the form x−1y which cannot be written in the form uv−1, as the following
example shows.

Example 3.1.10. 1. Let W be of type Ã1, that is, W = 〈 s, t | s2 = t2 = 1 〉. Then BW

is a free group on two generators s, t. It follows that s−1t cannot be written in the form
uv−1, with u, v ∈ W .

2. Let W be of type Ã2, with simple system S = {s, t, u}. We thus have mq,r = 3 for all
q 6= r, q, r ∈ S. Then setting x = s and y = tut = utu, we have that x and y have no
right common multiple in B+

W (this is a consequence of the fact that there is no w ∈ W
such that x ≤S w and y ≤S w, as for every a ∈ S, the element w would have an S-reduced
expression starting by a, hence by Proposition 2.1.18 the group W would be finite).

3.1.3 A closed formula for simple dual braids

Coming back to the matter of expressing a simple dual braid in spherical type as a quotient
x−1y, the works summarized in Section 3.1.1 give an algorithm to obtain a pair (x, y) such that
the simple dual braid β we started with is equal to x−1y, not a closed formula. Note that there
is not a unique pair satisfying this property in general, but it is natural to wonder if a canonical
one exists. This motivated further investigation on the subject. Note that, in [53], we gave a
formula to express simple dual atoms in terms of the classical atoms, which is crucial in Licata
and Queffelec’s work [104]:

Proposition 3.1.11 (Digne-G., 2017, [53, Proposition 3.13]). Let (W,S) be a finite Coxeter
system. Let c = s1 . . . sn be a standard Coxeter element in W . Then, through the embedding
of B∗

c into BW , taking the index i in si modulo n, we have

Tc = {s1s2 . . . sisi+1s
−1
i s−1

i−1 . . . s
−1
1 , | 0 ≤ i < 2|T |}.

then have
∑k

i=1 εi = ℓA(x). One can thus consider "A-twisted reduced expressions" of elements of W , living in
BW instead of W . Note that, for A = ∅, we recover the classical length function ℓ, and xA = x, which is simply
the canonical positive lift of x. We thus recover the S-reduced expressions in this case, but viewed inside BW .
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Note that the words appearing in the set above are not reduced in BW with respect to S∪S−1

in general, and that there are repetitions.

Dyer’s framework recalled in Subsection 3.1.2 seemed more appropriate to me to try to find
a closed formula to express a simple dual braid as a quotient of two positive simple braids,
having in mind potential generalizations for Artin groups of non-spherical types. Some Coxeter
groups of affine type indeed admit a dual braid monoid which is quasi-Garside and a dual
Artin group isomorphic to the classical one [51, 52], and the same holds for universal Coxeter
systems [19] and Coxeter systems of rank three [47]. For such examples of Coxeter groups of
non-spherical type for which there is a dual braid monoid which is quasi-Garside, one can find
simple dual braids which are not of the form x−1y or xy−1 in general, but which are of the
form xA, as the next example shows, and it is tempting to conjecture that simple dual braids
are always generalized Mikado braids.

Example 3.1.12. Let W = 〈 s1, s2, s3 | s21 = s22 = s23 = 1 〉. Then BW is a free group on three
generators, and by Bessis [19], it admits a dual braid monoid which is quasi-Garside. Letting
c = s2s3s1, by Hurwitz moves we find

(s2, s3, s1) → (s2s3s
−1
2 , s2, s1) → (s2s3s

−1
2 , s1, s

−1
1 s2s1) → (s1, s

−1
1 s2s3s

−1
2 s1, s

−1
1 s2s1),

hence β := s−1
1 s2s3s

−1
2 s1 is a generator of the dual braid monoid B∗

c .
It cannot be of the form x−1y or xy−1 sinceBW is free. Nevertheless, consider the hyperplane

H = span(αs1s2s1 , αs1s2s3s2s1s2s3s2s1) = span(α2 + 2α1, 35α1 + 12α2 + 6α3)

= span(α2 + 2α1, 11α1 + 6α3).

Then α3 /∈ H and consider the closed half-space H+ = H + R≥0α3 containing α3. Set A :=
H+ ∩ Φ+. Then A must be biclosed. Now we have

α1 = (α1 +
6

11
α3)

︸ ︷︷ ︸
∈H

−
6

11
α3 /∈ A, s1(α2) = αs1s2s1 ∈ H ∩ Φ+ ⊆ A,

s1s2(α3) = 6α1 + 2α2 + α3 = 2(α2 + 2α1) +
2

11
(11α1 + 6α3)

︸ ︷︷ ︸
∈H

−
1

11
α3 /∈ A,

s1s2s3(α2) = 10α1 + 3α2 + 2α3 = 3(α2 + 2α1) +
4

11
(11α1 + 6α3)

︸ ︷︷ ︸
∈H

−
2

11
α3 /∈ A,

s1s2s3s2(α1) = αs1s2s3s2s1s2s3s2s1 ∈ H ∩ Φ+ ⊆ A.

We thus have that β = (s1s2s3s2s1)A.

In spherical type, I found a formula to express any simple element of a dual braid monoid
in the form xA, relying on Reading’s c-sortable elements [126].

Let (W,S) be a Coxeter system. Fix an S-reduced expression s1s2 · · · sn of a standard
Coxeter element c. Consider the semi-infinite word c∞ = s1s2 · · · sn|s1s2 · · · sn|s1s2 · · · sn| · · · .
Let w ∈ W . The c-sorting word for w is the lexicographically first S-reduced expression of w
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appearing as a subword of c∞. We write w = w1|w2| · · · |wk, where wi is the subword of the
c-sorting word for w coming from the i-th copy of c in c∞ and k is maximal such that this
subword is nonempty. Note that each wi defines a subset of S, consisting of those letters in the
word wi. We abuse notation and also denote this set by wi.

Definition 3.1.13 (Coxeter sortable elements). We say that w is c-sortable if wk ⊆ wk−1 ⊆
· · · ⊆ w2 ⊆ w1. We denote by Sortc(W ) the set of c-sortable elements of W .

Example 3.1.14. Let W be of type A3, S = {s1, s2, s3} with s1s3 = s3s1. Let c = s3s1s2.
Then w = s3s1s2|s3s1 is the c-sorting word for w. We see that w is c-sortable, with w1 = s3s1s2,
w2 = s3s1 ⊆ w1. The element s2s1 is not c-sortable since if it was, we would have s2s1 = w1,
but in c the letter s1 appears before s2 and they do not commute.

Reading used these elements as an intermediate set to construct a bijection between non-
crossing partitions and clusters; see [126, Theorem 6.1].

Theorem 3.1.15 (Reading, 2007, [126]). Let (W,S) be a finite Coxeter system. There is an
(explicit) bijection ϕc : Sortc(W ) −→ NC(W, c) between the set Sortc(W ) of c-sortable elements
and the set of c-noncrossing partitions.

Theorem 3.1.16 (G., 2020, [78, Theorem 5.8]). Let (W,S) be a finite Coxeter system and let
c be a standard Coxeter element in W . Let β be a simple element of B∗

c , and let x denote its
image in W . Then β = xA, where A = N(ϕ−1

c (x−1c)).

For x ∈ NC(W, c), the element x−1c ∈ NC(W, c) is the Kreweras complement of x.
The above theorem gives a new proof that simple dual braids are generalized Mikado braids

(using Lemma 3.1.8), and an explicit, uniform formula to express a simple dual braid β as a
generalized Mikado braid, hence as a product of minimal length of the elements of S∪S−1. The
proof is combinatorial, and takes advantage of the remarkable recursive properties of c-sortable
elements from [126, Lemmas 2.4 and 2.5]. Unfortunately the proof still requires a technical
lemma on c-sortable elements which I could only prove using a technical case-by-case analysis
(see Lemma 3.1.18 below). To establish this lemma in [78], we give an explicit description of the
inverse ϕ−1

c of Reading’s map ϕc in the classical types in terms of the combinatorial noncrossing
partition models, which may be of independent interest.

3.1.4 Open problems

Given a Coxeter group W which is not necessarily of spherical type and a choice of standard
Coxeter element c, one can still define a dual braid monoid B∗

c by dual braid relations and the
corresponding dual Artin group, but

• There are examples where B∗
c is not quasi-Garside [113], because of the failure of the

lattice property of [1, c]T ,

• It is not known in general if B∗
c is cancellative,

• It is not known in general if G(B∗
c ) is isomorphic to BW .
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Nevertheless, there are no known counterexamples to the last two properties which are conjec-
tured to hold in general, and in some cases, the isomorphism between G(B∗

c ) and BW could be
established even without quasi-Garsideness [114, 120]. The last two properties are known to
hold for all the Coxeter groups of affine type [114, 120], universal type [19], but also all Coxeter
systems of rank 3 [47] (in those two last types we always have quasi-Garsideness).

Problem 3.1.17. Find a uniform proof of the fact that simple dual braids are generalized
Mikado braids.

The formula given in [78] is uniform, but there is a technical lemma on c-sortable elements
for which we only have a case-by-case proof:

Lemma 3.1.18 (G., 2020, [78, Lemma 4.6]). Let c be a standard Coxeter element. Let x ∈
NC(W, c), and let y := x−1c. Let s be initial in c, that is, we have ℓ(sc) < ℓ(c). Then x−1sx
lies in N(y) if and only if it lies in N(ϕ−1

c (y).

Finding a uniform proof of this lemma would thus be enough to solve Problem 3.1.17.

3.2 Hurwitz action in finite Coxeter groups

3.2.1 A characterization of Hurwitz transitivity

Let (W,S) be a Coxeter system with set of reflections T . Let w ∈ W and consider the Hurwitz
action of the braid group Bk, where k = ℓT (w), on the set RedT (w) of T -reduced expressions of
w. Recall that the action of the standard Artin generator σi is given by

σi : (t1, t2, . . . , tk) 7→ (t1, . . . , ti−1, ti+1, ti+1titi+1, ti+2, . . . , tk).

The following property is an important ingredient in the construction of dual braid monoids [18].
It allows one to show that the natural map BW −→ G(B∗

c ) mapping every standard generator
s to sc is surjective. Bessis works for finite W , but this property can be shown for an arbitrary
Coxeter group W .

Recall that, for a standard Coxeter element c in an arbitrary Coxeter system, we have
ℓ(c) = ℓT (c) = n = |S| (this can be seen for instance using [60, Theorem 1.1]).

Theorem 3.2.1 (Igusa-Schiffler, 2010, [96, Theorem 1.4]). Let c be a standard Coxeter element
in an arbitrary Coxeter system (W,S) of rank n. Then the action of Bn on RedT (c) is transitive.3

From the point of view of dual Coxeter systems, Theorem 3.2.1 can be seen as a kind of dual
Matsumoto property. Indeed, it says that any two T -reduced expressions of a Coxeter element
c can be related by applying a sequence of dual braid relations. Unfortunately, replacing c by
another element of W , the Hurwitz action is not transitive in general, as the following basic
example shows.

3We give a few remarks about authorship of Theorem 3.2.1. An alternative proof of Theorem 3.2.1 later
appeared in [12]. For finite Coxeter groups, Bessis shows it in [18, Proposition 1.6.1]. Still in the finite case, an
earlier unpublished proof appeared in a letter of Deligne to Looijenga in 1974 [46], where Deligne explains that
the proof was communicated to him by Tits and Zagier.
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Example 3.2.2. Let W be of type B2, with generators s, t. Let w = w0 = stst be the longest
element of W . Then ℓT (w) = 2, and there are two Hurwitz orbits with two reduced expressions
each (s, tst) ↔ (tst, s), (t, sts) ↔ (sts, t).

Together with Baumeister, Roberts and Wegener, we obtained the following characterization
for finite Coxeter groups. This is the main result of [14].

Theorem 3.2.3 (Baumeister-G.-Roberts-Wegener, 2017, [14, Theorem 1.1]). Let (W,S) be a
finite Coxeter system. Let w ∈ W . The Hurwitz action on RedT (w) is transitive if and only
if there is a T -reduced expression of w such that the reflections in this expression generate a
parabolic subgroup of W .

Our proof was case-by-case for one direction. Recently Wegener and Yahiatene found a
uniform proof of this direction for finite Weyl groups [142, Theorem 1.4].

Definition 3.2.4. An element satisfying the equivalent assertions of Theorem 3.2.3 is called
a parabolic quasi-Coxeter element. If the parabolic subgroup generated is the whole group W ,
then the element is said to be a quasi-Coxeter element.

Note that there are quasi-Coxeter elements which fail to be Coxeter elements, as the follow-
ing example shows.

Example 3.2.5. Let W be of type D4 with S = {s0, s1, s2, s3}, where s2 commutes with no
other simple reflection. Then the element w = s1(s1s2s1)(s2s0s2)s3 has reflection length 4, and
{s1, s1s2s1, s2s0s2, s3} generates W , hence w is a quasi-Coxeter element. One can check that
w has no T -reduced expression which yields a simple system for D4, hence it is not a Coxeter
element.

3.2.2 Generalized cycle decomposition

In [77], I showed that parabolic quasi-Coxeter elements of finite Coxeter groups are precisely
those elements admitting a generalization of the cycle decomposition in the symmetric group
(in the symmetric group, every element is a parabolic quasi-Coxeter element).

Theorem 3.2.6 (G., 2017, [77, Theorem 1.3]). Let (W,S) be a finite Coxeter system. Let
w ∈ W be a parabolic quasi-Coxeter element. There exists a (unique up to the order of the
factors) decomposition w = x1x2 · · ·xm, xi ∈ W such that

1. xixj = xjxi for all i, j = 1, . . . , m,

2. ℓT (w) = ℓT (x1) + ℓT (x2) + · · ·+ ℓT (xm),

3. Each xi is indecomposable, i.e., admits no nontrivial decomposition xi = uv where u, v ∈
W with uv = vu and ℓT (u) + ℓT (v) = ℓT (xi).
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Elements which fail to be parabolic quasi-Coxeter elements still admit a decomposition
satisfying the above three properties, but it is not unique in general.

If W is infinite, one can still consider elements admitting a T -reduced expression which
generates a parabolic subgroup, and obtain a version of the above result with a slightly different
formulation for point 3 (see [77, Proposition 1.2]).

3.2.3 Open problems

The question of the transitivity of the Hurwitz action is of particular importance for the un-
derstanding of the dual braid monoid B∗

c . While Hurwitz transitivity on T -reduced expressions
fails for arbitrary elements, it would be helpful to solve the following.

Problem 3.2.7. Let (W,S) be an arbitrary Coxeter system. Let c be a Coxeter element and
let w ∈ W such that w ≤T c. Is the Hurwitz action transitive on RedT (w)?

For finite Coxeter groups, this holds true. To solve the above problem, it would be enough
to solve the following one.

Problem 3.2.8. Let (W,S) be an arbitrary Coxeter system. Let w ∈ W such that w ≤T c.
Let c be a Coxeter element and let w ∈ W such that w ≤T c. Let Ww := 〈 t | t ≤T w 〉, which
is a Coxeter group by 2.1.20. Is w a Coxeter element in Ww?

For finite Coxeter groups, see [18, Proposition 1.6.1], or [53, Corollary 3.6].
In the finite case, and still having in mind the construction of Garside interval groups, the

following also seems to be open.

Problem 3.2.9. Let (W,S) be a (finite) Coxeter system. Can we characterize those w ∈ W
such that [1, w]T forms a lattice?

The known cases include:

• (Parabolic) Coxeter elements of finite Coxeter groups [18] (see also [127, 28], for uniform
proofs of the lattice property),

• Elements w ∈ W such that ℓT (w) = 3 (see Theorem 5.2.4 below),
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Soergel bimodules
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This chapter collects works realized between 2015 and 2018, all of which address properties
of Soergel bimodules (see Subsection 2.7.1 above for a short introduction).

