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Introduction

L’étude qui suit est constituée de deux parties essentiellement indépendantes, trai-
tant toutes deux des algèbres dites de Temperley-Lieb.

Fixons un entier strictement positif n et un paramètre δ. L’algèbre de Temperley-
Lieb TLn(δ) est l’algèbre associative unitaire sur Z[δ] engendrée par n générateurs
b1, . . . , bn soumis aux relations suivantes:

bjbibj = bj si |i− j| = 1, (1)

bibj = bjbi si |i− j| > 1, (2)

b2i = δbi. (3)

Elle fut introduite par Temperley et Lieb (voir [38]) dans le cadre des modèles de
percolation. Dans un contexte plus topologique, elle a été utilisée par Jones (voir
[27]) en raison de ses liens étroits avec certains invariants de noeuds. Dans ce cas-là,
on la définit sur un anneau de polynômes de Laurent Z[v, v−1] et l’on donne la même
présentation par générateurs et relations que celle donnée ci-dessus, en remplaçant
δ par v+v−1. L’algèbre de Temperley-Lieb telle que considérée par Lieb, Temperley
puis Jones possède une réalisation sous la forme d’algèbre dite "de diagrammes".
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8 INTRODUCTION

Bien qu’il n’existe pas réellement de définition formelle d’algèbre de diagramme,
cela signifique qu’elle possède une base formée de diagrammes, de telle sorte que la
multiplication soit définie sur la base par une concaténation de diagrammes (plus
une règle de réduction pour certains diagrammes, faisant intervenir le paramètre de
l’anneau des coefficients et correspondant à la relation quadratique ci-dessus). Dans
la version utilisée par Jones (c’est-à-dire lorsqu’elle est définie sur un anneau de
polynômes de Laurent), on peut la réaliser comme quotient de l’algèbre de Iwahori-
Hecke H de type An. Il existe des analogues d’algèbres de Temperley-Lieb hors du
type A mais aucune définition générale satisfaisante. Par exemple, pour le type B,
il existe deux définitions non équivalentes, l’une due à Graham (voir [22]) et l’autre
à Tom Dieck (voir [39]). Dans ce travail, nous nous intéresserons exclusivement aux
algèbres de Temperley-Lieb de type A.

La motivation initiale à ce travail consistait à chercher à mieux comprendre la
base de l’algèbre de Temperley-Lieb donnée par les travaux de Zinno (voir [42])
ainsi que ses liens avec la base des diagrammes. Il existe un homomorphisme
multiplicatif du groupe de tresses à n + 1 brins dans l’algèbre de Temperley-Lieb.
Dans l’article mentionné, Zinno démontre que l’image par cet homomorphisme de
l’ensemble des facteurs canoniques du groupe de tresses fournit une base de l’algèbre
de Temperley-Lieb. Ces facteurs canoniques, en bijection canonique avec les parti-

tions non croisées, constituent un ensemble d’éléments particuliers du monoïde de

Birman-Ko-Lee (voir [4]), un monoïde infini s’injectant dans le groupe de tresses et
généralisé plus tard en monoïde dual par Bessis (voir [2]): la généralisation est dou-
ble en ce sens que d’une part le monoïde de Birman-Ko-Lee dépend implicitement
d’un choix d’orientation du diagramme de Dynkin (ce qui est équivalent à un choix
d’élément de Coxeter) et d’autre part qu’il est propre au type A; ainsi, le monoïde
dual dépend d’un type ainsi que d’un choix d’élément de Coxeter. Notons qu’une
première généalisation partielle avait auparavant été donnée par Bessis, Digne et
Michel ([3]). Le monoïde dual, tout comme le monoïde positif de tresses, possède
une structure dite de Garside au sens de Dehornoy et Paris (voir [12]).

Tout monoïde dual a pour groupe de fractions le groupe de tresses du système de
Coxeter correspondant et s’injecte dans celui-ci. Dans la terminologie de Dehornoy
et Paris, les facteurs canoniques sont appelés éléments simples. Le cas considéré par
Zinno correspond à l’élément de Coxeter c = snsn−1 · · · s1. Il a été démontré par
Vincenti (voir [41]) que si l’on considère n’importe quel monoïde dual de type An,
l’image des éléments simples de ce monoïde fournit toujours une base de l’algèbre
de Temperley-Lieb correspondante, généralisant le Théorème de Zinno. On obtient
ainsi une famille de bases, une pour chaque monoïde dual de type An, c’est-à-dire
une par choix d’élément de Coxeter ou d’orientation du diagramme de Dynkin.
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Pour démontrer que l’image de l’ensemble des éléments simples dans l’algèbre de
Temperley-Lieb forme une base, Zinno démontre qu’il existe une matrice triangu-
laire supérieure avec coefficient inversible sur la diagonale permettant de passer de
cet ensemble à la base des diagrammes. Pour ce faire, il exhibe une bijection entre
les deux ensembles indexant les bases respectives, à savoir les partitions non croisées
et les éléments totalement commutatifs du groupe symétrique. Ces deux ensembles,
dénombrés par les nombres de Catalan, possèdent de nombreuses propriétés combi-
natoires. Zinno ordonne ensuite totalement l’ensemble des partitions non croisées
de façon judicieuse et démontre qu’en munissant l’ensemble des éléments totalement
commutatifs de l’ordre induit par sa bijection, la matrice susmentionnée est triangu-
laire supérieure avec coefficient inversible explicitement déterminé sur la diagonale.
Notons également que le résultat de Zinno a été démontré de façon directe par Lee
et Lee (voir [31]), mais que cette preuve ne donne pas la triangularité de la matrice
de changement de base. La généralisation de Vincenti s’inspire de l’approche de Lee
et Lee.

Il a été noté par Digne dans des travaux non publiés que dans de petits cas, la
matrice de changement de base entre la base de Zinno et celle des diagrammes restait
triangulaire supérieure à coefficient inversible sur la diagonale (pour des ordres con-
venables sur les bases) si l’on fait varier l’élément de Coxeter. De plus, Digne a
constaté que les coefficients de la matrice de changement de base faisaient apparaître
des phénomènes de positivité (avec une preuve de la positivité pour c = s1s2 · · · sn
utilisant des résultats de positivité dans l’algèbre de Hecke de Dyer et Lehrer, [14]).
Ceci suggère les différentes questions suivantes:

• Ces différents phénomènes peuvent-ils être expliqués par une bonne catégori-
fication de l’algèbre de Temperley-Lieb, qui mettrait à la fois en évidence la
base des diagrammes et celle de Zinno?

• Que peut-on dire des coefficients de la matrice de changement de base? Possèdent-
ils une interprétation géométrique? Existe-t-il des formules fermées pour les
déterminer?

• Que dire de l’ordre dont on munit les ensembles indexant les bases et qui donne
la triangularité? Quelles sont ses propriétés?

• Que se passe-t-il lorsqu’on change d’élément de Coxeter? Peut-on démontrer
la triangularité pour tout choix d’élément de Coxeter? Si oui, quels sont les
ordres à considérer sur les partitions non croisées associées à un élément de
Coxeter arbitraire pour obtenir la triangularité?



10 INTRODUCTION

La première partie du travail qui suit est le fruit de tentatives de réponse à la pre-
mière question et propose une catégorification des algèbres de Temperley-Lieb. Il
existe plusieurs catégorifications des algèbres de Temperley-Lieb, par exemple par
Bernstein, Frenkel et Khovanov (voir [1]) où plusieurs conjectures démontrées plus
tard par Stroppel (voir [37], où l’algèbre de Temperley-Lieb est également considérée
dans d’autres types) sont émises; il s’agit de constructions utilisant des foncteurs
projectifs sur des blocs principaux de versions paraboliques de la catégorie O de
Bernstein, Gelfand et Gelfand. Elias (voir [16]) donne également une catégorifica-
tion de l’algèbre de Temperley-Lieb obtenue comme quotient de la catégorie des
bimodules de Soergel (qui catégorifie l’algèbre de Hecke d’un système de Coxeter de
rang fini), plus précisément d’une version diagrammatique de celle-ci due à Elias et
Khovanov (voir [17]). On perd ainsi la structure de bimodule sur les objets (mais
pas sur les morphismes). On se propose ici de fournir une catégorification directe de
l’algèbre de Temperley-Lieb par des analogues de bimodules de Soergel. Le contenu
de cette partie, à l’exception de la section 2.4, a fait l’objet d’une publication (voir
[20]).

La seconde partie, plus combinatoire, est motivée par les trois derniers points
ci-dessus.

Comme exemple, nous donnons l’expression de la base des diagrammes dans celle
de Zinno ci-dessous pour le type A3; notons Wf l’ensemble des éléments totalement
commutatifs du groupe symétrique. On a

Wf = {e, s1, s2, s3, s1s2, s1s3, s2s3, s1s2s3, s2s1, s3s2, s2s1s3,

s3s1s2, s3s2s1, s2s1s3s2}.

Notons Pc l’ensemble des partitions non croisées associées à l’élément de Coxeter
c = s1s2s3. On a

Pc = {e, s1, s2, s3, s1s2, s1s3, s2s3, s1s2s3, s2s1s2, s3s2s3, s2s1s2s3,

s1s3s2s3, s3s2s1s2s3, s2s3s2s1s2s3}.

Nous noterons {bw}w∈Wf
la base des diagrammes et {Zx}x∈Pc

la base de Zinno.
Nous exprimons ci-dessous les éléments bw comme combinaisons linéaires de {Zx},
donnés par GAP; on obtient ainsi la matrice inverse de celle considérée par Digne.
Un tel choix de matrice à considérer provient en partie du fait que la base des dia-
grammes est la projection de la base canonique C ′

w de Kazhdan-Lusztig de l’algèbre
de Hecke qui se catégorifie plus aisément que d’autres bases de l’algèbre de Hecke.
La base {bw} apparaît donc comme la base naturelle de l’algèbre de Temperley-Lieb
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à catégorifier.

be = Ze,

bs1 = −Zs1 + v−1Ze,

bs2 = −Zs2 + v−1Ze,

bs3 = −Zs3 + v−1Ze,

bs1s2 = Zs1s2 − v−1(Zs1 + Zs2) + v−2Ze,

bs1s3 = Zs1s3 − v−1(Zs1 + Zs3) + v−2Ze,

bs2s3 = Zs2s3 − v−1(Zs2 + Zs3) + v−2Ze,

bs2s1 = vZs2s1s2 − v2Zs1s2 ,

bs3s2 = vZs3s2s3 − v2Zs2s3 ,

bs1s2s3 = −Zs1s2s3 + v−1(Zs1s2 + Zs1s3 + Zs2s3)− v−2(Zs1 + Zs2 + Zs3) + v−3Ze,

bs2s1s3 = −vZs2s1s2s3 + v2Zs1s2s3 + Zs2s1s2 − vZs1s2 ,

bs1s3s2 = −vZs1s3s2s3 + v2Zs1s2s3 + Zs3s2s3 − vZs2s3 ,

bs3s2s1 = −v2Zs3s2s1s2s3+v3(Zs2s1s2s3+Zs1s3s2s3)−v
4Zs1s2s3+vZs1s3−(Zs1+Zs3)+v−1Ze,

bs2s1s3s2 = Zs2s3s2s1s2s3 − v−1Zs3s2s1s2s3 − v−1Zs2 + v−2Ze.

Si l’on munit Pc de l’ordre total donné par x < y si x intervient avant y dans
l’ensemble Pc tel qu’écrit plus haut et que l’on fait de même pour Wf , la matrice
M permettant de passer de {Zx}x∈Pc

à {bw}w∈Wf
est ainsi donnée par la matrice

triangulaire supérieure suivante:



1 v−1 v−1 v−1 v−2 v−2 v−2 v−3 0 0 0 0 v−1 v−2

0 −1 0 0 −v−1 −v−1 0 −v−2 0 0 0 0 −1 0

0 0 −1 0 −v−1 0 −v−1 −v−2 0 0 0 0 0 −v−1

0 0 0 −1 0 −v−1 −v−1 −v−2 0 0 0 0 −1 0

0 0 0 0 1 0 0 v−1 −v2 0 −v 0 0 0

0 0 0 0 0 1 0 v−1 0 0 0 0 v 0

0 0 0 0 0 0 1 v−1 0 −v−2 0 −v 0 0

0 0 0 0 0 0 0 −1 0 0 v2 v2 −v4 0

0 0 0 0 0 0 0 0 v 0 1 0 0 0

0 0 0 0 0 0 0 0 0 v 0 1 0 0

0 0 0 0 0 0 0 0 0 0 −v 0 v3 0

0 0 0 0 0 0 0 0 0 0 0 −v v3 0

0 0 0 0 0 0 0 0 0 0 0 0 −v2 −v−1

0 0 0 0 0 0 0 0 0 0 0 0 0 1




On pourrait se demander si les coefficients des Zx dans une expansion linéaire
d’un élément bw sont toujours des monômes. Ceci est faux en général comme le
montrent des calculs effectués avec GAP en type A5. Toutefois certains coefficients,
incluant les coefficients diagonaux, sont toujours des monômes comme nous le ver-
rons dans le chapitre 3 (Théorème 3.3.28).
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Première partie: Catégorification de l’algèbre de Temperley-

Lieb par des analogues de bimodules de Soergel

On réalise l’algèbre de Temperley-Lieb de type An comme groupe de Grothendieck
scindé d’une catégorie additive graduée munie d’une opération conférant à ce groupe
de Grothendieck une structure additionnelle d’anneau. En d’autres termes, on
construit un isomorphisme d’anneaux (et même de Z[v, v−1]-algèbres en donnant
une interprétation du paramètre v dans la catégorie en question) entre l’algèbre de
Temperley-Lieb et l’anneau de Grothendieck susmentionné (Théorème 2.3.20). Ce
théorème est un analogue pour le cas Temperley-Lieb du Théorème dit "de caté-
gorification de Soergel" (voir le Théorème 1.3.2) qui catégorie l’algèbre de Hecke
d’un système de Coxeter. Les bimodules élémentaires à considérer pour une telle
construction sont suggérés par Ben Elias (voir [16], Remark 3.22). Les relations qui
sont catégorifiées sont les relations (1) à (3) ci-dessus où l’on a posé δ = 1+ v−2. Or
la valeur du paramètre δ permettant de réaliser l’algèbre de Temperley-Lieb comme
un quotient d’algèbre de Hecke (et donc de l’algèbre de groupe du groupe de tresses
sur Z[v, v−1]) est δ = v + v−1. On n’obtient donc pas d’homomorphisme du groupe
de tresses dans l’algèbre donnée par la catégorification et il n’est donc pas possible
d’y définir la base de Zinno (ceci est expliqué de façon détaillée dans la Remarque
2.3.1).

Expliquons le procédé utilisé pour la construction de notre catégorie. On con-
sidère la représentation géométrique V d’un système de Coxeter (W,S) de type An
sur un corps k de caractéristique nulle. On note Z la sous-variété obtenue comme
réunion des droites de Weyl, c’est-à-dire, des droites obtenues comme intersections
d’hyperplans de réflexions. On a une opération de W sur Z. Les bimodules consid-
érés sont des bimodules gradués sur la k-algèbre des fonctions régulières sur Z que
l’on note R̄.

On définit alors des bimodules Bi, briques élémentaires correspondant aux généra-
teurs bi de l’algèbre de Temperley-Lieb. On définit un produit noté ⋆ de bimodules
en utilisant les variétés correspondant aux annulateurs de bimodules (Sous-section
2.2.4). La définition du produit fournit une opération qui n’est ni associative ni dis-
tributive en général. Toutefois, cette opération devient associative (à isomorphisme
près) lorsqu’on se resteint à une famille de bimodules qui sont les bimodules obtenus
comme produits ⋆ successifs de Bi pour divers i (Théorème 2.2.15). En tant que
modules à gauche ou à droite, ces produits successifs sont libres en tant que mod-
ules sur le quotient de R̄ par l’annulateur à gauche ou à droite du bimodule; un
tel quotient est isomorphe à un anneau de fonctions régulières sur une réunion de
droites de Weyl dépendant de la suite d’indices du produit. Les bimodules Bi et
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le produit ⋆ satisfont les relations de Temperley-Lieb (Théorème 2.3.3). Toutefois,
l’associativité partielle ne résout pas a priori les différents problèmes, dans la mesure
où l’on souhaite avoir associativité sur une famille plus grande de bimodules, ainsi
que distributivité. On démontre que cette famille n’est constituée que de bimod-
ules indécomposables ou de sommes de décalés du même module indécomposable
(Théorème 2.3.19). On peut grâce à ce résultat étendre le produit ⋆ à la catégorie
additive engendrée par cette famille de bimodules et de leurs décalés en prolongeant
l’opération ⋆ par bilinéarité. Ceci fournit un produit bien défini à isomorphisme
près, qui munit par conséquent le groupe de Grothendieck scindé de la catégorie
d’une structure d’anneau et même d’algèbre en interprétant le paramètre v comme
un décalage. On démontre qu’il existe un isomorphisme d’algèbres entre l’algèbre
de Temperley-Lieb et l’anneau de Grothendieck susmentionné et que l’image de la
base dite des diagrammes de l’algèbre coïncide avec l’ensemble des classes de bimod-
ules indécomposables de la catégorie (Théorème 2.3.20). Pour ce faire, on utilise le
fait que l’information diagrammatique est contenue de façon surprenante dans les
annulateurs à gauche et à droite de bimodules indécomposables (Proposition 2.3.5).

Un ingrédient essentiel (qui permet d’étendre le produit ⋆ par bilinéarité et de
démontrer le Théorème de catégorification) est la preuve de l’indécomposabilité des
bimodules correspondant à la base des diagrammes. Les bimodules en question sont
positivement gradués et on démontre leur indécomposabilité en prouvant qu’ils sont
engendrés par un élément dans leur composante homogène de degré nul, laquelle
est de dimension égale à un. Cette propriété de cyclicité, fausse dans la catégorie
de Soergel en général, peut laisser supposer que ces bimodules ne sont autre que
des algèbres de fonctions régulières sur des sous-schémas appropriés de Z × Z. On
démontre cette propriété pour certains bimodules indécomposables de la catégorie
(Proposition 2.4.4).

Seconde partie: Autour des bases de Zinno

Cette seconde partie, à dimension plus combinatoire, présente différents résultats
relatifs aux bases de Zinno des algèbres de Temperley-Lieb et à leur lien avec la base
dite des diagrammes ou de Kazhdan-Lusztig.

La première constatation repose sur le fait que la façon dont ordonne Zinno sa
base, autrement dit dont il ordonne les partitions non croisées qui indexent cette
base, est par la longueur d’un mot privilégié représentant l’élément simple dans
le groupe de tresses; il s’avère que cette longueur n’est autre que la longueur de
Coxeter de la partition non croisée correspondante vue comme élément du groupe
symétrique. On constate que plusieurs résultats de Zinno utilisant cet ordre peuvent
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être raffinés à l’ordre de Bruhat (ce qui est plus intéressant que la longueur de
Coxeter si l’on cherche à comprendre les coefficients de la matrice de changement
de base, par exemple lorsqu’ils sont non nuls). Il paraît donc naturel de faire d’une
part une étude plus approfondie de l’ordre de Bruhat sur les partitions non croisées.
D’autre part, la seule information sur les coefficients présente dans la littérature est
une détermination explicite par Zinno du coefficient sur la diagonale de la matrice
de changement de base, lorsque les deux bases sont ordonnées de façon à avoir la
triangularité, c’est-à-dire par la longueur de Coxeter sur les partitions non croisées
et par l’ordre sur les éléments totalement commutatifs induit par la bijection de
Zinno. La présente étude propose ainsi les résultats suivants:

• Des bijections entre partitions non croisées associées à un élément de Coxeter
arbitraire et éléments totalement commutatifs, qui généralisent celle donnée
par Zinno. On a de plus une description des bijections inverses (section 3.2),

• Une nouvelle base de l’algèbre de Temperley-Lieb, faisant intervenir l’ordre de
Bruhat sur les partitions non croisées (section 3.3.2),

• Dans le cas où c = s1s2 · · · sn, une condition nécessaire mais non suffisante
(Corollaire 3.3.26) pour qu’un coefficient de la matrice de changement de
base soit non nul ainsi que la détermination explicite de certains coefficients
(Théorème 3.3.28); pour ce faire on utilise la base du point précédent,

• Une étude approfondie de l’ordre de Bruhat sur les partitions non croisées
associées à l’élément de Coxeter c (Sections 3.4 et 3.5). On donne un critère
combinatoire (Théorème 3.5.6) permettant de déterminer si une partition non
croisée x est plus petite qu’une partition non croisée y pour l’ordre de Bruhat
en introduisant des vecteurs d’entiers avec certaines conditions de parité. Ce
critère permet entre autres de démontrer la propriété surprenante de treil-
lis de l’ensemble des partitions non croisées ordonnées par l’ordre de Bruhat
(Théorème 3.6.1): il s’avère que la structure de treillis obtenue est étonnam-
ment la même que celle provenant des idéaux dans le poset des racines positives
ou encore du poset des chemins de Dyck pour l’inclusion (Section 3.6). Toute-
fois, lorsqu’on change d’élément de Coxeter, la propriété de treillis n’est plus
vraie (pour l’ordre de Bruhat); on explique alors quel ordre à considérer, im-
pliquant les vecteurs susmentionnés, pour obtenir la même structure de treillis
que pour c (Section 3.7). On donne un procédé permettant de se ramener au
cas où l’élément de Coxeter est c, ce qui permet d’utiliser le critère pour car-
actériser cet ordre pour des partitions non croisées correspondant à un choix
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d’élément de Coxeter arbitraire (qui n’est pas en général l’ordre de Bruhat si
l’élément de Coxeter est différent de c),

• En utilisant les ordres spéciaux sur les partitions non croisées mentionnés au
point précédent et les bijections du premier point, une démonstration de la
triangularité de la matrice de changement de base entre la base de Zinno
généralisée à un élément de Coxeter arbitraire et la base des diagrammes (Sec-
tion 3.8, Théorème 3.8.28). En particulier, on peut facilement donner une
nouvelle preuve plus générale d’un ingrédient essentiel à la preuve de la trian-
gularité (Théorème 3.8.26) en utilisant le critère du point précédent.
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Chapter 1

Préliminaires

1.1 Eléments totalement commutatifs

Soit (W,S) un système de Coxeter.

Définition 1.1.1. Un élément w ∈ W est dit totalement commutatif (en anglais

fully commutative) si l’on peut passer de toute expression S-réduite de w à toute

autre en utilisant uniquement des relations de la forme st = ts, où s, t ∈ S.

Dans le type A qui nous intéresse dans ce document, il existe différentes car-
actérisations des éléments totalement commutatifs dont nous présentons certaines
dans la proposition ci-dessous:

Proposition 1.1.2. Soit (W,S) un système de Coxeter de type An, où W est

identifié avec le groupe symétrique Sn+1 et S = {si = (i, i + 1)}ni=1. Soit w ∈ W.

Les conditions suivantes sont équivalentes:

17
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1. L’élément w est totalement commutatif,

2. Si si1 · · · sik est une expression S-réduite de w, alors pour tout i = 1, . . . , n,

ni(w) := |{j | ij = i}|

est indépendant de l’expression S-réduite choisie,

3. L’élément w possède une expression S-réduite de la forme

(siℓsiℓ−1 · · · sjℓ)(siℓ−1
siℓ−1−1 · · · sjℓ−1

) · · · (si1si1−1 · · · sj1)

où tous les indices appartiennent à l’ensemble {1, . . . , n}, iℓ < iℓ−1 < · · · < i1,

jℓ < jℓ−1 < · · · < j1 et jm ≤ im pour m = 1, . . . , ℓ.

4. Si si1 · · · sik est une expression S-réduite de w avec sij = si = sid, j < d et

sik 6= si pour tout j < k < d, alors (sij+1
, . . . , sid−1

) possède exactement une

composante égale à si+1 et exactement une autre égale à si−1.

Proof. L’équivalence entre les deux premières assertions est évidente et vraie pour
tout système de Coxeter n’ayant pas d’entrée paire différente de 2 dans leur matrice
de Coxeter. Les deux dernières conditions sont souvent considérées dans le cas
des mots dits réduits de l’algèbre de Temperley-Lieb, mais les résultats sont vrais
au niveau du groupe de Coxeter et les preuves s’adaptent facilement; pour une
équivalence entre 1 et 3, voir par exemple ([21], §2.8); l’existence de telles expressions
réduites dans le cas Temperley-Lieb avaient été notée par Jones dans ([27], §3.5);
pour une équivalence entre 1 et 4, on peut adapter la preuve de ([42], Theorem
1).

On trouvera d’autres caractérisations et propriétés par exemple dans les travaux
de Stembridge (voir [35], [36]) qui fit les premières études systématiques d’éléments
totalement commutatifs.

1.2 Algèbres de Hecke et de Temperley-Lieb

1.2.1 Algèbres de Hecke

Soit (W,S) un système de Coxeter avec matrice de Coxeter (ms,t)s,t∈S . Notons
ℓS : W → Z≥0 la longueur de Coxeter, i.e., pour w ∈ W, ℓS(w) est le nombre
minimal possible de facteurs dans une expression de w comme produit d’éléments
de S.
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L’algèbre de Hecke H = H(W,S) de (W,S) est l’algèbre associative unitaire
sur l’anneau Z[v, v−1] des polyômes de Laurent à coefficients dans Z ayant pour
générateurs Ts, s ∈ S et relations

TsTt · · ·︸ ︷︷ ︸
ms,t facteurs

= TtTs · · ·︸ ︷︷ ︸
ms,t facteurs

si ms,t est fini (Relations de tresses),

T 2
s = (v−2 − 1)Ts + v−2 (Relations quadratiques).

Il s’agit d’une déformation de l’algèbre de groupe de (W,S) sur Z. L’algèbre H
possède une base {Tw}w∈W dite standard où Tw est défini de la façon suivante: soit
s1 · · · sk une expression S-réduite de w. Les relations de tresses étant satisfaites dans
H, le produit

Ts1Ts2 · · ·Tsk

est indépendant de l’expression S-réduite de w choisie et on le dénote par conséquent
par Tw. Si k = 0, c’est-à-dire si w = e, on pose Te = 1.

Il existe d’autres bases intervenant si l’on s’intéresse aux représentations des
groupes de Coxeter et de leurs algèbres de Hecke communément appelées bases

canoniques ou bases de Kazhdan-Lusztig . Considérons l’unique involution ι : H → H
satisfaisant ι(v) = v−1, ι(Tw) = (Tw−1)−1. On a le Théorème suivant de Kazhdan et
Lusztig:

Théorème 1.2.1 ([29], Theorem 1.1). Pour tout w ∈ W, il existe un unique élément

C ′
w ∈ H satisfaisant ι(C ′

w) = C ′
w et

C ′
w ∈ v

ℓS(w)Tw +
∑

y∈W

vZ[v]vℓS(y)Ty.

Ceci fournit une base {C ′
w}w∈W de H. Il existe une involution j : H → H définie par

j(v) = v−1, j(Tw) = v2ℓS(w)(−1)ℓS(w)Tw. Il existe une seconde base {Cw}w∈W définie
par un théorème similaire à celui donné ci-dessus et reliée à la base {Cw}w∈W par la
relation Cw = j((−1)ℓS(w)C ′

w) (voir [29], remarques suivant Theorem 1.1).

1.2.2 Algèbres de Temperley-Lieb

L’algèbre de Temperley-Lieb TLn(δ) est l’algèbre associative unitaire sur Z[δ], où
δ est un paramètre, engendrée par n générateurs b1, . . . , bn soumis aux relations
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suivantes:

bjbibj = bj si |i− j| = 1,

bibj = bjbi si |i− j| > 1,

b2i = δbi.

Elle fut introduite par Temperley et Lieb ([38]). Dans un cadre plus topologique,
elle fut utilisée par Jones ([27]) dans le contexte des invariants de noeuds. Dans ce
cas-là, on la définit sur un anneau de polynômes de Laurent Z[v, v−1] et l’on donne
la même présentation par générateurs et relations que celle donnée ci-dessus, en
remplaçant δ par v + v−1. On peut ainsi la réaliser comme un quotient de l’algèbre
de Hecke H(W,S) de type An de deux façons différentes (voir par exemple [25], §2.3
et Remark 2.4)

θ : H(W,S)→ TLn(v + v−1), Tsi 7→ v−1bi − 1,

θ′ : H(W,S)→ TLn(v + v−1), Tsi 7→ v−2 − v−1bi.

Le noyau de θ est l’idéal bilatère engendré par les éléments de la forme

∑

w∈〈si,si+1〉

Tw

pour i = 1, . . . , n− 1. Le noyau de θ′ est l’idéal bilatère engendré par les éléments
de la forme ∑

w∈〈si,si+1〉

(−1)ℓS(w)v2ℓS(w)Tw

pour i = 1, . . . , n − 1. L’algèbre H possède un unique automorphisme involutif
semilinéaire jH : H → H tel que jH(Tsi) = −v2Tsi et jH(v) = v−1. L’algèbre de
Temperley-Lieb possède un unique automorphisme involutif semilinéaire jTLn

tel que
jTLn

(bi) = bi et jTLn
(v) = v−1. On a θ′ = jTLn

◦ θ ◦ jH.

L’algèbre de Temperley-Lieb possède une base indexée par les éléments totale-
ments commutatifs du groupe symétrique Sn+1 que l’on notera {bw}w∈Wf

. Elle est
construite de la façon suivante: pour i = 1, . . . , n, on pose bsi := bi. Pour w ∈ Wf ,
on choisit une décomposition S-réduite si1 · · · sik de w et on considère le produit

bi1 · · · bik ∈ TLn.

On peut montrer qu’un tel produit ne dépend pas du choix d’expression S-réduite
choisie et on le note par conséquent bw. En particulier, bw possède une unique
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expression sous la forme

(biℓbiℓ−1 · · · bjℓ)(biℓ−1
biℓ−1−1 · · · bjℓ−1

) · · · (bi1bi1−1 · · · bj1)

où tous les indices sont dans {1, . . . , n}, iℓ < iℓ−1 < · · · < i1, jℓ < jℓ−1 < · · · < j1 et
jm ≤ im pour m = 1, . . . , ℓ, héritée de l’expression S-réduite

(siℓsiℓ−1 · · · sjℓ)(siℓ−1
siℓ−1−1 · · · sjℓ−1

) · · · (si1si1−1 · · · sj1)

de w donnée par le point 3. de la Proposition 1.1.2.

On a le résultat suivant

Théorème 1.2.2 (Fan, Green, [19]). La base {bw}Wf
est la projection sous θ de

la base canonique {C ′
w}w∈W , i.e., θ(C ′

w) = bw si w ∈ Wf tandis que θ(C ′
w) = 0 si

w /∈ Wf .

Corollaire 1.2.3. La base {bw}Wf
est à signature près la projection sous θ′ de la

base canonique {Cw}w∈W , i.e., θ′(Cw) = (−1)ℓS(w)bw si w ∈ Wf tandis que θ′(Cw) =

0 si w /∈ Wf .

Démonstration. Les bases Cw et C ′
w sont reliées par la relation Cw = (−1)ℓS(w)jH(C

′
w).

En utilisant l’égalité θ′ = jTLn
◦ θ ◦ jH on a le résultat.

La base {bw}w∈Wf
sera appelée base de Kazhdan-Lusztig ou base des diagrammes,

cette dernière terminologie provenant du fait que lorsque l’algèbre est réalisée comme
une algèbre de diagrammes, la base constituée des diagrammes correspond à la base
{bw}w∈Wf

. La version diagrammatique de TLn sera rappelée en sous-section 2.3.1.

1.3 Bimodules sur des algèbres Z-graduées

1.3.1 Modules sur des algèbres Z-graduées

Soit A une k-algèbre commutative Z-graduée avec A0 = k, Ai = 0 si i < 0. On
note A −ModZ la catégorie des A-modules gradués et A − modZ la catégorie des
A-modules gradués de type fini, c’est-à-dire que si M ∈ A−ModZ ou A−modZ, M
possède une décomposition en somme directe de sous-k-modules

M =
⊕

i∈Z

Mi
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de telle sorte que pour tous i, j ∈ Z, on ait

Ai ·Mj ⊂Mi+j .

Pour M ∈ A−ModZ ou A−modZ, on note M [i] le A-module gradué égal à M en
tant que A-module et muni de l’unique graduation telle que (M [i])k =Mi+k.

Remarque 1.3.1. Dans le cas d’une k-algèbre Z-graduée A finiment engendrée avec
graduation positive et A0 = k, l’anneau d’endomorphismes d’un A-module gradué
M de type fini est de dimension finie. Par conséquent les modules indécomposables
ont anneau d’endomorphisme local et la propriété de Krull-Schmidt est vérifiée dans
la catégorie A−modZ.

1.3.2 Bimodules sur des algèbres Z-graduées

Avec les mêmes hypothèses sur A que dans la sous-section précédente, on note
A − modZ − A la catégorie des A-bimodules Z-gradués de type fini avec même
opération de k des deux côtés, i.e., on exige que les objets de cette catégorie soient
des A⊗k A-bimodules gradués de type fini où A⊗k A est muni de la Z-graduation
évidente. Pour M,N ∈ A − modZ − A et ϕ : M → N un homomorphisme de
A⊗k A-bimodules, on dit que ϕ est homogène de degré i si ϕ(Mj) ⊂ Ni+j, ∀j ∈ Z.
On note Hom(M,N)i l’ensemble des homomorphismes homogènes de degré i. On
pose

Hom(M,N) :=
⊕

i∈Z

Hom(M,N)i.

On munit Hom(M,N) d’une structure de A⊗k A-module gradué via les opérations
à gauche et à droite provenant des opérations à gauche et à droite sur M et N ,
c’est-à-dire, pour a, a′ ∈ A, f ∈ Hom(M,N), on pose

afa′(v) = f(ava′) = af(v)a′.

1.3.3 Bimodules de Soergel

Les bimodules de Soergel fournissent une catégorification de la base canonique C ′
w

de Kazhdan-Lusztig (voir le Théorème 1.2.1) et interviennent dans le cadre des
conjectures de Kazhdan-Lusztig.

Soit (W,S) un système de Coxeter de rang fini. Soit V une représentation
réflexion-fidèle de (W, S), c’est-à-dire une représentation fidèle sur un corps k de
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caractéristique différente de deux telle que si x ∈ W,

codim(V x) = 1 si et seulement si x ∈ T .

Cette définition est introduite dans ([34], Definition 1.5) où il est démontré que tout
système de Coxeter de rang fini possède une représentation réflexion-fidèle ([34],
Proposition 2.1).

Dans le cas où k est infini, on note R = O(V ) ∼= S(V ∗) la k-algèbre des fonctions
polynomiales de V . On munit un tel anneau d’une graduation positive en plaçant le
corps en degré zéro et V ∗ en degré 2. En particulier, une telle convention implique
que Ri = 0 pour i impair. On note R la catégorie des R-bimodules Z-gradués avec
même opération de k des deux côtés et de type fini en tant que R ⊗k 1-modules ou
1⊗k R-modules. Une telle catégorie, munie du produit ⊗R, est monoïdale. Puisque
(W,S) agit sur V , il en résulte une opération de (W,S) sur R par

(w · f)(v) = f(w−1 · v), w ∈ W, f ∈ R, v ∈ V.

Pour toute réflexion s ∈ T , on note Rs ⊂ R le sous-anneau des fonctions s-
invariantes. Pour tout x ∈ W, on note Rx l’élément de R égal à R en tant que
R⊗k 1-module, avec opération à droite tordue par x, c’est-à-dire,

(f · r)(v) = f(v)r(xv), f ∈ Rx, r ∈ R, v ∈ V.

Soit U = ⊕i∈ZUi un espace vectoriel Z-gradué de dimension finie. La dimension

graduée de U est l’élément de Z[v, v−1] défini par

dim(U) =
∑

i∈Z

(dimUi)v
−i.

Si M est un R-module à droite, Z-gradué et de type fini, on définit son rang gradué

par l’élément de Z[v, v−1] donné par

rkM = dim(M/MR>0).

On note rkM le rang gradué de M où l’on a substitué v par v−1. On note 〈R,⊗R〉
l’anneau de Grothendieck scindé de la catégorie R.

