Bruhat orders, fixed-point subgroups, and orbit closures

Thomas Gobet

(joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Institut Denis Poisson, CNRS UMR 7013, Université de Tours,
Conference "Hecke algebras and applications", Spetses,
July 2023.

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to cosets

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

Bruhat order on the symmetric group

- Let $G=\mathrm{GL}_{n}(\mathbb{C}), B \subseteq G$ the subgroup of upper-triangular invertible matrices. Recall the Bruhat decomposition

$$
G=\coprod_{w \in \mathfrak{S}_{n}} B w B
$$

$$
x \leq w \Leftrightarrow C_{x} \subseteq X_{w}
$$

- Combinatorial criterion: $x \leq w$ iff every reduced expression of w in the simple transpositions has a subword which is a red. ex. for x, iff there is a red. ex. of w which has a red. ex. for x as a subword.

Bruhat order on \mathfrak{S}_{3}

Example: $W=\mathfrak{S}_{3}, S=\left\{s_{1}=(1,2), s_{2}=(2,3)\right\}$.

Bruhat orders, fixed-point

 subgroups, and orbit closuresThomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to
cosets
Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally..

Bruhat order on \mathfrak{S}_{3}

Example: $W=\mathfrak{S}_{3}, S=\left\{s_{1}=(1,2), s_{2}=(2,3)\right\}$.

Bruhat orders, fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders

Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to cosets

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

Coxeter groups

- (Coxeter matrix) Let S be a (finite) set, let $\left(m_{s, t}\right)_{s, t \in S}$ be a matrix with $m_{s, t} \in \mathbb{Z}_{\geq 1} \cup\{\infty\}$ such that
- $m_{s, s}=1$ for all $s \in S$,
- $m_{s, t}=m_{t, s} \geq 2$ if $s \neq t$.
- (Coxeter group) Fix a Coxeter matrix $\left(m_{s, t}\right)_{s, t \in S}$ and associate to it the group

$$
\left.W=\langle s \in S|(s t)^{m_{s, t}}=1, \forall s, t \in S \text { s.t. } m_{s, t} \neq \infty\right\rangle
$$

We may rewrite the presentation in the form

$$
\left\langle\begin{array}{l|l}
s \in S & \begin{array}{l}
s^{2}=1, \forall s \in S \\
\underbrace{s t \cdots}_{m_{s, t}} \\
\text { letters }
\end{array}=\underbrace{t s \cdots}_{m_{t, s} \text { letters }}, s \neq t \text { and } m_{s, t} \neq \infty
\end{array}\right\rangle
$$

Bruhat orders,

fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to cosets

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

- Let $\ell: W \longrightarrow \mathbb{Z}_{\geq 0}$ denote the length function wrt S, and $T=\bigcup_{w \in W} \bar{w} S w^{-1}$.
- Coxeter graph Γ_{W} : vertices are elements of S, with an edge whenever $m_{s, t} \neq 2$, labelled by $m_{s, t}$ if $m_{s_{\underline{E}} t} \geq 4$.

Generalizations of the Bruhat order

- (geometric setting) Replace G by any reductive group with a Borel subgroup B. Then one still has a generalized flag variety, Schubert cells parametrized by the Weyl group W (which is a Coxeter group), etc. More generally, consider the orbits of the action on $\mathcal{B}=G / B$ of closed subgroups $H \subseteq G$ acting with finitely many orbits ("spherical subgroups").
- (algebraic setting) Define the Bruhat order \leq on an arbitrary Coxeter group W by the combinatorial criterion (key tool in Kazhdan-Lusztig theory):

Definition

Let (W, S) be a Coxeter group. Let $x, y \in W$. Define the strong Bruhat order on W by $x \leq y$ iff every reduced decomposition of y admits a subword which is a reduced expression of x.