Section 4.1 below describes results from the first paper above, where generalizations of the
nonnegativity of Kazhdan-Lusztig and inverse Kazhdan-Lusztig polynomials were obtained, as
a corollary of Soergel’s conjecture (Conjecture 2.7.2) established in [65]. These generalizations
were conjectured by Dyer [55]. Subsection 4.1.1 explains how the generalization of the nonneg-
ativity of ordinary Kazhdan-Lusztig polynomials can be obtained by using twisted filtrations of
Soergel bimodules, where the "twisting" comes from a twisted Bruhat order. Subsection 4.1.2
explains how the nonnegativity of inverse Kazhdan-Lusztig polynomials is obtained, by proving
suitable properties of the minimal Rouquier complexes of braids of the form xy−1 or x−1y which
already appeared in the previous chapter, and then taking the Euler-Poincaré characteristic of
the complexes. It thus makes use of the categorical action of an arbitrary Artin group BW

on the bounded homotopy category of Soergel bimodules, considered by Rouquier [133, 132]
(recalled in Subsection 2.7.2).

Section 4.2 describes analogues or extensions of categories of Soergel bimodules in two
particular cases. The first case (corresponding to the second paper above) is in type A2,
where instead of taking one generating bimodule per simple reflection, we take one generating
bimodule per reflection. The second one (corresponding to the last paper above) is an analogue
of a category of Soergel bimodules for (finite) cyclic groups, viewed as finite complex reflection
groups of rank 1.
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4.1 Positivity properties

4.1.1 Twisted filtrations of Soergel bimodules

For an arbitrary Coxeter system (W,S) and a biclosed set of reflections A ⊆ T , recall the
elements xA defined in Subsection 3.1.2, which we call "generalized Mikado braids".

Lemma 4.1.1 (Twisted standard bases of Hecke algebras). Let (W,S) be a Coxeter system with
Iwahori-Hecke algebra HW . Let A ⊆ T be biclosed, and let Tx,A := ϕ(xA), where ϕ : BW −→
H×

W is the group homomorphism mapping s to Ts, ∀s ∈ S. Then {Tx,A}x∈W is a basis of HW .

Proof. By definition of xA, expanding Tx,A in the standard basis {Tw}w∈W yields a linear com-
bination of the form vnxTx +

∑
y<x αyTy, since T−1

s = v2Ts + v2 − 1 for all s ∈ S. Here ≤
denotes the strong Bruhat order on W . This implies that there is an upper-triangular matrix
with invertible coefficients on the diagonal allowing one to pass from {Tx}x∈W to {Tx,A}x∈W ,
hence that the latter is a basis.

Example 4.1.2. By Lemma 3.1.8, we have the following:

• The basis {Tx,∅}x∈W is the standard basis,

• The basis {Tx,T}x∈W is the costandard basis {T−1
x }x∈W ,

• The basis {Tx,N(y)}x∈W is the basis {TxT−1
y }x∈W ,

• The basis {Tx,T\N(y)}x∈W is the basis {T−1
x Ty}x∈W .

In his thesis, Dyer conjectured the following.

Conjecture 4.1.3 (Dyer, 1987, [55, §7.16]). Let (W,S) be a Coxeter system. The following
properties are verified

C ′
xTy ∈

∑

z∈W

Z≥0[v
±1]Tz, for all x, y ∈ W (P1)

T−1
x Ty ∈

∑

z∈W

Z≥0[v
±1]Cz, for all x, y ∈ W, (P2)

C ′
xC

′
y ∈

∑

z∈W

Z≥0[v
±1]C ′

z, for all x, y ∈ W, (P3)

C ′
xCy ∈

∑

z∈W

Z≥0[v
±1]Cz, for all x, y ∈ W. (P4)

Note that (P1) at y = 1 is nothing but the positivity of ordinary Kazhdan-Lusztig polyno-
mials. It was known for finite and affine Weyl groups [99] when Dyer formulated the conjectures
above, and more generally for crystallographic groups [105, §3.2.1(a)]. One interprets the coef-
ficients as Poincaré polynomials of a localization of the intersection cohomology of a Schubert
variety at a Schubert cell in this case. Similarly (P3) was known for finite Weyl groups [138,
Corollaire 2.14], and more generally crystallographic groups [105, §3.2.1], also via geometric
methods.

Dyer also showed the following.
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Proposition 4.1.4 (Dyer, 1987, [55, Prop. 7.17]). If (W,S) is finite, then (P1) is equivalent
to (P2), and (P3) is equivalent to (P4).

He also showed that all four properties are verified for universal Coxeter systems, using
combinatorial arguments:

Theorem 4.1.5 (Dyer, 1987, [55, Chapters 8 and 9]). Conjecture 4.1.3 is verified for universal
Coxeter systems.

Dyer and Lehrer then showed using geometric techniques that (P1) (and hence (P2)) holds
true in any finite Weyl group:

Theorem 4.1.6 (Dyer-Lehrer, 1990, [63, Theorem 2.8]). (P1) is true for all finite Weyl groups.

Also note that Grojnowski and Haiman generalized (P1) to Weyl groups of symmetrizable
Kac-Moody algebras, also using geometric techniques [90].

Combining the above results, one gets in particular that all four properties are valid for
finite Weyl groups and universel Coxeter systems. For dihedral groups, they also hold true and
are straightforward to check.

The general case remained mysterious for many years, due the lack of geometric tools in the
case of arbitrary Coxeter groups (intersection cohomology of Schubert varieties).

Then Soergel’s approach [136, 137] by means of a monoidal category of graded bimodules
over a polynomial ring defined using only a Coxeter group together with a representation
fulfilling certain properties gave new hope for a general proof (see Section 2.7.1 above). Soergel’s
Conjecture 2.7.2 was proven by Elias and Williamson [65].

Theorem 4.1.7 (Elias-Williamson, 2014, [65]). Soergel’s conjecture is true. As a corollary,
(P1) at y = 1 and (P3) are true in an arbitrary Coxeter system (W,S). Moreover, (P2) at
x = 1 is true in an arbitrary Coxeter system (W,S).

The positivity of Kazhdan-Lusztig polynomials is obtained, following the approach devel-
oped by Soergel, by interpreting the Kazhdan-Lusztig polynomials as graded multiplies of
certain filtrations of indecomposable Soergel bimodules. Namely, thanks to Soergel’s Con-
jecture 2.7.2, the indecomposable Soergel bimodule Bw corresponds, under the isomorphism
of Theorem 2.7.1, to the element C ′

w of the canonical basis. As shown by Soergel, for any
choice of total order refining the Bruhat order, the bimodule Bw admits a canonical filtration
by bimodules of the form {Rx}x∈W [137], the support filtration. Up to some technical renormal-
izations, the polynomial hx,w is given by the graded multiplicity of Rx in this filtration. The
multiplicities turn out to be independent of the chosen total order refining the Bruhat order.

Property (P3) is also immediate from Soergel’s conjecture, obtained by decomposing a bi-
module of the form Bx⊗RBy into a direct sum of indecomposables, all of which are isomorphic
to (shifts of) Bz’s.

Property (P2) at x = 1, sometimes called inverse Kazhdan-Lusztig positivity, is obtained
in a less direct corollary of Soergel’s conjecture in [65, Section 6] by taking the Euler-Poincaré
characteristic of a complex of Soergel bimodules categorifying the element Ty in the bounded
homotopy category of Soergel bimodules, following the framework developed by Rouquier to
categorify Artin groups (see Section 2.7.2).
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It is tempting to rewrite (P1) as

C ′
x ∈

∑

z∈W

Z≥0[v
±1]TzT

−1
y , for all x, y ∈ W, (P ′

1)

since C ′
xTy is not the class of an object of Soergel’s category (except for y = 1). We thus

replace the standard basis by the basis {TxT
−1
y }x∈W , and this suggests to "twist" Soergel’s

support filtrations by considering total orders refining a twisted Bruhat order, defined by

x ≤y z ⇔ xy ≤ zy. (4.1.1)

Note that y−1 is the unique minimal element for this order. For x ∈ W and t ∈ T , one has

x <y xt⇔ xy < xty ⇔ y−1ty /∈ N(y−1x−1) ⇔ y−1ty /∈ (N(y−1) + y−1N(x−1)y)

⇔ t /∈ (N(y) +N(x−1)).

Following [59], the equivalence x <y xt ⇔ t /∈ (N(y) + N(x−1)) suggests to generalize these
orders, by replacing N(y) by a biclosed set of roots A, and defining x <A xt if and only if
t /∈ (A+N(x−1)), and then taking the transitive closure of the relation <A. We denote such a
preorder by ≤A. Note that one could technically take any set of positive roots A, but it is not
clear that ≤A

1 defines a partial order. Letting

ℓA : W −→ Z, w 7→ ℓ(w)− 2|N(w−1) ∩A|,

we have the following theorem of Edgar.

Theorem 4.1.8 (Edgar, 2007, [64, Theorem 2.3]). Let A ⊆ T . The following are equivalent

1. ≤A is a partial order,

2. A is biclosed,

3. ℓA(xt) < ℓA(x) for all x ∈ W , t ∈ (N(x−1) + A).

Example 4.1.9. While it is clear from (4.1.1) that the poset (W,≤y) is isomorphic to (W,≤),
the situation can be quite different in the more general setting involving biclosed sets of roots.
As an easy example, let W = 〈 s, t 〉 be an infinite dihedral group with S = {s, t}. Then the
set A := {αr | r ∈ {s, sts, ststs, . . . }} is biclosed, but neither finite nor cofinite. One has

. . . <A tsts <A sts <A ts <A s <A e <A t <A st <A tst <A stst <A . . . ,

that is, ≤A is a total order in that case.

This suggests to consider an even more general version of (P ′
1) involving the bases from

Lemma 4.1.1, given by

C ′
x ∈

∑

z∈W

Z≥0[v
±1]Tz,A, for all x ∈ W and A ⊆ T biclosed. (P gen

1 )

1This partial order is different from the partial order also denoted ≤A from Section 2.5.
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As a corollary of Elias and Williamson’s work [65], one can obtain (P gen
1 ) (and thus (P ′

1),
which is equivalent to (P ′

1)), by generalizing Soergel’s support filtrations: instead of taking linear
extensions of≤, one takes linear extensions of≤A, and one can show that support filtrations still
exist. This is shown in [75, Section 4.2], and one then shows the following, where for B ∈ B, we
denote by [B : ∆A

x (i)]A the graded-multiplicity of ∆A
x := Rx(−ℓA(x)) in an A-twisted support

filtration of B.

Theorem 4.1.10 (G., 2017, [75, Theorem 4.10]). Let (W,S) be an arbitrary Coxeter system.
Let w ∈ W and A ⊆ T be biclosed. Write C ′

w =
∑

x∈W hAx,wTx,A. Then

hAx,w =
∑

i∈Z

[Bw : ∆A
x (i)]Av

i+ℓA(x).

In particular the generalized Kazhdan-Lusztig polynomials hAx,w ∈ Z[v, v−1] have nonnegative
coefficients, and (P gen

1 ) is true for arbitrary Coxeter systems.

As pointed out to me by Matthew Dyer, one can even derive the more general property that

C ′
wTy,A ∈

∑

x∈W

Z≥0[v
±1]Tx,A, for all w, y ∈ W and biclosed A ⊆ T,

see [75, Corollary 4.16].

4.1.2 Linearity of Rouquier complexes

The aim of this subsection is to explain how to derive (P2) from the results in [65] in the case
of an arbitrary Coxeter system, that is,

T−1
x Ty ∈

∑

z∈W

Z≥0[v
±1]Cz, for all x, y ∈ W.

A first observation is that, if W is infinite, there are in general elements of the form T−1
x Ty

which cannot be written under the form TuT
−1
v (see Example 3.1.10 above2). Nevertheless, it is

clear that it suffices to obtain (4.1.2) above to obtain the positivity of the expansion of elements
of the form TuT

−1
v , since it suffices to apply the bar involution to (4.1.2) to obtain

Tx−1T−1
y−1 ∈

∑

z∈W

Z≥0[v
±1]Cz, for all x, y ∈ W. (P2)

In fact, in order to get a positivity statement that would be the exact "inverse" statement of
the positivity statement obtained in Theorem 4.1.10, namely (P gen

1 ), it would be natural to
generalize the second property to

Tx,A ∈
∑

z∈W

Z≥0[v
±1]Cz, for all x ∈ W and A ⊆ T biclosed. (P gen

2 )

2Example 3.1.10 shows such a phenomenon inside BW , not inside HW . Nevertheless, the group homomor-
phism BW −→ H

×

W
is conjectured to always be injective, and is known to be injective for universal Coxeter

groups [102], hence this applies at least to Example 3.1.10(1).
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Unfortunately, we were not able to establish a statement as general as (P gen
2 ), but we can de-

rive (P2) (and thus (P2) as well) by adapting the techniques developed in Elias andWilliamson [65]
to show inverse Kazhdan-Lusztig positivity, that is, (P2) at x = 1.

A difficulty encountered here is that there is no object in B categorifying Tx,A (except for
x = 1), hence one cannot expect to obtain (P2) in the same spirit as (P gen

1 ) by means of filtrations
on an object in B. But since the Tx,A’s are in the image of the map BW ։ H×

W , Rouquier’s
framework briefly recalled in Subsection 2.7.2 appears as the natural tool to consider here. The
crucial property at the categorified level from what one can derive (P2) is the following.

Theorem 4.1.11 (G., 2017, [75, § 6]). Let (W,S) be arbitrary and let β = x−1y. Then

1. We have Fβ ∈ K≥0(B) ∩K≤0(B), that is, the minimal Rouquier complex of β is perverse
(or linear).

2. The i-th cohomological degree iFmin
β of Fmin

β is a Soergel bimodule whose indecomposable
summands all have the form Bv(i), where ℓ(v)− ℓ(p(β)) and i have the same parity.

Point (2) shows that for a fixed v ∈ W , the Bv’s occurring as indecomposable summands
in the cohomological degrees of Fmin

β are either all in odd degrees, or all in even degrees. This
is crucial to prove (P2), which is obtained by taking the Euler-Poincaré caracteristic of Fmin

β .
One thus gets an alternating sum by expressing T−1

x Ty in the basis {C ′
w}w∈W which is the one

corresponding to indecomposable Soergel bimodules. Expressing it in {Cw}w∈W yields (P2):

Corollary 4.1.12 (G., 2017, [75, §6.1]). Property (P2) is true in an arbitrary Coxeter system.

Together with results from Section 4.1.1, this shows that (P1) to (P3) are verified for arbitrary
(W,S). We do not know how to prove (P4) in general, and list it as Problem 4.1.16 below.

4.1.3 Open problems

A first problem to settle would be to have the inverse positivity in general, that is, to prove (P gen
2 )

for arbitrary Coxeter systems.

Problem 4.1.13. Let (W,S) be an arbitrary Coxeter system. Show that Tx,A ∈
∑

z∈W Z≥0[v
±1]Cz,

for all x ∈ W and all biclosed A ⊆ T .

A more precise program to achieve this is given in [75, Conjecture 6.10]. More than the
positivity results for themselves, it is often the property obtained at the categorical level that
is of interest. Indeed, as explained in the previous section, property (P2) is obtained by taking
the Euler-Poincaré characteristic of the Rouquier complex Fmin

β of the braid β = x−1y (or
xy−1), and the positivity is obtained as a corollary of the fact that Fmin

β is perverse or linear :
the grading shift of any indecomposable bimodule occurring in the complex coincides with its
cohomological degree. Several conjectures can be made in this direction.

Conjecture 4.1.14. If a braid β has its Rouquier complex Fβ minimal, then it is a generalized
Mikado braid.
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This would be very strong, as it would imply the (conjectured) faithfulness of Rouquier’s
categorical action of BW on the bounded homotopy category of Soergel bimodules. Indeed, let
β be a braid such that the action of Fβ ⊗ (−) on Kb(B) is trivial. Then its minimal Rouquier
complex is the base ring R concentrated in homological degree 0. It is linear, hence β is Mikado.
But the only Mikado braid acting trivially is the trivial braid (this can be seen already at the
decategorified level, as every nontrivial Mikado braid has a nontrivial image in HW .)