Théorème 1.3.2 ([33], Theorems 1, 2; [34], Theorems 1.10, 5.3). Notons H l’algèbre

de Hecke de (W,S). Soit V une représentation réflexion-fidèle de (W,S) et R la

k-algèbre des fonctions régulières sur V .
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1. Il existe un unique homomorphisme de Z[v, v−1]-algèbres

E : H → 〈R,⊗R〉

tel que E(v) = 〈R[1]〉 et pour tout s ∈ S, on ait E(Ts + 1) = 〈R⊗Rs R〉.

2. L’application E possède un inverse à gauche

ch : 〈R,⊗R〉 → H

donné par ch(B) =
∑

x∈W rk(Hom(B,Rx))Tx.

On peut définir une sous-catégorie de R constituée des bimodules dits spéciaux,
c’est-à-dire, des bimodules dont la classe est dans l’image de E . La conjecture
de Soergel stipule que les classes des objets indécomposables de la catégorie des
bimodules spéciaux sont exactement les images des éléments de la base de Kazhdan-
Lusztig {C ′

w}w∈W par l’homomorphisme E . Elle a été établie en toute généralité pour
les système de Coxeter de rang fini par Elias et Williamson ([18]). Des preuves dans
certains cas particuliers avaient été auparavant données par Soergel et Härterich (voir
[34], Remarks 1.14, 1.16 et 1.17 pour plus de détails). Cette conjecture implique
entre autres la positivité des polynômes de Kazhdan-Lusztig et donne une preuve
algébrique de la conjecture de Kazhdan-Lusztig sur les multiplicités de facteurs de
composition de modules de Verma.

1.4 Partitions non croisées et monoïde dual

1.4.1 Monoïde dual

La référence pour cette section est principalement [2]. Soit (W,S) un système de
Coxeter fini. On note B = B(W,S) le groupe de tresses correspondant engendré
par une copie S de S et B+ = B+(W,S) le monoïde de tresses positif. On note
s ∈ S l’élément correspondant à s ∈ S et p : B →W la surjection canonique définie
par p(s) = s. Un élément de Coxeter dans W est un produit de tous les éléments
de S. Soit T =

⋃
w∈W wSw−1 l’ensemble des réflexions de W et ℓT : W → Z≥0 la

longueur de réflexion ou longueur absolue définie de la façon suivante: pour w ∈ W,
ℓT (w) est le nombre miminal de facteurs dans une expression de w comme produit
de réflexions. Il existe un ordre partiel sur W noté <T et défini par u <T v si

ℓT (u) + ℓT (u
−1v) = ℓT (v).
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Malheureusement, (W, <T ) ne forme pas un treillis. En revanche, on peut démontrer
que Pc := {w ∈ W | w <T c} où c est un élément de Coxeter forme un treillis; il
s’agit d’un résultat difficile à démontrer. Des preuves pour certains types en ont été
données par Brady et Watt ([8]) et Bessis-Digne-Michel ([3]). La première preuve
complète au cas par cas est due à Bessis dans [2]. Des preuves uniformes ont ensuite
été données par Brady et Watt [9], Ingalls et Thomas [26].

On définit le monoïde de tresses dual ou simplement monoïde dual B∗
c associé

au triplet (W, T , c) comme le monoïde engendré par une copie {ic(t) | t ∈ T } de T
avec relations

ic(t)ic(t
′) = ic(tt

′t)ic(t), si tt′ ∈ Pc.

Les relations ci-dessus sont appelées relations de tresses duales. Le groupe de tresses
B est isomorphe au groupe de fractions de B∗

c et on a une injection B∗
c →֒ B.

Dans [13], on démontre que ic ◦ p fournit une bijection entre les éléments de B qui
appartiennent à la première composante d’un élément de l’orbite de Hurwitz du
relevé c de c dans B (obtenu en remplaçant chaque réflexion simple de c par le
générateur du groupe de tresses correspondant) et l’ensemble des atomes {ic(t) | t ∈

T } de B∗
c . La bijection inverse permet d’obtenir l’injection de B∗

c en tant que sous-
monoïde de B contenant B+. Ceci avait déjà été démontré auparavant dans [2] pour
les éléments de Coxeter définis par une paire chromatique. Pour x ∈ Pc et t1 · · · tk
une décomposition T -réduite de x, le produit

ic(t1) · · · ic(tk)

dans B∗
c est indépendant du choix d’expression T -réduite (il s’agit d’une conséquence

des relations de tresses duales). On le note par conséquent ic(x). Les éléments de
la forme ic(x) pour x ∈ Pc sont les éléments dits simples de B∗

c .

1.4.2 Partitions non croisées classiques

Dans [3] and [2], il est démontré que le poset (Pc, <T ) est isomorphe au treillis des
partitions non croisées introduites par Kreweras (voir [30]). La partition correspon-
dant à x ∈ Pc est donnée par les supports des différents cycles intervenant dans la
décomposition de x vu comme permutation du groupe symétrique Sn+1 en produit
de cycles à supports disjoints (voir la sous-section suivante et la figure 1.1 pour une
illustration); en fait, ceci est vrai si l’élément de Coxeter c est égal à s1s2 · · · sn
(ou pour c−1 en renversant le sens des indices) mais si c′ est un autre élément de
Coxeter, on a des isomorphismes de treillis Pc → Pc′ . Dans le chapitre 3, nous
verrons qu’il existe également une géométrie pour un élément de Coxeter arbitraire
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c′; ce qui change est simplement l’ordre des entiers indexant les différents points du
cercle. Nous identifierons systématiquement Pc avec le treillis des partitions non
croisées. Les partitions non croisées ont cardinal égal au nombre de Catalan Cn+1,
c’est-à-dire, |Pc| = Cn+1 où

Cn+1 :=
1

n + 2

(
2(n+ 1)

n + 1

)
.

1.4.3 Représentation géométrique des partitions non croisées

classiques et des éléments simples

Comme mentionné plus haut, il existe une représentation géométrique de toute
partition non croisée x ∈ Pc par des unions disjointes de polygones ayant leurs
sommets parmi un ensemble de n + 1 points situés sur un cercle et indexés par les
entiers 1, 2, . . . , n + 1 disposés par ordre croissant dans le sens des aiguilles d’une
montre, comme dans la figure 1.1. On considérera qu’une arête est un polygone, mais
qu’un point isolé n’est pas un polygone. Chaque polygone correspond à un cycle
dans la décomposition de x ∈ Pc ⊂ Sn+1 en produit de cycles à supports disjoints.
Tout polygone P intervenant dans la représentation géométrique de x ∈ Pc sera

b

b

bb

b

b

•

•

•

•

•

•

2

3

45

6

1

Fig. 1.1: Représentation géométrique de la partitions non croisée
x = (1, 6)(2, 3, 5). Ici on a n = 5.

noté en utilisant la suite ordonnée des entiers indexant ses somments: on écrira
P = [i1i2 · · · ik] où i1 < i2 < · · · < ik et ij sont les indices des sommets de P , avec
ij < ij+1. Le cycle correspondant à P est alors (i1, i2, . . . , ik). Dans l’exemple donné
en figure 1.1, on a deux polygones P1 = [235] et P2 = [16].

Définition 1.4.1. On dira que i1 est un indice initial et que ik est un indice terminal
de P ou de x.

Par conséquent, une arête reliant les points indexés par j et k respectivement,
où j, k ∈ {1, . . . , n + 1}, correspond à la transposition (j, k). Un triangle ayant ses
sommets indexés par les trois entiers j < k < m correspond au cycle (j, k,m) =
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(j, k)(k,m). A chaque tel triangle correspond une relation de tresse duale (écrite ici
dans le groupe de Coxeter):

(j, k)(k,m) = (k,m)(m, j) = (m, j)(j, k).

Le triplet ordonné ((j, k), (k,m), (m, j)) est souvent dit admissible. Etant donné que
(j, k,m) <T s1s2 · · · sn) on obtient l’une des relations de tresses duales du monoïde
dual associé à l’élément de Coxeter c = s1s2 · · · sn:

ic((j, k))ic((k,m)) = ic((k,m))ic((m, j)) = ic((m, j))ic((j, k))

et toute relation de tresse duale est obtenue de cette façon.
Plus généralement, tout polygone convexe à k arêtes ayant ses sommets parmi

les n+1 points est la représentation géométrique d’une partition non croisée qui est
un cycle, obtenu à partir des transpositions de la façon suivante: il suffit de choisir
k − 1 arêtes du polygone (rappelons qu’une arête correspond à une transposition)
et d’effectuer le produit des réflexions correspondantes dans le sens des aiguilles
d’une montre, en commençant par la réflexion correspondant à l’arête se situant
juste après celle qui a été retirée (dans le sens des aiguilles d’une montre). Ceci est
une conséquence des relations duales et puisque celles-ci sont aussi vraies dans le
monoïde dual, on peut par conséquent utiliser la géométrie et les règles associées
ci-dessus lorsqu’on est amené à travailler avec les éléments simples du monoïde dual.
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Chapter 2

A categorification of the diagram basis of

the Temperley-Lieb algebra by analogues of

Soergel bimodules

The Coxeter systems (W,S) considered in this chapter will always be of type An
(with n ≥ 2) unless otherwise specified, identifying W with the symmetric group
Sn+1 on n + 1 letters and S with the set of simple transpositions si = (i, i+ 1) for
all i = 1, . . . , n. We will denote by T the set of reflections and by V the geometric
representation of (W,S) over a field k of characteristic zero. For t ∈ T we denote
by Ht the reflecting hyperplane of t.

29
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2.1 Combinatorics of Weyl lines

2.1.1 Weyl lines

The representation V is reflection faithful in the sense of ([34], Definition 1.5) as a
consequence of ([34], Proposition 2.1). We recall the definition of a Weyl line from
([16], Definition 3.18):

Definition 2.1.1. A Weyl line is a subspace of V of dimension one that is the

intersection of reflection hyperplanes. A Weyl line is transverse to some reflection

t ∈ T if it is not contained in Ht.

We denote by Z the union of all the Weyl lines in V , which is a W-stable
subvariety of V . We write Vt for the union of the Weyl lines transverse to t ∈ T
viewed as a subvariety of Z ⊂ V ; if the reflection is simple, that is, if t = si, we will
often write Vi to mean Vsi.

Lemma 2.1.2. There exists a W-equivariant bijection

{
Weyl lines in V

} ∼
−→

{
partitions of {1, . . . , n+ 1} into

two nonempty subsets

}
,

which to any Weyl line L =
⋂n−1
i=1 Hti, where Hti is the reflection hyperplane of ti ∈

T , associates the partition given by the supports of the cycles of the decomposition

of t1 · · · tn−1 into a product of cycles with disjoint support (which turns out to be a

partition into two subsets as the proof will show).

Proof. One has to show that the map defined above is well-defined. Suppose L =⋂n−1
i=1 Hti is a Weyl line in V . The product w = t1 · · · tn−1 has reflection length equal

to n − 1 since L has dimension one (the set of roots of the ti consists of linearly
independent vectors, which implies that t1 · · · tn−1 is a reduced T -decomposition for
w ; the parabolic subgroup generated by the ti is equal to the subgroup of elements
of W fixing L; see [10], section 2). Now the reflection length of an element of the
symmetric group Sn+1 is equal to n + 1 minus the number of cycles occurring in
the decomposition into disjoint cycles. This forces w as element of Sn+1 to fix at
most one letter. If it fixes exactly one letter j, suppose that L is written as another
intersection of reflecting hyperplanes

⋂n−1
i=1 Ht′i

. Then all the t′i fix L and hence have
to be in the parabolic subgroup of W generated by the ti. Hence all the t′i have to
fix the letter j and one gets the same partition of n + 1 into two sets as before.

If no letter is fixed, write S1

.
∪S2 for the disjoint union of the supports of the two

cycles. If L is written
⋂n−1
i=1 Ht′i

, then every t′j has to be in the parabolic subgroup
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generated by the ti and since it is a conjugate of some ti it will either fix S1 or fix
S2. Hence we obtain the same partition into two sets as before.

Now for each partition S1

.
∪ S2 of {1, . . . , n+ 1} write a corresponding n-cycle if

either S1 or S2 has cardinality one or write a corresponding product of two cycles
if both have cardinality more than one and decompose them in the obvious way as
products of n− 1 reflections. This proves that the map is surjective. Now if L 6= L′

are two different Weyl lines, then one can find some reflecting hyperplane L′ ⊂ Hs

such that L∩Hs = 0. Then s cannot be in the parabolic subgroup of elements fixing
L and hence L and L′ will not yield the same partition.

Remark 2.1.3. In fact, Weyl lines are in bijection with rank n−1 parabolic subgroups
(that is, maximal parabolic subgroups, not necessarily standard);it is a general
fact for reflection groups that there is a W-equivariant bijection between subspaces
of dimension one obtained by intersections of reflecting hyperplanes and maximal
parabolic subgroups, given by

L 7→ FixW(L) := {w ∈ W | w(v) = v ∀v ∈ L}.

It will be convenient to give another description of the Weyl lines by considering
V as a subspace of kn+1. In that setting we have

V =

{
(x1, . . . , xn+1) ∈ k

n+1 |
n+1∑

i=1

xi = 0

}
,

Z = {(x1, . . . , xn+1) ∈ V | |{x1, . . . , xn+1}| ≤ 2}.

Now given any partition P of the form S1

.
∪S2 = {1, . . . , n+1} with S1, S2 6= ∅, the

corresponding Weyl line ZP is obtained by

ZP = {(x1, . . . , xn+1) | xi = xj if either {i, j} ⊂ S1 or {i, j} ⊂ S2}.

Any reflection t ∈ T corresponds to a subset {i, j} ⊂ {1, . . . , n + 1} given by its
support. We have

Vt\{0} = {x ∈ Z | xi 6= xj} whereas Ht = {x ∈ V | xi = xj}.

Two reflections t, t′ ∈ T commute with each other if and only if the intersection of
the two corresponding subsets is empty.

Lemma 2.1.4. Let t, t′, t′′ ∈ T be three distinct reflections each commuting with

neither of the others. In particular t′tt′ = tt′t = t′′. Then
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Vt ∩ Vt′ = Vt ∩Ht′′ = Vt′ ∩Ht′′ .

In particular Vt ∩ (Vt′ ∪ Vt′′) = Vt.

Proof. We write t = (i, j), t′ = (j, k), t′′ = (i, k). One has

Vt ∩ Vt′ = {x ∈ Z | xi 6= xj 6= xk}.

But since Z contains all the vectors with at most two different entries, the set above
is also equal to

{x ∈ Z | xj 6= xi = xk} = Vt ∩Ht′′ = Vt′ ∩Ht′′ .

2.1.2 Noncrossing and dense sets of reflections

Notation. For i ≤ j two integers we write [i, j] for the set {i, i+ 1, . . . , j − 1, j}.

Definition 2.1.5. Two indices i, j in [1, n] are distant if |i− j| > 1.

Notation. Given any closed subset W ⊂ Z we write sW for the closed subset
{s(w) | w ∈ W}.

To any sequence i1 · · · im with ij ∈ {1, . . . , n} of length at least one, we associate
the variety W (i1 · · · im) built inductively by setting W (i) = Vi and

W (i1 · · · im) = Vi1 ∩ (W (i2 · · · im) ∪ si1W (i2 · · · im)).

These varieties will play a key role later on. We write Vn for the family of varieties
obtained in this way.

Example 2.1.6 For i and j with |j − i| > 1, one has W (ij) = Vi ∩ Vj = W (ji).

Example 2.1.7 We have W (i(i± 1)) = Vi ∩ (Vi±1 ∪ siVi±1) = Vi by Lemma 2.1.4.

Example 2.1.8 One has W (i(i± 1)i) = Vi =W (i).

One should see an analogy between example 2.1.6 and the Temperley-Lieb rela-
tion bibj = bjbi as well as between example 2.1.8 and the Temperley-Lieb relation
bibi±1bi = bi. We will make this analogy into an explicit link below.

Lemma 2.1.9. Let j ≤ m ≤ i. Then W (m(m − 1) · · · j) = Vm and W (m(m +

1) · · · i) = Vm.
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Proof. We prove the first equality by induction on m− j, the second being similar.
If m− j = 0 then Wm = Vm by definition. Suppose m− j > 0. Then

W (m(m− 1) · · · j) = Vm ∩ (W ((m− 1) · · · j) ∪ smW ((m− 1) · · · j))

and W ((m− 1) · · · j) = Vm−1 by induction. Example 2.1.7 concludes.

Notation. Let s ∈ T and W ⊂ Z a closed subset. For short, we write s · W

for the variety Vs ∩ (W ∪ sW ). If s = si ∈ S we even write i ·W for the variety
si ·W = Vi ∩ (W ∪ siW ). More generally given any sequence i1 · · · ik of indices in
{1, . . . , n}, we write i1 · · · ik ·W for the variety si1 · (si2 · (· · · (sik ·W ) · · · )). It is
not a group action but an action of the Kauffman monoid Kn as explained below.
Notice that if W =W (i1 · · · ik),

sj ·W = W (ji1 · · · ik).

The Kauffman monoid Kn has n+ 1 generators b1, . . . , bn, δ and relations

bjbibj = bj if |i− j| = 1,

bibj = bjbi if |i− j| > 1,

b2i = δbi = biδ.

One checks easily that the assignments bi ·W := si ·W = Vi∩ (W ∪siW ), δ ·W =W

for W ∈ Vn define an operation of Kn on Vn.

Lemma 2.1.10. Suppose that Q ⊂ T is a set of pairwise commuting reflections.

Let s ∈ T . Set W :=
⋂
t∈Q Vt. Then W 6= 0 and s ·W =

⋂
t∈Q′ Vt where

Q′ =





Q ∪ {s} if st = ts for each t ∈ Q

(Q\t) ∪ {s} if ∃!t ∈ Q such that st 6= ts

(Q\{t, t′}) ∪ {s, tt′st′t} if ∃t 6= t′ ∈ Q such that st 6= ts, st′ 6= t′s.

and Q′ is also a set of pairwise commuting reflections, in particular s ·W 6= 0.

Proof. Notice that
W = {x ∈ Z | xi 6= xj if (i, j) ∈ Q}.

In particular W 6= 0 since different reflections in Q correspond to disjoint subsets of
{1, . . . , n+1}. The fact that Q′ is a set of pairwise commuting reflections is obvious
in the first two cases and is a straightforward computation in the third case, viewing
the reflections as transpositions.
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Recall that for s, t ∈ T , sVt = Vsts. If s ∈ T commutes with every t ∈ Q then

s ·W =
(⋂

t∈Q Vt

)
∩ Vs since sVt = Vsts = Vt whenever s and t commute.

If st 6= ts for some t ∈ TW but s commutes with any t′ ∈ Q with t′ 6= t, then

s ·W =



⋂

r∈Q\t

Vr


 ∩ Vs ∩ (Vt ∪ Vsts)

As we have seen in Lemma 2.1.4 we have Vs ∩ (Vt ∪ Vsts) = Vs hence

s ·W =
⋂

r∈(Q\t)∪{s}

Vr,

The remaining case is the case where s does not commute with exactly two reflections
t, t′ ∈ Q. In that case one has

s ·W =




⋂

r∈Q\{t,t′}

Vr


 ∩ Vs ∩ ((Vt ∩ Vt′) ∪ (Vsts ∩ Vst′s)).

We claim that
Vs ∩ ((Vt ∩ Vt′) ∪ (Vsts ∩ Vst′s)) = Vs ∩ Vtst′st,

which concludes. Indeed, by Lemma 2.1.4 we have

Vs ∩ Vt ∩ Vt′ = Vt ∩ Vt′ ∩Hst′s = Vt′ ∩ (Vt ∩Hst′s)

= Vt′ ∩ Vt ∩ Vtst′st.

Similarly, Vs ∩ Vsts ∩ Vst′s = Vsts ∩ Vst′s ∩ Vtst′st. Conversely, since Vs ∩ Vtst′st is not
equal to zero consider a Weyl line L ⊂ Vs ∩ Vtst′st. If L 6⊂ Ht, then L ⊂ Hst′s and
hence L 6⊂ Ht′ since L 6⊂ Hs. Similarly if L ⊂ Vs ∩Vtst′st and L ⊂ Ht then L 6⊂ Hst′s

(since L 6⊂ Htst′st) and L 6⊂ Hsts (since L 6⊂ Hs).

Proposition 2.1.11. Let W ∈ Vn. Then W 6= {0} and there exists a unique set

TW ⊂ T with tt′ = t′t for each t, t′ ∈ TW such that W =
⋂
t∈TW

Vt. Moreover,

TW = {s ∈ T | W ⊂ Vs}.

Proof. Existence is shown using induction on the length of a sequence associated to
a variety in Vn. If W ∈ Vn is obtained from a sequence of length one, then W = Vj
for some j and W 6= 0. Now assume the result holds for each variety in Vn obtained
from a sequence of length less than or equal to m, and suppose W ∈ Vn is obtained
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from a sequence of length equal to m + 1. Then by definition W = s ·W ′ where
s ∈ S and W ′ ∈ Vn is obtained from a sequence of length equal to m. By induction
W ′ =

⋂
t∈TW ′

Vt with TW ′ ⊂ T a set of pairwise commuting reflections. Thanks to
Lemma 2.1.10 we have W =

⋂
t∈Q′ Vt with Q′ ⊂ T a set of pairwise commuting

reflections and W 6= {0}.
For uniqueness, notice that for any set Q ⊂ T of pairwise commuting reflections,

the set
WQ\{0} = {x ∈ Z | (i, j) ∈ Q⇒ xi 6= xj}

determines Q since (i, j) /∈ Q if and only if there exists x ∈ WQ\{0} with xi = xj .
But W = WTW which concludes. It also proves the second claim since W =WTW ⊂

Vs where s = (i, j) implies that xi 6= xj for any x ∈ W\{0}.

The following consequence will be crucial further:

Corollary 2.1.12. Let W ∈ Vn, i ∈ {1, . . . , n}. Then Vi ∩W 6= {0}. Moreover,

the following are equivalent:

1. The variety W is si-invariant,

2. The variety W ∩ Vi is si-invariant,

3. For each t ∈ T such that tsi 6= sit, (W ∩ Vi) ∩ Vt 6= 0.

Proof. Thanks to Proposition 2.1.11, W =
⋂
t∈TW

Vt, where TW ⊂ T is a set of

pairwise commuting reflections. Hence we can find a partition S1

.
∪S2 = {1, . . . , n+1}

such that i ∈ S1, i+1 ∈ S2 and each t ∈ TW can be written as a transposition (j, k)

with j ∈ S1 and k ∈ S2. Thanks to Lemma 2.1.2 this gives us a corresponding Weyl
line included in W ∩ Vi, hence W ∩ Vi 6= {0}. If W is si-invariant then so is W ∩ Vi.
Now assume that W ∩ Vi is si-invariant and suppose that W ∩ Vi ⊂ Ht for some
reflection t which does not commute with si. One then gets W ∩ Vi ⊂ Hsitsi by
si-invariance and hence also W ∩ Vi ⊂ Hi by t-invariance which force W ∩Vi = {0}.
Now assume that W is not si-invariant. It implies that there exists t′ ∈ TW such
that t′si 6= sit

′. Since W ⊂ Vt′ by Proposition 2.1.11, we have that Vi ∩ W ⊂

Vi ∩ Vt′ ⊂ Hsit′si by Lemma 2.1.4, and t = sit
′si does not commute with si since t′

does not.

Definition 2.1.13. A set Q ⊂ T of pairwise commuting reflections is noncrossing
if after identification with a set of transpositions of the isomorphic symmetric group,

it contains no pair of transpositions (i, j) and (k, l) with i < k < j < l.
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If we draw n+1 points on a circle and label each of them with an index between 1

and n+1, starting by 1 at some point and writing the increasing indices in clockwise
order, and represent a transposition by a line segment between the two indices it
exchanges, a set Q ⊂W of reflections is noncrossing if and only if any two segments
in the corresponding circle never cross each other. Equivalently, one can draw a line
with n+1 points labeled with integers between 1 and n+1, starting on the left with
the point labeled with 1. One then represents a transposition by an arc between the
two numbers it exchanges. The arcs are considered up to isotopy. In that setting, a
set of reflections is noncrossing if and only if there is a way of writing the arcs such
that any two arcs associated to different reflections from our set never cross. This
last way of representing noncrossing sets will turn out to be the most convenient
one.

Definition 2.1.14. Let Q ⊂ W. The support of Q, written supp(Q), is the union of

the supports of its elements viewed as elements of the symmetric group. A set Q ⊂ T

of pairwise commuting reflections is dense if it is noncrossing and if there exists an

integer k > 0 and integers 0 < m1 < j1 < m2 < j2 < · · · < mk < jk ≤ n + 1 such

that (mq, jq) ∈ Q and supp(Q) =
⋃k
q=1[mq, mq + 1, . . . , jq]. This forces in particular

jq −mq to be odd for each q since Q is noncrossing and (mq, jq) ∈ Q. A subset of

supp(Q) of the form [mq, mq + 1, . . . , jq] as above will be called a block of Q.

Remark 2.1.15. The reason we choose to call a set Q ⊂ T with the properties above
a dense set is the following: given any reflection t = (i, j) ∈ Q with i < j, any
number k with i < k < j must lie in the support of a reflection t′ ∈ Q;this is a
maximality property.

Lemma 2.1.16. Let W ∈ Vn. Then TW is noncrossing.

Proof. Again, we use induction on the length of the sequence defining W . If such
a sequence has length one the result is clear. Let W = s · W ′ and suppose that
Q = TW ′ is noncrossing, then Q′ = Ts·W ′ is also noncrossing using the formulas from
Lemma 2.1.10 (it is obvious in the two first cases and clear for the last one if we
represent Q and Q′ as arcs joining points on a line).

Notation. If W ∈ Vn is associated to a sequence i1 · · · ik we will often write
T (i1 · · · ik) instead of TW for convenience. Notice that using Lemma 2.1.10 to-
gether with Proposition 2.1.11 one can inductively compute the variety and the
corresponding dense set associated to a sequence.
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Theorem 2.1.17. Let W ∈ Vn. Then TW is dense. Conversely, any dense subset

Q ⊂ T is equal to a TV ′ for some variety V ′ ∈ Vn. In formulas,

{TW | W ∈ Vn} = {Q ⊂ T | Q is dense}.

Proof. Thanks to Lemma 2.1.16, TW is noncrossing for any W ∈ Vn. If W is
associated to a sequence of length one then TW contains only one simple reflection,
hence is dense. It suffices then to show that the rules from Lemma 2.1.10 preserve
dense sets, which is clear for the first two rules and easy for the last one if we
represent the reflections as arcs joining points on a line.

Conversely suppose that Q is dense, in particular supp(Q) =
⋃k
q=1[mq, jq],

with jq − mq odd for each 1 ≤ q ≤ k. Consider the set of simple reflections⋃k
q=1{smq

, smq+2, . . . , sjq−1} and rewrite this union as {sk1, . . . , skn(Q)
} with ki < kj

if i < j. Notice that this is a set of pairwise commuting reflections. We will show
by induction on the size of the biggest block of Q that there exists a sequence
seq = n1n2 · · ·nℓ with ni ∈

⋃k
q=1[mq, jq − 1] for each 1 ≤ i ≤ ℓ such that Q = TW

where W is associated to the sequence

seqk1k2 · · · kn(Q)

obtained by concatenation of the sequence seq and the sequence k1k2 · · · kn(Q). Firstly
we suppose that the size of the biggest block is equal to one. Then each block has
size one, in other words, jq = mq + 1 for each q and there is only one corresponding
dense set Q: the set of reflections {sk1 , sk2, . . . , skn(Q)

}. One then has Q = TW with
W associated to the sequence k1k2 · · ·kn(Q) (see example 2.1.6).

Now suppose that the biggest block Bi = [mi, ji] of Q has size bigger than
one. It suffices to show the induction hypothesis for the set Qi of reflections in Q

supported in Bi, i.e., that Qi is equal to TW for some W associated to a sequence
s(i) = seqimi(mi+2) · · · (ji−1) where seqi is a sequence with all indices in [mi, ji−1]

: if this holds, one associates to each block Bq of Q the variety Ws(q) such that TWs(q)

is equal to the set Qq of reflections in Q supported in Bq (this is possible since
we show it for the biggest block(s) and the result holds by induction for blocks of
smaller size); but then if q 6= q′ the reflections in Qq commute with the reflections in
Qq′ since they are supported in [mq, jq] and [mq′ , jq′ ] respectively which are disjoint.
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Hence one gets

Q =
k⋃

q=1

T (s(q))

= T (s(1) · · · s(k))

= T (seq1m1(m1 + 2) · · · (j1 − 1) · · · seqkmk(mk + 2)) · · · (jk − 1)

= T (seq1 · · · seqkm1(m1 + 2) · · · (j1 − 1) · · ·mk(mk + 2) · · · (jk − 1)︸ ︷︷ ︸
=k1k2···kn(Q)

),

where second and last equalities hold since the indices in s(i) are distant from the
indices s(i′) whenever i 6= i′ (if two sequences x and y are such that any index in
x is distant from any index in y then it is a consequence of Lemma 2.1.10 that
T (xy) = T (yx) = T (x) ∪ T (y)).

Therefore we have to show that a dense set Q having only one block [k1, kn(Q)+1]

is equal to TW for W ∈ Vn associated to a sequence obtained by concatenating a
sequence with indices in [k1, kn(Q)] to the left of the sequence k1 · · ·kn(Q); since Q has
a single block we have kj+1 = kj+2 for each k = 1, . . . , n(Q)−1. We first show that
we can concatenate a sequence to the left of k1 · · ·kn(Q) to obtain a corresponding
variety W ′ such that TW ′ = Q′ contains exactly the reflection (k1, kn(Q) + 1) and
all the simple reflections sk1+1, sk2+1,. . . ,skn(Q)−1+1. Then we will build W from W ′

by induction; see figure 2.1 for an illustration of this process. Using Lemma 2.1.10
inductively we get that TW(ki+1)···(kn(Q)−1+1)k1···kn(Q)

is equal to the set

{sk1, sk2, . . . , ski−1
, (ki, kn(Q) + 1), ski+1, ski+1+1, . . . , skn(Q)−1+1},

hence Q′ = TW ′ where W ′ is associated to the sequence

(k1 + 1)(k2 + 1) · · · (kn(Q)−1 + 1)k1 · · · kn(Q).

Now Q′′ := Q\{(k1, kn(Q) + 1)} is dense since Q is dense and supp(Q′′) =

[k1 + 1, kn(Q)]; hence all blocks of Q′′ have a size smaller than kn(Q) + 1 − k1. By
induction, Q′′ is therefore equal to TW ′′ for W ′′ associated to a sequence seq(k1 +

1)(k2 + 1) · · · (kn(Q)−1 + 1) for some sequence seq having all its indices lying in
{k1+1, . . . , kn(Q)−1 +1}. But then s = (k1, kn(Q)+1) commutes with any reflection
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sℓ where ℓ is an index in seq, hence one has

Wseq(k1+1)···(kn(Q)−1+1)k1···kn(Q)
= seq ·W(k1+1)···(kn(Q)−1+1)k1···kn(Q)

= seq ·W ′

= seq ·

(
⋂

t∈Q′

Vt

)

= seq ·


Vs ∩

n(Q)−1⋂

i=1

Vski+1




= seq · (Vs ∩W(k1+1)···(kn(Q)−1+1))

= Vs ∩ (seq ·W(k1+1)···(kn(Q)−1+1))

= Vs ∩

(
⋂

t∈Q′′

Vt

)
=
⋂

t∈Q

Vt,

and the sequence seq(k1 + 1)(k2 + 1) · · · (kn(Q)−1 + 1) has all its indices lying in
[k1, kn(Q)−1 + 1] ⊂ [k1, kn(Q)].

k1 k2 k3 kn(Q)
→ k1 k2 k3 kn(Q)

→ k1 k2 k3 kn(Q)

Fig. 2.1: Illustration of the process used in the proof of Theorem
2.1.17 to build a dense set Q having a single block of maximal
size from the sequence k1 · · · kn(Q) with n(Q) = 4. On the left
is the dense subset associated to this sequence; in the middle is
the dense set Q′ associated to the sequence (k1+1) · · · (kn(Q)−1+
1)k1 · · · kn(Q); on the right is the set Q. The reflections of the
dense set Q′′ are drawn in dashed on the rightmost picture.

2.2 Quasi-coherent sheaves on Weyl lines

2.2.1 Regular functions on Weyl lines

Let R be the algebra of regular functions on V and R̄ be the algebra of regular
functions on Z. Notice that R ։ R̄. In ([16], Proposition 3.24) it is shown that
I(Z) is generated in degree 3. For each subset J ⊂ T , we write RJ for the algebra
of regular functions on the union of Weyl lines transverse to every element in J . We
will write Ri instead of R{si} where si ∈ S, Ri,j instead of R{si,sj}, etc.
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We denote by fk the element of R or R̄ which is the equation of the reflecting
hyperplane Hsk . We will often abuse notation and write fi for fi|X where X is a
subvariety of Z.

Let t ∈ T . If X ⊂ V is a t-stable Zariski-closed subset, then t induces a map
O(X) → O(X) and one has a decomposition into eigenspaces O(X) = O(X)t ⊕

O(X)tft where ft is an equation of the reflecting hyperplane Ht. If moreover no ir-
reducible component of X lies in Ht, then the Demazure operator ∂t : R→ R, f 7→

(2ft)
−1(f−tf) induces a map O(X)→ O(X) and as Rt-modules O(X)t

∼
−→ O(X)tft

where the isomorphism is given by multiplication by ft and its inverse by the re-
striction of ∂t.

The operation of W on R ∼= k[f1, · · · fn] or R̄ is the following: if suffices to give
the operation of a simple reflection. For si ∈ S we have

si · fi = −fi,

si · fi±1 = fi + fi±1,

si · fj = fj if i and j are distant.

In particular if X is a closed subset that is si-invariant and i and j are distant, then
fj ∈ O(X)si.

Remark 2.2.1. A consequence of Corollary 2.1.12 which will be crucial further is the
following : suppose W ∩ Vi is not si-invariant. Then W ∩ Vi ⊂ Ht for some t ∈ T
such that tsi 6= sit. Then t = (i, k) or (i+1, k) for some k 6= i, i+1, say t = (i+1, k).
Suppose k < i. In Ht one has

fk + fk+1 + · · ·+ fi = 0,

hence
fi = −2fk − · · · − 2fi−1 − fi.

Viewing the right hand side in Ri one sees that it lies in Rsi
i since fj ∈ Rsi

i if
|i − j| > 2 and 2fi−1 + fi ∈ Rsi

i . One can do the same for the other cases (the
case where k > i + 1 and the cases where t = (i, k)). Since Ri = Rsi

i ⊕ R
si
i fi one

has that Rsi
i ։ O(W ∩ Vi). In other words, when choosing a function f in Ri such

that f |W∩Vi is equal to a given g ∈ O(W ∩ Vi), one can always suppose that f is
si-invariant.
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2.2.2 Gradings

The Temperley-Lieb algebra will be realized via R̄⊗k R̄-modules. In order to inter-
pret the parameter v in a categorification of the Temperley-Lieb algebra, the bimod-
ules we will consider need to be Z-graded, and multiplication by v will correspond
to a shift in graduation. If A,B are two Z-graded k-algebras, we write A−mod−B

for the category of A ⊗k Bop-modules (that we will call "(A,B)-bimodules") and
A − modZ − B for the category of Z-graded A ⊗k B

op-modules (that we will call
"graded (A,B)-bimodules") with morphisms the bimodule morphisms that are ho-
mogeneous of degree zero. In all the cases we will consider in this document, A
and B will be commutative graded k-algebras, hence both operations give left or
right-module structures. However, to distinguish the operations for example in case
A = B, we will always refer to the operation of A as the "left" operation and the
operation of B as the "right" operation on an (A,B)-bimodule M .

If M ∈ A −modZ − B, recall from subsection 1.3.1 that we write M [k] for the
bimodule equal to M in A − mod − B but with graduation shifted by k, that is,
(M [k])i =Mi+k.