Another example (parabolic quotients)

- Let G be a reductive group with Borel subgroup B. Let P be a parabolic subgroup of G (i.e., containing B). Since B acts on \mathcal{B} with finitely orbits, P also acts with finitely many orbits. There is a subset J of the simple system S of W such that

$$
G=\coprod_{w \in W^{J}} P w^{-1} B
$$

where

$$
W^{J}=\{w \in W \mid \ell(w s)=\ell(w)+1 \forall s \in J\}
$$

Moreover, the orbit closures are described by the restriction of the strong Bruhat order on W to W^{J}.

Bruhat orders,

fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo

Restriction of the
Bruhat order to

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given

Parabolic quotients (general case)

- Let (W, S) be an arbitrary Coxeter system. Let $J \subseteq S$ and $W_{J}=\langle J\rangle$. Then $\left(W_{J}, J\right)$ is again a Coxeter system, and

$$
W^{J}:=\{w \in W \mid \ell(w s)=\ell(w)+1 \forall s \in J\}
$$

is a set of representatives of W / W_{J}.
Algebraic properties of the (po)set W^{J}.

1. Every coset $x W_{J}$ admits a unique element of minimal length x_{0}, and $x W_{J} \cap W^{J}=\left\{x_{0}\right\}$.
2. For every $y \in x W_{J}$, one has $x_{0} \leq y$.
3. The poset $\left(W^{J}, \leq\right)$ is graded (Deodhar) by the restriction of the length function ℓ on W to W^{J}.

- The first and second properties above (and maybe the third one ?) generalize to a much larger family of "Coxeter subgroups" of Coxeter groups: the reflection subgroups of W (i.e., subgroups generated by a subset of T) (Dyer).

"Coxeter subgroups"

- There is no general theory of "Coxeter subgroups" of Coxeter groups.
- But there are several important families of subgroups of Coxeter groups admitting canonical structures of Coxeter groups. Reflection subgroups is an example of one such family generalizing the W_{J} 's.
- The aim of the talk is to explore the analogues of properties (1) to (3) from the previous slide for another family of "Coxeter subgroups" of Coxeter groups also generalizing the W_{J} 's, and relations to geometric settings.

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

Fixed-point subgroups

- Let (W, S) be an arbitrary Coxeter system (not necessarily finite). Let $L \subseteq S$, and let θ be an automorphism of diagram of L such that $\theta^{2}=\mathrm{id}$.
- It is well-known (Steinberg, Hée, Mühlherr, Lusztig) that $W_{L}^{\theta}:=\left\{w \in W_{L} \mid \theta(w)=w\right\}$ is again a Coxeter group. The set S_{L}^{θ} of generators of W_{L}^{θ} exactly contains the following elements:
- Every $s \in L$ such that $\theta(s)=s$,
- Whenever $\theta(s) \neq s$ with $s \in L$ and $\langle s, \theta(s)\rangle$ is finite, the longest element of the finite dihedral group $\langle s, \theta(s)\rangle$.
- Examples:

1. W of type $A_{2 n-1}$, with $\theta\left(s_{i}\right)=s_{2 n-i}$. Then
$S_{L}^{\theta}=\left\{s_{1} s_{2 n-1}, s_{2} s_{2 n-2}, \ldots, s_{n-1} s_{n+1}, s_{n}\right\}$, and ($W_{L}^{\theta}, S_{L}^{\theta}$) is of type B_{n}. It is not a refl. subgp of W.
2. W of type $A_{3}, L=\left\{s_{1}, s_{3}\right\}, \theta$ permutes s_{1} and s_{3}. Then $W_{L}^{\theta}=\left\langle s_{1} s_{3}\right\rangle$ has type A_{1}.
3. If $\theta=\mathrm{id}$, then $W_{L}^{\theta}=W_{L}$, and we recover parabolic quotients.