Another indication that this is extremely hard is that one has algorithms to determine the
minimal Rouquier complex of a given braid, hence a proof of the faithfulness would imply that
the word problem in an arbitrary Artin group is solvable, another very hard open problem.

One could also conjecture the more extrem property below.

Conjecture 4.1.15. Assume that a braid β ∈ BW has a positive expansion on the basis
{Cw}w∈W of HW . Then β is a generalized Mikado braid.

This would imply faithfulness at the decategorified level, i.e., this would imply that the group
homomorphism BW −→ H×

W is injective (which is open for W = Sn, n ≥ 4, and when n = 4, it
is equivalent to the faithfulness of the Burau representation at n = 4, one of the biggest open
problems in quantum topology...). Injectivity is known only for dihedral and universal Coxeter
systems, thanks to work of Lehrer and Xi [102].

Note that, considering the action of BW for a spherical, simply-laced Coxeter system W
on the bounded homotopy category of projective modules over the zigzag algebra, Licata and
Queffelec have shown that in this setting, a braid is Mikado if and only if its braid complex is
linear [104]. This does not imply Conjecture 4.1.14 in these specific cases, as the triangulated
category that they consider is only a quotient of Rouquier’s category.

Resuming with positivity properties, the following seems to remain to be shown.

Problem 4.1.16. Show (P4) for an arbitrary Coxeter system.

4.2 Extended and generalized Soergel categories in some
particular cases

4.2.1 Type A2

The aim of this subsection is to describe an extended category of Soergel bimodules in type A2,
where one generator per reflection is taken.

Specifically, given a Coxeter system (W,S) with set of reflections T , one can define the
R-bimodule Bt := R ⊗Rt R, where Rt = {r ∈ R | t(r) = r}, for every t ∈ T , not only for
t ∈ S. Note that for a non-simple reflection t ∈ T\{S}, this Bt is not the same as the Soergel
bimodule indexed by t, also denoted Bt. We will not make use of the latter in this section.

Consider the monoidal, additive, graded, Karoubian category BT generated by the Bt, t ∈ T .
Then since S ⊆ T , it contains Soergel’s category B as a full subcategory. One would like to
understand the category BT .

In type A2, this was achieved in joint work with A.-L. Thiel. Denoting by A(WA2
) the

split Grothendieck ring of the category BT , we have the following. Denote by t1, t2, t3 any
enumeration of the three reflections in A2.
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Theorem 4.2.1 (G.-Thiel, 2018, [86, Proposition 3.1 and Theorem 4.1]). We have

1. Up to isomorphism and grading shifts, there are 20 indecomposable objects in the category
BT ; they are given by O(A), where O(A) denotes the algebra of regular functions on the
union of twisted graphs

⋃
x∈A{(xv, v) | v ∈ V }, and A is either {1} or a nonempty set

stable by left multiplication by a reflection. The algebra A(WA2
) is thus a free A-module

of rank 20.

2. The algebra A(WA2
) admits a presentation as A-algebra with generators Ci, i = 1, 2, 3

and relations

(a) C2
i = (v + v−1)Ci, ∀i = 1, 2, 3,

(b) CiCjCi + Cj = Ci + CjCiCj , ∀i 6= j, i, j ∈ {1, 2, 3},

(c) CiCjCi = CiCkCi, if {i, j, k} = {1, 2, 3},

(d) CiCjCkCi = CiCkCjCi, if {i, j, k} = {1, 2, 3}.

For all i we have Ci = 〈Bti〉 and 〈R(1)〉 = v.

Remark 4.2.2. The two relations (a) and (b) above are the defining relations, in the Kazhdan-
Lusztig generators, of the affine Hecke algebra of type Ã2. The algebra A(WA2

) is thus a
quotient of HÃ2

.

One can also consider the category Bext generated, in the same sense as above, by the
Bs, s ∈ S, and Rw, w ∈ W , where we recall that Rw is the R-bimodule equal to R as a left
R-module, but with right operation twisted by w (also isomorphic to O({w})). This category
in fact contains BT as a full subcategory, since whenever t = wsw−1, w ∈ W , s ∈ S, one has

Bt
∼= Rw ⊗R Bs ⊗R Rw−1 ∈ Bext.

One checks that, in type A2, there are (up to grading shifts) 5 more indecomposable bimod-
ules in Bext than in BT , given by the Rw for w 6= 1 [86, Lemma 3.3]. The split Grothendieck
ring of Bext is thus an A-algebra which is a free A-module of rank 25. It is easy to derive a
presentation of this algebra which we denote A(WA2

)ext from the results in [86].

Proposition 4.2.3 (G.-Thiel, 2018, [86]). The algebra A(WA2
)ext admits a presentation with

generators Ci, Di, i = 1, 2, 3, and relations

1. C2
i = (v + v−1)Ci, ∀i = 1, 2, 3,

2. CiCjCi + Cj = Ci + CjCiCj, ∀i 6= j,

3. CiDj = DjCk, if {i, j, k} = {1, 2, 3}, and CiDi = Ci = DiCi for all i = 1, 2, 3.

4. The Di’s satisfy the defining relations ofW in the generating set T , where Di corresponds
to ti.

For all i we have Ci = 〈Bti〉, Di = 〈Rti〉, and 〈R(1)〉 = v.
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What makes the type A2 easily accessible is that every indecomposable object in either
category BT or category Bext has the form O(A) for some A ⊆ W (in particular, every inde-
composable object is cyclic as an R-bimodule). This fails for types B2 and A3 (see [86, Section
5]), and we were not able to give a presentation of the split Grothendieck group of either the
category Bext or BT for irreducible W of type different from A1 or A2. It is not even clear that
the algebras obtained as split Grothendieck rings in other cases are of finite rank as A-modules.

4.2.2 A Soergel-like category for cyclic groups

Let W be a finite complex reflection group. Most of the definitions given to build Soergel
bimodules in the real case can still be carried out for complex reflection groups. For instance,
given t ∈ Ref(W ), we can still consider the graded R-bimodule R⊗Rt R, where R = S(V ∗). It
is nevertheless unclear that this is the right object to associate to a reflection of W , and that
the corresponding Soergel-like category is well-behaved.

First of all, if one wishes to define a category of Soergel bimodules for finite complex reflection
groups, it would be natural to expect recovering the category B when the group is real. On one
hand, taking the whole set Ref(W ) as set of generators would yield, in type A2, the category
BT described in the previous section, which is too big. On the other hand, there are no natural
choices of "simple systems" in general for finite complex reflection groups, and one could also
argue that if one wishes to see A2 as a reflection group, the category BT is more natural than
the category B.

Secondly, the definition of the Soergel bimodule attached to a reflection t as R⊗Rt R does
not seem to be the right object when t has order greater than two. Indeed, in this case one
can show that R ⊗Rt R ∼= O(〈t〉), and as a consequence, the tensor product of R ⊗Rt R with
itself decomposes as a direct sum of |〈t〉| (shifted) copies of R ⊗Rt R. Hence the monoidal
category generated by such a bimodule has a Grothendieck ring which is a free A-module of
rank two, while one would expect to have at least |〈t〉| nonisomorphic indecomposable objects
(up to shift) in the category.

In the real case, one has Bt = R⊗Rt R ∼= O({1, t}), but as noticed above, when t has order
greater than 2 the last isomorphism does not hold anymore. It seems more adapted to define
Bt as O({1, t}) in the complex case, based on the observation from the previous paragraph on
the rank of the split Grothendieck ring of the generated category.

We consider such a situation for a cyclic group. Hence let W = 〈s〉 be a finite complex
reflection group of rank 1. Let d be the order of s. Note that every sk with 1 ≤ k ≤ d− 1 is a
reflection ofW , but we will only consider one generator Bs := O({1, s}), the one corresponding
to the unique distinguished reflection. Let B be the additive, graded, monoidal, Karoubian
category generated by such a Bs.

We say that a subset of W of the form {si, si+1, . . . , si+j} where 0 ≤ j ≤ d − 1 and
0 ≤ j ≤ d− 1 is cyclically connected.

Theorem 4.2.4 (G.-Thiel, 2020, [87, Theorem 1.1]). Let W and B be as above. The inde-
composable objects in B are, up to isomorphism and grading shifts, given by the bimodules
O(A), where A runs over the set of cyclically connected subsets of W . In particular, the split
Grothendieck ring AW := 〈B〉 is an A–algebra which is a free A–module of rank d(d− 1) + 1.
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Theorem 4.2.5 (G.-Thiel, 2020, [87, Theorem 1.1]). The algebra AW has a presentation with
generators s, C1, · · · , Cd−1 and relations





sd = 1,

CiCj = CjCi ∀i, j and sCi = Cis ∀i,

C1Ci = Ci+1 + sCi−1 ∀i = 1, . . . , d− 2,

C1Cd−1 = (v + v−1)Cd−1,

sCd−1 = Cd−1,

with the convention that C0 := 1. In particular AW is commutative, and has a subalgebra
isomorphic to the group algebra of W , with generator abusively denoted s above.

Theorem 4.2.6 (G.-Thiel, 2020, [87, Theorem 1.2]). The algebra AC
W defined by the pre-

sentation from Theorem 4.2.5 but over the complex numbers is generically semisimple. More
precisely, if v + v−1 6= 2 cos

(
kπ
d

)
for all k = 1, . . . , d− 1, then AC

W is semisimple.

Note that specializing s to 1 yields the Hecke algebra of the complex reflection group W for
a suitable choice of parameters.

4.2.3 Open problems

It is natural to try to extend the constructions made in Subsections 4.2.1 and 4.2.2 to other
families of groups.

Problem 4.2.7. Can one describe the category BT for other finite irreducible Coxeter groups
W ? If not, for finite Weyl groups W , can we at least describe the intermediate category Bi

which is an extension of Soergel’s category, where one adds a generating bimodule Bt0 attached
to the reflection t0 corresponding to the highest root3?

Problem 4.2.8. Can one describe the category BW from Subsection 4.2.2 for other families of
complex reflection groups?

Problem 4.2.9. Can one obtain a presentation by generators and relations of the monoidal
category B from Theorem 4.2.4, in the spirit of [66]?

In type A2, the algebra A(W ) from Theorem 4.2.1 turns out to be a quotient of a "virtual
Hecke algebra" defined using the virtual braid group. The virtual braid group has recently been
generalized to all Artin groups by Bellingeri, Paris and Thiel [16]. This suggests the following.

Problem 4.2.10. For a Coxeter group W , is the split Grothendieck ring A(W ) from Subsec-
tion 4.2.1 a quotient of a virtual Hecke algebra? Can this help to understand A(W ) in a more
general setting than just A2?

3In type A2, we have Bi = BT , and in type B2 it can be shown that Bi has 20 indecomposable objects up to
isomorphism and grading shifts.
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3. T. Gobet, On maximal dihedral reflection subgroups and generalized noncrossing
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This chapter collects works realized between 2019 and 2023. The first two papers above
(whose results are described in Section 5.1 below) began during the visit of Ivan Marin when
I was a postdoc in Sydney in February 2019, while the last one (whose results are presented
in Section 5.2 below) grew up partly with an observation on rank three noncrossing partition
lattices which I had also made in 2019, and discussions with Jean-Yves Hée in 2021.

Section 5.1 explores the structure of braid groups and Hecke algebras of normalizers of (full)
reflection subgroups, as defined by Ivan Marin [110, Sections 2.2 and 2.3] for finite complex
reflection groups. Several definitions also make sense for arbitrary Coxeter groups. In Subsec-
tion 5.1.1, corresponding to the first paper above, we show that braid groups of normalizers
of reflection subgroups of finite Coxeter groups are semidirect products, and deduce the con-
struction of a standard basis for the Hecke algebra of the normalizer of the reflection subgroup.
In Subsection 5.1.2, corresponding (mostly) to the second paper above, the situation is inves-
tigated in the complex case. Most of the results holding in the real case do not hold anymore,
but in the case of parabolic subgroups of finite complex reflection groups, we show that if the
Hecke algebra is defined over a large enough field, then one still has a semidirect (or crossed)
product decomposition of the Hecke algebra of the normalizer, even in cases where the braid
group does not satisfy the semidirect product decomposition that holds in the real case. For
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the infinite family and some exceptional groups, explicit conditions on the field to guarantee
such a semidirect product decomposition of the Hecke algebra of the normalizer are computed.

In Section 5.2, we give a new proof of a theorem of Dyer stating that in an arbitrary Coxeter
group, every pair of distinct reflections lies in a unique maximal dihedral reflection subgroup of
the ambiant group. We deduce a new proof of the lattice property of generalized noncrossing
partitions in Coxeter groups of rank three, recently proven by Delucchi-Paolini-Salvetti [47].

5.1 Braid groups and Hecke algebras of normalizers of re-
flection subgroups

There has been a lot of results about normalizers of parabolic subgroups of Coxeter groups. In
the case of a finite Coxeter system (W,S) and a a subset J ⊆ S, Howlett [94] showed that the
normalizer NW (WJ) of the standard parabolic subgroup WJ is of the form WJ ⋊ UJ for some
subgroup UJ that has the form W ′ ⋊Γ, where W ′ is again a Coxeter group and Ω is a group of
automorphisms of diagram of W ′. The group W ′ is sometimes called the reflection part of the
normalizer, while Γ is its non-reflection part. The complement UJ is obtained as the stabilizer
of a set of roots. Brink and Howlett [31] removed the assumption that (W,S) is finite and gave
a presentation by generators and relations of a certain groupoid attached to J ⊆ S, in which
UJ is realized as the group of endomorphisms of an object. Borcherds used the properties of the
normalizer to calculate automorphisms groups of some K3 surfaces and Lorentzian lattices [26].

The fact that parabolic subgroups of finite Coxeter groups always admit a complement
insider their normalizers can easily be generalized to reflection subgroups of arbitrary Coxeter
groups (see Lemma 5.1.1 below). For finite complex reflection groups, the situation is more
intricate, as there are examples of reflection subgroups which do not admit a complement
inside their normalizers. Nevertheless, it was shown by Muraleedaran and Taylor [118] that
parabolic subgroups of finite complex reflection groups always admit a complement inside their
normalizer.

Marin [110, Sections 2.2 and 2.3.1] defined a braid group and a Hecke algebra of the nor-
malizer of a full reflection subgroup of a finite complex reflection group. Such algebras turn
out to be related to an algebra CW previously introduced also by Marin [109] and generalizing
the algebra of "braids and ties" of Arcadi and Jujumaya [3], in the sense that CW is Morita
equivalent to a direct sum of Hecke algebras of normalizers of reflection subgroups.

Let us recall the construction. Let H denote the collection of reflecting hyperplanes of a
finite complex reflection group W . Consider the quotient map π : B := BW −→W . Let W0 be
a reflection subgroup ofW and let N0 := NW (W0). Consider the subgroup B̂0 := π−1(N0) ⊆ B.
Note that PW ⊆ B̂0. Let H0 ⊆ H be the set of hyperplanes associated to the reflections of W0.
Consider the (normal) subgroup K0 ⊆ PW generated by all the meridians around hyperplanes
that are not in the set H0. Letting β ∈ B̂0, since π(β) normalizes W0, we have βmβ−1 ∈ K0

for every generator m of K0, hence K0 is still normal in B̂0. Define the braid group of N0 as
the quotient B̃0 of B̂0 by K0. Note that π|

B̂0

induces a surjection π̃0 : B̃0 ։ N0.
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One thus gets the following commutative diagram, where the rows are exact

1 // π−1(W0)/K0
//

π0

��

B̃0
//

π̃0

��

N0/W0
//

Id
��

1

1 //W0
// N0

// N0/W0
// 1

(5.1.1)

Note that a splitting of the short exact sequence above automatically implies a splitting of
the bottom short exact sequence.