The algebra R of regular functions on V is naturally graded ; we use the con-
vention that it is nonnegatively graded with R2 = V ∗. Now I(Z) is the intersection
of the ideals of all the Weyl lines and the ideal of a line is homogeneous; hence I(Z)
is also homogeneous and R̄ inherits a Z-grading from R. From now on the word
"graded" will always mean "Z-graded".

Remark 2.2.2. Let A,B,C be Z-graded rings, let M ∈ A − modZ − B and N ∈

B −modZ − C. There is a unique Z-grading on M ⊗B N such that

m ∈Mi, n ∈ Nj ⇒ m⊗ n ∈ (M ⊗B N)i+j.

Lemma 2.2.3. Let A,B,C be (graded) rings, f : C → A a morphism of (graded)

rings, M a (graded) module in B − mod − C. Let I ⊂ A be a (homogeneous)

ideal which annihilates M ⊗C A on the right. Then one has an isomorphism in

B −mod− C, resp. B −modZ − C

M ⊗C A ∼= M ⊗C (A/I).

Proof. By right exactness of the tensor product we have a surjection

M ⊗C A։ M ⊗C (A/I).

Since by assumption the map M ⊗C I → M ⊗C A induced by the injection I →֒ A
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is the zero map, the surjection above has an inverse.

Lemma 2.2.4. Let W ∈ Vn. Then O(W ) is graded.

Proof. Since W is a union of Weyl lines its vanishing ideal is homogeneous as it is
an intersection of ideals of lines, which are known to be homogeneous.

Remark 2.2.5. Putting 2.2.2, 2.2.3 and 2.2.4 together we have the following: if M ∈
R̄−modZ− R̄, W ∈ Vn and if the right operation of R̄ on M factors through O(VM)

where VM ∈ Vn (in other words, M can be viewed as an object in R̄−mod−O(VM)),
then M lies in R̄−modZ −O(VM) and

B :=M ⊗O(VM ) O(VM ∩W )

lies in R̄−modZ − R̄.

Lemma 2.2.6. Let i ∈ {1, . . . , n}. The bimodule Bi := Ri ⊗Rsi
i
Ri is graded. It is

free of rank 2 as left Ri-module and as right Ri-module.

Proof. Since si preserves the degrees, Rsi
i is a graded subring of Ri and so Ri lies in

Ri − modZ − R
si
i and in Rsi

i − modZ − Ri. By Remark 2.2.2 we obtain that Bi is
graded.

The fact that the bimodule Bi is free as left Ri-module and as right Ri-module
is a direct consequence of the decomposition into eigenspaces Ri = Rsi

i ⊕R
si
i fi.

The bimodules Bi as defined in the lemma above are the equivalent of the Soergel

bimodules R⊗RsR used in [34] to categorify the Kazhdan-Lusztig basis of the Hecke
algebra of an arbitrary Coxeter system of finite rank.

2.2.3 Elementary bimodules

Lemma 2.2.7. The ring Ri,i+1 of regular functions on Vi∩Vi+1 is a free Rsi
i -module

of rank 1 and a free R
si+1

i+1 -module of rank 1.

Proof. Since Vi is si-stable we have a decomposition Ri = Rsi
i ⊕ R

si
i fi. Since Ri ։

Ri,i+1 if follows that Ri,i+1 is generated by 1 and fi as an Rsi
i -module. Thanks to

Lemma 2.1.4, Vi ∩ Vi+1 ⊂ Hsisi+1si and hence fi + fi+1 = 0 in Ri,i+1. It follows
that the element 2fi+1 + fi ∈ R

si
i applied on 1 ∈ Ri,i+1 yields −fi and hence that

Ri,i+1 is generated as an Rsi
i -module by 1. It remains to show that if f ∈ Rsi

i ,
f · 1 = f |Vi∩Vi+1

= 0 implies f = 0. Since f is si-invariant it is enough to show that

(Vi ∩ Vi+1) ∪ si(Vi ∩ Vi+1) = Vi.



CATEGORIFICATION OF THE TEMPERLEY-LIEB ALGEBRA 43

But this holds thanks to example 2.1.7. The proof of the second statement is similar.

Corollary 2.2.8. As a left Rsi
i -module, Ri,i+1⊗Rsi+1

i+1
Ri+1 is free of rank 2. Similarly

as a right R
si+1

i+1 -module, Ri ⊗Rsi
i
Ri,i+1 is free of rank 2.

Proof. Thanks to Lemma 2.2.7, Ri,i+1
∼= Rsi

i as a left Rsi
i -module. Since Ri+1 =

R
si+1

i+1 ⊕ R
si+1

i+1 fi+1, the claim follows.

Corollary 2.2.9. The bimodule Bi,i+1 := Ri ⊗Rsi
i
Ri,i+1 ⊗Rsi+1

i+1
Ri+1 which lies in

Ri −modZ − Ri+1 is free of rank 2 in Ri −mod and free of rank 2 in mod− Ri+1.

In particular, if we view Bi,i+1 in R̄ −modZ − R̄, then the left annihilator of Bi,i+1

in R̄ is the ideal of functions vanishing on Vi and its right annihilator is the ideal of

functions vanishing on Vi+1.

Remark 2.2.10. Notice that a basis of Bi,i+1 as a left Ri-module is given by {1⊗1⊗

1, 1⊗ 1⊗ fi+1}. A basis as right Ri+1-module is given by {1⊗ 1⊗ 1, fi ⊗ 1⊗ 1}.

We now study bimodules Bi,j as defined in Corollary 2.2.9 but for |i − j| > 1.
Notice that Ri,j ⊗Rsj

j

Rj is free as left Ri,j-module since Rj = R
sj
j ⊕ R

sj
j fj .

Lemma 2.2.11. Any function f ∈ Rj which vanishes on Vi ∩ Vj acts on M :=

Ri,j ⊗Rsj
j

Rj on the right by zero. In other words, the right operation of Rj on M

gives rise to a right Ri,j-module structure on M . Moreover, M is free of rank 2 as

a right Ri,j-module.

Proof. Decompose f as r + r′fj with r, r′ ∈ Rsj
j . By assumption one has

r|Vi∩Vj + r′|Vi∩Vjfj |Vi∩Vj = 0.

Now since |i− j| > 1, Vi ∩ Vj is sj-stable, giving rise to a natural operation of sj on
Ri,j. Applying sj to the above equation one gets

r|Vi∩Vj − r
′|Vi∩Vjfj|Vi∩Vj = 0,

which implies that r|Vi∩Vj = 0 and r′|Vi∩Vjfj |Vi∩Vj = 0. Since fj(v) 6= 0 for v ∈
Vi ∩ Vj − {0}, this forces r′|Vi∩Vj = 0. Hence if v ⊗ w ∈ Ri,j ⊗Rsj

j

Rj , one gets

(v ⊗ w) · f = vr|Vi∩Vj ⊗ w + vr′|Vi∩Vj ⊗ wfj = 0.

To see that M is free on the right over Ri,j, one first uses Lemma 2.2.3 to get an
isomorphism M ∼= Ri,j ⊗Rsj

j

Ri,j and then concludes by using the decomposition
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Ri,j = R
sj
i,j ⊕ R

sj
i,jfj which holds since Vi ∩ Vj is sj-invariant and has no irreducible

component included in Hsj .

Proposition 2.2.12. The bimodule Bi,j := Ri ⊗Rsi
i
Ri,j ⊗Rsj

j

Rj (which lies in

Ri,j − modZ − Ri,j thanks to the preceding lemma) is free of rank 4 as left Ri,j-

module and as right Ri,j-module. In particular the left annihilator of Bi,j is equal to

its right annihilator and is the ideal of functions vanishing on Vi ∩ Vj.

Proof. As a left Ri-module, Bi,j is generated by t1 := 1 ⊗ 1 ⊗ 1, t2 := 1 ⊗ 1 ⊗ fj ,
t3 := 1 ⊗ fi ⊗ fj and t4 := 1 ⊗ fi ⊗ 1. Let us show that it is a basis of Bi,j over
Ri,j. Consider elements ak ∈ Ri, k = 1, 2, 3, 4 and write them as ak = rk + r′kfi with
rk, r

′
k ∈ R

si
i , k = 1, . . . , 4, and suppose

∑4
i=1 ak · tk = 0. One gets

1⊗ (r2 + r3fi)|Vi∩Vj ⊗ fj + 1⊗ (r1 + r4fi)|Vi∩Vj ⊗ 1

+fi ⊗ (r′2 + r′3fi)|Vi∩Vj ⊗ fj + fi ⊗ (r′1 + r′4fi)|Vi∩Vj ⊗ 1

= 0.

Now since N := Ri⊗Rsi
i
Ri,j is free as a right Ri,j-module and M := Ri,j ⊗Rsj

j

Rj

is free as a left Ri,j-module, Bi,j
∼= N ⊗Ri,j

M is free for the induced structure of
Ri,j-module (which is not the same as its left or right Ri,j-module structure!), and
a basis is given by 1⊗ 1⊗ 1, fi⊗ 1⊗ 1, 1⊗ 1⊗ fj and fi⊗ 1⊗ fj . This implies that

0 = (r2 + r3fi)|Vi∩Vj = (r1 + r4fi)|Vi∩Vj = (r′2 + r′3fi)|Vi∩Vj = (r′1 + r′4fi)|Vi∩Vj .

Now the same argument as in the proof of the preceding lemma (applying si this
time) gives that rk|Vi∩Vj = 0 = r′k|Vi∩Vj , hence that ak|Vi∩Vj = 0 for all k, which
concludes.

2.2.4 A product of bimodules

Given two bimodules B,B′ ∈ R̄ −modZ − R̄, one defines a bimodule B ⋆ B′ in the
following way : let IRB be the right annihilator of B and ILB′ the left annihilator of
B′, and write V R

B , V L
B′ for the corresponding closed subvarieties of Z. Then set

B ⋆ B′ := B ⊗R̄ O(V
R
B ∩ V

L
B′)⊗R̄ B

′.

We will omit the exponents L and R when no confusion is possible. Thanks to
Remark 2.2.5, such a bimodule lies in R̄−modZ−R̄ in case all the varieties occurring
in its definition are union of Weyl lines. Note the following:
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• If B,B′ have trivial right, respectively left annihilators (for example if they
are free as right, resp. left R̄-modules), then B ⋆ B′ = B ⊗R̄ B

′,

• One has R̄ ⋆ B ∼= B ∼= B ⋆ R̄.

• In all the cases we will consider further, we will always have the equalities
IRB = I(V R

B ) and ILB′ = I(V L
B′). We will therefore often write the ⋆-product as

B ⊗O(V R
B

) O(V
R
B ∩ V

L
B′)⊗O(V L

B′ )
B′.

Recall the bimodule Bi := Ri ⊗Rsi
i
Ri with i ∈ {1, . . . , n} from Lemma 2.2.6.

Lemma 2.2.13. Let M be a right R̄-module which is free of rank m over O(VM)

for VM ∈ Vn. The right annihilator of M ⋆ Bi is the ideal of the variety

Vi ∩ (VM ∪ siVM).

Moreover M ⋆ Bi is free as a right O(Vi ∩ (VM ∪ siVM))-module, of rank m if VM
is not si-invariant and of rank 2m if VM is si-invariant. The same statement holds

for the left annihilator of a bimodule Bi ⋆ M in case M is a left R̄-module which is

free over O(VM).

Proof. Let f ∈ R̄ and annihilate M ⋆ Bi on the right. One can suppose f ∈ Ri.
Write f = r + r′fi with r, r′ ∈ Rsi

i . We can suppose M ⋆ Bi
∼= O(VM ∩ Vi)⊗Rsi

i
Ri

(as a right R̄-module) since M is free as a right O(VM)-module.

Now if f = r + r′fi, r, r′ ∈ R
si
i annihilates M ⋆ Bi, in particular it annihilates

1⊗ 1. Hence one has
r|VM∩Vi ⊗ 1 + r′|VM∩Vi ⊗ fi = 0.

This forces r|VM∩Vi = 0 = r′|VM∩Vi (because O(VM ∩ Vi)⊗Rsi
i
Ri is free as a module

over O(VM ∩ Vi) for the obvious operation). Since r, r′ are si-invariant, this forces
them to be zero on Vi∩ (VM ∪siVM), and the same holds for f . Conversely if f ∈ Ri

is zero on Vi ∩ (VM ∪ siVM), then write f = r + r′fi with r, r′ invariant under si.
This forces r, r′ to be zero on Vi ∩ (VM ∪ siVM) and in particular on Vi ∩ VM .

We now prove the freeness; firstly we suppose that VM ∩Vi is si-invariant ; hence
O(VM ∩ Vi) = O(VM ∩ Vi)

si ⊕O(VM ∩ Vi)
sifi. It follows that O(VM ∩ Vi)⊗Rsi

i
Ri is

generated as a right R̄-module by 1⊗ 1 and fi ⊗ 1. Let r, r′ ∈ Ri be such that

1⊗ r + fi ⊗ r
′ = 0.
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Write r = r1 + r2fi and r′ = r′1 + r′2fi with rj, r′j ∈ R
si
i and get

(r1 + r′1fi)|VM∩Vi ⊗ 1 + (r2 + r′2fi)|VM∩Vi ⊗ fi = 0.

This implies that (r1 + r′1fi)|VM∩Vi = 0 = (r2 + r′2fi)|VM∩Vi and by si-invariance one
gets r′j |VM∩Vi = 0 = rj |VM∩Vi for j = 1, 2. Hence M ⋆ Bi is free on the right over
O(VM ∩ Vi), of rank 2.

We now suppose that Vi ∩ VM is not si-invariant. Remark 2.2.1 implies that

Rsi
i ։ O(VM ∩ Vi).

Hence as a rightO(Vi∩(VM∪siVM))-module, O(VM∩Vi)⊗Rsi
i
Ri is generated by 1⊗1.

We have to show that if f ∈ Ri, the equality 1⊗f = 0 implies that f |Vi∩(VM∪siVM ) = 0.
Write f = r + r′fi with r, r′ ∈ Rsi

i . This implies that r′|VM∩Vi = 0 = r|VM∩Vi. Now
since r′, r are si-invariant one concludes that they also vanish on Vi ∩ (VM ∪ siVM)

and the same holds for f .

The lemma above will allow us to use induction.

2.2.5 Associativity

Unfortunately, the product defined in the previous section is not associative for arbi-
trary bimodules B,B′. However, as we will see in this section, it will be associative
when restricted to a suitable ⋆-stable family of bimodules, exactly the bimodules
occurring up to isomorphism by considering successive ⋆-products of the bimodules
Bi, i ∈ {1, . . . , n}.

A first step towards a proof of the associativity of the product ⋆ is the following:
If M,N ∈ R̄ −modZ − R̄ with M having I(VM) as right annihilator and N having
I(VN) as left annihilator, then

(M ⋆ Bi) ⋆ N ∼= M ⋆ (Bi ⋆ N) (2.1)

provided VN , VM lie in a certain family of subvarieties of Z; thanks to Lemma 2.2.13
the good family to choose is Vn. The idea will be then to show associativity of the ⋆
product for products of three of the bimodules Bi and then use this previous result
to generalize to arbitrary products of the Bi.

Let us rewrite equation 2.1. We suppose that M is free on the right over O(VM)

and that N is free on the left over O(VN). Set Wi,M := Vi ∩ (VM ∪ siVM), Wi,N :=

Vi ∩ (VN ∪ siVN). By definition of the ⋆ product together with Lemma 2.2.13 the
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left hand side of 2.1 can be rewritten up to isomorphism as

(M ⊗O(VM ) O(VM ∩ Vi)⊗Ri
(Ri ⊗Rsi

i
Ri))⊗O(Wi,M ) O(Wi,M ∩ VN )⊗O(VN ) N,

or shorter

(M ⊗O(VM ) O(VM ∩ Vi)⊗Rsi
i
Ri)⊗O(Wi,M ) O(Wi,M ∩ VN)⊗O(VN ) N.

Now using Lemmas 2.2.13 and 2.2.3 we can rewrite this as

(M ⊗O(VM ) O(VM ∩ Vi)⊗Rsi
i
O(Wi,M))⊗O(Wi,M ) O(Wi,M ∩ VN)⊗O(VN ) N.

or shorter
M ⊗O(VM ) O(VM ∩ Vi)⊗Rsi

i
O(Wi,M ∩ VN)⊗O(VN ) N.

Doing the same reductions for the right hand side one gets

M ⊗O(VM ) O(VM ∩Wi,N)⊗Rsi
i
O(Vi ∩ VN)⊗O(VN ) N.

Now our job is to show that these two bimodules are isomorphic in R̄−modZ − R̄.
It is therefore enough to show that

O(VM ∩ Vi)⊗Rsi
i
O(Wi,M ∩ VN) ∼= O(VM ∩Wi,N)⊗Rsi

i
O(Vi ∩ VN),

where the isomorphism holds in O(VM)−modZ −O(VN).

Proposition 2.2.14. One has

O(VM ∩ Vi)⊗Rsi
i
O(Wi,M ∩ VN) ∼= O(VM ∩Wi,N)⊗Rsi

i
O(Vi ∩ VN),

as graded (O(VM),O(VN))-bimodules.

Proof. The strategy is to find the left and right annihilators and then use Lemma
2.2.3. We first suppose VN ∩ Vi is si-invariant. Hence Wi,M ∩ VN is si-invariant.
Let g ∈ O(VN ∩ Vi) be such that g|VN∩Wi,M

= 0. Choose h ∈ Ri, h = r + r′fi
with r, r′ ∈ Rsi

i such that h|VN∩Vi = g. Since VN ∩ Wi,M is si-invariant one has
that r′|VN∩Wi,M

= 0 = r|VN∩Wi,M
, hence also r′|VM∩Wi,M

= 0 = r|VM∩Wi,M
since

in our case VM ∩ Wi,N →֒ VN ∩ Wi,M (because of si-invariance of VN ∩ Vi). We
have shown that an element g ∈ O(VN ∩ Vi) which vanishes on VN ∩ Wi,M kills
O(VM ∩Wi,N)⊗Rsi

i
O(Vi ∩ VN) on the right, hence by Lemma 2.2.3, the right hand
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side is isomorphic to

O(VM ∩Wi,N)⊗Rsi
i
O(VN ∩Wi,M).

Now if VM ∩ Vi is si-invariant one uses the same argument for the left hand side for
the left operation and this left hand side is isomorphic to

O(VM ∩Wi,N)⊗Rsi
i
O(VN ∩Wi,M),

which concludes.
Now suppose that VM ∩Vi is not si-invariant. Consider g ∈ O(VM ∩Vi) vanishing

on X := VM ∩Wi,N . By assumption VM lies in Vn and thanks to Remark 2.2.1, one
can choose h ∈ Rsi

i such that h|VM∩Vi = g. In particular h|X = 0. Now since h is
si-invariant it has to vanish on X ∪ siX. But VN ∩Wi,M →֒ X ∪ siX. Hence h,
whence g kills O(VM ∩Vi)⊗Rsi

i
O(Wi,M ∩VN) on the left, and this bimodule is hence

isomorphic to
O(VM ∩Wi,N)⊗Rsi

i
O(VN ∩Wi,M)

thanks to Lemma 2.2.3. The case where VN ∩ Vi is not si-invariant but VM ∩ Vi is is
symmetric; in case none of them is si-invariant, the argument given above (choose
a preimage h which is invariant and then restrict) can still be given, for the left as
well as for the right operation, since it makes no use of the fact that the variety on
the other side is si-invariant or not.

We define bimodules associated to finite sequences of integers in [1, n]. If the
sequence has length 1, containing a single index j, the corresponding bimodule is
Bj. Let i1, . . . , ik ∈ [1, n]. Define the bimodule associated to the sequence seq =

ikik−1 · · · i1 by setting B(∅) = R̄, B(seq) = Bik ⋆B(ik−1 · · · i1). A bimodule B will be
said to be associated to such a sequence if it is obtained from Bik , . . . , Bi1 by doing
a product in this order but with a possibly different choice of brackets from the one
we made for B(seq). For example, (Bi4 ⋆Bi3)⋆ (Bi2 ⋆Bi1) and Bi4 ⋆ ((Bi3 ⋆Bi2)⋆Bi1)

are associated to the same sequence i4i3i2i1.

Theorem 2.2.15. Let ik · · · i1 be a sequence of indices in {1, . . . , n}.

1. Two bimodules associated to this sequence are isomorphic in R̄−modZ − R̄.

2. The bimodule B(ik · · · i1) is free on the left on O(W (ik · · · i1)) and free on the

right on O(W (i1 · · · ik)).

Proof. Notice that the first property is trivial if k < 3. In that case, the second
property is a consequence of 2.2.9, 2.2.12 since in the notations borrowed from
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there, one has Bi ⋆ Bi±1
∼= Bi,i±1 and Bi ⋆ Bj

∼= Bi,j for |i − j| > 1. But the
bimodule Bi,i±1 was shown to be free of rank 2 as left Ri = O(Vi)-module and
by definition W (i) = Vi. It was also shown to be free as right Ri±1 = O(Vi±1)-
module and W (i ± 1) = Vi±1. The bimodule Bi,j was shown to be free of rank 4

as left (or right) Ri,j = O(Vi ∩ Vj)-module and we know from example 2.1.6 that
W (ij) = W (ji) = Vi ∩ Vj .

In case k ≥ 3, both properties are proved simultaneously by induction on the
number of elementary bimodules Bi occurring in the product. If our bimodule is a
product of three of the Bi, say (Bi ⋆ Bj) ⋆ Bk, then associativity is immediate by
Proposition 2.2.14 and the arguments above it: one has

(Bi ⋆ Bj) ⋆ Bk
∼= Bi ⋆ (Bj ⋆ Bk),

and both of theses bimodules are free as left O(W (ijk))-modules and as right
O(W (kji))-modules thanks to Corollary 2.2.9, Proposition 2.2.12 and Lemma 2.2.13.
Now suppose the result holds for any product of at most m−1 of the Bi’s. Consider
a sequence i1, . . . , im ∈ {1, . . . , n}. By induction it is enough to show that

(Bi1 ⋆ · · · ⋆ Bij ) ⋆ (Bij+1
⋆ · · · ⋆ Bim)

∼= (Bi1 ⋆ · · · ⋆ Bik) ⋆ (Bik+1
⋆ · · · ⋆ Bim),

with k 6= j, where by induction the products Bi1 ⋆ · · · ⋆ Bij , Bij+1
⋆ · · · ⋆ Bim ,

Bi1 ⋆ · · · ⋆ Bik and Bik+1
⋆ · · · ⋆ Bim are well defined up to isomorphism (they can be

written without brackets) and free over the varieties associated to their sequences
(on the left over O(W (i1 · · · ij)) and on the right over O(W (ij · · · i1)) for the first
one, etc.). One just has to apply successively Proposition 2.2.14 to move Bj ’s from
one bracket to the other one. In particular both of our bimodules are isomorphic to

Bi1 ⋆ (Bi2 ⋆ · · · ⋆ Bik) and (Bi1 ⋆ · · · ⋆ Bik−1
) ⋆ Bik ,

which are free by induction together with Lemma 2.2.13. In particular this lemma
tells us that the left annihilator is I(W (i1 · · · ik)) and the right one is I(W (ik · · · i1)).

2.3 Realization of the Temperley-Lieb algebra

2.3.1 The Temperley-Lieb algebra

Let τ be a parameter. The definition we use of the Temperley-Lieb algebra in this
chapter is the following: the Temperley-Lieb algebra TLn is the Z[τ, τ−1]-algebra
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generated by elements bsi = bi for i = 1, . . . , n with relations

bjbibj = bj if |i− j| = 1,

bibj = bjbi if |i− j| > 1,

b2i = (1 + τ−2)bi.

Remark 2.3.1. In subsection 1.2.2, we defined TLn with a parameter v instead of
τ , the last relation being replaced by b2i = (v + v−1)bi, which allows TLn to be
realized as a quotient of the Hecke algebra H of type An. The reason for choosing
another parameter τ is that the bimodules Bi defined before will satisfy the above
relations where the multiplication in TLn corresponds to the ⋆-product, the sum to
direct sums of bimodules and the parameter τ to a shift of graduation. In the case of
Soergel bimodules categorifying the Hecke algebra (see subsection 1.3.3), one defines
the analogue of our bimodule Bi by S ′

i := R ⊗Rsi R; it turns out that the relation
S ′
i ⊗R S

′
i
∼= S ′

i ⊕ S ′
i[−2] is satisfied but one then sets Si := S ′

i[1] and the relation
becomes Si⊗RSi ∼= Si[1]⊕Si[−1]. The parameter v is then interpreted as a shift and
such a relation corresponds to the relation C ′2

si
= (v+ v−1)C ′

si
which holds in H, C ′

si

being the element of the Kazhdan-Lusztig basis {C ′
w} (see Theorem 1.2.1) indexed

by the simple reflection si. In our case shifting the bimodules Bi as in Soergel’s work
is a priori not possible since the first relation defining TLn is not homogeneous. As
a consequence, the algebra we will categorifiy is unfortunately not isomorphic to
the same algebra but with the parameter 1 + τ−2 in the quadratic relation replaced
by v + v−1, and the algebra above is not a quotient of H. In particular, with the
parameter 1 + τ−2, we do not have an interesting homomorphism from the group
algebra of the braid group over Z[τ, τ−1] to TLn. We therefore cannot define Zinno
basis in this version of the Temperley-Lieb algebra.

Recall that the set of fully commutative elements of the symmetric group is
denoted by Wf . Now if (W,S) is of type An and w ∈ Wf and si1 · · · sik is an
S-reduced expression for w, one can show that the element bw := bsi1 · · · bsik ∈ TLn
is independent of the choice of the S-reduced expression for w and that the set
{bw}w∈Wf

is a basis of TLn as a Z[τ, τ−1]-module.

Definition 2.3.2. The basis {bw}w∈Wf
of TLn is the Kazhdan-Lusztig basis or

diagram basis of TLn.

The first name is due to the following fact; if we define TLn with a parameter
v instead of τ as mentioned in Remark 2.3.1, then it is a quotient of the Hecke
algebra H of type An, as explained in subsection 1.2.2. If w ∈ Wf , the image via
the quotient map θ of the element C ′

w of the Kazhdan-Lusztig basis of H is equal
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b b b b b b b

b b b b b b b

Fig. 2.2: A diagram representing an element bw of the diagram
basis of the Temperley-Lieb algebra. Here w = s3s2s1s4s5s6.

b b b b b b

b b b b b b

...

...

...

...

1 i i+1 n+1

Fig. 2.3: Planar diagram corresponding to the element bi.

to bw and any element C ′
x for x /∈ Wf is sent to zero (see subsection 1.2.2 for more

details).

The second name is due to the fact that the basis {bw}w∈Wf
has a well-known

interpretation by planar diagrams. Draw a sequence of n + 1 points on a line and
another one under the first one. Draw arcs between any two points of the two
sequences (the two points of an arc can belong to the same sequence) such that each
point occurs in exactly one arc and such that two distinct arcs never cross to obtain
a diagram like the one given in figure 3.8; we always consider such diagrams up to
isotopy. Elements of the Temperley-Lieb algebra are Z[τ, τ−1]-linear combinations
of such diagrams, where the element bi = bsi is given by the diagram in figure 2.3.
Multiplication of two planar diagrams is then given by concatenating the diagrams ;
if circles occur in the resulting diagram, we remove them and multiply the diagram
by (1 + τ−2)k where k is the number of circles. The diagram algebra over Z[τ, τ−1]

obtained in this way turns out to be isomorphic to TLn.

2.3.2 Temperley-Lieb relations

The aim of this section is to prove that the bimodules Bi together with the ⋆-product
from the previous section satisfy the Temperley-Lieb relations, i.e.,

Bj ⋆ Bi ⋆ Bj
∼= Bj if |i− j| = 1,

Bi ⋆ Bj
∼= Bj ⋆ Bi if |i− j| > 1,

Bi ⋆ Bi
∼= Bi ⊕ Bi[−2],
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where all the isomorphisms hold in R̄−modZ − R̄.

Theorem 2.3.3. The bimodules Bi satisfy the Temperley-Lieb relations.

Proof. We write Ri := O(Vi), Ri,j := O(Vi ∩ Vj). For the first relation, assume
that j = i+ 1, the other case being similar. The left hand side of the first relation
which is isomorphic to (Bj ⋆ Bi) ⋆ Bj can be rewritten (up to isomorphism) thanks
to Corollary 2.2.9 as

(Ri+1 ⊗Rsi+1
i+1

Ri+1 ⊗Ri+1
Ri,i+1 ⊗Ri

Ri ⊗Rsi
i
Ri)⊗Ri

Ri,i+1 ⊗Ri+1
(Ri+1 ⊗Rsi+1

i+1
Ri+1),

which is isomorphic to

Ri+1 ⊗Rsi+1
i+1

Ri,i+1 ⊗Rsi
i
Ri,i+1 ⊗Rsi+1

i+1
Ri+1.

Hence it suffices to show that Ri,i+1 ⊗Rsi
i
Ri,i+1

∼= R
si+1

i+1 as graded (R
si+1

i+1 , R
si+1

i+1 )-
bimodule. We know from Lemma 2.2.7 that Rsi+1

i+1 is isomorphic to Ri,i+1 as Rsi+1

i+1 -
module; since the left and right operations are the same this is even an isomorphism
of (Rsi+1

i+1 , R
si+1

i+1 )-bimodule. We define a map

ϕ : Ri,i+1 ⊗Rsi
i
Ri,i+1 → Ri,i+1

a⊗ b 7→ ab.

This clearly defines a morphism of bimodules. Define a map

ψ : Ri,i+1 → Ri,i+1 ⊗Rsi
i
Ri,i+1

c 7→ c⊗ 1.

One checks using Lemma 2.2.7 that this defines a morphism of bimodules which is
an inverse to ϕ. Hence the first Temperley-Lieb relation holds.

For the second relation, using Proposition 2.2.12 together with Lemma 2.2.3, it
is enough to show that

Ri,j ⊗Rsi
i
Ri,j ⊗Rsj

j

Ri,j
∼= Ri,j ⊗Rsj

j

Ri,j ⊗Rsi
i
Ri,j

as graded (Ri,j, Ri,j)-bimodules. Let m,n, q ∈ Ri,j. Since Vi ∩ Vj is si-invariant one
has that Ri,j = Rsi

i,j ⊕ R
si
i,jfi ; write n = r + r′fi with r, r′ ∈ Rsi

i,j . Define a map

ϕ : Ri,j ⊗Rsi
i
Ri,j ⊗Rsj

j

Ri,j → Ri,j ⊗Rsj
j

Ri,j ⊗Rsi
i
⊗Ri,j
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m⊗ n⊗ q 7→ mr ⊗ 1⊗ q +mr′ ⊗ 1⊗ fiq.

It is routine to check that such a map is well-defined and that it is a morphism of
graded bimodules. By permuting the indices i and j one also gets a map ψ in the
other direction and one shows that ψ is an inverse of ϕ.

For the third relation one has to show that

Ri ⊗Rsi
i
Ri ⊗Rsi

i
Ri
∼= (Ri ⊗Rsi

i
Ri)⊕ (Ri ⊗Rsi

i
Ri)[−2].

Now Ri = Rsi
i ⊕ R

si
i fi and since no irreducible component of Vi is included in Hsi

one has an Rsi
i -(bi)module isomorphism Rsi

i fi
∼= Rsi

i [−2] given by the restriction of
the Demazure operator ∂si (which has in this case multiplication by fi as inverse).
Hence Ri

∼= Rsi
i ⊕ R

si
i [−2] as graded (Rsi

i , R
si
i )-bimodule and one gets the claim by

decomposing in such a way the Ri in the middle of the tensor product on the left
hand side above.

Definition 2.3.4. Let w ∈ Wf . Let si1 · · · sik be an S-reduced expression for w.

We consider the bimodule

B(i1 · · · ik) := Bi1 ⋆ · · · ⋆ Bik ∈ R̄−modZ − R̄.

Notice that we abuse notation since Bi1 ⋆ · · · ⋆ Bik is not a single bimodule but var-

ious isomorphic bimodules (one for each choice of brackets). Since the bimodules

Bi satisfy the Temperley-Lieb relations, this bimodule is independent up to isomor-

phism of the choice of an S-reduced expression for w and we denote by Bw any

bimodule isomorphic to it in R̄−modZ− R̄. Such a bimodule Bw will be called fully
commutative.

2.3.3 Link with dense sets of reflections

For each fully commutative element w ∈ Wf , one can consider the dense sets
T (i1 · · · ik) and T (ik · · · i1) where si1 · · · sik is a reduced expression for w ; such sets
characterize the varieties whose ideals are the left and right annihilators in R̄ of the
bimodule Bi1 ∗ · · · ∗Bik . We have another way of associating a pair of dense sets to
w:

Notation. Let w ∈ Wf and consider the planar diagram corresponding to the
element bw ∈ TLn; if we remove the lines joining a point in the sequence at the top
of the diagram to a point in the sequence at the bottom, we obtain a dense set at
the top of the diagram that we write Q(i1 · · · ik). We also obtain a dense set at the
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bottom that we can write Q(ik · · · i1) since it is equal to the dense set obtained at
the top of the diagram of bw−1 after applying the same process of removing lines
going from the top to the bottom of the diagram (notice that w−1 lies in Wf if and
only if w does). The left and right dense sets associated to any fully commutative
element in type A4 are drawn in figure 2.4.

Proposition 2.3.5. Let w ∈ Wf and suppose that si1 · · · sik is an S-reduced expres-

sion of w. Then

T (i1 · · · ik) = Q(i1 · · · ik).

Proof. We argue by induction on k; if k = 1, then T (i1) = {si1} and the dense
set at the top of the diagram corresponding to bi1 contains only the reflection si1
(see figure 2.3). We suppose that the result holds for a sequence of length at most
k − 1. By induction, T (i2 · · · ik) = Q(i2 · · · ik) and it suffices to show that the same
three rules as in Lemma 2.1.10 hold when passing from Q(i2 · · · ik) to Q(i1 · · · ik).
If si1 commutes with any reflection in Q(i2 · · · ik), then the dense set at the top of
bw is Q(i2 · · · ik) ∪ {si1}. If si1 commutes with any element of Q(i2 · · · ik) except
t then t will become a line from the top to the bottom of the diagram associated
to bw when collapsing the diagrams for bi1 and bsi1w and hence t disappears from
Q(i2 · · · ik), si1 is added and all other reflections are unchanged, hence Q(i1 · · · ik) =
(Q(i2 · · · ik)\t) ∪ {si1}. If si1 commutes with any element of Q(i2 · · · ik) except two
distinct reflections (j1, i1), (i1 + 1, j2) ∈ Q(i2 · · · ik) with |{i1, i1 + 1, j1, j2}| = 4, one
sees by drawing the situation that when concatenating the diagram associated to bi1
to the one associated to bsi2 ···sik , no line from the top to the bottom of the diagram
corresponding to bw is added, that the simple reflection si1 which lies at the bottom
of the diagram corresponding to bi1 will join the index i1 to the index i1+1, removing
the above two reflections (j1, i1), (i1+1, j2) to replace them by (j1, j2), that of course
the simple reflection si1 coming from the top of the diagram of bi1 is added and that
all other reflections in Q(i2 · · · ik) stay unchanged, hence

Q(i1 · · · ik) =
(
Q(i2 · · · ik)\{(j1, i1), (i1 + 1, j2)}

)
∪ {si1 , (j1, j2)}.

We deduce from Lemma 2.1.10 that T (i1 · · · ik) = Q(i1 · · · ik).

Corollary 2.3.6. The bimodules Bw for w ∈ Wf are pairwise non-isomorphic in

R̄−mod− R̄ (hence in R̄ −modZ − R̄).