Restriction of the Bruhat order to cosets modulo fixed-point subgroups

- Unlike for parabolic quotients, in general in $x W_{L}^{\theta}$ there are several elements of minimal length. We have

Theorem (Chapelier-G., 2023)
Let u, v be two elements of minimal length in $x W_{L}^{\theta}$. Let $y \in W_{L}^{\theta}$ such that $u y=v$. Let $x_{1} x_{2} \cdots x_{k}$ be an $\stackrel{S}{S}_{L}^{\theta}$-reduced expression of y. Then

$$
\ell(u)=\ell\left(u x_{1}\right)=\cdots=\ell\left(u x_{1} x_{2} \cdots x_{k-1}\right)=\ell(v) .
$$

In other (and weaker) words, there is a chain of elements of minimal length in the coset allowing one to pass from u to v, where at each step one just multiplies by an element of S_{L}^{θ}.

Bruhat orders,

 fixed-point subgroups, and orbit closuresThomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to
cosets
Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

Restriction of the Bruhat order to cosets modulo fixed-point subgroups, II

Example

Let $W=F_{4}, L=S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ and θ be the unique nontrivial diagram automorphism of L :

We have $S_{L}^{\theta}=\left\{s_{1} s_{4}, s_{2} s_{3} s_{2} s_{3}\right\}$. Write $x=s_{1} s_{4}$ and $y=s_{2} s_{3} s_{2} s_{3}$. Then W_{L}^{θ} is a dihedral group of order 16. If $u=42312342\left(i \leftrightarrow s_{i}\right)$ then there are 4 elements of minimal

Thomas Gobet

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally. elements in $u W_{L}^{\theta}$, given below:

Example

Extremal case of a coset in $W=F_{4}$ with only minimal elements:

Bruhat orders, fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of cosets modulo fixed-point subgroups

Restriction of the Bruhat order to cosets

Orbit closures of a Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally...

Elements of minimal length are minimal for the restriction of the strong Bruhat order

Bruhat orders,

fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the Bruhat order to cosets

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.
W / H by $u H \leq v H$ iff for all $w \in v H$, there is $w^{\prime} \in u H$ such that $w^{\prime} \leq w$.

A particular setting where one gets a grading

Suppose that L is of the form $I \cup K \cup J$, where I, J and K are disjoint and disconnected, and that there is a bijection $f: I \longrightarrow J$ extending to an isomorphism $W_{I} \cong W_{J}$. Define an automorphism of W_{L} by

- $\theta(s)=s$ if $s \in K$,
- $\theta(s)=f(s)$ if $s \in I, \theta(s)=f^{-1}(s)$ if $s \in J$.

Theorem (Chaput-Fresse-G., 2021)

Let L be as above. Then the poset $\left(W / W_{L}^{\theta}, \leq\right)$ is graded. The grading function is given by the restriction of the length function ℓ to elements of minimal length.

Bruhat orders,

fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to
cosets
Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally..

- Question: is $\left(W / W_{L}^{\theta}, \leq\right)$ graded in general ?

Link to a geometric setting

Let us now illustrate a particular case where $\left(W / W_{L}^{\theta}, \leq\right)$ describes an inclusion of orbit closures of a spherical subgroup.

- $e \in M_{n}(\mathbb{C})$ be a 2 -nilpotent matrix of rank $r \leq \frac{n}{2}$, say

$$
e=\left(\begin{array}{ccc}
0 & 0 & 1_{r} \tag{1}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so that the stabilizer $Z:=Z_{G}(e)$, with $G=\mathrm{GL}_{n}(\mathbb{C})$, is given by

$$
Z=\left\{\left(\begin{array}{ccc}
a & * & * \\
0 & b & * \\
0 & 0 & a
\end{array}\right): a \in \mathrm{GL}_{r}(\mathbb{C}), b \in \mathrm{GL}_{n-r}(\mathbb{C})\right\}
$$

- The action of Z on $\mathcal{B}=G / B$, equivalently of B on G / Z, is spherical, i.e., has finitely many orbits (Panyushev 1994).