The above defined groups and short exact sequences can also be defined when W is a not
necessarily finite Coxeter group, and W0 is a reflection subgroup of W : one defines K0 as the
(normal) subgroup of the pure braid group PW generated by those elements of the form βs2β−1,
where s is a standard generator of BW such that p(βsβ−1) is not in W0, and β ∈ BW .

It is natural to wonder, in thoses cases where the bottom short exact sequence splits, if
there is a splitting of the top short exact sequence.

Returning to the case of a finite complex reflection group, assume thatW0 is a full reflection
subgroup of a finite complex reflection group W , in the sense that for every reflection r ∈ W0,
any reflection r′ sharing the same hyperplane as r is also in W0 (this holds for instance if W0

is a parabolic subgroup of W ). Let k be a field containing the ring of Laurent polynomials
Z[u±1

s,i ], where s runs over the set of distinguished reflections of W and i ∈ {0, . . . , o(s) − 1},
with the convention that us,i = uwsw−1,i for all w ∈ N0. By definition, the Hecke algebra H̃0

of the normalizer N0 as defined by Marin in [110, Section 2.3.1] is the quotient of the group
algebra k[B̂0] by two types of relations:

• The relations σmH = 1, for every braided reflection σ associated to a hyperplane H ∈
H \ H0. Here mH is the order of the pointwise stabilizer of H in W .

• The defining relations of the Hecke algebra H0 of W0 on the braided reflections σ with
respect to the hyperplanes H that lie in H0, that is, the relations

∏mH−1
i=0 (σ − us,i) = 0,

where s denotes the distinguished reflection with hyperplane H .

5.1.1 Braid groups and Hecke algebras of normalizers of reflection
subgroups: finite Coxeter groups

The following is an easy generalization of Howlett’s construction [94] of complements for
parabolic subgroups inside their normalizers.

Lemma 5.1.1 (G.-Henderson-Marin, 2021, [88, Lemma 3.3]). Let (W,S) be an arbitrary Cox-
eter system. Let W0 ⊆W be a reflection subgroup. Let

U0 := {w ∈ N0 | N(w) ∩W0 = ∅}.

Then U0 is a subgroup of N0 which is complementary to W0. That is, we have a semidirect
product decomposition N0 = W0 ⋊ U0, and the bottom short exact sequence in (5.1.1) splits.
Moreover, the conjugation action of U0 on W0 preserves the canonical Coxeter generating set
χ(W0) of W0.
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Define a set-theoretic map ψ : N0 −→ B̃0 by w 7→ wK0, where w denotes the (image of
the) positive lift of w in BW (in B̂0). This is not a group homomorphism in general, but it has
the following properties.

Proposition 5.1.2 (G.-Henderson-Marin, 2021, [88, Proposition 3.10 and Corollary 3.11]). Let
(W,S) be a Coxeter system and W0 ⊆W be a reflection subgroup.

1. Let w1, w2 ∈ N0 such that N(w−1
1 ) ∩N(w2) ∩W0 = ∅. Then

ψ(w1w2) = ψ(w1)ψ(w2).

In particular, the restriction ψ : U0 →֒ B̃0 is a group homomorphism,

2. The restriction ψ : W0 →֒ π−1(W0)/K0 satisfies ψ(w1w2) = ψ(w1)ψ(w2) whenever the
product w1w2 is S0-reduced inside (W0, S0),

3. Denoting by B0 the Artin group of (W0, S0), there is a unique group homomorphism
ψ̃ : B0 −→ π−1(W0)/K0 such that ψ̃(β) = ψ(w) for any w ∈ W0 with positive lift β in
B0.

We then showed the following.

Theorem 5.1.3 (G.-Henderson-Marin, 2021, [88, Theorem 3.13 and Proposition 3.16]). Let
(W,S) be a Coxeter system and W0 ⊆W be a reflection subgroup.

1. If the homomorphism ψ̃ from Proposition 5.1.2 (3) is an isomorphism, then the top short
exact sequence in 5.1.1 splits. After identification of N0/W0 with U0 (see Lemma 5.1.1),
the splitting map U0 →֒ B̃0 is given by the restriction of ψ, which is a homomorphism by
Proposition 5.1.2 (1). We thus have

B̃0 = B0 ⋊ ψ(U0).

Moreover, the conjugation action of ψ(U0) on the set Σ0 of Artin generators of B0 preserves
Σ0, and for u ∈ U0 the action of ψ(u) on Σ0 is the same as the action of u on S0.

2. The homomorphism ψ̃ from Proposition 5.1.2 (3) is an isomorphism whenever W is finite
and W0 is an arbitrary reflection subgroup. In particular, the conclusion of point (1)
above always holds when W is finite.

Remark 5.1.4. The first point above is easily deduced from Proposition 5.1.2, which is proven
using only the combinatorics of words in Coxeter groups, and properties of inversion sets.
We provide an alternative proof of (1) in Section 4 of [88], using a groupoid description of
normalizers, in the spirit of Brink and Howlett’s groupoid [31] (but unlike in [31], these groupoids
are defined for arbitrary reflection subgroups, not just parabolic ones, and are bigger than the
ones from [31] in the parabolic case).
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Let us discuss an example illustrating the above results and properties.

Example 5.1.5. Let W be a finite Coxeter group of type Bn, and W0 be a reflection subgroup
of W of type Dn. In terms of the generating set {s0, s1, . . . , sn−1} of W , where s0s1 has order
4 and S ′ := {s1, · · · , sn−1} generates a type An−1 standard parabolic subgroup, the Coxeter
generating set of W0 is given by S0 = S ′ ∪ {s0s1s0}. Then since W0 has index two in W , it is
normal, hence N0 = W . Hence U0 = {w ∈ W | N(w) ∩W0 = ∅}, and U0 is thus given in this
case by the set of elements of minimal length in the two cosets modulo W0; as there is always a
unique such element per coset, that is, we get U0 = {1, s0}. We see that the conjugation action
of U0 on S0 indeed preserves S0, as predicted by Lemma 5.1.1.

Now we have B̂0 = π−1(W ) = BW , and B̃0 is the quotient of BW by the subgroup normally
generated by s20, since every reflection of W which is not in W0 is a conjugate of s0. We thus
have

B̃0 = B0 ⋊ Z/2Z,

and we recover the well-known fact that the Artin group of type Dn can be realized as an index
two subgroup of the quotient of the Artin group of type Bn by the relation s20 = 1. We thus
recover Proposition 3.1.5 from Chapter 3.1.5.

Continue to assume thatW is a finite Coxeter group. The semidirect product decomposition
of B̃0 induces a semidirect (or crossed) product decomposition of the corresponding Hecke
algebra H̃0, which allows us to write down a standard basis for that algebra. Note that in the
real case, every reflection subgroup W0 of W is full. Recall that for w ∈ W0, the image of the
positive lift ψ(w) ∈ B0 in the Hecke algebra H0 is written Tw, and the elements {Tw}w∈W0

form
the standard basis of H0. We simply extend this notation to w ∈ N0, writing Tw for the image
in H̃0 of ψ(w) ∈ B̃0.

Theorem 5.1.6 (G.-Henderson-Marin, 2021, [88, Theorem 3.19]). The elements {Tw}w∈N0

form a basis of H̃0. The subset {Tw}w∈W0
spans a subalgebra which can be identified with H0

with its standard basis. The subset {Tu}u∈U0
spans a subalgebra which can be identified with

the group algebra k[U0] with its basis given by the elements of U0. Multiplication induces a
k-module isomorphism H0 ⊗k

k[U0] ∼= H̃0, and we have

TwTu = Twu = TuTu−1wu for w ∈ W0, u ∈ U0.

Example 5.1.7. Continuing Example 5.1.5, the above theorem allows one to realize the
Iwahori-Hecke algebra of type Dn inside a Iwahori-Hecke algebra of type Bn with unequal
parameters, the parameter corresponding to the conjugacy class of s0 being specialized at 1.
Here as well, this phenomenon has been well-known to representation theorists for a long time
(see for instance [93, Section 2.3]).

5.1.2 Hecke algebras of normalizers of parabolic subgroups: complex
reflection groups

In the case of finite complex reflection groups, the short exact sequence at the bottom of 5.1.1
does not split in general, as the following elementary example shows. It also shows that a
splitting of the bottom short exact sequence does not necessarily imply a splitting at the top.
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Example 5.1.8. Let W = 〈s〉 be cyclic of order d, and let W0 = 〈se〉, where 1 < e < d is a
divisor of d. ThenW0 is a non-parabolic reflection subgroup ofW . If gcd(e, d/e) > 1, then there
is no complement to W0 inside W . Without assuming gcd(e, d/e) > 1, we have B̃0 = B = 〈σ〉,
while π−1(W0)/K0 = 〈σe〉 (we have H = H0, hence K0 = {1}). The top short exact sequence
in 5.1.1 is thus given by

1 −→ Z
z 7→ez
−→ Z −→ Z/eZ −→ 1,

which does not split.

The above example may lead one to think that the problem here comes from the fact that
there are reflections of order greater than 2 in W , but counterexamples to the splitting of the
top short exact sequence can be found as well in 2-reflection groups (that is, finite complex
reflection groups generated by reflections of order 2). See [88, Section 6.2] for more examples,
and for the discussion of an obstruction to the splitting of the top short exact sequence when
the bottom short exact sequence splits coming from the center Z(B) of B.

On the other hand, as shown by Muraleedaran and Taylor [118], when W0 is a parabolic
subgroup of a complex reflection group, then the bottom short exact sequence always splits,
and there are examples where the top short exact sequence also splits:

Proposition 5.1.9 (G.-Henderson-Marin-G., 2021, [88, Proposition 5.1]). Let W = G(d, 1, n)
and W0 = G(d, 1, k), where 1 ≤ k ≤ n − 1. Then N0 = W0 × U0, where U0 is isomorphic to
G(d, 1, n− k), and there is a direct product decomposition B̃0 = B0 × U0.

Unfortunately, for other parabolic subgroups ofG(d, 1, n), the situation can be very different,
as the following example shows.

Example 5.1.10 ([88, Example 6.6]). Let W = G(3, 1, 2), and let W0 be a rank-1 parabolic
subgroup generated by a reflection of order 2. Then the top short exact sequence in (5.1.1)
does not split.

Nevertheless, with a suitable choice of parameters defining the Hecke algebra, and a suf-
ficiently large field of definition K, we can show that we still have a semidirect (or crossed)
product decomposition at the level of Hecke algebras (as obtained in Theorem 5.1.6 in the real
case).

More precisely, letW0 be a parabolic subgroup ofW . Let k be the ring of Laurent polynomi-
als Z[u±1

s,i ], where s runs over the set of distinguished reflections of W and i ∈ {0, . . . , o(s)− 1},
with the convention that us,i = uwsw−1,i for all w ∈ N0. In this section we consider the generic
case, that is, the case where K is a field containing k. In particular K has characteristic 0.

Theorem 5.1.11 (G.-Marin, 2022, [89, Theorem 1.1]). Let W0 ⊆ W be a parabolic subgroup
of a finite complex reflection group W . If the defining parameters of H0 are generic and K is a
sufficiently large field of characteristic zero, then

H̃0
∼= H0 ⋊N0.
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The question is thus quite different than in the real case treated in Section 5.1. Namely,
one would like to determine explicit, algebraic conditions on the field K and the parameters
us,i ∈ K to ensure the semidirect (or crossed) product decomposition of H̃0.

For the infinite series, we have the following conditions.

Theorem 5.1.12 (G.-Marin, 2022, [89, Theorem 1.2]). Let W = G(de, e, n) and

W0 = G(de, e, n0)×
n∏

k=1

G(1, 1, k)bk ,

where n0 +
∑n

i=1 bi = n. Then H̃0
∼= N0 ⋉H0 as soon as, whenever bk 6= 0,

• there exists Tk ∈ K[X ] such that Tk(∆(k))−de = ∆(k)2, where the equality holds inside
the Iwahori-Hecke algebra Hk of type Ak−1 and ∆(k) denotes the image inside Hk of the
(classical) Garside element of the k-strand braid group Bk, and

• if moreover e 6= 1 and n0 ≥ 1, there exists T0,k ∈ K[X ] such that T0,k(σ)de = σkd whenever
σ is a braided reflection associated to the hyperplane {z1 = 0}.

In particular the second condition is empty when d = 1, since {z1 = 0} is not a reflecting
hyperplane in that case.

Moreover, conditions on the defining parameters of the Hecke algebra ensuring the existence
of such polynomials Tk and T0,k are provided (see [89, Lemmatas 2.8 and 2.9]).

For the exceptional types, the results may be summarized as follows.

Theorem 5.1.13 (G.-Marin, 2022, [89, Theorem 5.1]). Let W be an irreducible complex re-
flection group of exceptional type, and W0 a proper parabolic subgroup of maximal rank. Let
zB0

be the canonical positive central element of B0. Except for two exceptions in ranks 3 and
5, if there exists T ∈ K[X ] such that the equality T (zB0

)|Z(W )| = z
−|Z(W0)|
B0

holds true inside H0,
then H̃0

∼= N0 ⋉H0.

Some of the remaining exceptional types are also treated in [89, Section 6].

5.1.3 Open problems

It is natural to wonder if, in the case of an infinite Coxeter system (W,S) and an arbitrary
reflection subgroup W0, we still have the semidirect product decomposition B̃0 = B0 ⋊ ψ(U0),
since by Lemma 5.1.1 the short exact sequence at the bottom of (5.1.1) always splits. By
Theorem 5.1.3 (1), in order to establish the semidirect product decomposition, one must check
that the map ψ̃ from Proposition 5.1.2 (3) is an isomorphism.

Problem 5.1.14. In the case of an infinite Coxeter system (W,S) and an arbitrary reflection
subgroup W0 ⊆W , is ψ̃ an isomorphism?
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The proof given in [88, Section 3.4] of this property in the case where W is finite uses the
realization of BW as the fundamental group of regular orbits of the complexified geometric
representation VC of W .

What can at least be said when S is finite and W0 is parabolic is that ψ̃ is injective (see [88,
Remark 3.18]).

5.2 Dihedral reflection subgroups of Coxeter systems

Recall that in the study of dual Coxeter systems and dual Artin groups, the poset [1, c]T of
generalized noncrossing partitions plays a key role (see Subsection 2.1.6 above). Proving the
lattice property of the interval [1, c]T for large families of Coxeter groups is a hard problem in
general.

The aim of this section is to present a few results which led to a new proof of the lattice
property [1, c]T for all Coxeter groups of rank 3. The first proof of this result was given
by Delucchi-Paolini-Salvetti [47, Theorem 4.2], using factorizations of the Coxeter element as
products of isometries of the hyperbolic plane H2. The proof that we provide here only uses
the combinatorics of words in Coxeter systems, without any use of geometry or root systems.

It is based on Dyer’s theorem that any two distinct reflections t, t′ in an arbitrary Coxeter
group W always lie in a unique maximal dihedral reflection subgroup of W (see Theorem 5.2.3
below). We begin by providing a new proof of this result, which does not use geometry or
root systems, in Subsection 5.2.1 below. The proof of the lattice property of [1, c]T for Coxeter
groups of rank three is then derived in Subsection 5.2.2, as a corollary of a more general result.

5.2.1 New proof of Dyer’s Theorem on maximal dihedral reflection
subgroups

The proof is based on the following two propositions, which were suggested to me by Jean-Yves
Hée during discussions on dual Coxeter systems in 2021. The proofs are given in [83], where
the proof of Proposition 5.2.2 is Hée’s proof, while the origonal proof of Proposition 5.2.1 given
to me by Hée was using root systems.

Proposition 5.2.1 (G., 2023, [83, Proposition 1.3]). Let (W,S) be a Coxeter system. Suppose
that there is w ∈ W , w 6= 1 such that, for every s ∈ S, there is s′ ∈ T such that w = ss′. Then
|S| = 2.