Proof. If w ∈ Wf and si1 · · · sik is an S-reduced expression of w, then the planar
diagram corresponding to the element bw ∈ TLn is entirely determined by the two
dense sets obtained by removing the lines going from the top to the bottom of the
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s2
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s1s2

s2s1

s1s3

s1s4

s2s4

s2s3

s3s2

s3s4

s4s3

s1s2s3

s2s1s3

s1s3s2

s3s2s1

s2s3s4

s3s2s4

s2s4s3

s4s3s2

s1s2s4

s2s1s4

s1s3s4

s1s4s3

s1s2s3s4

s2s1s3s4

s1s3s2s4

s1s2s4s3

s1s4s3s2

s2s1s4s3

s3s4s2s1

s3s2s1s4

s2s1s3s2

s3s2s4s3

s2s1s4s3s2

s3s2s1s4s3

s2s1s3s2s4

s1s3s2s4s3

s2s1s3s2s4s3

s3s2s1s4s3s2

Fig. 2.4: Left and right dense sets of reflections for any fully
commutative element in type A4.
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diagram, that is the pair (Q(i1 · · · ik), Q(ik · · · i1)), since the lines in the diagram
must be noncrossing. Hence two distinct fully commutative elements w,w′ ∈ Wf

will have distincts such pairs. Using Proposition 2.3.5, the corresponding fully com-
mutative bimodules Bw and Bw′ will then have distinct left annihilators or distinct
right annihilators (by uniqueness of a dense set associated to a variety in Vn, see
Proposition 2.1.11), hence will be non-isomorphic as (R̄, R̄)-bimodules.

Example 2.3.7 Let n = 2. It follows from Corollary 2.2.9 that B1 ⋆ B2 is free as a
left R1-module and free as a right R2-module. Hence its left dense set is equal to
{s1} and its right dense set to {s2}. It corresponds to the dense sets obtained from
the Temperley-Lieb diagram of b1b2 given in figure 2.5.

b b b

b b b

Fig. 2.5: Temperley-Lieb diagram corresponding to the element
b1b2.

Proposition 2.3.8. Let w ∈ Wf . Let si1 · · · sik be an S-reduced expression of w.

The rank of Bw as left O(W (i1 · · · ik))-module is equal to 2|T (i1···ik)| and its rank as

right O(W (ik · · · i1))-module is equal to 2|T (ik···i1)|. Moreover,

|T (i1 · · · ik)| = |T (ik · · · i1)|.

Proof. The last equality is an immediate consequence of 2.3.5 since |T (i1 · · · ik)| is
just the numbers of arcs at the top of the planar diagram corresponding to bw which
is equal to the number of arcs at the bottom of the diagram given by |T (ik · · · i1)|.

The first property is shown by induction on k = ℓS(w) using Lemma 2.2.13.
Notice that it suffices to prove the statement for the left module structure. If the
length of w is equal to 1, then w = si for some i ∈ {1, . . . , n} whence Bw = Bi. In
that case we know from Lemma 2.2.6 that Bi is free of rank 2 as left O(Vi)-module
and that T (i) = {si}. Now assume that the statement holds for w of length at
most k − 1. In particular, B(i2 · · · ik) = Bsi1w

is a free O(W (i2 · · · ik))-module of
rank 2|T (i2···ik)|. Now if W (i2 · · · ik) is not si1-invariant, we know from Lemma 2.2.13
that Bw is a free O(W (i1 · · · ik))-module of rank rk(B(i2 · · · ik)). Hence it remains
to show that |T (i1 · · · ik)| = |T (i2 · · · ik)|. But in case W (i2 · · · ik) =

⋂
t∈T (i2···ik)

Vt
is not si1-invariant, we are in one of the last two cases of Lemma 2.1.10 where the
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cardinality of the dense set is unchanged, giving the equality. In case W (i2 · · · ik)

is si1-invariant, it means that si1 commutes with any reflection in T (i2 · · · ik). It
means that either si1 ∈ T (i2 · · · ik) or that the support of T (i2 · · · ik) and that of
si1 are disjoint. In the first case, thanks to Proposition 2.3.5, it means that si1 lies
in Q(i2 · · · ik), hence that the planar diagram corresponding to bsi2 ···sik has an arc
joining i to i+1 at the top. In that case, one shows easily that si1 is a left descent of
si2 · · · sik , hence that si1 · · · sik is not reduced, a contradiction. In the latter case, we
have that T (i1 · · · ik) = {si1} ∪ T (i2 · · · ik) by the first case of Lemma 2.1.10 whence
|T (i1 · · · ik)| = |T (i2 · · · ik)|+ 1. By Lemma 2.2.13, we have that

rk(Bw) = 2 · rk(B(i2 · · · ik)) = 2 · 2|T (i2···ik)| = 2|T (i1···ik)|.

2.3.4 Indecomposability of fully commutative bimodules

The next step is to prove indecomposability of ⋆-products of the bimodules Bi cor-
responding to elements of the Kazhdan-Lusztig basis of the Temperley-Lieb algebra,
i.e., fully commutative bimodules Bw. Let w ∈ Wf . Then bw ∈ TLn can be written
uniquely as a product

(bikbik−1 · · · bjk)(bik−1
bik−1−1 · · · bjk−1

) · · · (bi1bi1−1 · · · bj1)

with all indices in {1, . . . , n} and ik < ik−1 < · · · < i1, jk < jk−1 < · · · < j1 and
jm ≤ im for each m = 1, . . . , k (see [28], §5.7; we have reversed the indices 1, . . . , k

since it will be more convenient for the inductions we will use later).
Since the bimodules Bi satisfy the Temperley-Lieb relations any fully commuta-

tive bimodule can written in the form

(BikBik−1 · · ·Bjk)(Bik−1
Bik−1−1 · · ·Bjk−1

) · · · (Bi1Bi1−1 · · ·Bj1),

where the products are ⋆-products.

Definition 2.3.9. We say that Bw is associated to the corresponding sequence

ik · · · jkik−1 · · · jk−1 · · · i1 · · · j1.

The integer k is the rank of the sequence. A fully commutative bimodule is inter-
twined if for each 1 < m ≤ k, the set [im, jm] contains both the indices i1−2(m−1)

and i1 − 2(m− 1) + 1.



58 CATEGORIFICATION OF THE TEMPERLEY-LIEB ALGEBRA

Example 2.3.10 In case n ≥ 9, the bimodule associated to the sequence

(1)(432)(654)(7)(98)

is not intertwined. Bimodules associated to the sequences

(321)(43)(7654)(876)(9), (21)(43)(65)(87)(98), (54321)(6543)(765)(87)(9)

are intertwined ; here i1 = 9 and the indices of the form i1 − 2(m − 1) and i1 −

2(m− 1) + 1 from the definition are underlined.

Lemma 2.3.11. Let B be a fully commutative bimodule. If B is associated to a

sequence of rank 1, then B is indecomposable (as graded bimodule).

Proof. We write i(i−1) · · · j for the sequence associated to our bimodule, i− j ≥ 0.
We therefore have

B ∼= Bi ⋆ Bi−1 ⋆ · · · ⋆ Bj .

One has Wm(m−1)···j = Vm and Wm(m+1)···i = Vm for each m ∈ [j, i] thanks to Lemma
2.1.9. As a consequence with any choice of brackets for computing the above product
one gets that B is isomorphic to

Bi ⊗Ri
Ri,i−1 ⊗Ri−1

Bi−1 ⊗Ri−1
Ri−1,i−2 ⊗Ri−2

Bi−2 ⊗ · · · ⊗Rj+1,j ⊗Rj
Bj,

with Rm,m−1 = O(Vm ∩ Vm−1) for each m ∈ [j + 1, i]; if i = j we get Bi = Bj . After
reduction B is isomorphic to

Ri ⊗i Ri,i−1 ⊗i−1 Ri−1,i−2 ⊗i−2 · · · ⊗j+1 Rj+1,j ⊗j Rj ,

where ⊗m means ⊗Rsm
m

; if i = j we get Ri ⊗i Ri. Thanks to Remark 2.2.1 one then
has Rsm

m ։ O(Vm ∩ Vm−1) as well as Rsm−1

m−1 ։ O(Vm ∩ Vm−1) for each m ∈ [j + 1, i].
Hence any tensor

ai ⊗i ai,i−1 ⊗i−1 · · · ⊗j+1 aj+1,j ⊗j aj ∈ B

is equal to a tensor
a⊗i 1⊗i−1 · · · ⊗j+1 1⊗j a

′ ∈ B.

As a consequence B is generated as (R̄, R̄)-bimodule by the degree zero element
1 ⊗i 1 ⊗i−1 · · · ⊗j+1 1 ⊗j 1 which forces indecomposability since the degree zero
component of B has dimension 1.



CATEGORIFICATION OF THE TEMPERLEY-LIEB ALGEBRA 59

Lemma 2.3.12. Consider the bimodule B from the proof of Lemma 2.3.11 written

in the form

Ri ⊗i Ri,i−1 ⊗i−1 Ri−1,i−2 ⊗i−2 · · · ⊗j+1 Rj+1,j ⊗j Rj .

Any tensor a⊗i 1⊗i−1 · · · ⊗j+1 1⊗j a
′ ∈ B where a ∈ Ri, a

′ ∈ Rj can be written in

the form

(b⊗i 1⊗i−1 · · · ⊗j+1 1⊗j 1) + (b′ ⊗i 1⊗i−1 · · · ⊗j+1 1⊗j fj),

where b, b′ ∈ Ri.

Proof. It suffices to decompose a′ = r + r′fj with r, r′ ∈ R
sj
j and move r, r′ to the

left using the fact that Rsm
m ։ O(Vm ∩ Vm−1) as well as Rsm−1

m−1 ։ O(Vm ∩ Vm−1) for
each m ∈ [j + 1, i].

Notation. Let ik · · · jk · · · i1 · · · j1 be a sequence defining a fully commutative bi-
module B. For each m ∈ [1, k], we write B(m) for the bimodule associated to the
subsequence im · · · jm. In particular we have

B ∼= B(k) ⋆ B(k − 1) ⋆ · · · ⋆ B(1).

Proposition 2.3.13. Let B be an intertwined bimodule associated to the sequence

seq = ik · · · jkik−1 · · · jk−1 · · · i1 · · · j1.

1. One has the equality supp(T (seq)) = [i1 − 2(k − 1), i1 + 1]. Moreover, the set

T (seq) contains the reflection (i1 − 2(k − 1), i1 + 1) (in other words, it has a

single block).

2. The bimodule B is indecomposable.

Proof. The first claim is shown by induction on k. If k = 1, one has seq = i1 · · · j1
and T (seq) = {si1} (see Lemma 2.1.9) whose support is {i1, i1 + 1}.

Now suppose that k > 1 and that the result holds for any sequence of rank at
most k − 1 and consider the case where the sequence has rank k. If W = Wik−1···j1,
then by induction supp(TW ) = [i1 − 2(k − 2), i1 + 1] and TW contains the reflection
(i1 − 2(k − 2), i1 + 1). Now consider the subsequence ik · · · jk of seq, which is equal
to the concatenation of the decreasing sequences seq1 = ik · · · (i1 − 2(k − 1) + 1)

and seq2 = (i1 − 2(k − 1)) · · · jk (since the bimodule is intertwined). Any reflection
sj with j in seq2 commutes with any reflection in TW hence one gets using Lemma
2.1.10 that Tseq2·W = TW ∪{si1−2(k−1)}. We now study the effect of applying seq1 to
seq2·W . Using again Lemma 2.1.10, applying the first index on the right of seq1, that
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is (i1−2(k−1)+1), replaces the two reflexions si1−2(k−1) and (i1−2(k−2), i1+1) in
TW ∪{si1−2(k−1)} by si1−2(k−1)+1 and (i1−2(k−1), i1+1) and applying the following
indices only removes and adds reflexions supported in [i1− 2(k− 1)+1, i1], showing
that Tseq·W has support equal to [i1 − 2(k − 1), i1 + 1] and contains the reflection
(i1 − 2(k − 1), i1 + 1).

To show indecomposability of B, we first compute the ⋆-products occurring in
the bimodules B(m) associated to each decreasing subsequence seqm = im · · · jm of
our sequence. These ones occur to be indecomposable thanks to Lemma 2.3.11 and
we will write them as in the proof of this lemma in the form

Rim ⊗im Rim,im−1 ⊗im−1 Rim−1,im−2 ⊗ · · · ⊗ Rjm+1,jm ⊗jm Rjm .

We will abuse notation and write B(m) for the isomorphic bimodule above. It
remains to make a choice of brackets for computing the product B(k) ⋆ B(k − 1) ⋆

· · · ⋆ B(2) ⋆ B(1). We will compute it "from the right", i.e., as

B ∼= B(k) ⋆ (B(k − 1) ⋆ (· · · ⋆ (B(3) ⋆ (B(2) ⋆ B(1))) · · · )).

Thanks to Theorem 2.2.15 together with the first part of the proposition, one has
that for 1 < ℓ ≤ k, the left annihilator of the intertwined bimodule

B(ℓ− 1) ⋆ (B(ℓ− 2) ⋆ (· · · ⋆ (B(3) ⋆ (B(2) ⋆ B(1))) · · · ))

is equal to the ideal of functions vanishing on
⋂
t∈Qℓ

Vt where Qℓ ⊂ T is a dense set
satisfying supp(Qℓ) = [i1 − 2(ℓ− 2), i1 + 1] and containing the reflection (i1 − 2(ℓ−

2), i1 + 1). The right annihilator of B(ℓ) is equal to I(Vjℓ). Since the bimodule B is
intertwined one has that jℓ ≤ i1 − 2(ℓ− 1) = i1 − 2(ℓ− 2)− 2 and in particular, sjℓ
commutes with any reflection in Qℓ. Set Xℓ :=

⋂
t∈Qℓ

Vt, Wℓ := Vsjℓ ∩Xℓ for ℓ > 1

and W1 = Vj1. For any 1 ≤ ℓ ≤ k, one has that Wℓ is sjℓ-invariant and hence we
can decompose

O(Wℓ) = O(Wℓ)
sjℓ ⊕O(Wℓ)

sjℓfjℓ|Wℓ
. (2.2)

We will abuse notation and write fi instead of fi|X for the image of fi in O(X)

where X ⊂ Z is an algebraic set to avoid using too much indices and since this will
make no possible confusion in the next computations. Computing recursively our
product with the choice of brackets described above we get that B is isomorphic to

B(k)⊗Rjk
O(Wk)⊗O(Xk) B(k − 1)⊗ · · · ⊗ B(2)⊗Rj2

O(W2)⊗Ri1
B(1).

Again we abuse notation and write B for this isomorphic bimodule. We have seen in
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the proof of Lemma 2.3.11 that the bimodule B(ℓ) is indecomposable and generated
by the element 1ℓ := 1 ⊗iℓ 1 ⊗iℓ−1 1 ⊗ · · · ⊗jℓ 1 ∈ B(ℓ) for each ℓ. Hence using
Lemma 2.3.12 any tensor in the above tensor product can be written as a sum of
two elements of the form

a · 1k ⊗Rjk
ak ⊗O(Xk) 1k−1 ⊗ · · · ⊗ a3 ⊗O(X3) 12 ⊗Rj2

a2 ⊗Ri1
11 · a

′

the first one with a′ = 1, a ∈ R̄, aℓ ∈ O(Wℓ) and the second one having the same
properties but with a′ = fj1 . Our strategy is the same as in Lemma 2.3.11: we will
show that our bimodule can be generated by the element

1k ⊗Rjk
1⊗O(Xk) 1k−1 ⊗ · · · ⊗ 12 ⊗Rj2

1⊗Rj1
11.

In that case, because of the sjℓ-invariance of the variety Wℓ, we use relation 2.2 to
move the invariant parts of each ak to the left in the same way as at the end of the
proof of Lemma 2.3.11: we begin with a2, writing a2 = r2 + r′2fj2 where r2 and r′2
are sj2-invariant. But then one has that in

O(W3)⊗O(X3) B(2)⊗Rj2
O(W2),

a3 ⊗ 12 ⊗ r2 = q ⊗ 12 ⊗ 1 and a3 ⊗ 12 ⊗ r
′
2fj2 = q′ ⊗ 12 ⊗ fj2 with q, q′ ∈ O(W3). In

other words a tensor in B of the form

a · 1k ⊗Rjk
ak ⊗O(Xk) 1k−1 ⊗ · · · ⊗ a3 ⊗O(X3) 12 ⊗Rj2

a2 ⊗Ri1
11 · a

′

is equal to a tensor of the form

a ·1k⊗Rjk
ak⊗O(Xk) 1k−1⊗· · ·⊗ (q⊗O(X3) 12⊗Rj2

1+ q′⊗O(X3) 12⊗Rj2
fj2)⊗Ri1

11 ·a
′.

Now one can decompose q, q′ and again "move" the sj3-invariant parts to the
left, and so on. At the end of the process we get a sum of elements

∑
i ai · ti where

ti are tensors in B with fℓ or 1 in the O(Wℓ)-component of B and 1 in any other
component. It remains to show that each of these ti can be written as a sum of
elements of the form b ·1⊗1⊗· · ·⊗1⊗1 ·b′ with b, b′ ∈ R̄ to show that the arbitrary
tensor in B we began with can be obtained from the tensor 1 ⊗ 1 ⊗ · · · 1 ⊗ 1 ∈ B.
In fact we will show that we can write any of the ti as a single tensor of the form
b · 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ 1 · b′ with b = 1 (in other words, all the remaining fℓ in our
tensors will be "moved" to the right) and b′ being equal to a polynomial in fi for
i ≤ i1. For this we need the following technical lemma :

Lemma 2.3.14. Let B(i), Wi, Xi be as above for each 2 ≤ i ≤ k and set W1 = Vj1.
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Let ℓ ∈ [2, k] and suppose m ≤ i1 − 2(ℓ − 1). Then the tensor fm ⊗ 1ℓ−1 ⊗ 1 in

O(Wℓ)⊗O(Xℓ)B(ℓ−1)⊗Rjℓ−1
O(Wℓ−1) is equal to a tensor of the form 1⊗1ℓ−1⊗

∑
j fj

in the same tensor product with all indices j ≤ i1 − 2(ℓ− 2).

Proof. The first case is the case where m < jℓ−1− 1. In that case fm is invariant by
any reflection sm′ with m′ an index occurring in the sequence iℓ−1 · · · jℓ−1 and hence
fm ⊗ 1ℓ−1 ⊗ 1 = 1 ⊗ 1ℓ−1 ⊗ fm since all the tensor products in B(ℓ − 1) are over
various Rsm′ for m′ occurring in the sequence iℓ−1 · · · jℓ−1.

The second case is the case where m = jℓ−1 − 1 < i1 − 2(ℓ− 2)− 1, then m and
iℓ−1 are distant: if ℓ > 2 it is clear since [jℓ−1, iℓ−1] contains at least two indices.
If ℓ = 2, the condition m = j1 − 1 forces i1 > j1 since otherwise one would have
m = i1 − 1 contradicting our assumption that m ≤ i1 − 2(ℓ− 1). Hence our tensor
is equal to the tensor

1⊗O(Xk) 1⊗iℓ−1
1⊗ · · · fm ⊗jℓ−1

1⊗Rjℓ−1
1

with fm lying in O(Vjℓ−1+1 ∩ Vjℓ−1
). But in this ring we have fjℓ−1+1 + fjℓ−1

= 0

since Vjℓ−1+1 ∩ Vjℓ−1
⊂ H where H is the reflecting hyperplane of sjℓ−1+1sjℓ−1

sjℓ−1+1

(lemma 2.1.4), hence in O(Vjℓ−1+1 ∩ Vjℓ−1
) we get

fm = fjℓ−1−1 = fjℓ−1+1 + fjℓ−1
+ fjℓ−1−1,

which is sjℓ−1
-invariant, hence the sum in the right hand side can be moved to the

last component of the tensor product ; but this is a sum of fj for j ≤ jℓ−1 + 1 =

m+ 2 ≤ i1 − 2(ℓ− 2).

The last case is the case where m ≥ jℓ−1. This forces m to occur as an index
of the sequence iℓ−1 · · · jℓ−1 and m + 1, m + 2 also occur since the bimodule is
intertwined and m ≤ i1 − 2(ℓ− 1). In that case our tensor fm ⊗ 1ℓ−1⊗ 1 is equal to
a tensor

1⊗O(Xℓ) 1⊗iℓ−1
1⊗ · · · ⊗m+2 fm ⊗m+1 1⊗m 1⊗ · · · ⊗ 1,

with fm lying in O(Vm+1 ∩ Vm+2). In that ring one has fm = fm + fm+1 + fm+2

which is sm+1-invariant, hence the sum can be moved to the next factor which is
O(Vm ∩ Vm+1). But in that ring, one has fm + fm+1 = 0, hence our tensor is equal
to the tensor

1⊗O(Xℓ) 1⊗iℓ−1
1⊗ · · · ⊗ 1⊗m+1 fm+2 ⊗m 1⊗m−1 1⊗ · · · ⊗ 1,

and the fm+2 can be moved to the right since it is invariant under the operation of
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all sj for j ≤ m. Hence the tensor is equal to

1⊗O(Xℓ) 1⊗iℓ−1
1⊗ · · · ⊗ 1⊗m+1 1⊗m 1⊗m−1 1⊗ · · · ⊗ 1⊗ fm+2,

and m+ 2 ≤ i1 − 2(ℓ− 2), which concludes.

End of the proof of the proposition. Using the above lemma we can move our fℓ’s in
the O(Wℓ) components of our bimodule B to the right inductively, beginning from
the left with ℓ = k by moving fℓ to the right in the O(Wℓ−1) component and so
on.

We now consider the indecomposability of a slightly more general family of bi-
modules.

Definition 2.3.15. A fully commutative bimodule associated to a sequence

ik · · · jk · · · i1 · · · j1

will be called a generalized intertwined bimodule if the following condition holds :

each set {iℓ, . . . , jℓ} contains a nonempty subset Sℓ of cardinality at most two such

that the following inductive condition is satisfied : S1 = {i1}, and if n(ℓ) is the

lowest index in Sℓ, then the set {iℓ+1, . . . , jℓ+1} contains the index n(ℓ)− 1 and we

put

Sℓ+1 =

{
{n(ℓ)− 1} if n(ℓ)− 1 = jℓ+1

{n(ℓ)− 2, n(ℓ)− 1} otherwise.

The union of the sets Sℓ for ℓ = 1, . . . , k is called the set of intertwining indices of

the corresponding sequence or bimodule.

Example 2.3.16 In case n ≥ 9, the fully commutative bimodules associated to the
sequences

(1)(32)(4)(765)(87)(9), (1)(2)(43)(7654)(8765)(9876), (87)(9)

are generalized intertwined bimodules; the indices belonging to the set
⋃
ℓ Sℓ are

underlined. The bimodules associated to the sequences

(1)(32)(65)(87)(9), (7)(98)

are not generalized intertwined bimodules.

The following technical result will allow us to use the same kind of arguments as
for intertwined bimodules to show indecomposability; to this end, we order the set
S of simple reflections by setting si < sj if and only if i < j, for i, j ∈ [1, n].
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Lemma 2.3.17. Let ik · · · jk · · · i1 · · · j1 be a sequence defining a generalized inter-

twined bimodule with corresponding variety W ∈ Vn. Then

1. The smallest index in supp(TW ) is equal to n(k) where n(k) is as in definition

2.3.15,

2. The lowest simple reflection occurring in TW is sik .

Proof. We argue by induction on k; if k = 1, the result is trivially true since TW =

{si1} and n(1) = i1. Now suppose k > 1. By induction the smallest index occurring
in TW ′ where W ′ is associated to the sequence ik−1 · · · jk−1 · · · i1 · · · j1 is n(k− 1) (in
particular there exists j > n(k − 1) such that (n(k − 1), j) ∈ TW ′) and the lowest
simple reflection occurring in TW ′ is sik−1

.
First consider the case |Sk| = 1, we then have n(k) = jk = n(k − 1) − 1.

We get Tjk·W ′ = (TW ′\{(n(k − 1), j)}) ∪ {sn(k)}. If (n(k − 1), j) is simple, then
n(k − 1) = ik−1 and ik = jk since jk = ik−1 − 1 and jk ≤ ik < ik−1; in that case we
are done. Otherwise, the first two blocks (from the left) of the set Tjk·W ′ have the
form given by figure 2.6, where all reflections having in their supports an index in

... ...

jk ik−1

Fig. 2.6: The first two blocks of the set Tjk·W .

[jk + 2, ik−1 − 1] must have the other index of their support bigger than or equal to
ik−1 + 2 (otherwise sik−1

would not be the lowest simple reflection in TW ′). Thanks
to this property together with Lemma 2.1.10 and the fact that ik < ik−1, applying
ik · · · (jk + 1) to jk ·W ′ does not change the support of the corresponding dense set
and gives a set whose lowest simple reflection is sik (see figure 2.7 for an illustration:
in that case n(k) = jk).

Now suppose |Sk| = 2 ; applying the sequence n(k) · · · (jk + 1)jk to W ′ we get a
variety W ′′ with corresponding set equal to TW ′ ∪ {sn(k)} since n(k − 1) = n(k) + 2

is the lowest index in TW ′. We can then argue exactly as in the first case to get the
conclusion (see figure 2.7).

Proposition 2.3.18. Let B be a generalized intertwined bimodule with associated

sequence ik · · · jk · · · i1 · · · j1. Then B is indecomposable. More precisely, when writ-

ing B in the form

B(k)⊗Rjk
O(Wk)⊗O(Xk) B(k − 1)⊗ · · · ⊗B(2)⊗Rj2

O(W2)⊗Ri1
B(1)
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n(k) ik ik−1

(n(k) · · · jk) ·W
′

−→
n(k) ik ik−1

↓

n(k) ik ik−1

(ik · · · jk) ·W
′

←−
n(k) ik ik−1

Fig. 2.7: Example of the process of applying the sequence
ik · · · (n(k) + 1) to (n(k) · · · jk) · W ′; in case |Sk| = 1 we have
n(k) = jk.

where we made the same choice of brackets as in Proposition 2.3.13, with Xℓ the

variety associated to the subsequence iℓ−1 · · · jℓ−1 · · · i1 · · · j1 and Wℓ = Xℓ ∩ Vjℓ, any

tensor in B can be written as a sum of elements of the form

a · 1⊗ 1⊗ · · · ⊗ 1⊗ 1 · p(f1, . . . , fi1)

where the · holds for the operation of R̄ on both sides and p(f1, . . . , fi1) is a polyno-

mial in f1, f2, . . . , fi1.

Moreover if j+2 is smaller than or equal to the smallest index in Sk, then there

exists a polynomial p(f1, . . . , fi1) such that

fj · 1⊗ 1⊗ · · ·1⊗ 1 = 1⊗ 1⊗ · · · 1⊗ 1 · p(f1, · · ·fi1).

Proof. We first consider in which case the variety Xℓ is sjℓ-invariant ; if |Sℓ| = 2,
we have that jℓ ≤ n(ℓ− 1)− 2 by definition 2.3.15 hence Xℓ is sjℓ-invariant by the
first assertion of Lemma 2.3.17 together with Proposition 2.1.11. If |Sℓ| = 1, then
jℓ = n(ℓ−1)−1 by definition 2.3.15 hence Xℓ is not sjℓ-invariant by the first assertion
of Lemma 2.3.17 together with Proposition 2.1.11. Therefore in case |Sℓ| = 2 one
can decompose

O(Wℓ) = O(Wℓ)
sjℓ ⊕O(Wℓ)

sjℓfjℓ|Wℓ
,

hence for each ℓ such that |Sℓ| = 2 we can decompose the O(Wℓ)-component of any
tensor in B and move the invariant parts to the left in B(ℓ) and then in O(Wℓ+1)

as we did in 2.3.13 for the intertwined case. In the case where |Sℓ| = 1, we have
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seen that Xℓ is not sjℓ-invariant. Thanks to Corollary 2.1.12 together with Remark
2.2.1, R

sjℓ
jℓ
։ O(Wℓ), hence the O(Wℓ) component of any tensor in B can be moved

to the left in B(ℓ) and then in the O(Wℓ+1)-component. As a consequence, any
tensor b ∈ B can be written as a sum

∑
i ai · ti, where ai ∈ R̄ and ti are tensors

in B with fjℓ or 1 in the O(Wℓ)-component for ℓ such that |Sℓ| = 2, with 1 in the
O(Wℓ)-component for ℓ such that |Sℓ| = 1 and with 1 in the components coming
from the bimodules B(ℓ). It remains to show that if |Sℓ| = 2, the fjℓ in the O(Wℓ)-
components can be "moved to the right".

Now we consider an element fj in the O(Wℓ)-component of one of the ti, with
j ≤ n(ℓ) as we did at the end of the proof of 2.3.14. If |Sℓ−1| = 1, then the only
index in Sℓ−1 is jℓ−1 and one has jℓ−1 ≥ j+2 since |Sℓ| = 2. In that case, any index
occurring in the sequence iℓ−1 · · · jℓ−1 · · · i1 · · · j1 is distant from j and hence fj can
be moved in the very first component on the right of our tensor product (that is
O(W1) = Rj1). The other case is the case where |Sℓ−1| = 2. Since iℓ−1 > n(ℓ) + 1,
fj is siℓ−1

-invariant and hence can be moved to the right in B(ℓ − 1). We then
argue exactly as in Lemma 2.3.14, distinguishing the three cases: j < jℓ−1 − 1,
j = jℓ−1− 1 and j ≥ jℓ−1, to conclude that we can "move" our fj to the right in the
O(Wℓ−1)-component where we obtain a sum of fj′ for j′ ≤ j+2. But since |Sℓ| = 2,
j′ ≤ n(ℓ− 1). Hence we can inductively "move" the fj ’s to the O(Wm)-component
with m < ℓ as far as |Si| = 2 for each i ∈ [m, ℓ− 1] obtaining in that component a
polynomial in p(f1, · · · , fn(m)) and if then |S(m− 1)| = 1, we apply the first case to
move our polynomial in the very first component on the right of the tensor product
(that is O(W1) = Rj1). Hence we can inductively move any fj to the right and
one obtains in that component polynomials in the fi’s for i smaller than or equal to
n(1) = i1. This also shows the last statement since if j + 2 is less than or equal to
n(k), then arguing as above our fj lying in the very first component on the left of
the tensor product can be moved in the O(Wk)-component and one obtains a sum
of fj′ for j′ less than or equal to j + 2 ≤ n(k).

We have all the required tools to prove :

Theorem 2.3.19. Let B be a fully commutative bimodule. Then B is indecompos-

able in R̄−modZ − R̄.

Proof. We consider the sequence ik · · · jk · · · i1 · · · j1 our bimodule is associated to.
We consider the biggest index ℓ such that the bimodule associated to the subse-
quence seq1 = iℓ · · · jℓ · · · i1 · · · j1 is a generalized intertwined bimodule and write
G(1) for the corresponding bimodule. Then one can do the same with the sub-
sequence ik · · · jk · · · iℓ+1 · · · jℓ+1 to obtain a generalized intertwined bimodule G(2)
associated to a subsequence seq2. At the end of the process we obtain a sequence
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G(1), . . . , G(m) of generalized intertwined bimodules associated to subsequences
seq1, . . . , seqm such that

B ∼= G(m) ⋆ G(m− 1) ⋆ · · · ⋆ G(2) ⋆ G(1)

and seq = seqm · · · seq2seq1. We compute the various ⋆ products occurring in each
of the bimodule G(i) with the same choice of brackets as in Propositions 2.3.13 and
2.3.18; we then compute the above product "from the right", i.e. with the following
choice of brackets:

G(m) ⋆ (G(m− 1) ⋆ (· · · (G(3) ⋆ (G(2) ⋆ G(1))) · · · )).

By maximality of the rank of the subsequence iℓ · · · jℓ · · · i1 · · · j1 defining G(1),
jℓ+1 ≤ iℓ+1 < n(ℓ) − 1. But we know from Lemma 2.3.17 that the lowest index
in the support of TU2 where U2 is the variety associated to seq1 is precisely n(ℓ).
The variety Z2 occurring when computing the ⋆ product between G(1) and G(2),
which is equal to U2∩Vjℓ+1

, is then sjℓ+1
-invariant. Moreover, since iℓ+1 is the biggest

index occurring in seq2, one has that

TWseq2seq1
= TWseq1

∪ TWseq2

and the same holds using induction when replacing 1 by i for 1 < i < m. Hence our
bimodule is isomorphic to

G(m)⊗Rkm
O(Zm)⊗O(Um) G(m− 1)⊗ · · · ⊗Rk2

O(Z2)⊗O(U2) G(1)

where Uj is the variety associated to the sequence seqj−1 · · · seq2seq1, kj is the last
index of the sequence seqj and Zj = Uj ∩ Vkj is skj -invariant. Now consider any
tensor

am ⊗Rkm
bm ⊗O(Um) am−1 ⊗ · · · ⊗Rk2

b2 ⊗O(U2) a1

in the above tensor product with aj ∈ G(j), bj ∈ O(Zj). Since Rkj ։ O(Zj) we can
suppose that each bi equals 1. Now using Proposition 2.3.18 inductively, beginning
with a1, we can rewrite our tensor as a sum of tensors of the form

a · 1⊗Rkm
p(f1, . . . , fnm

)⊗O(Um) 1⊗ · · · ⊗Rk2
p(f1, . . . , fn2)⊗O(U2) 1 · p(f1, · · · , fn1),

where nj is the biggest index in the sequence seqj (in particular n1 = i1 and n2 = iℓ+1.
Now each nj +2 is less than or equal to the smallest index in the set of intertwining
indices of seqj−1 because this sequence was chosen to be maximal such that the
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corresponding bimodule is a generalized intertwined bimodule. Hence we can apply
the last statement of Proposition 2.3.18 inductively, beginning on the left. This
concludes.

2.3.5 Categorification of the diagram basis

Notice that the category of finitely generated graded R̄-bimodules has the Krull-
Schmidt property (see Remark 1.3.1). We denote by BTLn

the full subcategory of
R̄ − modZ − R̄ whose objects are all the bimodules isomorphic to direct sums of
(possibly shifted) fully commutative bimodules.

Theorem 2.3.19 allows us to extend the ⋆-product to direct sums of fully com-
mutative bimodules and their shifts by bilinearity; since in general Krull-Schmidt
decompositions are not unique but essentially unique this is well defined only up
to isomorphism (in particular the ⋆-product is not necessarily a functor) but it de-
scends to a well-defined operation on the level on the split Grothendieck group of
the category BTLn

which we denote by 〈BTLn
〉. Indeed, the isomorphism classes of

indecomposable objects form a basis of it and 〈M〉 = 〈N〉 if and only if M ∼= N . In
particular 〈BTLn

〉 comes equipped with a ring structure and even a Z[τ, τ−1]-algebra
structure via τ · 〈M〉 = 〈M [1]〉.

Recall that for w ∈ Wf a fully commutative element, we write bw for the corre-
sponding element of the Temperley-Lieb algebra and Bw for a corresponding fully
commutative bimodule. Combining our efforts from the previous sections it is now
easy to prove:

Theorem 2.3.20 (Categorification of the diagram basis of the Temper-

ley-Lieb algebra). The category BTLn
categorifies the Kazhdan-Lusztig basis of

the Temperley-Lieb algebra TLn. More precisely, there is a unique isomorphism of

Z[τ, τ−1]-algebras

E : TLn
∼
−→ 〈BTLn

,⊕, ⋆〉 ,

such that E(bw) = 〈Bw〉 for each w ∈ Wf , E [τ ] =
〈
R̄[1]

〉
.

Proof. We know from Theorem 2.3.3 that the bimodules Bw satisfy the Temperley-
Lieb relations. This shows that we have a surjective morphism of Z[τ, τ−1]-algebras
with the claimed properties. In order to see that this morphism is injective, it
suffices to show that if w 6= w′ are two fully commutative elements in W, then the
corresponding bimodules Bw and Bw′ are non-isomorphic. This has already been
proven in 2.3.6.
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2.4 Fully commutative bimodules as rings of regular

functions

In the previous section, we showed that any fully commutative bimodule Bw is
generated as bimodule by a nonzero element in its one-dimensional degree zero
component, which implies indecomposability. Since there is an equivalence of cat-
egories between quasi-coherent sheaves on Z × Z and R̄ ⊗k R̄-modules, cyclicity is
an indication that we may realize our bimodules as rings of regular functions on
subvarieties of Z × Z. The two projections on Z then give the bimodule structure.
The aim of this section is to realize fully commutative bimodules Bw where w ∈ Wf

is associated to a sequence of rank one as rings of regular functions on a subvariety
of Z × Z.