Link to a geometric setting, II

Let W be of type $A_{n-1}, I=\left\{s_{1}, \ldots, s_{r-1}\right\}$,
$J=\left\{s_{n-r+1}, \ldots, s_{n-1}\right\}, K=\left\{s_{r+1}, \ldots, s_{n-r-1}\right\}$. Let $L=I \cup K \cup J$, with automorphism θ s.t. $\theta(s)=s$ for all $s \in K$, and $\theta\left(s_{i}\right)=s_{n-r+i}$ for all $i=1, \ldots, r-1$.
Given $w \in W$, set $[w]=w W_{L}^{\theta}$.
Theorem (Boos-Reinecke 2012, Bender-Perrin 2018, Chaput-Fresse-G. 2021)

- The Z-orbits on \mathcal{B} are parametrized by W / W_{L}^{θ}, via $[w] \mapsto Z w^{-1} B / B=: \mathbb{O}_{[w]}$.
- One has

$$
\mathbb{O}_{[w]} \subseteq \overline{\mathbb{O}_{\left[w^{\prime}\right]}} \Leftrightarrow[w] \leq\left[w^{\prime}\right]
$$

where \leq is the "Bruhat order" on W / W_{L}^{θ} (+ precise description of the covering relations)

Bruhat orders,

 fixed-point subgroups, and orbit closuresThomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to
cosets
Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

- Question: what about other types ?

Bruhat orders, fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders

Properties of
cosets modulo

fixed-point

subgroups
Restriction of the
Bruhat order to cosets

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

Figure: The poset $\left(W / W_{L}^{\theta}, \leq\right)$ in type A_{3} with $I=\left\{s_{1}\right\}$, $J=\left\{s_{3}\right\}, K=\emptyset$. Here $W_{L}^{\theta}=\left\langle s_{1} s_{3}\right\rangle$ (type A_{1}).

Hecke algebras

Bruhat orders, fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the

$$
\left\langle T_{s}, s \in S \left\lvert\, \begin{array}{l}
\underbrace{T_{t} T_{s} \cdots}_{\substack{m_{s, t} \\
T_{s}^{2}=\left(v^{-2}-1\right) T_{s} \\
T_{t} \cdots} v^{-2}, \forall s \in S}, s \neq t, m_{s, t}<\infty
\end{array}\right.\right\rangle
$$

Bruhat order to cosets

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally.

Link to Hecke algebras

- Let W, L, θ as before. For $w \in W$ and $s \in S$, one can show that either $[s w]>[w],[s w]=[w]$, or $[s w]<[w]$.

Proposition (Chaput-Fresse-G. 2023)

Let W be arbitrary (not nec. finite) and $L \subseteq S$ with an automorphism θ s. t. $\theta^{2}=\mathrm{id}$. Assume that $S_{L}^{\theta} \cap T \subseteq S$. Let $\mathcal{A}=\mathbb{Z}\left[v^{ \pm 1}\right]$ and $M=\bigoplus_{[w] \in W / W_{L}^{\theta}} \mathcal{A} m_{[w]}$. Let $s \in S$. Let $u \in\left\{-1, v^{-2}\right\}$. The formulas

$$
T_{s} m_{[w]}= \begin{cases}v^{-2} m_{[s w]}+\left(v^{-2}-1\right) m_{[w]} & \text { if }[s w]<[w] \\ m_{[s w]} & \text { if }[s w]>[w] \\ u m_{[w]} & \text { if }[s w]=[w]\end{cases}
$$

Bruhat orders,

 fixed-point subgroups, and orbit closuresThomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders
Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to
cosets
Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally...
define an action of the Iwahori-Hecke algebra \mathcal{H}_{W} on M.

- KL polynomials, Hecke category ?

Bruhat orders, fixed-point subgroups, and orbit closures

Thomas Gobet (joint works with N. Chapelier, P.-E. Chaput, L. Fresse)

Bruhat orders

Thank you for your attention!

Properties of
cosets modulo
fixed-point
subgroups
Restriction of the
Bruhat order to cosets

Orbit closures of a
Borel subgroup
acting on
2-nilpotent
matrices of a given rank

And finally...