Proposition 5.2.2 (G., 2023, [83, Proposition 1.4]). Let (W,S) be a Coxeter system. Let w
in W be a product of two distinct reflections of W . Consider the set

Rw := {t ∈ T | There exists t′ ∈ T such that w = tt′}.

Then setting Ww := 〈Rw〉, we have w ∈ Ww, and there exists a subset S ′ ⊆ Rw such that
(Ww, S

′) is a Coxeter system with set of reflections Rw. Moreover, for any subset S ′ ⊆ Rw such
that (Ww, S

′) is a Coxeter system, we have |S ′| = 2.
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From the above two propositions, it is not difficult to deduce a new proof of Dyer’s theorem:

Theorem 5.2.3 (Dyer, 1987, [55, Corollary 3.18], see also [58, Remark 3.2], and [62]). Let
t, t′ be two distinct reflections in an arbitrary Coxeter system (W,S). Then there is a unique
maximal dihedral reflection subgroup W (t, t′) of W containing both t and t′.

In fact, we show that the maximal dihedral reflection subgroup is given by the dihedral
reflection subgroup Ww of Proposition 5.2.2, where w = tt′.

Proof. Set w := tt′ and consider the dihedral reflection subgroup Ww from Proposition 5.2.2.
Since tt′ = t′(t′tt′) we have that t, t′ ∈ Ww. We claim thatW (t, t′) :=Ww is the unique maximal
dihedral reflection subgroup of W containing both t and t′.

Assume that W ′ is a dihedral reflection subgroup of W containing both t and t′. Then W ′

contains w. Since w is a product of two reflections and W ′ is dihedral, then for any reflection r
of W ′ we have that rw is a reflection of W ′ (hence of W ). Hence r ∈ Rw ⊆ Ww, and thus Ww

contains every reflection of W ′. It follows that W ′ ⊆Ww, which concludes the proof.

5.2.2 Lattice property of intervals of rank three in noncrossing parti-
tion posets

The results from the previous section allow one to deduce the following result, which is a
generalization of [47, Theorem 4.2].

Theorem 5.2.4 (G., 2023, [83, Theorem 2.2]). Let (W,S) be a Coxeter system. Let u, v ∈ W
such that u ≤T v and ℓT (v) = ℓT (u)+ 3. Then the interval [u, v]T is a lattice. In particular, for
every standard Coxeter element c in a Coxeter system (W,S) of rank three, the poset [1, c]T of
generalized noncrossing partitions is a lattice.

Sketch of the proof. The interval [u, v]T is isomorphic as a poset to [1, u−1v]T . We can thus
assume that u = 1, and ℓT (v) = 3. To conclude the proof, it suffices to show the following:
let t 6= t′ ∈ T , w,w′ ∈ [1, v]T with ℓT (w) = ℓT (w

′) = 2, t, t′ ≤T w, and t, t′ ≤T w′. Then
w = w′. Indeed, since ℓT (v) = 3, any obstruction to the lattice property must come from a
so-called "bowtie" [113, Definition 1.5], that is in our setting, a pair (t1, t2) of distinct elements
of reflection length 1 together with a pair (w1, w2) of distinct elements of reflection length 2,
such that ti ≤T wj, for all i and j.

Under the above assumptions, one then shows that w1, w2 lie in the same maximal dihedral
reflection subgroup W ′ of W . If w1 6= w2, letting q1, q2 ∈ T such that wiqi = v, one then has
that q1q2 = w−1

1 w2 ∈ W ′, hence that q1q2 ∈ W ′. One then shows that q1 and q2 themselves lie
in W ′, hence that v lies in the dihedral reflection subgroup W ′, hence that v is a product of at
most two reflections, contradicting ℓT (v) = 3.

We deduce the following corollary.

Corollary 5.2.5 (G., 2023, [83, Corollary 2.3]). Let (W,S) be a Coxeter system and w ∈ W
such that ℓT (w) = 3. Then the interval group G([1, w]T ) is a quasi-Garside group.
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Remark 5.2.6. For some finite Coxeter groups W of rank three and quasi-Coxeter elements w
of W which fail to be Coxeter elements (this happens for instance in H3), the lattice property
of [1, w]T was established by computer on a case-by-case basis in [15], where the corresponding
interval groups are also studied.

5.3 Open problems

The following is an extremely hard question in the field.

Problem 5.3.1. For which Coxeter systems (W,S) and which choices of standard Coxeter
elements c does the interval [1, c]T form a lattice?

There is a full answer to this question in finite, affine, universal, and rank three Coxeter
systems. Note that in the affine type, the lattice property does not always hold (for instance
in type Ãn, it depends on the choice of standard Coxeter element [51]). Apart from those
cases, this question appears to be completely open. We do not have any precise conjecture to
formulate.

Problem 5.3.2. Let (W,S) be an arbitrary Coxeter system and w ∈ W such that ℓT (w) = 3.
What are the properties of the interval quasi-Garside group G([1, c]T )?
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In this section, we present several results related to Garside structures for torus knot groups,
and study the structure and properties of some natural quotients of some of these Garside
structures. These results were obtained between 2020 and 2022, and began with attempts to
understand the exotic Garside structure 〈 a, b | aba = b2 〉 on the 3-strand braid groups B3,
and the submonoid Mn of Bn generated by σ1, σ1σ2, . . . , σ1σ2 · · ·σn−1 (see [43, Chapter IX,
Question 30]).

Given n,m ≥ 2 with n and m coprime, the (n,m)-torus knot group is the fundamental
group of the complement of the torus knot Tn,m in S3. Note that G(n,m) ∼= G(m,n), since the
two knots Tn,m and Tm,n are isotopic.

In some particular cases, these groups are complex braid groups: G(2, 3) is isomorphic to the
3-strand braid group B3, while G(3, 4), G(3, 5) are the complex braid groups of G12, respectively
G22 (see [10]), and G(2, m) is isomorphic to the Artin group of dihedral type.

The first two sections below correspond to results from the first, second, fourth and fifth

https://arxiv.org/abs/2301.00744
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papers above. Section 6.1 below introduces a new Garside structure for torus knot groups,
generalizing the aforementioned exotic Garside structure on B3. Section 6.2 explains the link
between the newly introduced Garside structure in the specific case where m = n + 1 and the
aforementioned motivating problem on the submonoid Mn of Bn.

Since, as mentioned above, some particular quotients of torus knot groups happen to be
complex reflection groups, we investigate in Section 6.3 below the structure and properties of
analogous quotients of torus knot groups. This corresponds to the third paper above. We show
that these quotients behave in a certain sense like "(infinite) complex reflection groups whose
braid groups are torus knot groups", show that their center is cyclic, and classify them.

6.1 New Garside structures generalizing an exotic Garside
structure on B3

6.1.1 Torus knot groups

Let n,m ≥ 2, with n and m coprime. The (n,m)-torus knot group G(n,m) is the knot group of
the torus knot Tn,m, that is, the fundamental group of the complement of Tn,m in S3 (see [131,
Chapter 3] for more on torus knots and their groups). As Tn,m and Tm,n are isotopic, we have
G(n,m) ∼= G(m,n). There is a well-known presentation of G(n,m) given by

〈 x, y | xn = ym 〉. (6.1.1)

It was shown by Schreier [134] that the center ofG(n,m) is infinite cyclic, generated by xn = ym.
Another presentation of G(n,m) is given by

〈 x1, x2, . . . , xn | x1x2 · · ·︸ ︷︷ ︸
m factors

= x2x3 · · ·︸ ︷︷ ︸
m factors

= · · · = xnx1 · · ·︸ ︷︷ ︸
m factors

〉, (6.1.2)

where indices are taken modulo n if n < m. An isomorphism is given by x 7→ x1x2 · · ·xm,
y 7→ x1x2 · · ·xn. Since G(n,m) ∼= G(m,n), a third presentation is given by

〈 y1, y2, . . . , ym | y1y2 · · ·︸ ︷︷ ︸
n factors

= y2y3 · · ·︸ ︷︷ ︸
n factors

= · · · = ymy1 · · ·︸ ︷︷ ︸
n factors

〉. (6.1.3)

For n = 2 and m = 3, Presentation 6.1.2 is nothing but Artin’s presentation of the 3-strand
braid group B3, while Presentation 6.1.3 is its Birman-Ko-Lee ([23]) or dual ([18]) presentation.

Note that, on the algebraic side, it is not obvious that Presentations 6.1.1, 6.1.2, and 6.1.3
define isomorphic groups. The link between these presentations is given in the following Lemma,
which is straightforward to check (see also [69, Corollary 2.21] for an isomorphism for a more
general family of groups).

Lemma 6.1.1. Assume that n < m.

1. The map

y1 7→ x1, and for 2 ≤ i ≤ m, yi 7→ x−1
n x−1

n−1 · · ·x
−1
n+3−ixn+2−ixn+3−i · · ·xn

(where indices in the xi’s are taken modulo n) defines an isomorphism between the group
with presentation 6.1.3 and the group with presentation 6.1.2.
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2. The map
x 7→ x1x2 · · ·xm, y 7→ x1x2 · · ·xn

(where indices in the xi’s are taken modulo n) defines an isomorphism between the group
with presentation 6.1.1 and the group with presentation 6.1.2.

Torus knot groups are examples of groups which possess many non-isomorphic Garside
monoids. Indeed, it was shown by Dehornoy and Paris that Presentations 6.1.1, 6.1.2 and 6.1.3
define Garside monoids (see [44, Examples 4 and 5]). Picantin [124] gave Garside presentations
for all torus link groups, yielding in the particular case of knots a Garside presentation which
is similar to 6.1.2, but distinct in general.

Let us now assume that n,m are two integers such that 2 ≤ n, n < m and n and m are
coprime. Let m = qn + r be the Euclidean division of m by n ; in particular 0 < r < n.
Consider the monoid M(n,m) defined by the following presentation.

M(n,m) =

〈
ω1, ω2, . . . , ωn

∣∣∣∣
ωrω

q
nωi−r = ωiω

q
n if r < i ≤ n,

ωrω
q
nωn+i−r = ωiω

q+1
n if 1 ≤ i < r.

〉
. (6.1.4)

We will denote by G(n,m) the group defined by the same presentation.

Theorem 6.1.2 (G., 2022, [82, Theorem 6.4, Propositions 4.12 and 5.10]). Let M(n,m) with
its presentation given in (6.1.4). We set ∆ := ωm

n , omitting the dependency on n and m.

1. The pair (M(n,m),∆) is a Garside monoid with Garside group G(n,m) isomorphic to
the torus knot group G(n,m).

2. The Garside element ∆ is a generator of the center of G(n,m).

3. The right-lcm of the generators ωi, 1 ≤ i ≤ n of M(n,m) is given by ωm−q
n .

4. The left-lcm of the generators ωi, 1 ≤ i ≤ n of M(n,m) is given by
{
ωn−rω

q(n−2)+r−1
n if 2r > n,

ωm−q
n otherwise.

Note that for n = 2 and m = 3, we recover the exotic monoid 〈 a, b | aba = b2 〉 on B3.

Remark 6.1.3. The Garside structure obtained in 6.1.2 is particularly complicated compared
for instance to the Garside structure 〈 x, y | xn = ym 〉 for G(n,m). The motivation for studying
a generalization of the exotic structure 〈 a, b | aba = b2 〉 on B3 was an attempt for a better
understanding of the submonoid Mn of Bn generated by σ1, σ1σ2, . . . , σ1σ2 · · ·σn−1, which is
related to the Garside structure obtained above in the case G(n− 1, n). In this particular case,
the Garside structure from Theorem 6.1.2 was already studied in an earlier paper of ours in
honour of Patrick Dehornoy [79, Theorem 1.2]. We explain the relationship with the n-strand
braid group in the Section 6.2 below. In this case the theorem is much easier to establish
(right-cancellativity is particularly technical in the general case).
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Example 6.1.4. We list several non-isomorphic Garside monoids for G(3, 4), which is also
isomorphic to the braid group of the exceptional complex reflection group G12 (see [10, Theorem
1.2 (viii)]). Presentations 6.1.1 to 6.1.3 respectively yield the Garside presentations

〈 x, y | x2 = y3 〉,

〈
x1, x2, x3

∣∣∣∣
x1x2x3x1

= x2x3x1x2
= x3x1x2x3

〉
,

〈
y1, y2, y3, y4

∣∣∣∣
y1y2y3 = y2y3y4

= y3y4y1 = y4y1y2

〉
,

where the Garside element is given respectively by x2, x1x2x3x1, and y1y2y3. Picantin’s presen-
tation [124, Lemma 3.2] yields the presentation

〈 σ1, σ2, σ3 | σ1σ2σ3σ1 = σ2σ1σ2σ3, σ3σ1σ2σ3 = σ1σ2σ3σ2 〉,

which also appears in work of Bessis-Bonnafé-Rouquier [20, §4.6]. The Garside element is
given by (σ1σ2σ3)

4. Note that Picantin also exhibited alternative Garside monoids for G(3, 4),
including the monoid 〈 x, y | xyxyxyx = y2 〉 which has Garside element y3, and even an infinite
family of Garside monoids (see [124, Example 2.7 and Remark 5.2]). The presentation coming
from Theorem 6.1.2 is given by the following presentation, with Garside element ω4

3:

〈 ω1, ω2, ω3 | ω1ω3ω1 = ω2ω3, ω1ω3ω2 = ω2
3 〉.

Theorem 6.1.2 does not yield an explicit description of the lattice of simples, and not even
a formula for the number of simples. For the monoid M(n− 1, n), we have the following.

Theorem 6.1.5 (Rognerud-G., 2023; [85, Theorem 3.12 and Corollary 4.1]). Let n ≥ 3. Then

• The number of simples in M(n− 1, n) is equal to F2n−2, where F0, F1, F2, . . . denotes the
Fibonacci sequence 1, 2, 3, 5, 8, . . . .

• The set of words for the Garside element ωn
n−1 in M(n− 1, n) is in bijection with the set

of Schroeder trees on n leaves. Its cardinality is given recursively by S(n), where

S(1) = S(2) = 1, S(n) =
3(2n− 3)S(n− 1)− (n− 3)S(n− 2)

n
for n ≥ 3.

6.1.2 Other analogous Garside structures

Theorem 6.1.2 suggests that the correct framework to generalize the exotic Garside structure
〈 a, b | aba = b2 〉 is torus knot groups rather than braid groups (see also the results in Section 6.2
below). Nevertheless, let us first point out that there is another possible generalization of this
Garside structure, which already appeared in work of Dehornoy and Paris.

Proposition 6.1.6 (Dehornoy-Paris, 1996, [44, Example 2]). Let p > q ≥ 1. The monoid
〈 a, b | bp = abqa 〉 is a Garside monoid.

The corresponding Garside group is isomorphic to 〈 x, y | x2 = yp+q 〉 via x 7→ abq, y 7→ b,
which is a torus knot group or Artin group of dihedral type I2(p+ q) when p+ q is odd.
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As mentioned in Example 6.1.4, the complex braid group of G12 is isomorphic to G(3, 4)
and hence admits the presentation

BG12

∼= 〈 x1, x2, x3 | x1x2x3x1 = x2x3x1x2 = x3x1x2x3 〉.

In terms of complex braid groups, the generators xi are braided reflections. An isomorphism
with the presentation of Theorem 6.1.2 is given by ω1 7→ x1, ω2 7→ x3x1, ω3 7→ x2x3x1.

The complex braid group BG13
of G13 admits a similar presentation with generators also

given by braided reflections (see [10, 34]):

BG13

∼=

〈
x1, x2, x3

∣∣∣∣
x1x2x3x1x2 = x2x3x1x2x3,
x3x1x2x3 = x1x2x3x1

〉
.