A proof of this fact for any fully commutative bimodule would provide a new
proof of their indecomposability, since the ring of regular functions on a closed
subscheme of Z ×Z is obviously generated as bimodule by the constant function 1.

We also use some geometric properties of the bimodules to compute the spaces
of homorphisms between Bi and Bj for i, j ∈ [1, n] at the end of the section.

2.4.1 Regular functions on twisted diagonals

Recall that si acts on Vi, hence on Ri = O(Vi). Write (Ri)si for the graded (R̄, R̄)-
bimodule which is equal to Ri as left R̄-module but with right operation of R̄ twisted
by si that is, if b ∈ (Ri)si, r ∈ R̄, b · r = bsi(r|Vi). One checks that there are short
exact sequences

0 −→ Ri[−2]
ϕ+
i−→ Bi

µ−i−→ (Ri)si −→ 0,

where ϕ+
i (r) = r ⊗ fi + rfi ⊗ 1 and µ−

i (a⊗ b) = asi(b), and

0 −→ (Ri)si[−2]
ϕ−

i−→ Bi

µ+i−→ (Ri) −→ 0,

where ϕ−
i (r) = r ⊗ fi − rfi ⊗ 1 and µ+

i (a ⊗ b) = ab (this is easily shown using the
decomposition Ri

∼= Rsi
i ⊕ R

si
i [−2] in Rsi

i −modZ).

Notation. Let Q ⊂ T , A ⊂ W. We set

GrRQ(A) =
⋃

x∈A

{
(xv, v) | v ∈

⋂

t∈Q

Vt
}
,

GrLQ(A) =
⋃

x∈A

{
(v, xv) | v ∈

⋂

t∈Q

Vt
}
.
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If Q consists of one or two simple reflections and A = {x1, . . . , xk}, for example
if Q = {si, sj}, we will write Gr

L/R
i,j (x1, . . . , xk) instead of Gr

L/R
Q (A) for notational

compactness.

Lemma 2.4.1. In R̄−modZ − R̄ one has isomorphisms

Bi
∼= O(GrRi (e, si))

∼= O(GrLi (e, si)).

Proof. Notice that the last isomorphism is trivial and is even an equality since
GrRi (e, si) = GrLi (e, si). The map R̄⊗k R̄։ O(GrRi (e, si)) factors through Bi, yield-
ing a surjective map Bi ։ O(GrRi (e, si)). To show that this map is an isomorphism,
one first shows that there exists a short exact sequence

Ri[−2] →֒ O(GrRi (e, si))։ (Ri)si

with suitable maps. To show this, notice that Ri
∼= O(GrRi (e)), (Ri)si

∼= O(GrRi (si)).
One defines the surjective map in the sequence above by restriction and the injective
map by multiplication by a linear functional f ∈ V ∗×V ∗ which vanishes on GrRi (si)

but not on GrRi (e), that is, fi ⊗ id + id ⊗ fi (up to a scalar). One has injectivity
since fi(v) 6= 0 for v ∈ Vi − {0}. Now suppose that f is a regular function on
GrRi (e, si) which vanishes on GrRi (si). Since t := si × id is a reflection in V × V one
can then decompose f in the form r+r′(fi⊗ id) where r, r′ are si× id-invariant. But
since f vanishes on GrRi (si) one has r(v, v) = r′(v, v)fi(v) for each v ∈ Vi. Hence
f = r′(fi ⊗ id + id⊗ fi), and the sequence is exact. We get a commutative diagram

O(GrRi (e))
�

� // O(GrRi (e, si))
// // O(GrRi (si))

Ri
�

� //

∼=

OOOO

Bi
// //

OOOO

(Ri)si

∼=

OOOO
,

which forces the map in the middle to be an isomorphism.

We would like to generalize Lemma 2.4.1, as least in the case where w ∈ Wf has
the form sisi−1 · · · sj+1sj where i > j. That is, we would like to find an isomorphism
between Bw and the ring of regular functions on some closed subscheme Xw ⊂ Z×Z.
To this end, we need some technical results; first recall that any choice of brackets
for computing the product

Bi ⋆ Bi−1 ⋆ · · · ⋆ Bj

gives as a consequence of Lemma 2.1.9 the following tensor product of commutative
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rings:
Ri ⊗Rsi

i
Ri,i−1 ⊗Rsi−1

i−1
Ri−1,i−2 ⊗Rsi−2

i−2
· · · ⊗

R
sj+1
j+1

Rj+1,j ⊗Rsj
j

Rj ,

where Rk+1,k = O(Vk ∩ Vk−1). We will write the tensor product above simply as

Ri ⊗i Ri,i−1 ⊗i−1 Ri−1,i−2 ⊗i−2 · · · ⊗j+1 Rj+1,j ⊗j Rj .

Now recall from Lemma 2.2.7 that for m ∈ {k + 1, k − 1}, one has an isomorphism
of Rsk

k -modules
Rsk
k

∼
−→ Rk,m

given by the following composition of inclusion and restriction

Rsk
k →֒ Rk ։ Rk,m.

As a consequence, given an element aj ∈ R
sj
j , one can associate to it a unique ai ∈ R

si
i

since all the arrows in the diagram below are isomorphisms (but isomorphisms in
the category of graded k-modules)