As noticed by Picantin [123, Exemple 13], this presentation is Garside. A Garside structure
similar to the one constructed in this paper for torus knot groups can be constructed for G13.
Namely, the assignment ω1 7→ x1, ω2 7→ x2x1, ω3 7→ x2x3x1 yields the presentation

BG13

∼=

〈
ω1, ω2, ω3

∣∣∣∣
ω2ω3ω1 = ω2

3

ω1ω3ω2 = ω2
3

〉
. (6.1.5)

Proposition 6.1.8 below states that this presentation is Garside, as part of a larger family of
Garside presentations. To be more precise, the complex braid group BG13

is isomorphic to the
Artin group of type I2(6) (see [10, Theorem 1.2 (iii)]). Recall that the standard presentation of
BI2(6) is given by

BI2(6)
∼= 〈 σ, τ | στστστ = τστστσ 〉, (6.1.6)

and one can check directly that an isomorphism is given by σ 7→ (x1x2x3x1)
−1, τ 7→ x1 (with

inverse x1 7→ τ , x2 7→ (στστστ)−1σ2, x3 7→ σ−1τσ). Hence one passes from Presentation 6.1.5
to Presentation 6.1.6 by ω1 7→ τ , ω2 7→ στ−1σ−1τ−1σ−1, ω3 7→ τ−1σ−1. Somewhat surprisingly,
one can generalize Presentation 6.1.5 to a Garside presentation for all dihedral Artin groups of
even type. It is done as follows.

Let n ≥ 1. Consider the monoid presentation

〈 τ1, τ2, ρ | τ1ρτ2 = ρ2, τ2ρ
nτ1 = ρn+1 〉. (6.1.7)

Note that for n = 1, this is the same as Presentation 6.1.5 above.

Remark 6.1.7. Presentation 6.1.7 still makes sense for n = 0, but in that case ρ is not an
atom of the corresponding monoid as ρ = τ2τ1. In this case the obtained monoid is nothing but
the Artin monoid of type B2 = I2(4). The monoid defined by Presentation 6.1.7 is shown in
Proposition 6.1.8 below to be a Garside monoid with corresponding Garside group isomorphic
to the Artin group of dihedral type I2(2n+4), but we distinguish the case n ≥ 1 from the case
n = 0 which is not new and where the number of atoms differs.

Recall that the Artin group of dihedral type I2(4 + 2n) (n ≥ 0) has standard presentation

BI2(4+2n) = 〈 σ, τ | (στ)n+2 = (τσ)n+2 〉. (6.1.8)
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Proposition 6.1.8 (G., 2022, [82, Lemma 7.2 and Proposition 7.6]). Let n ≥ 1.

1. The group defined by Presentation 6.1.7 is isomorphic to the Artin group of type I2(4+2n)
via τ1 7→ τ , τ2 7→ στ−1σ−1τ−1σ−1, ρ 7→ τ−1σ−1. The inverse map is given by τ 7→ τ1,
σ 7→ (τ1ρ)

−1.

2. The monoid defined by Presentation 6.1.7 is a Garside monoid, with (central) Garside
element ∆ = ρn+2. The corresponding Garside group is isomorphic to the Artin group of
type I2(4+2n) (which is also isomorphic to the complex braid group of G13 when n = 1).

6.2 Connection to the n-strand braid group

The Garside structures from Section 6.1 were discovered when considering the following question
of Dehornoy-Digne-Godelle-Krammer-Michel [43, Chapter IX, Question 30]:

Question 6.2.1. When n ≥ 4, does the submonoidMn of Bn generated by σ1, σ1σ2, . . . , σ1σ2 · · ·σn−1

admit a finite presentation? Is it a Garside monoid?

It is not hard to convince oneself that Mn, n ≥ 4 cannot be Garside, by finding elements
which have distinct "smallest" common multiples. But Mn is the image of the Garside monoid
M(n− 1, n) from Theorem 6.1.2, via a quotient map G(n− 1, n) ։ Bn

1:

Proposition 6.2.2 (G., 2022, [79, Theorem 1.2(3) and Proposition 4.3]). Let n ≥ 2.

1. The map ωi 7→ σ1 · · ·σi (1 ≤ i ≤ n− 1) defines a surjective map G(n− 1, n) ։ Bn, which
is an isomorphism for n = 2 and n = 3.

2. The monoid Mn is the image of the Garside monoid M(n − 1, n) under this quotient
map. It is not a Garside monoid.

Proposition 6.2.2 could be an explanation of why the Garside structure 〈 a, b | aba = b2 〉
on B3 does not seem to generalize to Bn, n ≥ 4: it seems that the suitable framework for a
generalization is torus knot groups rather that Artin’s braid groups, but that Mn is close to
being Garside since it is the projection of a Garside monoid. Concerning the question of whether
Mn admits a finite presentation or not, we made in [79] the following conjecture, generalizing
a conjecture made by Dehornoy for n = 4 (see [42, Question 3.8 and the paragraph after it]):

Conjecture 6.2.3 (G., 2022, [79, Conjecture 1.4]). Let n ≥ 4. The monoid Mn admits a
presentation with generators ω1, . . . , ωn−1, and relations

ω1ωjωi = ωi+1ωj , ∀1 ≤ i < j ≤ n− 1.

Unfortunately, we noticed recently that Dehornoy’s conjecture and our generalization are
false for n ≥ 4. This was published in an addendum [80] to the article [79].

1This map is an isomorphism when n = 2 or 3.
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Proposition 6.2.4 (G., 2023, [80, Proposition 0.3]). Let n ≥ 4. In the monoid defined by the
presentation from Conjecture 6.2.3, we have ω1ω3ω1ω

2
3 = ω1ω2ω1ω

2
3ω1 but ω3ω1ω

2
3 6= ω2ω1ω

2
3ω1,

hence this monoid is not left-cancellative. Thus Conjecture 6.2.3 is false.

The question of whether Mn is finitely presented or not remains open.

6.3 Reflection-like quotients of torus knot groups

The Garside structures of Theorem 6.1.2 were first discovered in the case where m = n + 1
in [79]. In this case, as recalled in the previous section, the group G(n − 1, n) is an extension
of Bn, and I had not noticed at first that the group G(n− 1, n) with the same presentation as
M(n− 1, n) was isomorphic to a torus knot group (this was pointed out to me by a referee of
the paper [79]). Nevertheless, I had noticed that the quotient of G(3, 4) by the relation ω2

1 = 1
was isomorphic to the complex reflection group G12, and that the quotient of G(4, 5) by ω2

1 = 1
was infinite. In the case n = 3, we have G(2, 3) ∼= B3, and ω1 corresponds to σ1, hence taking
the quotient of G(3, 2) by ω2

1 = 1 yields the symmetric group. The natural question was thus to
try to understand if the quotient of G(4, 5) (and more generally G(n−1, n), and then G(n,m)...)
by the relation ω2

1 = 1 (or a suitable generalization in the general case) had a natural structure
of "(infinite) complex reflection group". This also raises the question of whether torus knot
groups are the "braid groups" of some reflection group in some reasonable sense.

Every complex braid group appearing in the previous sections is attached to a complex
reflection group W of rank two, i.e., such that W ⊆ GL2(C) (as reflection group). Achar and
Aubert [2] introduced a family of in general infinite groups, with the property that a group is a
finite group in their family if and only if it is a finite complex reflection group of rank 2. This
seemed to be a framework to consider for the above-mentioned problems.

Rather than the presentations (6.1.4), the suitable presentations to consider for this problem
are (6.1.2) and (6.1.3). Indeed, in all cases where such a group is a complex braid group, the
generators in these presentations are given by braided reflections, and the reflection group is
obtained as a quotient by adding torsion on these generators. The quotients that one wishes
to study as suggested above are the following groups.

Definition 6.3.1. Let n,m ≥ 2 with n < m and n, m pairwise coprime, and let k ≥ 2. Define

W (k, n,m) :=

〈
x1, x2, . . . , xn

∣∣∣∣
xki = 1 for i = 1, . . . , n,

x1x2 · · ·︸ ︷︷ ︸
m factors

= x2x3 · · ·︸ ︷︷ ︸
m factors

= · · · = xnx1 · · ·︸ ︷︷ ︸
m factors

〉
, (6.3.1)

which we call a toric reflection group.

6.3.1 J-groups and toric reflection groups

Let a, b, c ≥ 2. Let J
(
a b c

)
be the group defined by the presentation

J

(
a b c

)
:= 〈 s, t, u | sa = tb = uc = 1, stu = tus = ust 〉.
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Let a′, b′, c′ be three pairwise coprime positive integers2 such that k′ divides k for all k ∈

{a, b, c}. Let J
(
a b c
a′ b′ c′

)
be the normal closure in J

(
a b c

)
of the elements sa′ , tb′ and

uc
′. These groups were defined by Achar and Aubert in [2], and are called J-groups. Note that

J

(
a b c
1 1 1

)
= J

(
a b c

)
, hence J

(
a b c

)
is itself a J-group, and we call it the parent

J-group of J
(
a b c
a′ b′ c′

)
; in general, and also for other J-groups, parameters equal to 1 will

be omitted in the second row. Achar and Aubert’s main result is the following.

Theorem 6.3.2 (Achar-Aubert, 2008, [2, Theorem 1.2]). Let G be a group. Then G is a finite
J-group if and only if G is a finite complex reflection group of rank two. Moreover, for such a
group, the parameters a, b, c, a′, b′, c′ are uniquely determined up to permutation of the columns.

This result is somehow reminiscent of Coxeter’s theorem that a Coxeter group is finite if
and only if it is a finite real reflection group.

Remark 6.3.3. Achar and Aubert’s definition of J-groups does not yield a presentation of a
J-group in general.

Achar and Aubert also showed [2, Proposition 4.2] that every J-group has a natural repre-
sentation as a reflection group over C2 (but this representation is not faithful in general when
the J-group is infinite, see [81, Example 2.20]).

Our first main result on toric reflection groups is that they are J-groups. Note that, as a
byproduct, this also gives a presentation by generators and relations for a family of J-groups.

Theorem 6.3.4 (G., 2021, [81, Theorem 2.12]). Let k, n,m ≥ 2 with n,m coprime (we do not

necessarily assume n < m here), and let H = J

(
k n m

n m

)
E J

(
k n m

)
= G. Then H

has a presentation with generators x1, x2, . . . , xn and relations (indices are taken modulo n)

xki = 1, ∀i = 1, . . . , n,

x1x2 · · ·xm = xixi+1 · · ·xi+m−1, ∀i = 2, . . . , n.

If n < m we therefore have W (k, n,m) ∼= H . In terms of the generators of G we have xi =
ti−1st−i+1 for all i = 1, . . . , n.

This theorem also motivates the use of the terminology "toric reflection group", since by
Theorem 6.3.2 Achar and Aubert’s J-groups are generalizations of complex reflection groups of
rank two in some sense. Using Achar and Aubert’s classification [2, Theorem 1.3], we deduce
the following.

2The coprimality assumtion is needed for the uniqueness part of Theorem 6.3.2, but the definition still makes
sense without such an assumption.
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Corollary 6.3.5 (G., 2021, [81, Example 2.14]). A toric reflection group W (k, n,m) is finite
if and only if

(k, n,m) ∈ {((3, 2, 3), (4, 2, 3), (5, 2, 3), (3, 2, 5), (2, 3, 4), (2, 3, 5), (2, 2, ℓ) with odd ℓ}.

Such groups are precisely the finite complex reflection groups of rank 2 with a single orbit of
reflection hyperplanes, namely

G4, G8, G16, G20, G12, G22, G(ℓ, ℓ, 2) = I2(ℓ) with odd ℓ.

In all these cases, the torus knot group G(n,m) is isomorphic to the complex braid group of
the reflection group.

6.3.2 Center of toric reflection groups

Let k, n,m be as above with k, n,m ≥ 2, n < m, and n and m coprime. Let Wk,n,m denote the
Coxeter group of rank three defined by

Wk,n,m =

〈
r1, r2, r3

∣∣∣∣
r21 = r22 = r23 = 1,

(r1r2)
k = (r2r3)

n = (r3r1)
m = 1

〉
. (6.3.2)

Let W+
k,n,m be its alternating subgroup, i.e., the kernel of the map Wk,n,m −→ Z/2Z, ri 7→ 1,

equivalently the subgroup of elements of even length. Let c = (x1x2 · · ·xn)
m ∈ W (k, n,m),

which is easily seen to be central in W (k, n,m).

Theorem 6.3.6 (G., 2021, [81, Theorems 1.4 and 3.3]). The group W (k, n,m) is a central
extension of W+

k,n,m by the subgroup 〈c〉. That is, we have a short exact sequence

1 −→ 〈c〉 −→W (k, n,m) −→W+
k,n,m −→ 1.

In most cases, the group Wk,n,m is infinite and irreducible. The determination of the center
of a toric reflection group requires the following result.

Proposition 6.3.7 (G., 2021, [81, Proposition 1.5 and 3.1]). Let (W,S) be a Coxeter system
of rank at least three. Let W+ be the alternating subgroup of W . Then the center Z(W+) of
W+ is included in the center of W . In particular, if (W,S) is infinite, irreducible and of rank
at least three, then Z(W+) is trivial.

Note that similar results also exist, see for instance [122, Proposition 6.4] or [125], where it
is shown that in an irreducible, infinite and non-affine Coxeter group, every subgroup of finite
index has a trivial center.

Together with Theorem 6.3.6 and a case-by-case check in the cases where Wk,n,m is finite,
Proposition 6.3.7) yields the following.

Theorem 6.3.8 (G., 2021, [81, Corollary 1.6 and Theorem 3.3 ]). The center of W (k, n,m) is
cyclic, generated by c.
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6.3.3 Classification and "braid group"

In the case where a toric reflection group W (k, n,m) is finite, the reflections are precisely the
conjugates of the nontrivial powers of the xi’s. In the case where the group is infinite, these
elements still act by reflections in Achar and Aubert’s representation. We thus denote by
R the set of conjugates of nontrivial powers of the xi’s inside W (k, n,m), and call them the
reflections of W (k, n,m). We say that two toric reflection groups W,W ′ with respective sets of
reflections R,R′ are reflection-isomorphic, written W ∼=ref W

′, if there is a group isomorphism
ϕ : W −→W ′ such that ϕ(R) = R′.

Theorem 6.3.9 (G., 2021, [81, Theorem 1.2]). Let k, k′, n, n′, m,m′ ≥ 2 with n < m, n′ < m′,
n and m coprime, and n′ and m′ coprime. Then

W (k, n,m) ∼=ref W (k′, n′, m′) ⇔ k = k′, n = n′, and m = m′.

This theorem is important because it shows that the group G(n,m), which surjects onto
W (k, n,m), can be entirely recovered from the reflection group structure of W (k, n,m), and
can thus be called the "braid group" of W (k, n,m) without ambiguity. Note that, in the cases
where W (k, n,m) is finite, it is isomorphic to the complex braid group of W (k, n,m) (see
Corollary 6.3.5 above). We thus have, in the spirit of Achar and Aubert’s Theorem 6.3.2:

Corollary 6.3.10 (G., 2021, [81, Corollary 1.3]). To each toric reflection group W (k, n,m),
one can associate a group

B(W (k, n,m)) := G(n,m),

which is a Garside group, surjects ontoW (k, n,m), and coincides with the complex braid group
of W (k, n,m) whenever W (k, n,m) is finite.

6.4 Open problems

The works from the previous sections leave many open problems.

Problem 6.4.1. Can we find a presentation for every J-group?

Problem 6.4.2. Can we define a "braid group" for every J-group? Is it a Garside group? Is
it the fundamental group of the complement of a link?

Problem 6.4.3. Do toric reflection groups have a solvable word problem?

Problem 6.4.4. Can one realize torus knot groups in a nontrivial way as interval groups, for
instance using toric reflection groups?

Problem 6.4.5. Do toric reflection groups have faithful linear representations as complex
reflection groups?

Problem 6.4.6. Do torus knot groups admit linear representations similar to those known for
braid groups? For instance, can we define a Burau representation? Is it faithful?

Problems 6.4.1 to 6.4.3 are part of the PhD project of my student Igor Haladjian.
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Bruhat order on quotients
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This chapter collects works realized between 2017 and 2023.