Rsi
i

∼

��=
==

==
==

R
si−1

i−1

∼
~~~~

~~
~~

~~ ∼

!!D
DD

DD
DD

D
...

∼
����

��
��

��
�

R
sj+1

j+1

∼

����
��

��
�� ∼

  A
AA

AA
AA

A
R
sj
j

∼
����

��
��

�

Ri,i−1 Ri−1,i−2 ... Rj+1,j

We want to understand the element ai in terms of aj ; this will be done by induction
on i − j. To this end, write ak, k ∈ {j, j + 1, . . . , i} for the unique element of Rsk

k

corresponding to aj via the chain of isomorphisms given in the diagram above. For
u, v ∈ W, we write uv for uvu−1. Let j ≤ k. Set

w(j, k) = (sj+1sj)(
sj+2sj+1) · · · (

sksk−1)(
sk+1sk)

for j < k and w(j, k) = e if j = k. Now if v ∈ Vk, associate an integer nkv ∈ Z≥0 by

nkv = |{m ∈ {j, j + 1, . . . , k − 1} | v ∈ Hsm}|.

Lemma 2.4.2. Let v ∈ Vk. We have

ak(v) =

{
aj(w(j, k − 1)v) if nkv is even,

aj(w(j, k − 1)skv) if nkv is odd.

Proof. As mentioned above, the proof is by induction on k − j. If k − j = 0,
then v ∈ Vk implies nkv = 0 and ak(v) = aj(v) = aj(w(k, k)v). Now suppose that
k − j > 0. By definition, we have that ak|Vk∩Vk−1

= ak−1|Vk∩Vk−1
. Let v ∈ Vk. If
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v ∈ Vk−1, then ak(v) = ak−1(v). If v ∈ Hsk−1
, then v ∈ Vsksk−1sk otherwise one would

have v ∈ Hsk , a contradiction. It implies that skv ∈ Vk−1. But ak ∈ R
sk
k , implying

ak(v) = ak(skv) = ak−1(skv). By induction we get

ak(v) =






ak−1(v) = aj(w(j, k − 2)v) if v ∈ Vk−1 and nk−1
v is even,

ak−1(v) = aj(w(j, k − 2)sk−1v) if v ∈ Vk−1 and nk−1
v is odd,

ak−1(skv) = aj(w(j, k − 2)skv) if v ∈ Hsk−1
and nk−1

skv
is even,

ak−1(skv) = aj(w(j, k − 2)sk−1skv) if v ∈ Hsk−1
and nk−1

skv
is odd.

Now in the first two cases, one has v ∈ Vk ∩ Vk−1 hence v ∈ Hsksk−1sk by Lemma
2.1.4. In the first case we get ak(v) = aj(w(j, k − 2)v) but since v = sksk−1skv this
is equal to aj(w(j, k − 2)sksk−1skv) = aj(w(j, k − 1)v) and nkv = nk−1

v hence even.
In the second case we get ak(v) = aj(w(j, k− 2)sk−1sksk−1skv) = aj(w(j, k− 1)skv)

and nkv = nk−1
v hence odd. In the third case we have ak(v) = ak−1(skv) = aj(w(j, k−

2)skv) but since v ∈ Hsk−1
this is equal to aj(w(j, k−2)sksk−1v) = aj(w(j, k−1)skv);

moreover nkv = nk−1
skv

+ 1 since skv ∈ Vm for m < k − 1 if and only if v ∈ Vm since m
and k are distant, and v ∈ Hsk−1

. Hence nkv is odd in that case. In the last case we
have ak(v) = ak−1(skv) = aj(w(j, k − 2)sk−1skv) but since v ∈ Hsk−1

this is equal
to ak−1(skv) = aj(w(j, k − 2)sk−1sksk−1v) = ak(w(j, k − 1)v). In that case by the
same argument as for the third case we have nkv = nk−1

skv
+ 1 hence nk(v) is even. To

summarize we have

ak(v) =

{
aj(w(j, k − 1)v) if nkv is even,
aj(w(j, k − 1)skv) if nkv is odd.

This is exactly what we wanted to establish.

Lemma 2.4.3. Let i, j ∈ {1, . . . , n}, i > j. Let w = sisi−1 . . . sj. There is an

operation of id× sj on the closed subscheme

X(i, j) := GrRj (w(j, i− 1)−1, siw(j, i− 1)−1) →֒ Vi × Vj →֒ Z × Z.

As a consequence, there is a decomposition

O(X(i, j)) = O(X(i, j))id×sj ⊕O(X(i, j))id×sj (1× fj)

and O(X(i, j))id×sj is isomorphic to Ri.

Proof. Set
Gr1 := GrRj (w(j, i− 1)−1),

Gr2 := GrRj (siw(j, i− 1)−1),
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so that X(i, j) = Gr1 ∪Gr2.

The fact that there is an operation of id× sj on X(i, j) is a consequence of the
fact that sjw(j, i− 1)siw(j, i− 1)−1 = e, which is a straightforward computation.

Now id×sj is a reflection in V ×V with reflecting hyperplane equal to V ×Hsj . As
a consequence there is no irreducible component of X(i, j) included in the reflecting
hyperplane of id × sj whence the claimed decomposition. Now w(j, i − 1)−1(Vj) =

Vi = (siw(j, i− 1)−1)(Vj). Hence the projection

pr : X(i, j)→ Vi

yields a morphism of k-algebras

ϕ : Ri = O(Vi)→ O(X(i, j))

whose image lies in the subring of id×sj invariant functions, given by a 7→ a⊗ id. It
is clear that this map is injective. For surjectivity, one considers f ∈ O(X(i, j))id×sj .
Since X(i, j) = Gr1 ∪ Gr2, we can restrict f to a single graph, for example to Gr1.
The inclusion Vi →֒ Gr1 and projection Gr1 ։ Vi are morphisms of varieties inverse
to each other, giving an isomorphism of rings O(Gr1) ∼= O(Vi). Hence there is
a single element in Ri corresponding to f |Gr1 . One checks that this element is a
preimage of f under ϕ using id× sj-invariance.

Proposition 2.4.4. Let i, j ∈ {1, . . . , n}, i > j. Let w = sisi−1 · · · sj. Then

Bw
∼= O(X(i, j)).

Proof. Recall that Bw is free of rank two as left Ri-module, with basis given by
{1⊗ 1⊗ · · · ⊗ 1⊗ 1, 1⊗ 1⊗ · · · ⊗ 1⊗ fj}. We define a map

ϕ : Bw → O(X(i, j))

by the assignments 1⊗1⊗· · ·⊗1⊗1 7→ 1⊗1, 1⊗1⊗· · ·⊗1⊗fj 7→ 1⊗fj. This defines an
isomorphism of left Ri-modules since O(X(i, j)) is a free left O(X(i, j))id×fj -module
of rank two with basis given by {1 ⊗ 1, 1 ⊗ fj} and O(X(i, j))id×fj is canonically
isomorphic to Ri (see Lemma 2.4.3). It remains to show that such a map is also
a morphism of right Rj-modules. Let a ∈ Rj act on 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ 1 on the
right. Write a = a1 + a2fj with am ∈ R

sj
j , m = 1, 2. Write (a1)i and (a2)i for the

corresponding elements of Rsi
i given by Lemma 2.4.2. We then have that the image

of 1⊗1⊗· · ·⊗1⊗a1 under our map is given by (a1)i⊗1, that is, ((a1)i⊗1)(v′, v) =
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(a1)i(v
′). If niv′ is even and v′ = w(j, i− 1)−1v we have

(a1)i(v
′) = a1(w(j, i− 1)v′) = a1(v).

If niv′ is odd and v′ = w(j, i− 1)−1v we have

(a1)i(v
′) = a1(w(j, i− 1)siv

′) = a1(w(j, i− 1)siw(j, i− 1)−1v).

But a1 ∈ R
sj
j and sjw(j, i−1)siw(j, i−1)−1 = e, hence we get that (a1)i(v′) = a1(v).

Similar arguments show that (a1)i(v
′) = ai(v) in case v′ = siw(j, i − 1)−1v. Hence

we have proven that

ϕ((1⊗ · · · ⊗ 1) · a1) = ϕ(1⊗ · · · ⊗ 1) · a1.

We can give exactly the same arguments for a2 applied on the right of 1⊗1⊗· · ·⊗1⊗fj
to prove that

ϕ((1⊗ · · · ⊗ fj) · a2) = ϕ(1⊗ · · · ⊗ fj) · a2.

Putting the two equalities together one obtains

ϕ((1⊗ · · · ⊗ 1) · a) = (1⊗ 1) · a = ϕ(1⊗ · · · ⊗ 1) · a.

Now using the fact that ϕ is a morphism of left-modules this equality implies that

ϕ((fi ⊗ · · · ⊗ 1) · a) = (fi ⊗ 1) · a = ϕ(fi ⊗ · · · ⊗ 1) · a.

But since Bw is a free right Rj-module of rank two with basis given by {1 ⊗ 1 ⊗

· · ·1⊗ 1} and {fi ⊗ 1⊗ · · · 1⊗ 1} we have just shown that ϕ is also a morphism of
right Rj-modules.

2.4.2 Morphisms between elementary bimodules

Notation. If i, j ∈ [1, n] are distinct, we write [fi, fj ] for the element of R̄ equal to
fi + 2fi+1 + · · ·+ 2fj−1 + fj if j > i and fi + 2fi−1 + · · ·+ 2fj+1 + fj if j < i.

Remark 2.4.5. The element [fi, fj] lies in I(Vi∩Vj) as noticed in [16], 3.13. This can
also be proved directly using the elementary properties of Weyl lines from Lemma
2.1.4: if |i− j| = 1, then we know that Vi ∩ Vj ⊂ Hsisjsi and in that case [fi, fj ] =

fi+ fj is an equation of Hsisjsi. In case |i− j| > 1, consider v ∈ Vi ∩ Vj and assume
that v ∈ Ht where t = (i + 1, j + 1). This forces v ∈ Vr for r = (i, j + 1) and
hence v ∈ Vj ∩ Vr ⊂ Hq with q = (i, j). Hence v ∈ Ht ∩ Hq which implies that
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∑j
k=i+1 fi(v) = 0 =

∑j−1
k=i fk(v) and so [fi, fj](v) = 0. Now if v /∈ Ht one has v ∈ Vt.

By similar arguments it implies that v ∈ Hr ∩ Hr′ with r′ = (i + 1, j) also giving
[fi, fj](v) = 0.

Proposition 2.4.6. Let L ⊂ Z be a Weyl line. The element fL ∈ R̄ defined by

fL :=
∏

t,L⊂Vt

ft

is nonzero on any v ∈ (L− {0}) but zero everywhere else.

Proof. Let L′ ⊂ Z be a Weyl line different from L. Since L and L′ are lines which
are intersections of reflecting hyperplanes there must exist a reflection t ∈ T such
that L′ ⊂ Ht but L 6⊂ Ht. Hence L ⊂ Vt and ft vanishes on L′ but not on L.

Corollary 2.4.7. Let AL be a set of Weyl lines in Z. Let W :=
⋃
L∈AL

L. The

element fW ∈ R̄ defined by

fW :=
∑

L∈AL

fL

is nonzero on any v ∈ (W − {0}) but zero everywhere else.

Proof. This is an immediate consequence of 2.4.6.

Example 2.4.8 In type A2 the Weyl lines are exactly the reflecting hyperplanes,
hence there are three Weyl lines given by Hs1 , Hs2, Hs1s2s1. Therefore V1 = Hs2 ∪

Hs1s2s1. One has
fV1 = f1fs1s2s1 + f1f2 = f1(2f2 + f1).

Proposition 2.4.9. Let M,N be two graded R̄-bimodules such that M is cyclic.

Let VM , VN be unions of Weyl lines and assume that M is a free left O(VM)-module

and N is a free left O(VN)-module. If ϕ : M → N is a homogeneous morphism of

bimodules and if r ∈ O(VN) is such that r|VN∩VM = 0, then r · ϕ = 0.

Proof. By assumption M = 〈g〉 for some g ∈ M . Consider the variety W :=⋃
L,L 6⊂VM

L. Then fW vanishes on VM by the Corollary 2.4.7. Hence fW · ϕ(g) =

ϕ(fW · g) = 0. Let r ∈ O(VN) be such that r|VM∩VN = 0. Let B be a basis of
N as a left O(VN)-module and write ϕ(g) =

∑
b∈B αb · b where αb ∈ O(VN). Now

r · (fW · ϕ(g)) = 0 which we rewrite

∑

b∈B

(rfW |VNαb) · b = 0.
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We know that N is free as a left O(VN)-module. Therefore we have that for each
b ∈ B,

rfW |VNαb = 0.

By Corollary 2.4.7, fW does not vanish on a Weyl line L such that L ⊂ VN but L 6⊂
VM . This forces rαb to vanish on such lines for each b ∈ B. But since r|VN∩VM = 0,
we get that rαb = 0 for each b ∈ B, hence r · ϕ(g) = 0. Since M is cyclic generated
by g, it implies that r · ϕ = 0.

Remark 2.4.10. In particular, Proposition 2.4.9 applies to fully commutative bimod-
ules since we know that they are free as left modules over the ring of regular functions
on an inductively defined union of Weyl lines (Theorem 2.2.15) and cyclic: to es-
tablish Theorem 2.3.19 we showed that a fully commutative bimodule is generated
by the unit of its commutative ring structure.

Remark 2.4.11. Let A ⊂ {1, . . . , n}. Let W =
⋂
i∈A Vi. In ([16], §6, claim 4), a

k-basis of R̄/I(W ) is given. In particular, a k-basis of Ri is given for each i ∈

{1, . . . , n}. It consists of monomials in the fj and is indexed by pairs (A, k) where
A ⊂ {1, . . . , n}\i and k ∈ Z≥0. The monomial corresponding to the pair (A, k) is
given by

M(A, k) = fki
∏

m∈A

fm.

The idea of Elias is the following: by Remark 2.4.5, [fi, fk] ∈ I(Vi ∩ Vk) implying
that fk[fi, fk] ∈ I(Vi). Assume k > i, the other case being symmetric. Then

fk[fi, fk] = fk(fi + 2fi+1 + · · ·+ 2fk−1 + fk),

which implies that a monomial having an f 2
k as factor can be replaced by a linear

combination of monomials with no f 2
k as factors. Iterating this process one gets rid

of all the f 2
j , j 6= i. Elias then uses Bergman’s Diamond Lemma to conclude.

Proposition 2.4.12. Let i, j be distant. Then

Hom(Bj , Bi) ∼= O(Vi ∩ Vj)[−4]

as graded R̄-bimodules, where the generating map is given by

1⊗ 1 7→ fjfi ⊗ 1 + fj ⊗ fi.

In particular, left and right operation of R̄ are the same on Hom(Bj, Bi).

Proof. The three following claims will prove the proposition:
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1. Any homogeneous map ϕ : Bj → Bi sends 1 to rϕfi⊗1+rϕ⊗fi where rϕ ∈ Ri

is of the form r′ϕfj with r′ϕ ∈ Ri.

2. The assignment ϕ(1 ⊗ 1) = fjfi ⊗ 1 + fj ⊗ fi defines a morphism of graded
bimodules Bj → Bi[4].

3. A homogeneous morphism ϕ : Bj → Bi is zero if and only if r′ϕ|Vi∩Vj = 0.

Before proving the three claims, let us make a few remarks; since the Bi, i ∈ [1, n]

are cyclic generated by 1 ⊗ 1, any morphism between Bj and Bi is determined by
its value at 1⊗ 1, whence the formulation of the two first claims. One may wonder
why the left and right operations of R̄ should coincide on Hom(Bj, Bi) if the three
claims hold; this is true since fi⊗ 1+1⊗ fi is the image of 1⊗ 1 under the injective
map ϕ+

i of the short exact sequence

0 −→ Ri[−2]
ϕ+
i−→ Bi

µ−i−→ (Ri)si −→ 0,

given in subsection 2.4.1; on Ri[−2], the left and right operations of R̄ are obviously
the same.

Proof of the first claim. Let ϕ : Bj → Bi a morphism of bimodules. The set {1 ⊗
1, 1 ⊗ fi} is a basis of Bi as left Ri-module; write ϕ(1 ⊗ 1) = q1 ⊗ 1 + q2 ⊗ fi with
qk ∈ Ri, k = 1, 2. Since i and j are distant, the equation fi lies in R

sj
j . It implies

that fi · ϕ(1⊗ 1) = ϕ(1⊗ 1) · fi on Bj , hence

fiq1 ⊗ 1 + fiq2 ⊗ fi = q1 ⊗ fi + q2f
2
i ⊗ 1,

which implies that q1 = fiq2 since {1⊗ 1, 1⊗ fi} is a basis of Bi as left Ri-module.
It remains to show that q2 = r′fj for some r′ ∈ Ri. Using Proposition 2.4.9 and
Remark 2.4.5, [fi, fj] · ϕ(1 ⊗ 1) = 0, which implies that [fi, fj ]q2 = 0 in Ri. Now
using Remark 2.4.11, one can express q2 as a k-linear combination of monomials Mℓ

of the form
Mℓ = fkℓi

∏

m∈Aℓ

fm

for ℓ in some finite indexing set L, where Aℓ ⊂ [1, n] are subsets which do not contain
fi. Write q2 =

∑
ℓ α(ℓ)Mℓ with α(ℓ) a scalar. Since in Ri one has fj[fi, fj] = 0 (see

Remark 2.4.5), we get

0 = q2[fi, fj ] =
∑

{ℓ∈L | j /∈Aℓ}

α(ℓ)Mℓ[fi, fj]
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We now suppose i < j, the argument is similar in the other case. The idea is to
rewrite the element above in the basis given by Elias; multiplying a monomial Mℓ

by fi just gives another basis monomial. Multiplying Mℓ by a fk for i < k < j gives
another basis monomial in case Aℓ does not contain the index k. In case k ∈ Aℓ,
one gets

M ′
ℓ = fkℓi f

2
k

∏

m∈Aℓ,m6=k

fm,

and in that case one replaces f 2
k by −fk(fi+2fi+1+ · · ·+2fk−1) (see Remark 2.4.11)

hence f 2
k is replaced by −fk times a sum of fm for m < k and hence by iterating the

process one expresses M ′
ℓ as a linear combination of monomials of the basis which

do not have fj as a factor. As a consequence the only monomials occurring when
writing q2[fi, fj] in the basis which do have fj as a factor are the Mℓfj with j /∈ Aℓ,
and therefore one has α(ℓ) = 0 if ℓ is such that j /∈ Aℓ, which proves that q2 = fjr

′

for some r′ ∈ Ri.

Proof of the second claim. Recall the identification of Bi with the algebra of regular
functions on GrRi (e, si) from Lemma 2.4.1. We have to show that if a, b ∈ Rj , r ∈ R

sj
j

and a′, b′, r′ are preimages of a, b, r in R̄, then

(a′r′)|Viϕ(1⊗ 1)b′|Vi = a′|Viϕ(1⊗ 1)(r′b′)|Vi

and that it is independent of the chosen preimages a′, b′, r′ of a, b, r. The fact that
it is independent of the chosen preimages is a consequence of the fact that

ϕ(1⊗ 1) = fjfi ⊗ 1 + fj ⊗ fi = fi ⊗ fj + 1⊗ fifj

together with Lemma 2.4.1: indeed, if we identify Bi with the ring of regular func-
tions on GrRi (e, si), we have that ϕ(1⊗1)(w, v) = 0 whenever w or v /∈ Vj. Moreover,
using the fact that the left and right operations on ϕ(1 ⊗ 1) are the same, we get
the equality above. This proves that ϕ is a well-defined morphism of graded bimod-
ules.

Proof of the third claim. Suppose that ϕ : Bj → Bi is zero. Then ϕ(1 ⊗ 1) =

r′ϕ(fifj ⊗ 1 + fj ⊗ fi) = 0 which forces r′ϕfj = 0. This forces r′ϕ|Vi∩Vj = 0. The
converse is given by Proposition 2.4.9.

Proposition 2.4.13. Let i, j be adjacent. Then

Hom(Bj , Bi) ∼= O(Vi ∩ Vj)[−4]
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as graded R̄-bimodules, where the generating map is given by

1⊗ 1 7→ fjfi ⊗ 1 + fj ⊗ fi.

In particular, left and right operation of R̄ are the same on Hom(Bj , Bi).

Proof. The proof is almost the same as for distant i, j (Proposition 2.4.12) since
all the argument work for adjacent indices except one: the only step which needs a
different proof in the adjacent case is the fact used at the beginning of the proof of
claim 1 that if ϕ : Bj → Bi is a morphism of bimodules with ϕ(1⊗1) = q1⊗1+q2⊗fi,
qi ∈ Ri, then q1 = fiq2. Since fi = fi +

fj
2
−

fj
2

and fi +
fj
2

is sj-invariant one has in
Bj that

fi · 1⊗ 1 = 1⊗ 1 ·

(
fi +

fj
2

)
−
fj
2
· 1⊗ 1.

Applying ϕ and expressing the right hand side in the basis {1 ⊗ 1, 1⊗ fi} of Bi as
left Ri-module one gets using the fact that Bi is free of rank 2 and comparing the
coefficients that q1 = fiq2.

Proposition 2.4.14. One has an isomorphism

Hom(Bi, Bi) ∼= Bi

as graded R̄-bimodules.

Proof. The assignment ϕ(1 ⊗ 1) = a for any a ∈ Bi clearly defines a morphism of
bimodules Bi → Bi. Conversely, any morphism Bi → Bi is given by its value at
1⊗ 1.

Putting 2.4.12, 2.4.13 and 2.4.14 together we get:

Theorem 2.4.15. Let i, j ∈ [1, n]. One has

Hom(Bj, Bi) ∼=

{
O(Vi ∩ Vj)[−4] if i 6= j

Bi if i = j.

Remark 2.4.16. In Soergel category, morphisms between Bsi and Bsj for si 6= sj are
generated in degree 2 by the composition

R ⊗Rsi R։ R →֒ R⊗Rsj R[2],

where the surjective map is given by multiplication and the injective map by r 7→

rfj ⊗ 1+ r⊗ fj . In our case, Bi surjects to Ri, hence another degree two map must
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occur in the composition to obtain the generating map decribed in Propositions
2.2.12 and 2.4.13:

Ri ⊗Rsi Ri

µ+i
։ Ri −→ R̄[2]։ Rj [2]

ϕ+
j

→֒ Rj ⊗Rsj
j

Rj [4],

where the map Ri −→ R̄[2] is given by multiplication by fi and the map R̄[2]։ Rj [2]

is the natural quotient map. Notice that Ri and Rj do not lie in BTLn
.

As a consequence the degrees of the morphisms are sometimes different from the
degrees of the analogous morphisms in Soergel category and as a consequence, they
are sometimes different from the degrees of the corresponding morphisms in Elias
category (see [16]) which is a quotient of Soergel category.



Chapter 3

Combinatorics of Zinno basis

During the whole chapter, (W,S) will denote a Coxeter system of type An where
W is identified with the symmetric group Sn+1 on n + 1 letters and S is identified
with {s1, . . . , sn}, where si is the transposition (i, i+ 1). We write T for the set of
reflections or transpositions ofW. We denote by c the Coxeter element c = s1s2 · · · sn
and by c′ any Coxeter element, that is, any product of all the elements of S.

We will write Bn+1 or simply B for the braid group of type An, that is, the braid
group on n+ 1 strands. Recall that it has the following presentation

B =

〈
s1, . . . , sn sisi+1si = si+1sisi+1, ∀i ∈ {1, . . . , n− 1}

sisj = sjsi, if |i− j| > 1.

〉
.

81
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3.1 Geometry of noncrossing partitions for arbitrary

Coxeter elements

Recall the geometrical representation of a noncrossing partition x ∈ Pc from subsec-
tion 1.4.3. If one considers an arbitrary Coxeter element c′, there is still a geometrical
representation of elements of Pc′ as disjoint unions of polygons having as vertices
marked points on a circle; what changes is the order of the integers labelling the
points. To get the ordering, one needs to express the Coxeter element as an (n+1)-
cycle beginning by 1, that is, in the form c′ = (i1, i2, . . . , in+1) with i1 = 1. On then
labels the points on the circle in clockwise order by the integers 1 = i1, i2, . . . , in+1.
Since we are working with the fixed simple system S = {si}

n
i=1, any (n + 1)-cycle

does not yield a Coxeter element; the Coxeter elements obtained are given by the
following two lemmas. One can find an example of a labelling of the points on the
circle in figure 3.1.

Lemma 3.1.1. If c′ is a Coxeter element and (i1, . . . , in+1) is the corresponding

cycle with i1 = 1, ik = n + 1, then 1 = i1 < i2 < · · · < ik and 1 = i1 < in+1 < in <

· · · < ik+1 < n + 1.

Proof. We write σc′ for the permutation corresponding to c′. Since σc′(1) = i2, sj
must occur before sj−1 in any S-reduced expression of c′ for all j ∈ {2, 3, . . . , i2−1}.
Moreover, if k 6= 2, si2 cannot occur before si2−1 because it would contradict σc′(1) =
i2. Hence k 6= 2 implies that si2 is after si2−1; but these two reflections are the only
elements of S which do not fix i2. It implies that i3 = σc′(i2) > i2. Iterating this
process gives 1 = i1 < i2 < · · · < ik. A similar argument gives the second sequence
of inequalities.

Notation. Let c′ be a Coxeter element. We set Rc′ := {i1, i2, . . . , ik} and Lc′ :=

{ik, ik+1, . . . , in, in+1, i1}, where the ij’s are given by Lemma 3.1.1. In particular,
Lc′ ∪ Rc′ = {1, 2, . . . , n+ 1} and Lc′ ∩Rc′ = {1, n+ 1}.

Lemma 3.1.2. Let (i1, . . . , in+1) be an (n + 1)-cycle with ik = n + 1 such that

1 = i1 < i2 < · · · < ik = n + 1 and 1 = i1 < in+1 < in < · · · < ik+1 < ik = n + 1.

Then (i1, . . . , in+1) is a Coxeter element.

Proof. We argue by induction on n. If n = 2, then such a cycle is either equal
to (1, 2, 3) or (1, 3, 2). The first one is s1s2 and the second one s2s1. Now con-
sider the cycle (i1, . . . , in+1). If the inequalities of the lemma are true, then either
i2 = 2 or in+1 = 2. If i2 = 2 then s1(i1, . . . , in+1) = (i2, . . . , in+1) and the re-
sult follows by applying the induction hypothesis to the n-cycle (i2, . . . , in+1) in the
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parabolic subgroup WI where I = {s2, . . . , sn+1}. If in+1 = 2 then (i1, . . . , in+1)s1 =

(i2, . . . , in+1) = (in+1, i2, . . . , in) and we can apply the induction hypothesis to the
n-cycle (in+1, i2, . . . , in) in the parabolic subgroup WI .

Remark 3.1.3. As a consequence, it follows that for any k ∈ {1, . . . , n+1} there exists
a line containing the point labeled with k and cutting the circle with marked points
corresponding to the Coxeter element c′ such that the set of points on the circle
labeled with E≤k := {i ∈ {1, . . . , n+1} | i ≤ k} lies in one of the half-plane defined
by that line and the set of points labeled with E≥k := {i ∈ {1, . . . , n + 1} | i ≥ k}

lies in the other half-plane. For example, the points labeled with the elements of
E≤4 are drawn in white in figure 3.1. In that case the line contains the point labeled
with 4 and a point on the circle lying between the point labeled with 2 and the point
labeled with 5.

Lemmas 3.1.1 and 3.1.2 tell us that an (n + 1)-cycle is a Coxeter element c′ if
and only if when writing the cycle (i1 . . . in+1) with i1 = 1, all the ij are increasing
between i1 = 1 and ik = n + 1 and decreasing between ik = n + 1 and in+1. The
consequence for the geometry of noncrossing partitions and simple elements of the
dual braid monoid associated to c′ is that the indices which label the points on the
circle are increasing when reading them from the point labeled with 1 to the one
labeled with n + 1 in clockwise order and decreasing when reading them from the
point labeled with n+1 to the one labeled with 1 in clockwise order. Conversely any
such choice of indices labelling the points on the circle corresponds to some Coxeter
element. As a consequence, if one draws a path from 1 to n + 1 by drawing a line
segment between any two points with indices j, j + 1, one obtains a path without
crossings (that is, a zigzag) between the point with index 1 and the one with index
n + 1. The segment between the point indexed by j and the one indexed by k

corresponds to the transposition (j, k). One can look at the picture on the left in
Figure 3.1 for such a labelling. It turns out that it will be more convenient for many
proofs to slighlty change the geometric representation (except in case the Coxeter
element is s1s2 · · · sn) as follows: instead of drawing the points on the circle such
that the length of any arc between two successive points is the same, we will draw
the point labeled by 1 at the top of the circle, the points labeled with n + 1 at the
bottom, the points with index in Lc′ on the left and the points with index in Rc′ on
the right, each point having a specific heigth depending on its index. If P1, P2 are two
points with index i1, i2 such that i1 < i2, then the height of P1 will be bigger than
the height of P2. We represented the new way the points are drawn on the picture on
the right in Figure 3.1. In case the Coxeter element is s1s2 · · · sn, since all the points
would be on the right, we keep the traditional geometric representation that we
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used before, except in case we want to compare a situation involving a noncrossing
partition in Pc with another situation involving a noncrossing partition in Pc′. Since
points may be very close to each other in the new geometric representation, in case
we represent a noncrossing partition we may use curvilinear polygons instead or
regular polygons for a more comfortable reading.
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Fig. 3.1: Example of a labelling of the vertices given by a Coxeter
element c′; here c′ = s2s1s3s5s4 = (1, 3, 4, 6, 5, 2). When going
from the point labeled with 1 to the one labeled with 6 one obtains
a noncrossing zigzag.

To summarize, there are bijections

{
Coxeter
elements

}
∼
−→





Orientations
of the

Dynkin diagram





∼
−→





Ordered pairs (C1, C2) of
disjoint subsets of {2, . . . , n}

s.t. C1

·
∪ C2 = {2, . . . , n}





where we use the convention that the set C1 is the set of integers that label points on
the circle lying strictly between n+1 and 1 (in clockwise order), and C2 the is the set
of integers that label points lying strictly between 1 and n+1. Notice that the sets

C1 and C2 corresponding to a Coxeter element c′ are given by Lc′ = C1

·
∪{1, n+1},

Rc′ = C2

·
∪ {1, n+ 1}.

3.2 Bijections between noncrossing partitions and

fully commutative elements

3.2.1 Noncrossing partitions and fully commutative elements

The set Wf of fully commutative elements of W which indexes the diagram (or
Kazhdan-Lusztig) basis of the corresponding Temperley-Lieb algebra from chapter
2 has Catalan enumeration. Recall that any fully commutative element w ∈ Wf can
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be written uniquely in the form

(siℓsiℓ−1 · · · sjℓ)(siℓ−1
siℓ−1−1 · · · sjℓ−1

) · · · (si1si1−1 · · · sj1)

with all indices in {1, . . . , n} and iℓ < iℓ−1 < · · · < i1, jℓ < jℓ−1 < · · · < j1 and
jm ≤ im for each m = 1, . . . , ℓ. Conversely, any such expression is an S-reduced
expression of an element of Wf (see Proposition 1.1.2).

Notation. We write Iw for the set {i1, i2, . . . , iℓ} and Jw for the set {j1, j2, . . . , jℓ}.

Remark 3.2.1. Notice that i ∈ Iw if and only if in any S-reduced expression of w,
there is no occurrence of si+1 before the first occurrence of si. Similarly, one has
that i ∈ Jw if and only if in any S-reduced expression of w, there is no occurrence
of si−1 after the last occurrence of si.

The set of noncrossing partitions Pc which also has Catalan enumeration turns
out to index another basis of that algebra which we call the Zinno basis, obtained
by considering the images in the Temperley-Lieb algebra of the simple elements of
the dual braid monoid, which are lifts of elements of Pc (see section 1.4). We will
introduce the basis in the next sections and more details can be found in [42] and
[31]. We will use extensively the geometric representation of elements of Pc (and of
their lifts in the braid group) given in section 1.4.3. It turns out that if one takes
an arbitrary Coxeter element c′, one gets a basis given by the images of the simple
elements of the dual braid monoid associated to c′ in the Temperley-Lieb algebra as
shown by Vincenti ([41]), generalizing Zinno’s Theorem. At the very end of chapter
3, we will provide a new proof of this fact. We will sometimes refer to the generalized

Zinno basis in case we are working with an arbitrary Coxeter element.

Zinno’s strategy is as follows: he gives in [42] a bijection a : Pc → Wf as well
as a partial ordering on Pc such that there exists an upper triangular matrix (with
respect to any linear extension of his partial order on Pc and the order induced on
Wf by a) allowing one to pass from the basis {bw}w∈Wf

to the set of images of the
simple elements. However, his approach does not allow a direct generalization to
arbitrary Coxeter elements as well as an explicit description of the inverse bijection.
This last aspect should be a first step towards a better understanding of the change
of basis matrix between the diagram basis and the Zinno basis.

The aim of the next subsections is therefore to introduce for any Coxeter element
c′ a bijection

ϕc′ : Pc′ →Wf
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with an explicit description of the inverse bijection

ψc′ :Wf → Pc′

such that in case c′ = c, one s Zinno’s bijection, that is, one has ϕc = a.

3.2.2 Bijections generalizing Zinno’s bijection

Notation. Let k ∈ Z≥0. We denote by Ik the set of pairs (D,U) where D =

{d1, d2, . . . , dk}, U = {e1, e2, . . . , ek}, ei, di ∈ {1, . . . , n + 1}, di < di+1, ei < ei+1 for
each 1 ≤ i < k, di < ei for each 1 ≤ i ≤ k. Set I :=

∐n
k=0Ik.

Remark 3.2.2. There is a bijection Wf → I given by w 7→ (Jw, Iw + 1). This is just
a reformulation of the fact that we recalled at the beginning of subsection 3.2.1.

Notation. Let x ∈ Pc′ . We denote by Pol(x) the set of polygons appearing in
the geometrical representation of x and by Vert(x) the set of integers indexing the
vertices of the elements of Pol(x). We ofter abuse notation and write k ∈ P to mean
that k indexes a vertex of P ∈ Pol(x).

Definition 3.2.3. Given any P ∈ Pol(x) with set of integers indexing its vertices

given by {d1, . . . , dk} where di < di+1, we say that d1 is the initial index of P or an

initial index of x. We say that dk is the terminal index of P or a terminal index of x.

If we do not want to write down the set of indexing vertices we simply write minP for

the initial index of P and maxP for the terminal index of P . We say that an integer

ℓ ∈ {2, . . . , n} is nested in P ∈ Pol(x) if ℓ /∈ P but minP < k < maxP . Notice

that it does not imply that ℓ /∈ Vert(x) since one may have ℓ ∈ Q for Q ∈ Pol(x),

Q 6= P .

Example 3.2.4 In the example of figure 3.2, the integer 4 is nested in P1 and P2.
The integer 3 is nested only in P2.

Let x ∈ Pc′. Write Dc′

x for the set of indices in Vert(x) that are not terminal and
U c′

x for the set of indices in Vert(x) that are not initial. In particular we have the
equality |Dc′

x | = |U
c′

x |.

Lemma 3.2.5. Let x ∈ Pc′. Let Ic
′

x := Dc′

x \(D
c′

x ∩ U
c′

x ) be the set of initial indices

and T c
′

x := U c′

x \(D
c′

x ∩ U
c′

x ) be the set of terminal indices. Then

(Ic
′

x , T
c′

x ) ∈ I.
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Fig. 3.2: Geometric representation of x = (1, 6)(2, 3, 5). We have
two polygons P1 = [235] and P2 = [16].

Proof. Indeed, one can argue by induction on the number of polygons of x. If x has
no polygon then x = e and the claim is trivially true since Ic

′

x = T c
′

x = ∅. Now assume
that x has at least one polygon. Consider the polygon P of x having the biggest
minimal index and remove P from x. It gives a noncrossing partition y for which
(Ic

′

y , T
c′

y ) ∈ I by induction. We have that (Ic
′

x , T
c′

x ) = (Ic
′

y ∪{minP}, T c
′

y ∪{maxP}).
Since maxP > minP and minP is the biggest index in Ic

′

x , if we add maxP to the
set T c

′

y we still get that after ordering, the ith index in Ic
′

x is smaller than the ith

index in T c
′

x = T c
′

y ∪ {maxP} which is exactly saying that (Ic
′

x , T
c′

x ) ∈ I.

Lemma 3.2.6. Let c′ a Coxeter element and consider the circle with marked points

and labelling of the points given by c′. Let (D,U) ∈ I with the additionnal property

that D ∩ U = ∅. There is a unique bijection f : D → U such that any two segments

in the collection of segments joining the point with index i ∈ D to the point with

index f(i) ∈ U are noncrossing.

Proof. By definition of I, one has |D| = |U | and if we order the sets as D =

{d1, . . . , dk}, U = {u1, . . . , uk}, such that dj < dj+1, uj < uj+1 for each 1 ≤ j < k,
we have that dj < uj for any 1 ≤ j ≤ k since (D,U) ∈ I.

We argue by induction on k. If k = 0, there is nothing to prove. Now assume
that k ≥ 1. The point labeled with dk must be joined to a point labeled by an
element uj ∈ U such that dk < uj. But there is only one possible such uj if we want
at the end to obtain a noncrossing family: if dk ∈ Lc′ , then uj is the element of U
labelling the first point with index in U which is met when going along the circle
from dk in counterclockwise order. If dk ∈ Rc′ , then uj if the element of U labelling
the first point with index in U which is met when going along the circle from dk in
clockwise order. Indeed, if the point labeled with dk joins the point labeled with
another element um ∈ U , then the segment joining these two points defines two
half-planes, one containing at least one point uj labeled with an element of U but
no point labeled with an element of D: this is a consequence of the fact that dk
is the biggest index of D. One half-plane contains exclusively points labeled with
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indices bigger than min (dk, um) = dk and since um is not the point of U bigger than
dk and as close as possible to it, there must be a point labeled with an element uj
of U in that halplane. But such a point must be joined to a point labeled with an
index in D\{dk} which contradicts the noncrossing property since the points labeled
by numbers in D\{dk} do not lie in the same half-plane as uj. Hence dk must be
joined to uj and in one of the halplanes defined by the segment (dk, uj), there is no
point having as an element of D ∪ U . Now by induction if we remove dk from D

and uj from U , we get two sets D′ and U ′ and if we order them, the element in the
ith position in D′ is still smaller than the element in the ith position in U ′ since we
removed the biggest index of D. Hence (D′, U ′) ∈ I.

Hence by induction there exists a unique bijection f ′ : D′ → U ′ with the required
property and since all the points labeled with D′∪U ′ lie in the same halplane defined
by the segment (dk, uj), this segment does not cross the family of segments obtained
by induction. Hence f : D → U is defined by f(i) = f ′(i) if i ∈ D′, f(dk) = uj.

Definition 3.2.7. Consider the circle with marked points labeled with integers cor-

responding to the Coxeter element c′. Let (mi, ni) be a collection of pairwise non-

crossing segments between points labeled with ni and mi on that circle such that if

i 6= j, {ni, mi}∩{nj , mj} = 0. If k ∈ {1, . . . , n+1}, we say that k is exposed to the

segment (mj, nj) if the segment joining the point labeled with k to the point labeled

with mj (or equivalently nj) does not cross any segment of our family.

Lemma 3.2.8. If x, y ∈ Pc′ and x 6= y, then (Dc′

x , U
c′

x ) 6= (Dc′

y , U
c′

y ).

Proof. Given (D := Dc′

x , U := U c′

x ), one recovers the set Ix of initial (resp. the set Tx
of terminal) indices byD\(D∩U) (resp. U\(D∩U)). One has (Ix, Tx) ∈ I by Lemma
3.2.5 and Ix ∩ Tx = ∅. Using Lemma 3.2.6, there is a unique bijection f : Ix → Tx
such that any two segments in the collection {(a, f(a))}a∈Ix are noncrossing (when
drawn on the circle with the ordering corresponding to c′). Hence if x, y were distinct
but such that (Dc′

x , U
c′

x ) = (Dc′

y , U
c′

y ), they would have the same family of longest
segments of polygons (we call segment of a polygon an edge or diagonal of the
polygon). It remains to show that for any j ∈ D ∩ U , there is a unique possible
polygon (given here by its longest segment) which can have the point indexed by j
as vertex. If this property fails for an index j ∈ D ∩ U , then j should be exposed
to (at least) two noncrossing segments (d1, u1) 6= (d2, u2) of our family such that
dk < j < uk, k = 1, 2. But the set E≤j−1 = {m ∈ {1, . . . , n + 1} | m < j} consists
of points labelling vertices that are successive on the circle thanks to Remark 3.1.3.
The same holds for the set E≥j+1 = {m ∈ {1, . . . , n + 1} | m > j}. Notice that
dk ∈ E≤j−1 and uk ∈ E≥j+1. Both segments (d1, u1) and (d2, u2) join a point labeled
with an index in E≤j−1 a point labeled with an index in E≥j+1. Therefore any index
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Fig. 3.3: Illustration of the proof of 3.2.8. When going from d2
to d1 with the orientation such that the points u1 and u2 are not
met (here in counterclockwise order), all the points must have
their index in E≤j−1. Similarly all the points that are met when
going from u2 to u1 (with the good orientation) must have their
index in E≥j+1. But j is neither in E≤j−1 nor in E≥j+1, hence
it must label one of the remaining black points (notice that some
of the black points may also lie in E≤j−1 or in E≥j+1). As a
consequence, it cannot be exposed to both (d1, u1) and (d2, u2).

exposed to the two segments either has its index in E≤j−1 or in E≥j+1 (see figure
3.3). This is a contradiction since j is assumed to be exposed to both segments but
lies neither in E≤j−1 nor in E≥j+1.

Set Y c′

x =: Dc′

x ∩U
c′

x ∩Lc′ and write N c′

x for the set of indices which lie in Lc′ but
not in Vert(x) and are nested in at least one polygon of x. In particular Y c′

x ∩N
c′

x = ∅.
Consider the two modified sets

((Dc′

x \Y
c′

x ) ∪N c′

x , (U
c′

x \Y
c′

x ) ∪N c′

x ).

For an example the reader can look at 3.2.16.
We define an involution ¯ : Pc′ → Pc′ as follows: given x ∈ Pc′ , the sets Y c′

x

and N c′

x are disjoint. Both are subsets of Lc′ ; the first one contains those which
are non terminal indices of polygons while the second one contains those which
are nested indices and which moreover do not label a vertex of a polygon. Given
the family of longest segments of polygons of x, we have that any index in N c′

x is
nested in at least one segment and as seen in the proof of Lemma 3.2.8, it cannot
be exposed to more than one segment in which it is nested; therefore it is exposed
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Fig. 3.4: An example of the involution x 7→ x̄. The points with
index in N c′

x are drawn in white; it is the points indexed by 9 and
14. The points in Y c′

x are those indexed by 4, 8 and 10.

to exactly one segment in which it is nested. It implies that for any k ∈ N c′

x ,
there is a unique polygon P ∈ Pol(x) which can be enlarged in a polygon P ′ with
one more vertex, namely the vertex indexed by k, and such that the noncrossing
property stays satisfied. By adding any vertex indexed by a number in N c′

x to the
unique possible polygon, we obtain a noncrossing partition x′ such that N c′

x′ = ∅.
We then consider the noncrossing partition x̄ obtained from x′ by removing from
any polygon P ∈ Pol(x′) the vertices with index in Y c′

x , that is, the non extremal
indices of polygons of x which moreover lie in Lc′. These indices become nested in
polygons of x̄ and they do not lie in Vert(x). In fact, we have N c′

x̄ = Y c′

x . We also
have that Y c′

x̄ = N c′

x . Nothing changes for the indices in Rc′. Therefore we get an
involution x 7→ x̄ on Pc′ such that morevoer

(Dc′

x̄ , U
c′

x̄ ) = ((Dc′

x \Y
c′

x ) ∪N c′

x , (U
c′

x \Y
c′

x ) ∪N c′

x ).

As a consequence we have that (Dc′

x , U
c′

x ) ∈ I for any x ∈ Pc′ if and only if

((Dc′

x \Y
c′

x ) ∪N c′

x , (U
c′

x \Y
c′

x ) ∪N c′

x ) ∈ I

for any x ∈ Pc′.
An example of the involution x 7→ x̄ is given in figure 3.4.

Lemma 3.2.9. The pair of sets (Dc′

x , U
c′

x ) lies in I.

Proof. We write Dc′

x = {d1, . . . , dk} where di < di+1 and U c′

x = {u1, . . . , uk}, where
ui < ui+1 for any 1 ≤ i < k. By definition, N c′

x is disjoint from both Dc′

x and U c′

x .
The set Dc′

x \(D
c′

x ∩U
c′

x ) is the set of initial indices of x while the set U c′

x \(D
c′

x ∩U
c′

x )

is the set of terminal indices. Set (Ic
′

x , T
c′

x ) := (Dc′

x \(D
c′

x ∩U
c′

x ), U
c′

x \(D
c′

x ∩U
c′

x )). We
have that (Ic

′

x , T
c′

x ) ∈ I thanks to Lemma 3.2.5.
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Let Dc′

x ∩ U
c′

x := {n1, n2, . . . , nℓ}, where ni < ni+1 if 1 ≤ i < ℓ. We show by
induction on j that (Ic

′

x ∪ {n1, . . . , nj}, T
c′

x ∪ {n1, . . . , nj}) ∈ I. If j = 0 we already
know that (Ic

′

x , T
c′

x ) ∈ I by Lemma 3.2.5.
Assume that (Ic

′

x ∪ {n1, . . . , nj−1}, T
c′

x ∪ {n1, . . . , nj−1}) ∈ I. Write xi for the
elements of the first set after ordering (that is, xi < xi+1 for all i) and x′i for
the elements of the second after ordering, in particular xi < x′i for any i since
the pair of sets lies in I. Since nj is nested in at least one polygon of x, there
exists at least one pair (xp, x

′
m) ∈ (Ic

′

x ∪ {n1, . . . , nj−1}) × (T c
′

x ∪ {n1, . . . , nj−1})

such that xp < nj < x′m (recall that Ic
′

x is the set of initial indices and T c
′

x the set of
terminal indices). Consider the pair satisfying such a property with pmaximal andm
minimal. We therefore have that |{r | xr < nj}| = p. Since (Ic

′

x ∪{n1, . . . , nj−1}, T
c′

x ∪

{n1, . . . , nj−1}) ∈ I we have that |{r | x′r < nj}| ≤ p. Indeed, otherwise we would
have an index q for which x′q < xq, contradicting our assumption. If it is an equality,
it implies that

|{d ∈ Ic
′

x | d < nj}| = |{d ∈ T
c′

x | d < nj}|,

which means that the number of initial indices smaller that nj is equal to the number
of terminal indices smaller than nj . We claim that it is a contradiction with the
fact that nj is by definition nested in a polygon of x. Indeed, if we draw the line
segment separating the points with index smaller than or equal to nj from the
points with index bigger than or equal to nj (see Remark 3.1.3), then such a line
should meet any polygon in which nj is nested and there is by assumption at least
one. Such a polygon has its initial index smaller than nj while its terminal index is
bigger than nj . Any polygon in which nj is not nested has its initial and terminal
indices both either bigger than nj or smaller than nj . This proves the claim. Hence
we have that m − 1 = |{r | x′r < nj}| < p, implying p + 1 > m. Therefore
since (Ic

′

x ∪ {n1, . . . , nj−1}, T
c′

x ∪ {n1, . . . , nj−1}) ∈ I we claim that it implies that
(Ic

′

x ∪ {n1, . . . , nj}, T
c′

x ∪ {n1, . . . , nj}) ∈ I. Indeed, write x̃i for the elements of the
first set after ordering and x̃′i for the elements of the second after ordering. Notice
that x̃p+1 = nj while x̃′m = nj . Since m < p + 1 we have that x̃i = xi < x′i = x̃′i
whenever i < m. In case i = m we have that x̃m = xm < nj = x̃′m. For m < i ≤ p+1

we have that x̃i ≤ nj = x̃′m < x̃′i. For i > p + 1 we have x̃i = xi−1 < x′i−1 = x̃i.

Proposition 3.2.10. The map Pc′ → I defined by

x 7→ ((Dc′

x \Y
c′

x ) ∪N c′

x , (U
c′

x \Y
c′

x ) ∪N c′

x )

is a bijection.

Proof. Notice that thanks to Lemma 3.2.9 together with the remarks above Lemma
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3.2.5, the map is well-defined and we only need to show that the map x 7→ (Dc′

x , U
c′

x )

is a bijection. The fact that such a map is injective in given by Lemma 3.2.8. Since
as noticed at the beginning of the subsection there is a bijection Wf → I and that
we know that both Wf and Pc′ have Catalan enumeration, Lemma 3.2.8 allows us
to conclude. However, since we claimed to have an "explicit" description of the
inverse ψc′ of the bijection ϕc′ we are trying to build, we show surjectivity, which
will explain how to recover a noncrossing partition x ∈ Pc′ from the data given by
an element of I. The surjectivity is given by Lemma 3.2.11.

Lemma 3.2.11. For any (D,U) ∈ I, there exists an element x ∈ Pc′ such that

(D,U) = (Dc′

x , U
c′

x ).

Proof. If (D,U) was equal to (Dc′

x , U
c′

x ) for some x ∈ Pc′ , then the sets (I, T ) :=

(D\(D ∩ U), U\(D ∩ U)) would necessarily give the initial and terminal indices of
the polygons of x. By Lemmas 3.2.5 and 3.2.6, there is a unique bijection f : I → T

such that the corresponding family of segments is noncrossing. We saw in the proof
of Lemma 3.2.8 that an index k which lies neither in I nor in T cannot be exposed
to two segments (d1, u1) and (d2, u2) of our family with dj < k < uj, j = 1, 2. It
remains to show that any element of D∩U is exposed to at least one such segment.
Let k ∈ D∩U . Consider the line L containing the point labeled with k and defining
two half-planes, one containing all the points labeled with indices smaller than k and
the other one containing the remaining points labeled with indices bigger than or
equal to k+1 (see Remark 3.1.3). Assume that k is exposed to no segment (d, u) with
d < k < u. It implies that L crosses no segment of our family. Hence any segment of
our family joins two points which are labeled with indices either both bigger than k,
either both smaller than k. It implies that |{m ∈ D |m < k}| = |{m ∈ U |m < k}|,
implying that when ordering D and U , k appears at the same position in D and U
in contradiction with our assumption that (D,U) ∈ I.

Remark 3.2.12. With the proof of Lemma 3.2.11, we have an algorithm to recover x
from the sets (D,U): firstly we obtain the unique possible family of longest segments
of polygons (Lemma 3.2.6). Then we add any index from D∩U to the only possible
longest segment of the obtained family. Then a segment together with the points
which we attached to it give us the vertices of a polygon of x. An example of the
algorithm is given below in 3.2.13.

Example 3.2.13 Consider the pair of sets

(D,U) = ({2, 3, 4, 5, 8, 10, 12, 13}, {3, 4, 7, 8, 9, 11, 13, 15}) ∈ I
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Fig. 3.5: Illustration of the algorithm allowing one to recover
x ∈ Pc′ from the corresponding element in I.

and the Coxeter element c′ = (1, 2, 3, 6, 7, 8, 9, 10, 12, 16, 15, 14, 13, 11, 5, 4). We want
to find the unique noncrossing partition x ∈ Pc′ such that (Dc′

x , U
c′

x ) = (D,U). The
set T of terminal indices is obtained by removing D ∩ U = {3, 4, 8, 13} from U

giving T = {7, 9, 11, 15} while the set I of initial indices is obtained by removing
D ∩ U from D giving I = {2, 5, 10, 12}. The picture on the left in figure 3.5 shows
the unique associated family of noncrossing arcs. The figure in the middle shows in
white the points labeled with numbers in D ∩ U ; one sees that for any white point
with index k, there is a single segment (i, j) of our family to which k is exposed
and such that i < k < j. The last picture shows the noncrossing partition where a
polygon has as vertices the two vertices of a segment of the family and the added
white point(s) (if there are any).

Putting Proposition 3.2.10 together with Remark 3.2.2 we have proven:

Theorem 3.2.14. Let c′ be a Coxeter element. There is a bijection ϕc′ : Pc′ →

Wf obtained by composing the bijection Pc′ → I from Proposition 3.2.10 with the

bijection I → Wf from Remark 3.2.2. The inverse bijection ψc′ is obtained by the

composition of the bijection Wf → I from Remark 3.2.2 with the bijection I → Pc′

which is the inverse of the bijection given in 3.2.10.

Remark 3.2.15. Let x ∈ Pc, w = ϕc(x). Notice that we have

k ∈ Jw ⇔






k ∈ Rc′ ∩D
c′

x , or
k ∈ Lc′ and k is an initial index of a polygon of x, or
k ∈ Lc′ and k /∈ Vert(x) but k is nested in a polygon of x.

We also have that

k − 1 ∈ Iw ⇔





k ∈ Rc′ ∩ U
c′

x , or
k ∈ Lc′ and k is a terminal index of a polygon of x, or
k ∈ Lc′ and k /∈ Vert(x) but k is nested in a polygon of x.



94 COMBINATORICS OF ZINNO BASIS

Example 3.2.16 Consider the Coxeter element

c′ = (1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 16, 15, 14, 13, 11, 5, 4).

Let x ∈ Pc′ be the noncrossing partition represented in figure 3.6. Write w := ψc′(x).
One has Dc′

x = {3, 4, 5, 8, 10, 11, 12} and U c′

x = {4, 7, 8, 9, 11, 13, 15}. We have Y c′

x =

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Fig. 3.6

Dc′

x ∩ U
c′

x ∩ Lc′ = {4, 11} and N c′

x = {14}. We then consider the two modified sets

((Dc′

x \Y
c′

x ) ∪N c′

x , (U
c′

x \Y
c′

x ) ∪N c′

x ) = ({3, 5, 8, 10, 12, 14}, {7, 8, 9, 13, 14, 15}).

The first obtained set is then equal to Jw while the second one is nothing but Iw+1.
Hence we get

(Jw, Iw) = ({3, 5, 8, 10, 12, 14}, {6, 7, 8, 12, 13, 14})

giving
w = (s6s5s4s3)(s7s6s5)(s8)(s12s11s10)(s13s12)s14 ∈ Wf .

Remark 3.2.17. In case c′ = c, the involution¯ : Pc → Pc is the identity since the
equality Lc = {1, n + 1} implies that for any x ∈ Pc, we have N c

x = ∅ = Y c
x . We

therefore have that
(Dc

x, U
c
x − 1) = (Jϕc(x), Iϕc(x)).

The bijection is hence much easier to compute in that case.

Let us now explain the relationship with results by Zinno. We need to introduce
some results and vocabulary of [42]. The simple elements {ic(x) | x ∈ Pc} of the
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dual braid monoid B∗
c which we can see as lifts of elements of Pc in the braid group

correspond to the so called canonical factors (shortly canfacs) from [42], but the
way the lifts of reflections (called band generators in [42]) are written by Zinno
corresponds to the choice of Coxeter element snsn−1 · · · s1. Since we are working
rather with the Coxeter element s1s2 · · · sn we will adapt Zinno’s results to our
setting. Let us assume that c = s1s2 · · · sn. Given a reflection t = (i, k + 1), i ≤ k,
consider the braid word si,k+1 := sk

−1
sk−1

−1 · · · si+1
−1
sisi+1 · · · sk; it represents the

image of the element ic(t) in the braid group. In fact, the embedding B∗
c →֒ B sends

ic(s) to s for any simple reflection s ∈ S and one finds an expression of any ic(t) for
any t ∈ T in the braid group B by using the dual braid relations; for example, one
has that s1s2 <T c whence

ic(s1)ic(s2) = ic(s2)ic(s2s1s2)

and since ic(si) is equal to si if viewed in B, one has that ic(s2s1s2) is equal to
s
−1
2 s1s2 = s1,3 if viewed in the braid group. By induction on k − i one shows that
ic((i, k + 1)) is represented by the braid word si,k+1 in B.

We will often abuse notation and also write ic(x) for the image of ic(x) in B. A
braid word such as si,k+1 is called a syllable by Zinno. The braid group generator si is
the center of the syllable, splitting the syllable into a left part sk−1

sk−1
−1 · · · si+1

−1

and a right part si+1 · · · sk. A noncrossing partition x ∈ Pc which is a cycle, that
is, such that |Pol(x)| = 1 is still called a cycle in [42] after lifting in the braid
group. Zinno uses the following braid word to represent ic(x): firstly he writes
x = (i1, i2, . . . , ik), where i1 < i2 < · · · < ik. Then ic(x) is represented by the braid
word si1,i2si2,i3 · · · sik−1,ik . We will represent a simple element ic(x) of the dual braid
monoid by the braid word obtained by concatenating the cycles, ordered by the
maximal index in each cycle (that is, the terminal index of the associated polygon),
in ascending order, and refer to such a word as to the standard form of a simple
element of the dual braid monoid. We denote the obtained braid word by mx.

Remark 3.2.18. Notice that a braid group generator can be the center of at most one
syllable, hence it occurs twice in any other syllable in which it occurs, once in the
left part with negative exponent and once in the right part with positive exponent.
The way the polygons (equivalently the cycles) are ordered implies that if s±1

i is the
center of a syllable (which is equivalent as saying that i is a non terminal index of
a polygon of x), then the first occurrence of s±1

i in mx when reading the word from
the left to the right is at the center of that syllable.

It turns out that if we replace each si
±1 by si in mx, we obtain an S-reduced

decomposition mx of x ∈ Pc which we also call the standard form of x (and we will
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also call mt for t ∈ T a syllable with a center, left part, etc.); we will give a more
general definition of this form in subsection 3.7.2 where we will work with arbitrary
Coxeter elements. It turns out that the Coxeter word mx plays an important role in
the study of the orders making the change of bases matrices between the Zinno basis
(which we will introduce in a few lines) and the diagram basis upper triangular.

The image of the braid group generator si in the Temperley-Lieb algebra will be
written Zi. It is equal to v−1 − bi (for the conventions on the quotient map from
the braid group to the Temperley-Lieb algebra, see subsection 3.3.1). If x ∈ Pc, we
write Zx for the image of ic(x) in the Temperley Lieb algebra. Notice that Zi = Zsi
for any si ∈ S.

Zinno’s bijection a : Pc → Wf mentioned in the introduction and at the end of
subsection 3.2.1 is built as follows: given x ∈ Pc, Zinno considers the braid word mx

representing ic(x). He then extracts a subword wx of mx in the following way: let us
call letter any s

±1
i occurring in a syllable. If a syllable has at least one letter indexed

by i (the letters indexed by i are si and s
−1
i ), then that syllable must contribute

to the subword exactly one of its letters indexed by i. In particular each center
contributes since it is the only letter with its index in a syllable. The contributions
are as follows: if si is the center of a syllable and occurs in another syllable, then such
a syllable contributes the si which has positive exponent. If si is not the center of a
syllable but there are syllables containing letters indexed by i, then these syllables
must contribute their s−1

i to the subword. In this way we extract a subword wx. By
replacing in that word the s

±1
i by si we get an element wx of the Coxeter group.

These rules are equivalent to the ones given by the following algorithm: read the
word mx from the left to the right. If the first letter si

±1 occurring in mx has
positive (resp. negative) exponent, then all the occurrences of si (resp. of si−1) in
mx and only those must contribute to the subword wx. Apply the same process to
the next generator sj±1, j 6= i occurring right to the first si

±1 in mx, until you have
considered all the indices k such that sk±1 occurs in mx.

Zinno then shows that wx is fully commutative and that the map a : Pc → Wf

defined by x 7→ wx is surjective. Since |Pc| = |Wf | the map is bijective. An example
of Zinno’s algorithm where we apply the rules given above to extract the fully
commutative element wx as a subword of a standard form mx of a simple element
ic(x), x ∈ Pc is given in example 3.2.19 below.

Example 3.2.19 (Zinno’s algorithm from [42] for extracting wx = a(x) from mx)
Let x = (2, 3, 5)(1, 6) ∈ Pc

mx = s2(s4
−1
s3s4)(s5

−1
s4

−1
s3

−1
s2

−1
s1s2s3s4s5)

mx = s2(s4
−1
s3s4)(s5

−1
s4

−1
s3

−1
s2

−1
s1s2s3s4s5)
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mx = s2(s4
−1
s3s4)(s5

−1
s4

−1
s3

−1
s2

−1
s1s2s3s4s5)

mx = s2(s4
−1
s3s4)(s5

−1
s4

−1
s3

−1
s2

−1
s1s2s3s4s5)

mx = s2(s4
−1
s3s4)(s5

−1
s4

−1
s3

−1
s2

−1
s1s2s3s4s5)

mx = s2(s4
−1
s3s4)(s5

−1
s4

−1
s3

−1
s2

−1
s1s2s3s4s5)

 wx = s2s4
−1
s3s5

−1
s4

−1
s1s2s3

 wx = s2s4s3s5s4s1s2s3 = (s2s1)(s4s3s2)(s5s4s3) ∈ Wf .

Proposition 3.2.20. The bijection ϕc and the bijection described in ([42], Theo-

rems 3 and 6) which we denoted by a are the same.

Proof. For w ∈ Wf , we will use the characterization of the sets Iw and Jw given in
Remark 3.2.1.

Let x ∈ Pc and write wx = a(x) for the corresponding fully commutative element
as described above and given by Theorem 6 of [42]. By definition of the bijection
ϕc (see also Remark 3.2.17), we have to show that i ∈ Iwx

if and only if i+ 1 ∈ U c
x

and i ∈ Jwx
if and only if i ∈ Dc

x. Let i ∈ Iwx
. It implies that the first occurrence of

si in wx must come from a s
±1
i which is the first letter of its syllable w: otherwise

s
−1
i+1 would occur in w on the left of the s

±1
i contributed and that s

−1
i+1 would be

contributed in case si+1 is not a center; in case si+1 is a center, the occurrence of
si+1 at the center must be the first in the word (see Remark 3.2.18), hence before
the syllable w and must be contributed. Hence the first occurrence of si in wx must
come from a s

±1
i which is the first letter of its syllable w. But s

±1
i is the first letter

of a syllable if and only if s±1
i is at the top of a syllable if and only if i + 1 ∈ U c

x.
Hence we have that i + 1 ∈ U c

x. Conversely, consider an index i + 1 which labels a
vertex of a polygon P ∈ Pol(x) and which is not initial (that is, i+ 1 ∈ U c

x). Write
(i1, . . . , im), i1 < i2 < · · · < im for the cycle corresponding to P . If i + 1 = im,
m 6= 1, then s

±1
i is the first letter of the syllable sim−1,im occurring in the cycle

corresponding to P . We will show that this letter s
±1
i contributes, that it is the

first occurrence of s±1
i in mx and that there is no occurrence of s±1

i+1 in mx at its
left. All these properties together imply that i ∈ Iwx

. If there is another letter s
±1
i

before ours, then it must be in a cycle corresponding to a polygon Q 6= P . Suppose
that it occurs as a center of the syllable corresponding to Q. It means that x has a
polygon Q with a non terminal vertex indexed by i and another polygon P with a
non initial vertex indexed by i + 1, contradicting the noncrossing property. If it is
not as a center, it cannot be at a top since we already have a syllable with s

±1
i at

its top and there can be at most one. But if si is not at the top, it has to be in a
syllable sk,k′ where k < minP , k′ > maxP otherwise there would be a contradiction
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with the noncrossing property. But the terminal index of the polygon Q containing
sk,k′ would then be bigger than the terminal index of P , hence sk,k′ cannot occur
before sim−1,im in mx. Hence our s±1

i at the top of its syllable is the first occurrence
of s±1

i in the word mx. Now if si+1 occurs in a syllable, if it is at the center then it
is in P and the syllable appears just after sim−1,im . If it is not at the center, then to
respect the noncrossing property one must again have that the syllable containing
it appears after sim−1,im . Therefore we have i ∈ Iwx

.
Similarly one shows without difficulty that i ∈ Jwx

if and only if i ∈ Dc
x. As a

consequence one gets that a(x) = wx = ϕc(x).

Remark 3.2.21. At the very end of the chapter, we will give a more general proof
of this fact. We will introduce a process generalizing Zinno’s algorithm to extract a
fully commutative subword from a standard form in the case of dual braid monoids
associated to arbitrary Coxeter elements and will show that it gives us the bijections
given by Theorem 3.2.14.

Notation. Let i, j ∈ {1, . . . , n}, j ≤ i. We write W(i, j) for the set of fully com-
mutative elements w ∈ Wf such that in the notation of subsection 3.2.1, one has
i = i1, j = jℓ. These are exactly the fully commutative elements whose S-reduced
expressions contain the reflections si and sj exactly once and any other simple re-
flection sk occurring in such an S-reduced expression satisfies j < k < i.

The next proposition is not used further but can help to compute images of
some elements under the bijection ψc : Wf → Pc, which is the inverse of ϕc, hence
of Zinno’s bijection by Proposition 3.2.20.

Proposition 3.2.22. Let c = s1s2 · · · sn. Let j ≤ i < m ≤ k. Let w1 ∈ W(i, j),

w2 ∈ W(k,m). Then w1w2 lies in W(k, j) and

ψc(w) = ψc(w1)ψc(w2).

Proof. The fact that the product is fully commutative is clear since the smallest
index of a reflection occurring in any reduced expression of w2 is larger than the
largest index occurring in a reduced expression for w1; the largest index in the
product is then k and the smallest one is j proving the first claim.

Our condition on i, j, k and m implies that an S-reduced expression for w1w2 is
given by concatenating S-reduced expressions for w1 and w2 and that the obtained
S-reduced expression for w1w2 does have the usual form with successive sequences
of decreasing indices if the ones for w1 and w2 do. It also implies that the sequences
associated to w1 and w2 cannot break in w inside a decreasing subsequence for w
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but only between two of them. Hence

U c
ψc(w1w2) = U c

ψc(w1)∪̇U
c
ψc(w2),

Dc
ψc(w1w2) = Dc

ψc(w1)∪̇D
c
ψc(w2).

First, suppose that U c
ψc(w1)

and Dc
ψc(w2)

are disjoint. It implies that any polygon of
ψc(w1) has all its indexing numbers bigger than those of any polygon of ψc(w2). As
a consequence, the union of all the polygons of both of them gives the geometrical
representation of a noncrossing partition x = ψc(w1)ψc(w2) = ψc(w2)ψc(w1) such
that obviously U c

x = U c
ψc(w1w2)

and Dc
x = Dc

ψc(w1w2)
. Thanks to Proposition 3.2.10

this forces x = ψc(w1w2).
Now consider the case where U c

ψc(w1)
∩ Dc

ψc(w2)
6= ∅, forcing that intersection to

contain the single element m (equal to i+1 in that case). Then ψc(w1) has a polygon
with maximal index equal to m and ψc(w2) has a polygon with minimal index
equal to m. This implies that the product x = ψc(w1)ψc(w2) has a representation
given by the disjoint union of the polygons of w1 and w2 different from the two
mentioned aboved together with the polygon obtained by taking the polygon given
by the convex hull of these two polygons. Again, we have that U c

x = U c
ψc(w1w2)

and
Dc
x = Dc

ψc(w1w2)
.

3.3 Zinno basis and diagram basis

3.3.1 Zinno basis

Let us recall some facts from subsection 1.2.2. Recall that the Temperley-Lieb alge-
bra TLn = TLn(v+v

−1) is the associative unital Z[v, v−1]-algebra with n generators
b1, . . . , bn and relations

bjbibj = bj if |i− j| = 1,

bibj = bjbi if |i− j| > 1,

b2i = (v + v−1)bi.

The algebra TLn has a basis {bw}w∈Wf
indexed by fully commutative elements

where if si1 · · · sik is an S-reduced expression of w ∈ Wf , then bw := bi1 · · · bik ∈

TLn(v + v−1) is independent of the choice of the S-reduced expression we made
for w. For any si ∈ S, bsi := bi. The basis {bw}w∈Wf

has an interpretation by
planar diagrams and is the projection of the Kazhdan-Lusztig basis C ′

w of the Hecke
algebra via a quotient map θ. It is also the projection (up to signature) of the
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basis Cw through an alternative quotient map θ′. The map θ : H → TLn(v + v−1)

has as kernel the ideal generated by all the C ′
sisi+1si

, i = 1, . . . , n, while the second
map θ′ : H → TLn(v + v−1) has as kernel the ideal generated by all the Csisi+1si,
i = 1, . . . , n. One has θ(C ′

w) = bw while θ′(Cw) = (−1)ℓS(w)bw, where ℓS is the
Coxeter length and w ∈ Wf ; if w /∈ Wf the images are zero. In the previous
subsection, we mentioned that the braid group generator si maps to v−1 − bi; this
is given by the composition

Z[v, v−1]Bn+1 ։ H
θ′

։ TLn(v + v−1),

si 7→ vTsi 7→ v−1 − bi,

where Bn+1 is the braid group on n + 1 strands. The existence of the first quo-
tient map is clear since the Tsi satisfy the braid relations which are homogeneous,
hence the same holds for the vTsi. In the following we will always consider the
Temperley-Lieb algebra as the quotient of the group algebra of the braid group via
the composition above. If one prefers to work with the quotient map θ instead of θ′,
our results can of course easily be adapted. We will work with elements of the dual
braid monoid viewed as elements of the braid group. Given a braid word in the s

±1
i ,

we will consider the image of such a word in the Temperley-Lieb by replacing si by
v−1 − bi and s

−1
i by v − bi since (v−1 − bi)(v − bi) = 1.

Zinno shows in [42] that the set {Zx}x∈Pc
is a basis of TLn(v + v−1), where Zx

is the image of the simple element ic(x) as introduced in the previous subsection.

Remark 3.3.1. Notice that the geometric representation of an element of Pc also
works to represent its lift in the braid group, hence the proof of Proposition 3.2.22
gives us more precisely that under the assumptions on w1, w2 one has

ic(ψc(w1w2)) = ic(ψc(w1))ic(ψc(w2)),

where the relation holds in the dual braid monoid or in the braid group: it implies
that

Zψc(w1w2) = Zψc(w1)Zψc(w2),

where the relation holds in the Temperley-Lieb algebra.

Recall that a triple of transpositions (s, t, u) is admissible if s 6= t, st ∈ Pc and
u = sts. In particular we have a dual relation st = tu = us. We recall from [31] the
so-called dual presentation of Temperley-Lieb algebras, given in terms of the images
of the atoms of the dual braid monoid in the Temperley-Lieb algebra, that is, the
Zt for t ∈ T :
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Theorem 3.3.2 (Dual presentation of Temperley-Lieb algebras, Lee, Lee,
[31]). The Temperley-Lieb algebra is generated by Zt, t ∈ T with relations

ZsZt = ZtZs if st = ts and st ∈ Pc,

ZsZt = ZtZu = ZuZs if (s, t, u) is admissible ,

−vZsZt − v
−1ZtZs + Zu + v−2(Zs + Zt)− v

−3 = 0 if (s, t, u) is admissible ,

Z2
t = (v−1 − v)Zt + 1 if t ∈ T .

Vincenti gave a dual presentation of the Temperley-Lieb algebra in type B (see
[40]).

3.3.2 A new basis of the Temperley-Lieb algebra

We recall the definition and various characterizations of the Bruhat order on a
Coxeter system (W,S). For w,w′ ∈ W, we define a relation by w → w′ if there
exists t ∈ T such that w′ = tw and ℓS(w

′) > ℓS(w). We then extend this relation
to a partial order <S by setting w <S w

′ if there exists w1, . . . , wk ∈ W such that
w → w1 → w2 → · · · → wk → w′. It is the Bruhat order of the Coxeter system
(W,S). The following characterization is classical (see for example [5], Corollary
2.2.3):

Proposition 3.3.3. For w,w′ ∈ W, the following are equivalent:

1. One has w <S w
′,

2. Any S-reduced expression for w′ has a subword that is an S-reduced expression

for w,

3. There exists an S-reduced expression for w′ which has a subword that is an

S-reduced expression for w.

Again, (W,S) will be of type An, with the same identifications and notations
as before. In this subsection we are working exclusively with the Coxeter element
c = s1s2 · · · sn. For w ∈ Wf we set

L(w) = {s ∈ S | sw <S w},

R(w) = {s ∈ S | ws <S w}.
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Remark 3.3.4. Notice that if s, t ∈ L(w), then ts = st. The same holds if both s, t

lie in R(w). Moreover, if s ∈ L(w) (resp. R(w)), then sw (resp. ws) lies again in
Wf .

Recall from subsection 3.3.1 that bi = v−1 − Zi. For the next results one may
keep in mind the properties of the bijections ϕc and ψc given in Remark 3.2.17.
Given a transposition (i, j), assume that a polygon P occurring in the geometrical
representation of x ∈ Pc has an edge joining the point with index i to the point with
index j. We will also denote this edge by (i, j) (notice that if (i, j) is an edge or even
a diagonal of a polygon of x, it implies that (i, j) <T x; this is an easy consequence
of the remark made in the last paragraph of subsection 1.4.3).

Proposition 3.3.5. Let w ∈ Wf , s = si ∈ S. Then

1. s = si ∈ L(w) if and only if {(i, i+ 1) is an edge of a polygon P ∈ Pol(ψc(w))

with i initial} or {the point with index i is not a vertex of a polygon of ψc(w)

but there exists a polygon P ∈ Pol(ψc(w)) having an edge (k, i + 1) for some

k < i}.

2. s ∈ R(w) if and only if {(i, i + 1) is an edge of a polygon P ∈ Pol(ψc(w))

with i+ 1 terminal} or {the point with index i is not a vertex of a polygon of

ψc(w) but there exists a polygon P ∈ Pol(ψc(w)) having an edge (i, i+ k) with

k > 1}.

Proof. One has that s ∈ L(w) if and only if i ∈ Iw, i − 1 /∈ Iw if and only if
i+1 ∈ U c

ψc(w)
, i /∈ U c

ψc(w)
if and only if (i, i+1) is an edge at the bottom of a polygon

of ψc(w) or i is not a vertex of a polygon of ψc(w) but there exists an edge (k, i+1)

of a polygon with k < i. One argues similarly for s ∈ R(w).

Corollary 3.3.6. Let w ∈ Wf .

1. If s ∈ L(w), then sψc(w) ∈ Pc and ℓS(sψc(w)) = ℓS(ψc(w))− 1.

2. If s ∈ R(w), then ψc(w)s ∈ Pc and ℓS(ψc(w)s) = ℓS(ψc(w))− 1.

Proof. Thanks to the previous proposition we know what the assumption s ∈ L(w)
means in terms of the geometrical representation of ψc(w) by disjoint unions of
polygons. In case (i, i+1) is an edge of a polygon P of ψc(w) with i initial, it means
that the cycle y ∈ Pc corresponding to P is equal to siy′ where y′ ∈ Pc is the cycle
corresponding to the polygon P ′ obtained from P by removing the vertex with index
i. Since i is the miminal index of P one then has that ℓS(y′) = ℓS(y)− 1. But if a
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noncrossing partition x ∈ Pc has decomposition into disjoint cycles y1y2 · · · yk, one
has (see Remark 3.4.1) that

ℓS(y) =
k∑

j=1

ℓS(yj),

which concludes. In case i is not an index of a vertex of a polygon of ψc(w) but there
is a polygon P having an edge (k, i + 1) for k < i, consider again the cycle y ∈ Pc
corresponding to P . The product siy is again a noncrossing partitions corresponding
to the polygon P ′ obtained from P by adding the vertex labeled by i. If the set of
indices of vertices of P is given by d1, . . . , dk, dj < dj+1 with dm = k, dm+1 = i+ 1,
an S-reduced expression of y is given by the concatenation

[d1, d2][d2, d3] · · · [dk−1, dk],

where [j, ℓ] = sℓ−1sℓ−2 · · · sj+1sjsj+1 · · · sℓ−2sℓ−1 (see Remark 3.4.1). Adding the
vertex i replaces in the product above the subword [dm, dm+1] by [dm, i][i, dm+1] and
this just removes one occurrence of si. Hence we again have ℓS(siy) = ℓS(y)−1 and
the same argument as for the first case gives the conclusion. The proof of the case
where s ∈ R(w) is similar.

Corollary 3.3.7. Let w ∈ Wf . Then

s = si ∈ L(w) ∩ R(w) ⇔ s <T ψc(w) and sψc(w) = ψc(w)s

⇔ There exists a polygon of ψc(w) which is reduced to the edge (i, i+ 1).

Proof. It is a consequence of Proposition 3.3.5 which is proven with the same kind
of arguments as the corollary above.

Corollary 3.3.8. Let w ∈ Wf . Let s ∈ L(w) and t ∈ R(w), with s 6= t

sψc(w) = ψc(w)t ⇔ s = sj, t = sj−1 for some index j.

Proof. Let s = sj , t = sk and suppose sψc(w) = ψc(w)t. Thanks to Proposition
3.3.5, applying sj on the left of ψc(w) either adds or removes the vertex with index j
(and possibly the vertex with index j+1 but in that case, one would have s ∈ R(w);
since t 6= s the reflection t would then remove a vertex with index k distant from
j since any two reflections in R(w) commute with each other, a contradiction to
sψc(w) = ψc(w)t since the operation of s in the left hand side does not change the
vertex with index k). So we can suppose that s removes or adds the vertex with
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index j, leaving all other vertices of the polygons unchanged. This means that t
also has to remove or add the vertex with index j. This is possible only if t = sj−1

or t = sj but the last case is excluded. Conversely, the assumption implies by the
above proposition that ψc(w) has a polygon P having an edge (j−1, j+1). We then
have that sjψc(w) = ψc(w)sj−1 and in the geometrical representation, it corresponds
to adding the vertex with index j to the polygon P .

Notation. Let w ∈ Wf , L ⊂ L(w) and R ⊂ R(w). We build new sets L′, R′ from
L and R by doing the following: if s ∈ L ∩R, we either remove s from L or remove
it from R. If sj ∈ L and sj−1 ∈ R, then we either remove sj from L or remove sj−1

from R. At the end of the process we get two (non canonically defined) sets L′ ⊂ L

and R′ ⊂ R. It is clear that if (L′, R′) and (L̃′, R̃′) are two distinct sets with these
properties, one has |L′ ∪ R′| = |L̃′ ∪ R̃′|.

Example 3.3.9 Let w = s2s1s3. Then L(w) = {s2}, R(w) = {s1, s3}. Let L = L(w),
R = R(w). One can choose L′ = {s2}, R′ = {s3}. Another possible choice is L′ = ∅,
R′ = {s1, s3}.

The following proposition is a generalization of Corollary 3.3.6.

Proposition 3.3.10. Let w ∈ Wf , L ⊂ L(w), R ⊂ R(w). Then

xL′,R′ := (
∏

s∈L′

s)ψc(w)(
∏

s∈R′

s)

is independent of the choice of L′ and R′ and will therefore be denoted by xL,R.

Moreover, xL,R lies in Pc, xL,R <S ψc(w) and ℓS(xL,R) = ℓS(ψc(w))− |L
′ ∪ R′|.

Proof. One can argue by induction on |L′ ∪R′|. If it is equal to zero, it means that
L = ∅ = R, in which case the claim is trivially true. If L′∪R′ is a singleton, the claim
is true by corollaries 3.3.6, 3.3.7 and 3.3.8. Now suppose that |L′∪R′| > 1 and remove
an arbitrary reflection sj from L′∪R′, say from L′, the other case being similar. Write
L′′ = L′\{sj}. One can choose (L′′)′ = L′′, (R′)′ = R′. Since s ∈ L(w), it means by
Proposition 3.3.5 that in the representation of ψc(w) by disjoint unions of polygons,
we has one of the two following configurations: either (j, j+1) is an edge of a polygon
of ψc(w) with j initial, or j does not index any vertex of a polygon of ψc(w) but
one has a polygon of ψc(w) with an edge (k, j +1) where k < j. Now any reflection
in L′′ is distant from sj and R′ contains neither sj nor sj−1. Using Proposition
3.3.5 again this implies that any of the two possible configurations are preserved
when reducing from ψc(w) to y := (

∏
s∈L′′ s)ψc(w)(

∏
s∈R′ s) (the configuration with

an edge (j, j + 1) is preserved and since sj−1 /∈ R
′ the only thing that can change
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the edge (k, j + 1) of the second configuration is in case we have an edge (k, j + 1)

with k < j − 1 and sk ∈ R
′; in that case the edge (k, j + 1) is replaced by an edge

(k + 1, j + 1) in y and y still has the second configuration since k + 1 < j). In
particular, using the same proposition, we get sj ∈ L(ϕc(y)). Induction together
with Corollary 3.3.6 conclude.

Definition 3.3.11. To each fully commutative element w ∈ Wf , we will associate

an element Xw of the Temperley-Lieb algebra called the simplex of w. Set

Qw := { xL,R | L ⊂ L(w), R ⊂ R(w)}.

We then define Xw by its coefficients when expressed in Zinno’s basis:

Xw :=
∑

x∈Pc

pwxZx,

where pwx = 0 unless x ∈ Qw. If x ∈ Qw then set

pwx := (−1)ℓS(w)+ℓS(ψc(w))−ℓS(x)vℓT (x)−ℓT (ψc(w)).

Remark 3.3.12. As a consequence of Proposition 3.3.10, one has sQw = Qw for any
s ∈ L(w) and Qws = Qw for any s ∈ R(w). In particular, |Qw| is always a power of
two and is at least two if w 6= e since for any w ∈ Wf\e, L(w) ∪R(w) 6= ∅.

Example 3.3.13 w = s1s3s2, ψc(w) = s1s3s2s3

Qw =

s1s3s2s3

qqqqqqqqqq

MMMMMMMMMM

s1s2s3

MMMMMMMMMM
s3s2s3

qqqqqqqqqq

s2s3

Example 3.3.14 w = s1s4s3s2, ψc(w) = s1s4s3s2s3s4
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Qw =

s1s4s3s2s3s4

QQQQQQQQQQQQQ
s1s2s4s3s4

PPPPPPPPPPP

s4s3s2s3s4 s2s4s3s4

s1s3s2s3s4

QQQQQQQQQQQQQ
s1s2s3s4

PPPPPPPPPPP

s3s2s3s4 s2s3s4

Remark 3.3.15. Notice that for s ∈ S,

Xs = pssZs + pse = −Zs + v−1 = bs.

In general Xw 6= bw.

Proposition 3.3.16. The set {Xw}w∈Wf
is a basis of the Temperley-Lieb algebra.

Proof. It suffices to order Zinno basis by the order on Pc given by any linear ex-
tension of the Bruhat order. One then orders the set {Xw}Wf

by the order on Wf

obtained as the image of the order we put on Pc under the bijection ϕc. Thanks
to Proposition 3.3.10, one then gets an upper triangular matrix with the invertible
coefficients {pwψc(w)

}w∈Wf
on the diagonal, passing from the basis {Zx}x∈Pc

to the set
{Xw}w∈Wf

.

Remark 3.3.17. The order giving triangularity of the change of basis matrix between
the bases Xw and Zx is any linear extension of the Bruhat order on Pc, together
with the order induced on Wf by the bijection ϕc. It is the same order giving
triangularity of the change of basis matrix between the diagram basis bw and Zx.
As a consequence, these orders also give triangularity of the change of basis matrix
between Xw and bw, with invertible coefficient on the diagonal.

3.3.3 Application: change of basis matrix between the dia-

gram and Zinno bases

Remark 3.3.18. Let x ∈ Pc. Recall that mx is a braid word representing the simple
element ic(x). As we previously noticed, of one replaces any s

±
i by si in the braid

word mx, then one obtains a Coxeter word mx that is an S-reduced expression of
x. After being mapped to the Temperley-Lieb algebra, any letter si is replaced
by v−1 − bi while each letter s

−1
i is replaced by v − bi. As a consequence, if we
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expand the image of mx in TLn, we obtain a linear combination of elements of the
form bi1bi2 · · · bik where si1si2 · · · sik is a subword of mx. If si1si2 · · · sik is not an S-
reduced expression of a fully commutative element, then bi1bi2 · · · bik is not a reduced
word, but it is equal to (v + v−1)mbw for a unique pair (m,w) ∈ Z>0 ×Wf and it
is not difficult to show that w has an S-reduced expression which is a subword of
si1si2 · · · sik . But si1si2 · · · sik was itself a subword of mx. Since mx is an S-reduced
expression of x, it follows that w <S x. Hence in the linear combination of Zx in
the diagram basis, the w ∈ Wf indexing the bw which occur must satisfy w <S x.

Zinno orders the set of noncrossing partitions by the length of the braid word
mx, which thanks to our observation is nothing but the Coxeter length ℓS(x) of x.
He then proves the following theorem, which is rewritten here using our notations
and the observation above:

Theorem 3.3.19 (Zinno, [42], Theorem 5). Let x ∈ Pc and assume w <S x. If

w 6= ϕc(x), there exists an element y ∈ Pc such that w <S y and ℓS(y) < ℓS(x).

Remark 3.3.20. It turns out that if one looks carefully at Zinno’s proof, one sees
that we can refine his conclusion by y <S x, y 6= x, which will be useful for a study of
the coefficients of the change of basis matrix between the Zinno and diagram bases.
In the following we will use this refinement. Zinno then uses this Theorem to prove
that with the same assumptions as in the Theorem, one has then ℓS(ψc(w)) < ℓS(x).
Again, it is not difficult to see from Zinno’s proof that one can refine the conclusion
by ψc(w) <S x, ψc(w) 6= x. However we will give a new approach in the following
sections which will allow us to prove this result directly and in a much more general
setting at the very end of the chapter. For the meanwhile we will just assume it. In
fact, the surprising consequence of this result is that an order making the mentioned
change of basis matrix upper triangular is any linear extension of the Bruhat order
on Pc, which is a non-natural order on Pc which we will study extensively in the
next sections.

Lemma 3.3.21. Let w ∈ Wf , s ∈ L(w). Then

bsXw = (v + v−1)Xw.

Proof. Let x ∈ Qw such that sx <S x. Since s ∈ L(w) one has that sx ∈ Qw ⊂ Pc
thanks to Remark 3.3.12. One has either sx <T x, in which case Zx = ZsZsx, or
x <T sx, in which case Zx = Z−1

s Zsx. Assume that sx <T x. One has ℓT (sx) =
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ℓT (x)− 1 hence pwx = −vpwsx so we get

bs(p
w
sxZsx + pwxZx) = (v−1 − Zs)(p

w
sxZsx + pwxZx)

= v−1pwsxZsx − p
w
sxZsZsx + v−1pwxZx − p

w
xZ

2
sZsx

= v−1pwsxZsx + 2v−1pwxZx − p
w
x (Zs(v

−1 − v) + 1)Zsx

= (v + v−1)(pwsxZsx + pwxZx).

Now assume that x <T sx. One has ℓT (sx) = ℓT (x) + 1 hence pwx = −v−1pwsx so we
get

bs(p
w
sxZsx + pwxZx) = (v − Z−1

s )(pwsxZsx + pwxZx)

= vpwsxZsx − p
w
sxZx + vpwxZx − p

w
xZ

−1
s Zx

= vpwsxZsx + 2vpwxZx − p
w
x ((v − v

−1) + Zs)Zx

= (v + v−1)(pwsxZsx + pwxZx).

Summing these equalities on all the couples (sx, x) one gets the result.

Remark 3.3.22. One has of course a similar statement for s ∈ R(w).

We now consider the linear expansion of an element bw in the basis Xw′

bw =
∑

w′∈Wf

qww′Xw′

and we would like to understand for which w′ one can have qw
′

w 6= 0. To this end,
we write the element Xw in the Kazhdan-Lusztig basis as

Xw =
∑

y∈Wf

rwy by.

Notation. To each fully commutative element w ∈ Wf we associate a subset Fw ⊂
Wf defined by

Fw = {y ∈ Wf | L(y) ⊃ L(w), R(y) ⊃ R(w) and ψc(y) <S ψc(w)}.

Remark 3.3.23. Obviously one has w ∈ Fw and if y ∈ Fw, then Fy ⊂ Fw.

Proposition 3.3.24. If rwy 6= 0, then y ∈ Fw.
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Proof. Let s ∈ L(w). Thanks to Lemma 3.3.21 one has that

bs




∑

y∈Wf

rwy by





︸ ︷︷ ︸
Xw

= (v + v−1)




∑

y∈Wf

rwy by



 .

Among all the y for which rwy is nonzero, choose an element y such that ℓS(y) is
maximal. It follows from this equality and the maximality of ℓS(y) that in case
ℓS(sy) > ℓS(y), then sy cannot be a fully commutative element. In other words,
when reducing bsby, one has to apply the relation b2s = (v+v−1)bs (in case sy <S y) or
the relation bsibsi±1

bsi = bsi where s = si (in case sy >S y). In the first case y has an
S-reduced expression beginning with s, hence s ∈ L(y) implying bsby = (v+ v−1)by.
In the second case since by also appears in the right hand side of the equality above
it means that there exists a fully commutative element y′ such that rwy′ 6= 0 having
an S-reduced expression beginning with bsi±1

bsi. But such an element also occurs in
the right hand side and cannot obviously come from an element bsby′′ with y′′ ∈ Wf ,
a contradiction. Hence it means that our element y has an S-reduced expression
beginning with s, that it, s ∈ L(y) and that we can remove bsby = (v + v−1)by from
both sides of the equality above obtaining

bs




∑

z∈Wf ,z 6=y

rwz bz


 = (v + v−1)




∑

z∈Wf ,z 6=y

rwz bz


 .

One can then choose another element z with maximal Coxeter length among the
remaining ones with nonzero coefficient and give the same argument to obtain that
s ∈ L(z) and so on until we run out of all the elements with nonzero coefficient.
This proves that for any s ∈ L(w), s ∈ L(y) for any y such that rwy 6= 0. Doing the
same for any s ∈ R(w) one gets that for any y such that rwy 6= 0, L(y) ⊃ L(w) and
R(y) ⊃ R(w).

Now if y is such that rwy 6= 0, one must have y <S x for at least one x ∈ Qw

by Remark 3.3.18. Thanks to Remark 3.3.20 we have ψc(y) <S x and thanks to
Proposition 3.3.10 one also has that x <S ψc(w) giving ψc(y) <S ψc(w). Therefore
we have that y ∈ Fw.

Proposition 3.3.25. If qww′ 6= 0, then w′ ∈ Fw.

Proof. One argues by induction of ℓS(ψc(w)). If ℓS(ψc(w)) = 1 then w is a simple
reflection. In that case by Remark 3.3.15 one has bw = Xw and the claim is trivially
true since Fw = {w}. Now suppose that ℓS(ψc(w)) > 1. Thanks to the previous
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proposition we have that
Xw =

∑

y∈Fw

rwy by,

in particular, ψc(y) <S ψc(w), hence ℓS(ψc(y)) < ℓS(ψc(w)) in case w 6= y. Hence
by induction one has that

by =
∑

z∈Fy

qyzXz

which we replace in the previous equality:

Xw = rwwbw +
∑

y∈Fw,y 6=w

rwy



∑

z∈Fy

qyzXz


 .

But since y ∈ Fw, one has that Fy ⊂ Fw (see Remark 3.3.23), hence the equality
can be rewritten as

Xw = rwwbw +
∑

y∈Fw,y 6=w

q̃wy Xy

for suitable polynomials q̃wy , which concludes since rww is invertible (3.3.17).

Now write the expansion of an element bw in Zinno basis as

bw =
∑

x∈Pc

hwxZx.

As an immediate consequence of the proposition above we get:

Corollary 3.3.26. If x /∈
⋃
y∈Fw

Qy, then hwx = 0.

Lemma 3.3.27 (Zinno, [42]). Let w ∈ Wf , x = ψc(w). The coefficient of bw in the

expansion of Zx in the diagram basis is equal to

(−1)ℓS(w)v−2kw+ℓS(w)−ℓT (x),

where kw is the number of letters of mx which have negative exponent and contribute

to wx.

Proof. The coefficient on the diagonal is explicitely computed by Zinno in [42] at
the end of section 6. Since we have different notations and conventions we sketch
a proof. Let x = ψc(w). Recall that Zx is the image of the element of the braid
group represented by the word mx in the Temperley-Lieb algebra. It is obtained by
replacing each letter si in mx by v−1 − bi and each letter s

−1
i by v − bi. Hence if we

expand without reducing, we obtain 2ℓS(x) different terms: for each s
±1
i occurring in
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mx we can either choose the −bi or the v±1. Recall that there is a rule to read wx
which is a reduced expression for w as a subword of mx that we recalled in example
3.2.19 and in the paragraphs above it. Zinno proves that among the 2ℓS(x) terms
which are (possibly non reduced) words in the bi multiplied by a power of v, the
term obtained by taking the bi from any s

±1
i contributing to wx and taking the v±1

from any other s
±1
i is the only term among the 2ℓS(x) which is proportional to bw1.

But its coefficient is easily computed: each bi which is contributed is multiplied by
−1, and since a bi is contributed exactly from the s

±1
i contributing to wx and since

moreover wx is an S-reduced expression of w, this gives rise to a sign (−1)ℓS(w). Now
each s

±1
i not contributing to wx must contribute its v±1. For any s

−1
i contributing

to wx, there is an si 7→ v−1 − bi at its right which does not contribute, giving a
coefficient v−kw . Now if a si contributes to wx, it means that si is the center of a
syllable. As a consequence all the s

−1
i do not contribute to wx. We need to count

them. The number of occurrences of all the various s±1
i with si occurring at a center

is given by ℓS(x) − 2kw. We then need to subtract the centers and there are ℓT (x)
many of them. We then need to divide the result by two since we have here all
the s

±1
i such that the instance with positive exponent contribute with the centers

removed, but any instance si of one of these comes with an instance of s±1
i in the

same syllable since we removed the centers. Hence the power of v we obtain from
the si not contributing to wx is equal to

ℓS(x)− 2kw − ℓT (x)

2

so the power of v we obtain before our bw in the expansion is

−kw +
ℓS(x)− 2kw − ℓT (x)

2
.

One gets the claim using the equality

ℓS(x)− ℓT (x)

2
= ℓS(w)− ℓT (x)

which holds since all the centers contribute to wx: hence the left hand side is equal
to all the contribution to w different from the centers (recall that any syllable con-