The (strong) Bruhat order ≤ recalled in Section 2.1.23 above can be defined on an arbitrary
Coxeter system. In the case where W is a finite Weyl group attached to a connected reductive
group G with Borel subgroup B, one has as a consequence of the Bruhat decomposition that
the B-orbits on the flag variety B = G/B are given by the Schubert cells Cw := BwB/B,
w ∈ W . The Bruhat order describes the inclusion of the orbit closures Xw := Cw for the
Zariski topology, that is, for u, v ∈ W we have

u ≤ v ⇔ Cu ⊆ Xv.

More generally, one can consider the action of closed subgroups H ⊆ G which act on B with
finitely many orbits. It is then natural to

• Determine a parametrization of the H-orbits on B, equivalently, of the B-orbits on G/H ,

• Wonder if there is a combinatorial description of the inclusions of orbit closures, for
instance in terms of a subset or quotient of the Weyl group W of G.

There are several situations where an answer to the above question is positive. One of the
most basic situations generalizing the one presented above is as follows. One can consider the
action of a standard parabolic subgroup P of G (that is, a subgroup containing B). Then P
still acts on B with finitely many orbits, and there is a subset J of the simple system S of W
such that

B =
∐

w∈JW

PwB/B,

https://arxiv.org/abs/2311.06827
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where JW := {w ∈ W | ℓ(sw) > ℓ(w), ∀s ∈ S}. The inclusion or orbit closures is given by the
restriction of the (strong) Bruhat order ≤ to JW . In the case where P = B, we have J = ∅,
and JW = W . The set JW has many remarkable algebraic and combinatorial properties, some
of which we list below:

1. It is a set of representatives of the right cosets modulo WJ , where WJ = 〈s ∈ J〉 ⊆ W
(recall that (WJ , J) is again a Coxeter system).

2. It follows from 1 that every w ∈ W admits a unique decomposition w = wJ
Jw with wJ ∈

WJ and Jw ∈J W . Moreover, for such a decomposition, we have ℓ(w) = ℓ(wJ) + ℓ(Jw).

3. Every coset WJw admits a unique element of minimal lenth, given by Jw. Combined with
2, we get that every element in a coset is greater than or equal to the minimal element
for the left weak order (hence for the strong Bruhat order).

4. The restriction of the strong Bruhat order to JW yields a poset (JW,≤) which is graded
by the restriction of the length function on W .

5. The definition of JW and the properties 1 to 4 above can be given and hold true for an
arbitrary Coxeter system (W,S).

See for instance [24, Section 2.4]. The grading on (JW,≤) in the general case was observed
by Deodhar [48, Corollary 3.8].

At the purely algebraic level of Coxeter groups, there are many possible generalizations of
the structures appearing above. For instance, one can wonder what happens if one replaces
WJ , which is a very particular example of reflection subgroup ofW , by a an arbitrary reflection
subgroup W ′ of W .

Dyer has shown [58, Theorem 1.4] that every coset xW ′ still has a unique element of minimal
length, and that the graph induced on xW ′ by the Bruhat graph on W is isomorphic to the
Bruhat graph on W ′.

One could also replace WJ by other subgroups admitting a canonical structure of Coxeter
group, such as subgroups of the form W θ

L, where WL is a standard parabolic subgroup of W
and θ is an automorphism of Coxeter group of (WL, L) (see Section 2.1.4 above). We propose
such an approach in Section 7.3 below for θ such that θ2 = Id, which corresponds to the first
paper above. Of course, it is also a natural question to wonder if such generalizations of the
strong Bruhat order describe inclusion of orbit closures in certain situations. The motivation
for considering subgroups such as W θ

L’s comes from such a specific situation corresponding to
the earlier second paper above, which we present in Section 7.2 below.

7.1 Bruhat order on quotients

Let (W,S) be an arbitrary Coxeter system and W ′ be a subgroup of W also admitting a
structure of Coxeter group. Note that, unlike in the case where W ′ is a standard parabolic
subgroup WJ (or even a reflection subgroup W ′), in the case where W ′ is of the form W θ

L, there
is no reason for a given coset xW θ

L to have a unique element of minimal length; we give an easy
example of this phenomenon.
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Example 7.1.1. Let (W,S) be of type A3 with si = (i, i+1) for all i = 1, 2, 3, let L = {s1, s3},
and let θ be the automorphism of Coxeter group of (WL, L) exchanging s1 and s3. Then W θ

L is
of type A1, with generator s1s3. The coset s1W θ

L has two elements of minimal length, given by
s1 and s3.

We thus define an analogue of the restriction of the Bruhat order to JW or to the set of
elements of minimal length in cosets modulo a reflection subgroup W ′ as follows. In fact, such
a definition can be given for an arbitrary subgroup H of a Coxeter group W , with H not
necessarily admitting a structure of Coxeter group.

By "Bruhat order" we will always mean "strong Bruhat order".

Definition 7.1.2. Let (W,S) be a Coxeter system. Let H ⊆ W be a subgroup. We define
a Bruhat-like order on W/H , which we still call the Bruhat order on W/H , induced by the
Bruhat order on W by

xH ≤ yH ⇔ ∀v ∈ yH, ∃u ∈ xH such that u ≤ v.

Note that for H = {1} we recover the Bruhat order on W . For H = WJ where J ⊆ S, we
recover the restriction of the strong Bruhat order on W to W J := {w ∈ W | ℓ(ws) > ℓ(w), ∀s ∈
S}. For a reflection subgroup W ′ of W we recover the restriction of the Bruhat order to the
set of elements x which are of minimal length in their coset xW ′.

7.2 A Bruhat-like order coming from 2-nilpotent matrices

Let K be an algebraically closed field of characteristic zero. Let G = GLn(K) and let e ∈ gln(K)
be a 2-nilpotent matrix of rank r. We thus have r ≤ n

2
. Let Z := {g ∈ GLn(K) | ge = eg}. It

was shown by Panuyshev [119] that the action of Z on B = GLn(K)/B has finitely many orbits.
Here B denotes the subgroup of upper-triangular invertible matrices of G. Up to conjugating
e by a suitable matrix, we may assume that

e =



0 0 Idr

0 0 0
0 0 0


 ,

so that the centralizer Z is given by

Z =







a ∗ ∗
0 b ∗
0 0 a


 : a ∈ GLr(C), b ∈ GLn−r(C)



 .

Let W be the Weyl group of type An−1, I = {s1, . . . , sr−1}, J = {sn−r+1, . . . , sn−1}, K =
{sr+1, . . . , sn−r−1}, where si denotes the simple transposition (i, i+1). Let L = I∪K∪J , and let
θ be the unique automorphism of Coxeter group of (WL, L) swapping I and J and acting as the
identity on K, i.e., defined by θ(s) = s for all s ∈ K, and θ(si) = sn−r+i for all i = 1, . . . , r− 1.
Then W θ

L is again a Coxeter system (see Section 2.1.4), with Coxeter generating set Sθ
L given

by {sθ(s) | s ∈ I} ∪K.
Given w ∈ W , set [w] := wW θ

L. We have the following.
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Theorem 7.2.1 (Boos-Reineke, 2012, [25, Theorem 4.3], Bender-Perrin, 2019, [17, Lemma
7.3.1], Chaput-Fresse-G., 2021, [37, Theorems 7.2 and 9.1]). We have

1. The Z-orbits on B are parametrized by W/W θ
L, via [w] 7→ Zw−1B/B =: O[w].

2. One has
O[w] ⊆ O[w′] ⇔ [w] ≤ [w′],

where ≤ is the Bruhat order on W/W θ
L from Definition 7.

Remark 7.2.2. A parametrization of the Z-orbits on B was first given by Boos and Reineke [25,
Theorem 4.3]. In fact, they consider B-orbits on G/Z, but there is an obvious bijection between
B-orbits on G/Z and Z-orbits on G/B, which preserves orbit closures since the projection
maps from G to G/B or G/Z are open. Boos and Reineke’s parametrization, obtained using
representations of quivers, is in terms of oriented link patterns. A parametrization with the
above parametrizing set was given by Bender and Perrin [17, Lemma 7.3.1], where they also
claim to describe orbit closures with a criterion that is equivalent to the one stated above, but
the proof seems incomplete (see the discussion in [37, Section 9]). We reproved the criterion
in point 2 above using Boos and Reineke’s parametrization, and obtained a parametrization as
in point 1 which in fact applies to a more general family of orbits. Also, using Theorem 7.2.4
below, we give a precise description of the covering relations, which is only partial in [25].

Example 7.2.3. In type A3 with r = 2, hence I = {s1}, J = {s3}, K = ∅, the order ≤ on
W/W θ

L is given in Figure 7.1.

e

s2 s1

s1s2 s3s2 s2s1

s1s3s2 s3s2s1 s1s2s1

s2s1s3s2 s1s3s2s1

s2s3s2s1s2

Figure 7.1: The order ≤ on W/W θ
L in type A3 with I = {s1}, J = {s3}, K = ∅,

θ : s1 ↔ s3.
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Theorem 7.2.1 is a motivation for a deeper study of the cosets xW θ
L and the Bruhat order

on W/W θ
L in the more general setting of an arbitrary Coxeter system, which is initiated with

the results of the next section.
Let (W,S) be a Coxeter system, L ⊆ S, and θ be an automorphism of Coxeter group of

(WL, L) such that θ2 = Id. Given w ∈ W , let Min(w) denote the set of elements of minimal
length in wW θ

L. Let
M :=

⋃

w∈W

Min(w).

We denote by ≺ a covering relation either the poset (W,≤) or the poset (W/W θ
L,≤) (we use

the same notations ≤,≺ for both the posets (W,≤) and (W/W θ
L,≤), in general it will be clear

from the context and notation which poset we are considering).

Let us finish the section with a result allowing one to get a precise description of the covering
relations in the poset appearing in point 2 of Theorem 7.2.1 above, from what one can deduce
that (W/W θ

L,≤) is graded in this specific case by the restriction of the length function on W
to elements of minimal length in their cosets. This can be achieved combinatorially, in the
following more general framework than the one from Theorem 7.2.1.

Theorem 7.2.4 (Chaput-Fresse-G., 2021, [37, Theorem 8.16]). Let (W,S) be a Coxeter system.
Let L ⊆ S be of the form I ∪K ∪J , where I, J and K are disjoint and disconnected, and there
is a bijection f between I and J inducing a group isomorphism WI

∼= WJ . Let θ be the
automorphism of Coxeter group of (WL, L) defined by θ(s) = f(s) for all s ∈ I, θ(s) = f−1(s)
for all s ∈ J , and θ(s) = s for all s ∈ K. Let w,w′ ∈ M. The following are equivalent:

1. We have [w′] ≺ [w],

2. There are u ∈ Min(w) and u′ ∈ Min(w′) such that u′ ≺ u,

3. There is u′ ∈ Min(w′) such that u′ ≺ w.

4. For all u ∈ Min(w), there is u′ ∈ Min(w′) such that u′ ≺ u.

Corollary 7.2.5 (Chaput-Fresse-G., 2021, [37, Corollary 8.17]). With the assumptions of The-
orem 7.2.4, the poset (W/W θ

L,≤) is graded, where the rank function ρ is given by

ρ([w]) := min{ℓ(x) | x ∈ wW θ
L}.

7.3 Properties of cosets and quotients modulo fixed-point
subgroups

To establish Theorem 7.2.4 in [37], two particular results on cosets xW θ
L are needed. The

first one is a statement about elements of minimal length in cosets, and the second one is
a generalization of the property that elements of minimal length in cosets xWJ are minimal
for the restriction of the Bruhat order (the second part of property 3 in the list given at the
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beginning of this chapter). They are proven in [37, Lemmatas 8.7 and 8.8] for those L satisfying
the assumptions of Theorem 7.2.4, and together with N. Chapelier [36] we later proved them for
an arbitrary Coxeter system (W,S) and an arbitrary L ⊆ S with automorphism θ of (WL, L)
of order at most two [36]. We present the general version of these properties as Theorems 7.3.2
and 7.3.3 below.

The setting here is the following. Let (W,S) be an arbitrary Coxeter system, and let L ⊆ S.
Let θ be au automorphism of Coxeter group of (WL, L) such that θ2 = Id. We use the same
notations as in the previous section.

A key ingredient in the proofs of Theorems 7.3.2 and 7.3.3 below is the following proposition.

Proposition 7.3.1 (Chapelier-G., 2023, [36, Proposition 1.2]). Let w ∈ W and let u ∈ wW θ
L∩

M. Let z ∈ W θ
L such that w = uz and let x1x2 · · ·xk be an Sθ

L-reduced expression of z. For all
i = 0, . . . , k − 1, exactly one of the following two situations happens

• either ℓ(ux1 · · ·xi) = ℓ(ux1 · · ·xi+1),

• or ux1 · · ·xi < ux1 · · ·xi+1.

In particular, if xi+1 is a reflection of W , then we are in the second situation since multiplying
by a reflection changes the parity of length, while the first situation can only happen if xi+1 is
not a reflection of W .

The two main results are then the following.

Theorem 7.3.2 (Chapelier-G., 2023, [36, Theorem 1.1]). Let u, v be two elements of minimal
length in xW θ

L. Let y ∈ W θ
L such that uy = v. Let x1x2 · · ·xk be an Sθ

L-reduced expression of
y. Then

ℓ(u) = ℓ(ux1) = ℓ(ux1x2) = · · · = ℓ(ux1x2 · · ·xk−1) = ℓ(v).

In other (and weaker) words, there is a chain of elements of minimal length in the coset allowing
one to pass from u to v, where at each step one just multiplies by an element of Sθ

L on the right.

Theorem 7.3.3 (Chapelier-G., 2023, [36, Theorem 1.3]). Let w ∈ W . There is u ∈ wW θ
L ∩M

such that u ≤ w.

Remark 7.3.4. Note that the conclusion of Theorem 7.3.3 does not hold in general without
the assumption that θ2 = Id. As a counterexample, consider a Coxeter system (W,S) of type
D4, with S = {s0, s1, s2, s3}, where s0 is the simple reflection commuting with no other simple
reflection. Let θ be an automorphism of (WL, L) acting as a 3-cycle on L := {s1, s2, s3}. Then
W θ

L has type A1, with generator s1s2s3. The coset s1W θ
L has two elements s1 and s2s3, hence

s2s3W
θ
L ∩M = {s1}, but s1 6≤ s2s3.
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7.4 Open problems

Together with Chaput and Fresse, we are working on several questions related to the construc-
tions made in this chapter. We list some of the questions we are interested in below, which are
under current investigation.

Problem 7.4.1. Is the poset (W θ
L,≤) graded in general? (Corollary 7.2.5 only covers subsets

L ⊆ S and automorphisms of a certain form).

Problem 7.4.2. Can one define analogues of parabolic Kazhdan-Lusztig polynomials for the
"Coxeter subgroups" W θ

L? If the answer is positive, is there a natural categorical framework
(like a Hecke category) where these polynomials have a natural interpretation?

Problem 7.4.3. For which W and which L, θ does the Bruhat order on W/W θ
L from Defini-

tion 7.1.2 describe a situation of orbit closures inclusion, in the same way as in Theorem 7.2.1?

Problem 7.4.4. What is the most general class of "Coxeter subgroups" of a Coxeter system
for which one can state and prove results such as Theorems 7.3.2 and 7.3.3?
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of braid groups of affine type Ã, Comment. Math. Helv. 81 (2006), no. 1, 23-47.

[52] F. Digne, A Garside presentation for Artin groups of type C̃n, Ann. Inst. Fourier 62
(2012), no. 2, 641-666.

[53] F. Digne and T. Gobet, Dual braid monoids, Mikado braids and positivity in Hecke
algebras, Math. Z. 285 (2017), no. 1-2, 215-238.

[54] K. Duszenko, Reflection length in non-affine Coxeter groups, Bull. Lond. Math. Soc. 44
(2012), no. 3, 571-577.

[55] M.J. Dyer, Hecke algebras and reflections in Coxeter groups, Ph. D. Thesis, University of
Sydney (1987).

[56] M.J. Dyer, Modules for the dual nil Hecke ring, preprint.
http://www3.nd.edu/~dyer/papers/nilhecke.pdf.

[57] M.J. Dyer, Reflection subgroups of Coxeter systems, J. of Algebra 135 (1990), Issue 1,
57-73.

[58] M.J. Dyer, On the Bruhat graph of a Coxeter system, Compositio Math. 78 (1991), no.
2, 185-191.

[59] M.J. Dyer, Hecke algebras and shellings of Bruhat intervals II: Twisted Bruhat orders, in
Kazhdan-Lusztig theory and related topics, Contemp. Math. 139 (1992), AMS, 141-165.

[60] M.J. Dyer, On minimal lengths of expressions of Coxeter group elements as products of
reflections, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2591-2595.

[61] M.J. Dyer, On the Weak Order of Coxeter Groups, Canadian Journal of Mathematics 71
(2019), 2, 299-336.

[62] M.J. Dyer, n-low elements and maximal rank k reflection subgroups of Coxeter groups,
J. Algebra 607 (2022), part A, 139–180.

[63] M.J. Dyer and G.I. Lehrer, On positivity in Hecke algebras, Geom. Ded. 25 (1990),
115-125.

[64] T. Edgar, Sets of reflections defining twisted Bruhat orders, J. of Algebraic Combinatorics
26 (2007), no. 3, 357-362.

http://www3.nd.edu/~dyer/papers/nilhecke.pdf


BIBLIOGRAPHY 99

[65] B. Elias and G. Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. 180
(2014), 1089-1136.

[66] B. Elias and G. Williamson, Soergel calculus, Represent. Theory 20 (2016), 295–374.

[67] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118.

[68] D. Garber, Braid group cryptography, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Sin-
gap., 19 World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010, 329–403.

[69] O. Garnier, Uniqueness of roots up to conjugacy in circular and hosohedral-type Garside
groups, preprint (2023). https://arxiv.org/abs/2307.07809.

[70] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969),
no. 2, 235–254.

[71] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras,
London Mathematical Society Monographs, New Series, 21. The Clarendon Press, Oxford
University Press, New York, (2000), 446 pp.

[72] T. Gobet, Bases of Temperley-Lieb algebras, PhD thesis, Université de Picardie, 2014.
https://www.idpoisson.fr/gobet/wp-content/uploads/sites/56/2023/08/these.pdf.

[73] T. Gobet, Categorification of the Temperley-Lieb algebra by bimodules, J. Algebra 419
(2014), 277-317.

[74] T. Gobet, Noncrossing partitions, fully commutative elements and bases of the Temperley-
Lieb algebra, J. Knot Theory Ramifications 25 (2016), no. 6, 27 pp.

[75] T. Gobet, Twisted filtrations of Soergel bimodules and linear Rouquier complexes, J.
Algebra 484 (2017), 275–309.

[76] T. Gobet, Coxeter-Catalan combinatorics and Temperley-Lieb algebras, Algebr. Repre-
sent. Theory 24 (2021), 169-201.

[77] T. Gobet, On cycle decompositions in Coxeter groups, Sém. Lothar. Combin. 78B (2017),
Art. 45, 12 pp.

[78] T. Gobet, Dual Garside structures and Coxeter sortable elements, J. Comb. Algebra 4
(2020), no. 2, 167–213.

[79] T. Gobet, On some torus knot groups and submonoids of the braid groups, J. Algebra
607 (2022), Part B, 260-289.

[80] T. Gobet, Addendum to “On some torus knot groups and submonoids of the braid groups”
[J. Algebra 607 (Part B) (2022) 260–289], J. Algebra 633 (2023), 666–667.

[81] T. Gobet, Toric reflection groups, Journal of the Australian Mathematical Society, online
first (2023).

https://arxiv.org/abs/2307.07809
https://www.idpoisson.fr/gobet/wp-content/uploads/sites/56/2023/08/these.pdf


100 BIBLIOGRAPHY

[82] T. Gobet, A new Garside structure on torus knot groups and some complex braid groups,
to appear in Journal of Knot Theory and its Ramifications (2023).

[83] T. Gobet, On maximal dihedral reflection subgroups and generalized noncrossing parti-
tions, preprint (2023). https://arxiv.org/abs/2307.16791.

[84] T. Gobet and N. Williams,Noncrossing partitions and Bruhat order, European J. Combin.
53 (2016), 8-34.

[85] T. Gobet and B. Rognerud, Odd and even Fibonacci lattices arising from a Garside
monoid, preprint 2023. https://arxiv.org/abs/2301.00744.

[86] T. Gobet and A.-L. Thiel, On generalized categories of Soergel bimodules in type A2, C.
R. Math. Acad. Sci. Paris 356 (2018), no. 3, 258–263.

[87] T. Gobet and A.-L. Thiel, A Soergel-like category for complex reflection groups of rank
one, Math. Z. 295, (2020), 643-665.

[88] T. Gobet, A. Henderson, and I. Marin, Braid groups of normalizers of reflection subgroups,
Ann. Inst. Fourier 71 (2021), no. 6, 2273-2304.

[89] T. Gobet and I. Marin, Hecke Algebras of Normalizers of Parabolic Subgroups, Algebr.
Represent. Theor. 26 (2023), 1609-1639.

[90] I. Grojnowski and M. Haiman, Affine Hecke algebras and positivity of LLT and Macdonald
polynomials, preprint (2007).

[91] J.-Y. Hée, Systèmes de racines sur un anneau commutatif totalement ordonné, Geom.
Dedicata 37 (1991), 65-102.

[92] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math.
J. 154 (2010), no. 2, 265–341.

[93] P.N. Hoefsmit, Representations of Hecke Algebras of Finit Groups with BN-Pairs of Clas-
sical type, PhD thesis, University of British Columbia, August 1974.

[94] R.B. Howlett, Normalizers of Parabolic Subgroups of Reflection Groups, J. of the London
Math. Soc. 21 (1980), 62-80.

[95] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29,
Cambridge University Press, Cambridge, 1990. xii+204 pp.

[96] K. Igusa and R. Schiffler, Exceptional sequences and clusters, J. Algebra 323 (2010), no.
8, 2183–2202.

[97] L.T. Jensen, The 2-braid group and Garside normal form, Math. Z. 286 (2017), no. 1-2,
491–520.

[98] D. Kazhdan and G. Lusztig, Representations of Coxeter Groups and Hecke Algebras,
Invent. Math. 53 (1979), 165-184.

https://arxiv.org/abs/2307.16791
https://arxiv.org/abs/2301.00744


BIBLIOGRAPHY 101

[99] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the
Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979),
Proc. Sympos. Pure Math., XXXVI (1980), Amer. Math. Soc., Providence, R.I., 185-203.

[100] M. Khovanov, P. Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer.
Math. Soc. 15 (2002), no. 1, 203-271.

[101] G.I. Lehrer and D.E. Taylor, Unitary reflection groups, Austral. Math. Soc. Lect. Ser.,
20, Cambridge University Press, Cambridge, 2009, viii+294 pp.

[102] G.I. Lehrer, N. Xi, On the injectivity of the braid group in the Hecke algebra, Bull.
Austral. Math. Soc. 64 (2001), no. 3, 487-493.

[103] J.B. Lewis, J. McCammond, T.K. Petersen, P. Schwer, Computing reflection length in an
affine Coxeter group, Trans. Amer. Math. Soc. 371 (2019), no. 6, 4097–4127.

[104] A. Licata and H. Queffelec, Braid groups of type ADE, Garside monoids, and the cate-
gorified root lattice, Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 2, 503–548.

[105] G. Lusztig, Cells in affine Weyl groups, Adv. Stud. Pure Math. 6 (1985), 255-287, in
"Algebraic groups and related topics".

[106] G. Lusztig, Hecke algebras with unequal parameters, CRM Monographs Ser. 18, AMS,
Providence, RI, 2003.

[107] I. Marin, The cubic Hecke algebra on at most 5 strands, J. Pure Appl. Algebra 216
(2012), 2754-2782.

[108] I. Marin, The freeness conjecture for Hecke algebras of complex reflection groups, and the
case of the Hessian group G26, J. Pure Appl. Algebra 218 (2014), 704-720.

[109] I. Marin, Artin groups and Yokonuma–Hecke algebras, Int. Math. Res. Not. IMRN 2018
(2018), 4022–4062.

[110] I. Marin, Lattice extensions of Hecke algebras, J. Algebra 503 (2018), 104-120.

[111] I. Marin, Proof of the BMR freeness conjecture forG20 andG21, J. Symbolic Computations
92 (2019), 1-14.

[112] I. Marin, G. Pfeiffer, The BMR freeness conjecture for the 2-reflection groups, Math. of
Computation 86 (2017), 2005-2023.

[113] J. McCammond, Dual euclidean Artin groups and the failure of the lattice property, J.
Algebra 437 (2015), 308-343.

[114] J. McCammond and R. Sulway, Artin groups of Euclidean type, Invent. Math. 210 (2017),
no.1, 231–282.

[115] J. Michel, A note on words in braid monoids, J. Algebra 215 (1999), no. 1, 366–377.



102 BIBLIOGRAPHY

[116] P. Moszkowski, Addendum to: “Involutions and reflection subgroups of finite Coxeter
groups”, European J. Combin. 30 (2009), no.8, 1913–1918.

[117] B. Mühlherr, Coxeter groups in Coxeter groups, Finite geometry and combinatorics
(Deinze, 1992), 277–287, London Math. Soc. Lecture Note Ser., 191, Cambridge Univ.
Press, Cambridge, 1993.

[118] K. Muraleedaran and D.E. Taylor, Normalisers of parabolic subgroups in finite unitary
reflection groups, J. Algebra 504 (2018), 479-505.

[119] D. I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), no. 3–4,
223–237.

[120] G. Paolini and M. Salvetti, Proof of the K(π, 1) conjecture for affine Artin groups, Invent.
Math. 224 (2021), no. 2, 487–572.

[121] L. Paris, Artin monoids inject in their groups, Commentarii Mathematici Helvetici 77
(2002), 609–637.

[122] L. Paris, Irreducible Coxeter groups, Internat. J. Algebra Comput. 17 (2007), no. 3,
427–447.

[123] M. Picantin, Petits groupes gaussiens, PhD Thesis, Université de Caen, 2000.
https://www.irif.fr/~picantin/papers/phd.pdf.

[124] M. Picantin, Automatic structures for torus link groups, J. Knot Theory Ramifications
12 (2003), no. 6, 833-866.

[125] D. Qi, On irreducible, infinite, nonaffine Coxeter groups, Fund. Math. 193 (2007), no. 1,
79–93.

[126] N. Reading, Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer.
Math. Soc. 359 (2007), no. 12, 5931-5958.

[127] N. Reading, Noncrossing partitions and the shard intersection order, J. Algebraic Combin.
33 (2011), no. 4, 483–530.

[128] N. Reading, D.E. Speyer, Sortable elements in infinite Coxeter groups, Trans. Amer.
Math. Soc. 363 (2011), no. 2, 699-761.

[129] V. Reiner, V. Ripoll, and C. Stump, On non-conjugate Coxeter elements in well-generated
reflection groups, Math. Z. 285 (2017), no. 3-4, 1041–1062.

[130] S. Riche, La théorie de Hodge des bimodules de Soergel, d’après Soergel et Elias-
Williamson, Astérisque 414 (2019), Séminaire Bourbaki Exp. No. 1139, 125–165.

[131] D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc.,
Berkeley, Calif., 1976. 439 pp.

https://www.irif.fr/~picantin/papers/phd.pdf


BIBLIOGRAPHY 103

[132] R. Rouquier, Categorification of braid groups, preprint (2004).
http://arxiv.org/abs/math/0409593.

[133] R. Rouquier, Categorification of sl2 and braid groups, Trends in representation theory of
algebras and related topics, Contemp. Math. 406 (2006), Amer. Math. Soc., Providence,
RI, 137-167.

[134] O. Schreier, Über die Gruppen AaBb = 1, Abh. Math. Sem. Hamburg 3 (1923), 167–169.

[135] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954),
274–304.

[136] W. Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429
(1992), 49-74.

[137] W. Soergel, Kazhdan-Lusztig polynomials and indecomposable bimodules over polyno-
mial rings, J. Inst. Math. Jussieu 6 (2007), 501-525.

[138] T.A. Springer, Quelques applications de la cohomologie d’intersection, Astérisque, 92–93
Société Mathématique de France, Paris, 1982, pp. 249–273.

[139] R. Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer.
Math. Soc. 112 (1964), 392–400.

[140] R. Steinberg, Lectures on Chevalley groups, Univ. Lecture Ser., 66, American Mathemat-
ical Society, Providence, RI, 2016, xi+160 pp.

[141] S. Tsuchioka, BMR freeness for icosahedral family, Exp. Math. 29 (2020), 234-245.

[142] P. Wegener and S. Yahiatene, Reflection factorizations and quasi-Coxeter elements, J.
Comb. Algebra 7 (2023), no.1, 127–157.

[143] M.G. Zinno, A Temperley-Lieb basis coming from the braid group, J. Knot Theory Ram-
ifications 11 (2002), 575-599.

http://arxiv.org/abs/math/0409593

	Introduction
	Field of research and organization of the manuscript
	Selection of publications
	Chronological overview of results and approaches
	Questions raised by certain bases of Temperley-Lieb algebras
	Dyer's conjectures, Soergel bimodules, and 2-braid groups
	Classical and dual simple generators of Artin groups of spherical type
	On the Hurwitz action in finite Coxeter groups
	Extended and generalized Soergel categories
	Reflection subgroups: structure, normalizer, Hecke algebras, ...
	On torus knot groups, their Garside structures, their quotients
	Spherical quotients and generalized Bruhat orders


	Preliminaries
	Coxeter groups and their Coxeter subgroups
	Coxeter matrices and Coxeter groups
	Geometric representation and root systems
	Finite Coxeter groups
	Reflection subgroups and other "Coxeter subgroups"
	Partial orders
	"Dual" results

	Complex reflection groups
	Artin groups
	Complex braid groups
	Garside groups
	Hecke algebras
	Coxeter groups
	Complex reflection groups

	Hecke categories and categorification of Artin groups
	Soergel bimodules
	Categorical braid group action on complexes of Soergel bimodules


	Dual Coxeter systems and dual braid monoids
	Classical versus dual generators of Artin groups of spherical type
	Simple dual braids as quotients of positive simple braids
	Generalized Mikado braids
	A closed formula for simple dual braids
	Open problems

	Hurwitz action in finite Coxeter groups
	A characterization of Hurwitz transitivity
	Generalized cycle decomposition
	Open problems


	Soergel bimodules
	Positivity properties
	Twisted filtrations of Soergel bimodules
	Linearity of Rouquier complexes
	Open problems

	Extended and generalized Soergel categories in some particular cases
	Type A2
	A Soergel-like category for cyclic groups
	Open problems


	Reflection subgroups, structure, normalizer, ...
	Braid groups and Hecke algebras of normalizers of reflection subgroups
	Finite Coxeter groups
	Complex reflection groups
	Open problems

	Dihedral reflection subgroups of Coxeter systems
	New proof of Dyer's Theorem on maximal dihedral reflection subgroups
	Lattice property of intervals of rank three in noncrossing partition posets

	Open problems

	On Garside structures for torus knot groups
	New Garside structures generalizing an exotic Garside structure on B3
	Torus knot groups
	Other analogous Garside structures

	Connection to the n-strand braid group
	Reflection-like quotients of torus knot groups
	J-groups and toric reflection groups
	Center of toric reflection groups
	Classification and "braid group"

	Open problems

	Bruhat order on quotients
	Bruhat order on quotients
	A Bruhat-like order coming from 2-nilpotent matrices
	Properties of cosets and quotients modulo fixed-point subgroups
	Open problems

	Bibliography