tributes any of its reflections exactly once to w and that if si is not at the center, it
occurs twice in the syllable).

1This fact will be needed later to prove the triangularity of the change of basis matrices between
Zinno bases (for arbitrary Coxeter elements) and the diagram basis at the end of chapter 3, where
we will provide a proof of it in that more general setting.
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Theorem 3.3.28. Let w ∈ Wf . Let x ∈ Qw. Then

hwx = (−1)ℓS(w)+ℓS(ψc(w))−ℓS(x)v2kw+ℓT (x)−ℓS(w),

where kw is the number of letters of mψc(w) which have negative exponent and con-

tribute to wψc(w).

Proof. This is a consequence of the fact that if y ∈ Fw, y 6= w, then Qw ∩ Qy = ∅.
Indeed, assume that x ∈ Qw∩Qy. Then there exists two sets L′ ⊂ L(w), R′ ⊂ R(w)

such that
(
∏

s∈L′

s)x(
∏

s∈R′

s) = ψc(w).

Since L(y) ⊃ L(w) and R(y) ⊃ R(w) and x ∈ Qy, one also has using Remark 3.3.12
that

(
∏

s∈L′

s)x(
∏

s∈R′

s) ∈ Qy.

But by definition of Fw, ψc(y) <S ψc(w) = x, ψc(w) 6= ψc(y) and any element z ∈ Qy

satisfies z <S ψc(y). Hence x <S ψc(y) <S ψc(w) = x, a contradiction.

As a consequence of this observation together with Corollary 3.3.26, if one knows
the coefficient of Zψc(w) in the expansion of bw, one knows the coefficient of any Zx
for x ∈ Qw since the only element of the simplex-basis which can contribute elements
Zx for x ∈ Qw is Xw. Using Lemma 3.3.27 we have that the inverse coefficient of
bw in the expansion of Zψc(w) is equal to (−1)ℓS(w)v−2kw+ℓS(w)−ℓT (ψc(w)). Therefore
since the change of basis matrix is upper triangular with invertible coefficient on the
diagonal one has that the coefficient of Zψc(w) in the expansion of bw is given by

(−1)ℓS(w)v2kw−ℓS(w)+ℓT (ψc(w)).

Using the fact that
bw =

∑

w′∈Fw

qww′Xw′

and that any element Zx with x ∈ Qw is contributed exclusively by Xw, one has
that

qwwp
w
ψc(w) = (−1)ℓS(w)v2kw−ℓS(w)+ℓT (ψc(w)),

hence qww = v2kw−ℓS(w)+ℓT (ψc(w)) since pwψc(w)
= (−1)ℓS(w). Hence for any x ∈ Qw we

obtain
hwx = qwwp

w
x = (−1)ℓS(w)+ℓS(ψc(w))−ℓS(x)v2kw+ℓT (x)−ℓS(w),

as claimed.
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Remark 3.3.29. In the next section we will give a combinatorial definition of the
coefficient kw that will avoid using the braid word mψc(w) lifting ψc(w) in the braid
group (see Remark 3.4.2).

3.4 Noncrossing partitions and vectors with parity

conditions

3.4.1 Vectors with parity conditions

Notation. We will often distinguish between elements of the Coxeter group and
Coxeter words representing them; in case w,w′ ∈ Sn+1, we will denote their product
by ww′. In case w,w′ are Coxeter words, we will denote by w⋆w′ the word obtained
by concatenation.

We order the set of polygons P1, . . . Pr occurring in the geometric representation
of x ∈ Pc by ascending order of the terminal index of each polygon. To each x ∈ Pc
and each m ∈ {1, . . . , n} one defines an integer xm ≥ 0:

xm := 2|{i | m is nested in Pi}|+ 1m∈Dc
x
,

where 1m∈Dc
x
= 1 if m ∈ Dc

x and 1m∈Dc
x
= 0 if m /∈ Dc

x. In particular xm is odd if
and only if m ∈ Dc

x. For convenience we will write N(m) := |{i | m is nested in Pi}|
and omit the dependance on x. We write vx for the element of (Z≥0)

n having xk as
kth component.

Remark 3.4.1. Any polygon Pi = [i1i2 · · · ik] occurring in the geometric represen-
tation of x ∈ Pc represents an element yi ∈ Pc. As element of the symmet-
ric group yi is the cycle (i1, i2, . . . , ik). Let j < k. In the framework of Cox-
eter theory, a reduced expression for a transposition (j, k) is given by the word
[j, k] := sk−1sk−2 · · · sj+1sjsj+1 · · · sk−2sk−1. The word mi obtained by the concate-
nation of such words

mi := [i1, i2] ⋆ [i2, i3] ⋆ · · · ⋆ [ik−1, ik]

yields a reduced expression for yi. With P1, . . . Pr ordered as above one has x =

y1y2 · · · yr and the concatenation m1 ⋆ m2 ⋆ · · · ⋆ mr of the words yields a Coxeter
word which we shall write mx. The Coxeter word mx is an S-reduced expression for
x ∈ Pc (this is easy to see by induction on the number of polygons of x if one keeps
in mind that the Coxeter length ℓS(σ) of a permutation σ ∈ Sn+1 is equal to the
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number of i < j such that σ(i) > σ(j)). In particular, one has that
∑n

i=1 xi = ℓS(x).
This is exactly the word mx we already defined in subsection 3.2.2.

Remark 3.4.2. The integer kw defined in Theorem 3.3.28 can easily be defined using
the vector vψc(w): recall that it was the number of generators with negative exponent
in the word mx which contribute to the subword wx (here x = ψc(w)). In other
words, these are all the contributions to the subword wx which come from the left
parts of the various syllables of mx. But an element from the left of a syllable
contributes if and only if it is not a center. As a consequence, if one sums all the
even components of vψc(w), one gets twice the contributions from generators with
negative exponent in mx since for any occurrence of a simple reflection in a left part
of a syllable, there is an occurrence of the same reflection in the right part of the
same syllable. Therefore we have that

kw =
1

2

∑

ψc(w)i even

ψc(w)i.

Definition 3.4.3. Let x ∈ Pc. We will say that x is in standard form if it is

represented by the Coxeter word mx or that mx is the standard form of x. One then

has

xm = number of occurrences of sm in mx.

Notice that we made a specific choice of S-reduced expression of x and that such a

definition of xm depends on that choice. The subwords [ij−1, ij ] of yi or mx will be

called the syllables of yi or mx, the reflection sij−1
will be the center of that syllable

and the reflection sij−1 will be said to occur at the top of the syllable (it occurs twice,

on the very left and the very right of the syllable).

As a consequence, note that the sum of the xi with i running between 1 and n

is just the Coxeter length ℓS(x) of x.

Lemma 3.4.4. The vector vx where x ∈ Pc has the following properties:

1. If xm is even and xm+1 > xm, then xm+1 = xm + 1.

2. If xm is odd and xm+1 > xm, then xm+1 = xm + 1 or xm + 2.

3. If xm is even and xm+1 < xm, then (xm+1 = xm − 1 or xm+1 = xm − 2) and

(m+ 1 ∈ U c
x).

4. If xm is odd and xm+1 < xm, then xm+1 = xm − 1 and m + 1 ∈ U c
x (m+ 1 is

even maximal in its polygon).
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5. The integer m 6= n+ 1 lies in U c
x in exactly two situations:

(a) if xm is odd and (xm−1 = xm or xm−1 = xm + 1)

(b) if xm is even and xm < xm−1.

The integer m = n+ 1 lies in U c
x if and only if xm−1 > 0.

Proof. 1 and 3. If xm is even, then N(m) = N(m + 1) except in case m + 1 ∈ U c
x

where one has N(m + 1) = N(m) − 1. In that last case, one has xm+1 = xm − 2

if m + 1 /∈ Dc
x and xm+1 = xm − 1 if m + 1 ∈ Dc

x. If N(m) = N(m + 1) one has
xm = xm+1 if m+ 1 /∈ Dc

x and xm+1 = xm + 1 if m+ 1 ∈ Dc
x.

2 and 4. One has m ∈ Dc
x. In particular, there exists a polygon P of x such

that m ∈ P but m is not terminal in P . If m + 1 ∈ P and m + 1 is terminal then
xm+1 = xm − 1 since m ∈ Dc

x, m + 1 /∈ Dc
x and N(m) = N(m + 1). If m + 1 ∈ P

with m+ 1 not terminal then xm = xm−1. If m + 1 /∈ P then m+ 1 is nested in P

(since m ∈ Dc
x∩P ) implying N(m+1) = N(m)+1. We then have xm+1 = xm+1 if

m+ 1 /∈ Dc
x and xm+1 = xm + 2 if m+ 1 ∈ Dc

x (which is possible if m+ 1 is initial).
5. First suppose m ∈ U c

x and write P for the polygon such that m ∈ P . If
m ∈ Dc

x, then xm is odd and one gets xm−1 = xm if m− 1 ∈ P and xm−1 = xm + 1

if m− 1 /∈ P (in which case m − 1 has to be nested in P since m ∈ U c
x but cannot

lie in Dc
x). If m /∈ Dc

x then xm is even. One then has xm−1 = xm + 1 if m − 1 ∈ P

and xm−1 = xm + 2 if m − 1 /∈ P since in that case m − 1 must be nested in P

(because m is maximal in P ). For the converse, all the situations where xm 6= xm−1

are given by points 3 and 4. It remains to show that if xm = xm−1 and both are odd,
then m ∈ U c

x. If m and m− 1 are not lying in the same polygon P , the assumption
m−1 ∈ Dc

x implies that m is nested in P which would contradict xm = xm−1. Hence
they lie in the same polygon P and m ∈ U c

x. Now consider the case of n + 1; if
n + 1 ∈ U c

x then there is a polygon P with n + 1 ∈ P . If n ∈ P , then xn = 1; if
n /∈ P , then n is nested in P and xn = 2. Conversely if xn > 0, then either n ∈ Dc

x

forcing n+1 ∈ U c
x or n is nested in a polygon P which therefore needs to have n+1

as vertex.

Corollary 3.4.5. Let x, y ∈ Pc. Then x = y if and only if vx = vy.

Proof. If x 6= y, then (Dc
x, U

c
x) 6= (Dc

y, U
c
y) by Lemma 3.2.8. Since m ∈ Dc

x if and
only if xm is odd and by point 5 of the lemma above, one then has vx 6= vy.

Proposition 3.4.6. The map x 7→ vx, x ∈ Pc defines a bijection from Pc to the set

of vectors w ∈ (Z≥0)
n with the following properties, where wk is the k-th component

of w:
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• If k is the smallest k with wk 6= 0, then wk = 1.

• If k is the largest k with wk 6= 0, then wk = 1 or wk = 2.

• If wm is even and wm+1 > wm then wm+1 = wm + 1.

• If wm is odd and wm+1 > wm then wm+1 = wm + 1 or wm+1 = wm + 2.

• If wm is even and wm+1 < wm, then wm+1 = wm − 1 or wm+1 = wm − 2.

• If wm is odd and wm+1 < wm, then wm+1 = wm − 1.

It is convenient to represent the last four conditions as follows:

wm+1 − wm wm+1 even wm+1 odd
wm even −2 or 0 1 or −1
wm odd 1 or −1 2 or 0

Examples of vectors satisfying these conditions are given in example 3.4.7.

Proof. The fact that x 7→ vx is an injection is a consequence of the previous lemma
and corollary. Conversely, we show by induction on the number of k such that
wk 6= 0 that any w with the above properties is equal to vx for some x ∈ Pc. If
all components are zero then w = ve. Now suppose that w has p > 0 nonzero
components. Consider k largest with wk 6= 0. If wk = 1, then the above conditions
imply that wk−1 = 0, 1 or 2. The vector w′ obtained from w by replacing wk by 0 still
satisfies the above six conditions: this is obvious if wk−1 = 1 or 2 and if wk−1 = 0,
one has to show that wk−ℓ where ℓ is the smallest interger ℓ > 1 such that wk−ℓ > 0

is either 1 or 2 in order to satisfy the second condition; but this is a consequence
of the last two conditions on w. By induction, w′ = vx for some x ∈ Pc and since
(w′)m = 0 for m ≥ k, xsk also lies in Pc and vxsk = w.

If wk = 2, the conditions imply that wk−1 = 1, 2, 3 or 4. If wk−1 = 1, one
has wk−2 = 0, 1 or 2 and if one replaces w by the vector w′ obtained from w by
replacing wk and wk−1 by zero one still gets a vector satisfying the conditions, hence
by induction there must exist x ∈ Pc with vx = w′. Moreover the largest integer
indexing a vertex of a polygon of x must be smaller than or equal to k − 1. As a
consequence y := xsksk−1sk ∈ Pc and vy = w. If wk−1 ≥ 2, consider the smallest
ℓ > 1 such that wk−ℓ < 2. The conditions imply that wk−ℓ must be equal to 1. We
then subtract from w the vector z such that zk−ℓ = 1, zk−ℓ+i = 2 for all 1 ≤ i ≤ ℓ

and with all other components equal to zero. Write w′ for w − z. The conditions
imply that the last nonzero component of w′ is equal to 0, 1 or 2 and subtracting
2 from any component between wk−ℓ+1 and wk does not change the parity of these
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integers, hence for m and m+ 1 both lying in {k − ℓ+ 1, . . . , k}, the conditions on
w′
m and w′

m+1 still hold. It remains to check that the conditions hold for w′
k−ℓ−1,

w′
k−ℓ = 0 and w′

k−ℓ+1. Since wk−ℓ−1 is followed by wk−ℓ = 1, it has to be equal to
0, 1 or 2. So we have w′

k−ℓ−1 = 0, 1 or 2 followed by w′
k−ℓ = 0 still satisfying our

conditions. Now wk−ℓ+1 = 2 or 3 (recall that it is ≥ 2) hence w′
k−ℓ+1 = 0, 1 with

w′
k−ℓ = 0 which still satisfy our conditions. Again, it is easy to see that the largest

nonzero component of w′ is either equal to 1 or 2 hence by induction w′ = vx for
x ∈ Pc with w′

k−ℓ = 0 = w′
k; it means that in the geometrical representation of x,

k − ℓ is either terminal in a polygon P , or alone, and k + 1 is alone. One can add
the edge (k − ℓ, k + 1) to P or simply add it if k − ℓ is alone to get a noncrossing
partition y with vy = w.

We will denote by V the set of vectors in (Z≥0)
n satisfying the properties of

Proposition 3.4.6. Since noncrossing partitions have Catalan enumeration, the same
holds for V by the proposition above.

Example 3.4.7 If n = 2 the five elements of V are given by (0, 0), (1, 0), (0, 1), (1, 1),
(1, 2). If n = 3 the fourteen elements of V are given by (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1), (1, 2, 0), (0, 1, 2), (1, 2, 1), (1, 1, 2), (1, 2, 2),
(1, 3, 2).

3.5 A criterion for Bruhat order on noncrossing par-

titions

3.5.1 The criterion

We denote by <S the Bruhat order on Sn+1. We will use the characterization given
by Theorem 2.1.5 of [6] which we recall below. We use the same notation as in [6],
that is, for x ∈ Sn+1, i, j ∈ {1, . . . , n+ 1},

x[i, j] := |{a ∈ {1, . . . , i} | x(a) ≥ j}|.

Theorem 3.5.1 ([6], Theorem 2.1.5). Let x, y ∈ Sn+1. The following are equiva-

lent:

1. x <S y

2. x[i, j] ≤ y[i, j], for all i, j ∈ {1, . . . , n+ 1}.

According to [5], this criterion is due to Ehresmann (see [15]).
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Proposition 3.5.2. For x, y ∈ Pc, one has

x <S y ⇒ ∀k, xk ≤ yk.

Proof. Suppose that there exists k with xk > yk. If suffices to see that for a non-
crossing partition x, one has x[k − 1, k + 1] = j if xk = 2j or if xk = 2j + 1,
and x[k, k + 1] = j if xk = 2j and j + 1 if xk = 2j + 1. If xk and yk have the
same parity we then have x[k, k + 1] > y[k, k + 1]. If xk is even and yk is odd
we have x[k − 1, k + 1] > y[k − 1, k + 1]. If xk is odd and yk is even we have
x[k, k + 1] > y[k, k + 1]. Hence by Theorem 3.5.1 we have x 6<S y.

The aim now is to prove the converse of Proposition 3.5.2. Set

Σ :=
∑

k

yk − xk.

Lemma 3.5.3. Suppose that xk ≤ yk for all k. If Σ = 1, then x <S y.

Proof. Since Σ = 1, there exists a unique k such that xk 6= yk and yk = xk+1. If xk
is odd and k /∈ U c

y consider the reflection (i, j), j > i, with smallest j − i and such
that (i, j) is an edge of a polygon P of y in which k is nested (it always exists since
yk is even and yk > 0). It suffices to add the vertex k to the polygon P to obtain an
element x′ ∈ Pc satisfying vx′ = vx hence x = x′ by Corollary 3.4.5; this is possible
since k lies neither in U c

y nor in Dc
y. Indeed, we replaced the subword [i, j] in my

by the product [i, k] ⋆ [k, j] of the words representing the reflections (i, k) and (k, j),
removing one occurrence of sk. Hence the word mx which is a reduced expression
for x is equal (up to commuting syllables) to a subword of my implying x <S y. If
xk is odd and k ∈ U c

y , we prove that k − 1 /∈ Dc
x: if k − 1 ∈ Dc

x one has k − 1 ∈ Dc
y

hence k − 1 and k lie in the same polygon P of y with k terminal (because yk is
even) hence

xk−1 = yk−1 = yk + 1 = xk + 2

which by Lemma 3.4.4 is impossible since both xk−1 and xk are odd. But k−1 /∈ Dc
x

if and only if k− 1 /∈ Dc
y, which implies that yk−1 is even with yk−1 > yk since k− 1

is nested in the polygon of y having k as vertex (because k ∈ U c
y). But yk and yk−1

are both even, hence we have a contradiction with Lemma 3.4.4 again since

xk−1 = yk−1 = yk + 2 = xk + 3.

If xk is even, then yk is odd. In that case, there exists a polygon P of y such that
k is a non terminal vertex of P . Let ℓ be the vertex of P following k. If ℓ 6= k + 1,
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one has a contradiction with 3.4.4 since

xk+1 = yk+1 ≥ yk + 1 = xk + 2.

If ℓ = k + 1, splitting the polygon P into two polygons by removing the edge
(k, k + 1) yields an element x′ ∈ Pc;in the reduced expression my of y we just
removed an occurrence of sk to obtain (up to commuting syllables) a word which is
still a standard form mx′ of an element x′ ∈ Pc, implying vx′ = vx and hence x′ = x

by 3.4.5. Since mx′ is a subword of my we have x <S y.

Before proving the case Σ > 1 we give some properties of standard forms:

Lemma 3.5.4. Let x ∈ Pc with corresponding standard form mx.

1. A simple reflection sk is the center of at most one syllable of mx. If it is the

center of a syllable, then its first occurence in mx when reading mx from the

left to the right is at the center of that syllable.

2. If sk and sk+1 occur in the same syllable wi, then they have the same number

of occurrences in mx on the right of wi and that number is even.

3. Suppose that sk is at the center of a syllable wi of mx and that sk+1 occurs on

the left of wi. Then sk+1 is at the center of a syllable and occurs in wi.

4. Write mx = w1 ⋆ w2 ⋆ · · · ⋆ wm as the concatenation of its syllables. If sk and

sk−1 both occur in wi and do not occur in wj for j < i, then we can replace

wi = [q, p+1] in the word mx by the product of the two syllables w′
i = [q, k]⋆[k, p]

to obtain a word which is still a standard form of an element y ∈ Pc.

Proof. 1. The fact that sk occurs at most once as a center is obvious. An occurrence
at the center (equivalent to k ∈ Dc

x, in particular k ∈ P for some polygon P of
x) must be a first one since other occurrences of sk have to come from polygons in
which k is nested, hence the subwords corresponding to such polygons must occur in
mx after the subword corresponding to P since their maximal index is bigger than
the maximal index of P .

2. Using point 1, sk and sk+1 cannot be the centers of syllables on the right of
wi. Since they occur both in wi, they have to occur together in any syllable on the
right of wi in which they occur, otherwise the noncrossing condition would not be
satisfied (recall that the polygons are ordered by ascending order of their maximal
indices). Since they are not at the center, they occur twice in any such syllable.

3. If sk+1 is not the center of any syllable, then the noncrossing condition is not
satisfied. If wi = sk, the syllable on the left of wi containing sk+1 corresponds to an
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edge of a polygon having biggest index bigger than k + 1, which is a contradiction,
since the subword corresponding to such a polygon should appear after wi in mx.
Hence wi 6= sk. Since sk is by assumption at the center, sk+1 has to occur in wi.

4. This means exactly that k is nested in the polygon P corresponding to wi,
that there cannot be any other polygon located between the point labeled with k

and P in which k is nested, and that k lies in no polygon. Therefore we can enlarge
P by adding the vertex labeled with k. From the point of view of standard forms
this operation corresponds exactly to what is claimed (see the first situation of figure
3.7).

We now deal with the case Σ > 1 giving a converse to Proposition 3.5.2. Recall
that the word my = y1y2 · · · yr is the concatenation of the words yi associated to
the polygons of y, each of which is the concatenation of the syllables (that is, the
chosen reduced expressions for reflections; see Remark 3.4.1).

Proposition 3.5.5. Suppose that xk ≤ yk for all k. If Σ > 1, then x <S y.

Proof. Using induction on Σ (the case Σ = 1 is given by Lemma 3.5.3) it suffices to
find an element x′ ∈ Pc with x′ 6= x, y and such that for all k, xk ≤ x′k ≤ yk. Consider
the smallest k with xk < yk. Write my = w1 ⋆ w2 ⋆ · · · ⋆ wm as the concatenation of
its syllables. Consider the smallest index i such that sk occurs in wi.

Let wi = [q, p + 1] and assume q < k < p. In particular, sk−1 must occur in
wi. If sk−1 does not appear in wj for j < i then thanks to point 4 of 3.5.4 we can
replace wi in my by the concatenation of the syllables [q, k] ⋆ [k, p+1] giving a word
m′ still representing an element x′ ∈ Pc in standard form, with x′k = yk − 1 ≥ xk,
x′r = yr ≥ xk for r 6= k (see the first situation of figure 3.7 for an illustration). If
sk−1 occurs in wj for j < i then by point 1 of 3.5.4, sk−1 cannot be at the center of
wi; hence using point 2 of Lemma 3.5.4 we see that yk−1 > yk. But xk−1 = yk−1 by
definition of k. Hence xk−1 > yk > xk. By Lemma 3.4.4 it implies that xk−1 and xk
are even. But yk is even since sk is not at the center of wi and does not occur in
wj for j < i, hence cannot be a center by point 1 of Lemma 3.5.4. We obtain that
xk−1 ≥ xk + 4 which contradicts Lemma 3.4.4.

Now suppose that sk is the center of wi. If wi = sk, then we can remove wi = sk
from my to obtain a required word which is (up to commuting syllables) a standard
form of an element x′ ∈ Pc. So we can suppose that wi is not reduced to sk, that is,
wi = [k, p+1] with p > k. If sk+1 does not occur in wj for j < i and xk+1 < yk+1 then
using point 4 of 3.5.4 we can replace wi by [k, k+ 1] ⋆ [k + 1, p+ 1] which concludes
since we remove one occurrence of sk+1 (see the second situation of figure 3.7). If
xk+1 = yk+1, we get that yk+1 is even (since in that case sk+1 is not the center of a
syllable) and yk+1 > yk by point 2 of Lemma 3.5.4, giving that xk+1 ≥ xk + 2 with
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xk+1 = yk+1 even, contradicting Lemma 3.4.4. If sk+1 occurs in wj for j < i then it
has to be at the center of its syllable by point 3 of Lemma 3.5.4. If xk+1 = yk+1 one
has

xk+1 = yk+1 = yk + 2 > xk + 2

which contradicts Lemma 3.4.4 again. If xk+1 + 1 = yk+1 one has

xk+1 + 1 = yk+1 = yk + 2 > xk + 2

but xk+1 is even (since yk+1 is odd and yk+1 = xk+1 +1) which is impossible. Hence
we can suppose that xk+1 + 2 ≤ yk+1. Now consider the smallest ℓ ≥ 1 such that
sk+ℓ+1 is not at the center of any wj for j < i. Using point 3 of Lemma 3.5.4
inductively we see that for any 1 < i ≤ ℓ,

yk+i = yk+i−1 + 2.

Lemma 3.4.4 together with the inequality above give xk+i+2 ≤ yk+i which holds in
particular for i = ℓ. If sk+ℓ is alone in the syllable [k+ℓ, p+1] of which it is the center
(that it, k + ℓ = p), then we can remove it from my to obtain a word in standard
form which is (up to commuting syllables) a standard form of a required element
x′ ∈ Pc. Otherwise yk+ℓ+1 = yk+ℓ+1 implying by Lemma 3.4.4 that xk+ℓ+1 < yk+ℓ+1.
By definition of ℓ we have that sk+ℓ+1 is not at the center of any wj for j < i; hence
by point 3 of Lemma 3.5.4 we have that sk+ℓ+1 does not occur in my on the left of
[k+ℓ, p+1]. So we can replace [k+ℓ, p+1] in my by the product sk+ℓ⋆[k+ℓ+1, p+1]

to obtain a word which is still a standard form of a required element x′ ∈ Pc; this is
also illustrated by the second situation of figure 3.7, but the k on the picture is our
k + ℓ.

Now suppose that sk is at the top of wi (with wi 6= sk). If sk−1 is not at the
top of wj for j < i then one can replace wi = [q, k + 1] in my by the product of
two syllables [q, k] ⋆ [k, k + 1] giving again a word in standard form (see the third
situation of figure 3.7). So we can suppose that sk−1 is at the top of wj for j < i.
By definition of k we have xk−1 = yk−1. Since wi 6= sk, sk−1 has to occur in wi hence
we get

xk−1 = yk−1 = yk + 2 > xk + 2

which contradicts Lemma 3.4.4 again.

Putting 3.5.2, 3.5.3 and 3.5.5 together we have proven
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Fig. 3.7: Illustration of various local operations on noncrossing
partitions:we associate to any noncrossing partition x at the top
a noncrossing partition y at the bottom such that the sum of the
components of the corresponding vectors decreases by one.
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Theorem 3.5.6. let x, y ∈ Pc. Then,

x <S y if and only if ∀k, xk ≤ yk.

3.5.2 Covering relations

In Proposition 3.5.5, we showed that if Σ > 1, there always exists a noncrossing
partition x′ such that for any k, xk ≤ x′k ≤ yk. But the sum of the components
of the vector is the Coxeter length of the noncrossing partition. This implies in
particular that x is covered by y if and only if x < y, ℓS(x) = ℓS(y) − 1. In that
case we are exactly in the setting of Lemma 3.5.3; the proof of that lemma shows
what the covering relations are: suppose that xk = yk − 1 and all other components
agree; then either x is obtained by y by splitting a polygon P of y having both k

and k + 1 labelling its vertices into two (possibly empty) polygons P1 and P2 by
removing the edge joining k and k+1; or x is obtained from y by adding the vertex
k to the polygon of P which is the closest to y among the polygons in which k is
nested.

As a consequence, the poset of noncrossing partitions with the Bruhat order is
a graded poset, the rank function being simply the Coxeter length.

3.6 New lattice structure on Pc and related combi-

natorial considerations

3.6.1 Lattice property

We now associate to any two elements x, y ∈ Pc two vectors z(x, y) and w(x, y) in
(Z≥0)

n by setting

z(x, y)k = min(xk, yk), w(x, y)k = max(xk, yk),

with the notations from the previous section. We shall use them to prove:

Theorem 3.6.1. The poset (Pc,≤) is a lattice.

Proof. Thanks to Proposition 3.4.6 and Theorem 3.5.6, it suffices to show that
z := z(x, y) and w := w(x, y) lie in V, hence to prove that both satisfy the conditions
of Proposition 3.4.6. The first two conditions are clearly true for both z and w. We
prove the last four conditions first for z. One can without loss of generality suppose
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zm = xm 6= ym and zm+1 = ym+1 6= xm+1, otherwise the conditions are inherited
from the conditions on x and y. If zm+1 > zm one has

zm = xm < zm+1 = ym+1 < xm+1

which by Lemma 3.4.4 is possible only if xm is odd and xm+1 = xm + 2, hence zm is
odd and zm+1 = zm + 1. If zm+1 < zm then

zm+1 = ym+1 < zm = xm < ym

which is possible only if ym = ym+1+2, ym is even hence zm is odd and zm+1 = zm−1.
Therefore the vector z satisfies all the conditions.

We now prove the last four conditions for w. We can suppose without loss of
generality that wm = xm 6= ym and wm+1 = ym+1 6= xm+1 otherwise the conditions
are inherited from the conditions on x and y. If wm < wm+1 one hence has

ym < wm = xm < wm+1 = ym+1

which by Lemma 3.4.4 is possible only if wm is odd, hence wm even with wm+1 =

wm + 1. If wm+1 < wm one then has

xm+1 < wm+1 = ym+1 < wm = xm

which by Lemma 3.4.4 is possible only if xm+1 is even, hence wm+1 is odd and
wm = wm+1 + 1.

Hasse diagrams of the lattice of noncrossing partitions with Bruhat order are
given for type A2 and A3 on the right of figure 3.11 and on the left of figure 3.12,
respectively.

3.6.2 Bijection with Dyck paths

Recall that a Dyck path is a path from (0, 0) to (2n, 0) with steps of the form +(1, 1)

or +(1,−1), which stays above the x-axis. Denote by Dn the set of Dyck paths with
2n steps. We represent any noncrossing partition x ∈ Pc by arcs joining points on
a line labeled with integers from 1 to n + 1 as in figure 3.8. This is very close to
the geometrical representation on a circle, but the longest edge of each polygon is
not represented. We associate to each point labeled with an integer between 1 and
n+1 a part of a Dyck path depending on arcs beginning or ending at the point and
then collapse these various parts from the left to the right to obtain a Dyck path px
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1 2 3 4 5 6 7 8 9 10 11 12

Fig. 3.8: A diagram for n = 11 representing the noncrossing
partition x = (2, 6, 11, 12)(3, 4)(7, 9, 10).

Fig. 3.9: Dyck path for x = (2, 6, 11, 12)(3, 4)(7, 9, 10).

associated to x; the four possible steps are the following:

• (Step I) If there is no arc starting or ending at a point, this corresponds to an
upward step followed by a downward step,

• (Step II) If there is an arc ending at a point and another one starting, this
corresponds to a downward step followed by an upward step,

• (Step III) If there is a single arc starting at a point, this corresponds to two
upward steps,

• (Step IV) If there is a single arc ending at a point, this corresponds to two
downward steps.

As an example the path associated with the noncrossing partition from figure 3.8
above is given in figure 3.9

Proposition 3.6.2. The assignment x 7→ px is a well-defined bijection Pc → D2n+2.

Proof. We refer to [11] §3.2, where this bijection is also considered.

Proposition 3.6.3. Under the bijection above, the Bruhat order on noncrossing

partitions corresponds to the order on Dyck paths by inclusion.
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Proof. The covering relations for the inclusion order on Dyck paths are easily de-
scribed: it corresponds to replacing and upward move followed by a downward move
into a downward move followed by an upward move. In case the first move begins
at a point with even coordinates, it just corresponds to replacing a step I with a
step II which corresponds for the noncrossing partition to breaking a long reflection
into two smaller ones (see the first picture of figure 3.10). This is exactly the second
of the two operations describing the covering relations as given in subsection 3.5.2.
If the starting point of the first move has odd coordinates, one has to look at the
various possible cases to see that this corresponds to doing on the corresponding
noncrossing partition exactly the first operation given in 3.5.2: all the possible cases
are detailed in figure 3.10 below.

b

bc bc

(2k, 2k’)
→

bc bc

b

(2k, 2k’)

• → •

b b

bcbc

bc

→
bb

bc bc bc • • → • •

bc

bc bc

b b

→ bc bc

bc

bb

• • → • •

b b

bc

bc bc

→
bb

bc bc

bc

• • → • •

bb

bc bc bc

→
bb

bc

bc

bc

• • → • •

Fig. 3.10: Covering relations in the lattice of Dyck paths and
the corresponding relations on noncrossing partitions. The parts
which are in dotted style are the parts which are changed. The
white points are the points with even coordinates, that is, corre-
sponding to the beginning or end of a step.

3.6.3 Alternative direct proof of the lattice property

Using the bijection with Dyck paths from the previous section, one might look for
a direct proof of Theorem 3.6.1 without using Theorem 3.5.6. In Proposition 3.6.3,
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e

s1 s2

s1s2

s2s1s2

Fig. 3.11: Lattice of Dyck paths for inclusion and the correspond-
ing lattice of noncrossing partitions with Bruhat order in type A2.

the fact that px < py ⇒ x <S y does not use the criterion. Hence the purpose here
is to prove the converse.

Proposition 3.6.4. Let x, y ∈ Pc, and assume that x <S y. Then px < py.

Proof. Thanks to Theorem 3.5.1, we have x[i, j] ≤ y[i, j] for any i, j. The height of
the path px after i steps as defined at the beginning of subsection 3.6.2 is equal to 2k

where k is the number of arcs of the noncrossing partition x above the point labeled
with i (including any arc starting at i, but excluding the arcs ending at it). But
k = x[i, i+ 1]. As a consequence, the points (2i, j) of px and the point (2i, j′) of py
are such that j ≤ j′, in other words, any point of px with even coordinates has height
smaller than or equal to the height of the point of py with the same first coordinate.
Hence px is always below py at points with even coordinates. It remains to show that
it cannot be above at points with odd coordinates. Using the fact that it is below at
points with even coordinates, we only need to check that if the points (2i, 2k) and
(2(i+1), 2k) belong to both px and py and if the ith step of px is step I, then the ith

step of py is also step I. Notice that we have the equalities k = x[i, i+1] = y[i, i+1].
But if the ith step of px is step I, it means that i is a fixed point of the permutation
x and x[i− 1, i+ 1] = x[i, i+ 1] = k. If the ith step of py is not step I, then it must
be step II, in which case i is the endpoint of an arc and the startpoint of another
arc. It means that y[i− 1, i+ 1] + 1 = y[i, i+ 1] = x[i, i+ 1] = x[i− 1, i+ 1] hence
y[i− 1, i+ 1] < x[i− 1, i+ 1], a contradiction.
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3.7 Changing the Coxeter element

3.7.1 Failure of the lattice property

The lattice property of Pc′ with Bruhat order fails in type A3 for c′ = s1s3s2; there
are two maximal elements x1 = s3s2s1s2s3 and x2 = s2s1s3s2 in the poset (see figure
3.12). One might wonder why such a property fails. The Coxeter element from
c = s1s2 · · · sn has a single reduced expression, which fails for s2s1s3 = s2s3s1. But
by looking for example in type B2, one sees that the noncrossing partitions associated
to the Coxeter element c = st (which has a single reduced expression as well) does not
form a lattice either (see figure 3.13). As explained in the previous sections, Bruhat

e

s1 s2 s3

s1s2 s1s3 s2s3

s1s2s3s2s1s2 s3s2s3

s2s1s2s3 s1s3s2s3

s3s2s1s2s3

s2s3s2s1s2s3

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3s2s1s2 s3s2s3

s2s1s2s3 s3s2s3s1

s2s1s3s2

s3s2s1s2s3

Fig. 3.12: Two diagrams for type A3; on the left is the Hasse
diagram of the lattice of noncrossing partitions for c = s1s2s3
with Bruhat order; on the right is the Hasse diagram of the poset
of noncrossing partitions for c′ = s2s1s3 with Bruhat order, which
is not a lattice!

order on noncrossing partitions gives triangularity of a change of basis matrix in the
Temperley-Lieb algebra, between the diagram basis and the Zinno basis. It turns out
that the Zinno basis can be defined for an arbitrary Coxeter element and one can still
order the noncrossing partitions to get triangularity, but it will not be Bruhat order
any more. This will be investigated in the next sections. For defining the order, we
need to define exactly the same vectors as for the case c = s1s2 · · · sn and these also
correspond to counting reflections in expressions of noncrossing partitions, but these
expressions need not be reduced; as an example for the A3 case with c′ = s2s1s3, if
one just replaces the word s2s1s3s2 by the equivalent word s2s1s2s3s2s3 in figure 3.12
and orders the set Pc using the corresponding vectors with parity conditions, then
one gets exactly the same Hasse diagram as for the case c = s1s2s3. The purpose
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Fig. 3.13: The Hasse diagram of noncrossing partitions in type
B2 with Bruhat order.

of this section is to explain how to associate a standard form, hence a vector with
parity conditions, to a noncrossing partition for an arbitrary Coxeter element.

3.7.2 Standard forms

Recall that for x ∈ Pc, we denote by xi the ith component of the tuple vx, that is,
the number of occurrences of si in mx.

Lemma 3.7.1 (Standard forms for cycles). Let c = s1s2 . . . sn and c′ be a Coxeter

element. Let x′ ∈ Pc′ having a single polygon P ′. Consider the element x ∈ Pc
having a single polygon P and such that k ∈ P ′ ⇔ k ∈ P (that is, both x and x′

are cycles with the same support). There exists a word mc′

x′ representing x′ in the

Coxeter group and having the following properties:

• The number of occurrences of si in mc′

x′ is equal to xi for each 1 ≤ i ≤ n,

• The word mc′

x′ is an S-reduced expression of x′,

• If we write set of numbers indexing the vertices of P ′ (equivalently P ) as

{d1, d2, . . . , dk} where di < di+1 for 1 ≤ i < k, then mc′

x′ is a product of all the

words [di, di+1] in some order.

Proof. We argue by induction on ℓT (x
′), that is, by induction on the number of

edges of P ′; if ℓT (x′) = 1, then x′ ∈ T , x′ = x and since T ⊂ Pc ∩ Pc′ we can set
mc′

x′ = mx; we know that such a word is an S-reduced decomposition of x and the
other properties obviously hold (notice that the word has a single syllable).

Now assume that P ′ has more than one edge. As a permutation, x′ is a cycle
(i1, i2, . . . , ik) with k > 2. Using the description of the configuration of indices
on the marked points of our circle from subsection 3.1, we can without loss of
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generality assume that i1 and i2 are the two smallest indices in the set {i1, i2, . . . , ik}.
We can rewrite our cycle x′ as the product (i1, i2)(i2, i3, . . . , ik) in case i2 > i1,
resp. (i1, i3, . . . , ik)(i1, i2) in case i2 < i1. The cycle y′ = (i2, i3, . . . , ik) (resp.
(i1, i3, . . . , ik)) is again a noncrossing partition with respect to c′ and by induction
there exists an S-reduced expression mc′

y′ of y′ in which the number of occurrences of
simple reflections is the same as in my, where y ∈ Pc is the cycle with same support
as y′; now the set of simple reflections occurring in a reduced expression of (i1, i2) is
disjoint from the set of reflections occurring in mc′

y′ and indexed by smaller indices.
As a consequence, the Coxeter word [i1, i2] ⋆ my if i1 < i2 or [i2, i1] ⋆ my if i2 < i1 is
in standard form and corresponds to an element x ∈ Pc. One then chooses the word
[i1, i2] ⋆ m

c′

y′ if i1 < i2 or mc′

y′ ⋆ [i2, i1] if i2 < i1 for representing x′ with the required
properties.

For an example of an element x′ and the corresponding element x together with
the words mc′

x′ and mx, the reader can look at example 3.7.2 below and at example
3.8.3.

Example 3.7.2 In type A4 let c′ be the (bipartite) Coxeter element s4s2s1s3 =

(1, 3, 5, 4, 2) and x′ the 4-cycle (1, 3, 5, 2) ∈ Pc′. The reflections in standard form
that are used to built mc′

x′ are (1, 2), (2, 3) and (3, 5). We have c′ = (2, 3, 5)(1, 2) =

(2, 3)(3, 5)(1, 2). The word mc′

x′ is given by s2(s4s3s4)s1. The corresponding element
x ∈ Pc is (in standard form) s1s2(s4s3s4) = (1, 2, 3, 5). We see that x and x′ are built
with the same reflections in standard form but concatenated in a different order.

Definition 3.7.3. A word mc′

x′ as in Lemma 3.7.1 will be called a standard form
of x′. The various subwords [di, di+1] as described in the lemma are again called the

syllables of mc′

x′.

Remark 3.7.4. The word mc′

x′ with the listed properties is not unique in general
since the construction given in the proof may give at the end adjacent syllables
[di, di+1] ⋆ [dj, dj+1] with j > i + 1 (or j + 1 < i) in the word which commute as
elements of the Coxeter group, hence permuting them still yield a word representing
x′ with the same number of occurrences of simple reflections; however the position
of a syllable [di, di+1] relatively to the position of [di+1, di+2] is always unique (that
is, [di, di+1] cannot be before [di+1, di+2] in one word with the required properties
and after it in another word) and that is the only thing which will matter further.

We would like to generalize such a process to arbitrary noncrossing partitions
x′ ∈ Pc′ , that is, associate to any x′ ∈ Pc′ a standard form mc′

x′ and a noncrossing
partition x ∈ Pc such that the number of occurrences of simple reflections in mc′

x′ is
the same as in mx. The situation becomes slightly more complicated when x′ has
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more than one polygon; as an example, consider the case given at the beginning of the
section of the fully commutative element s2s1s3s2, which is a noncrossing partition
for the Coxeter element c′ = s2s1s3. The word one needs to consider to represent it
as a product of reflections in standard form is (s2s1s2)(s3s2s3) (or (s3s2s3)(s2s1s2)).
Since the two reflections commute with each other, it is geometrically represented
by two disjoint edges and one cannot argue polygon by polygon to associate to x′ (a
standard form of) an element x of Pc since the reflections are fixed by the process as
shown in Lemma 3.7.1. The corresponding element of Pc (that is, having the same
vector) is s2(s3s2s1s2s3).

Moreover, (s2s1s2)(s3s2s3) is not an S-reduced expression of s2s1s3s2. Hence if
x′ has more than one polygon, we will not expect mc′

x′ to be an S-reduced expression
of x′ in general.

We define a process allowing one to pass from x′ to x as follows: we represent a
noncrossing partition x′ on a line with marked points from 1 to n+1 (even for c′ 6= c)
in the following way: to each polygon P associated to x′, we order its set {d1, . . . , dk}
of indexing numbers of the vertices such that di < di+1 for i = 1, . . . , k − 1. We
represent P by successive arcs joining the point on the line labeled with di to the
point labeled with di+1, for i = 1, . . . , k−1. Thanks to Lemma 3.7.1 the noncrossing
partition corresponding to P is given by a product of the reflections (di, di+1) in some
order depending on c′. We do the same for each polygon. Notice that since the points
on the line are labeled from 1 to n+1, in case c′ 6= c the resulting diagram may have
crossings. We want to associate to any such diagram a diagram of the same kind
but with no crossings, which will therefore represent a noncrossing partition x with
respect to c = s1s2 . . . sn. We will then prove that our process defines a bijection
Pc′ → Pc and use it after having defined standard forms for noncrossing partitions
in Pc′ to build a bijection Pc′ → V.

The idea of the process is the following: if the diagram associated to x′ has
no crossings, then it is the diagram of a noncrossing partition x for c, so we are
done. If there are at least two arcs (i, k), (j, ℓ) which cross each other, say with
i < j < k < ℓ, we replace them by the two arcs (i, ℓ), (k, j) which do not cross.
Since at each step the number of crossing decreases by one we obtain eventually a
diagram with no crossings which represents an element of Pc. Moreover, since the
operations can be seen as changing local configurations of the diagram, the order
in which we remove the crossings does not affect the final diagram. After resolving
each crossing we obtain a diagram of an element x ∈ Pc. Hence it defines a map
φc′,c : Pc′ → Pc, x′ 7→ x; figure 3.14 gives a concrete example of the process. It is
clear that the set of vertices as well as the sets of initial, terminal, non initial and
non terminal vertices are all preserved by our process.
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• • • • • •
1 2 3 4 5 6

→ • • • • • •

• •
• • • •

• •

1 2 3 4 5 6

↓

• • • • • •
1 2 3 4 5 6

← • • • • • •

• •
• • • •

• •

1 2 3 4 5 6

Fig. 3.14: Process associating to a noncrossing partition x′ ∈
Pc′ a noncrossing partition x ∈ Pc. Here c′ = s4s3s1s2s5 =
(1, 2, 5, 6, 4, 3) and x′ = (2, 5)(1, 6, 3).

We now associate to any x′ ∈ Pc′ a Coxeter word mc′

x′. We consider the various
noncrossing partitions y1, . . . , yk occurring in the decomposition of x′ into a product
of disjoint cycles, that is, corresponding to the various polygons P1, . . . , Pk of x′. We
consider the word mc′

x′ obtained as the contatenation of the various words mc′

yi
from

Lemma 3.7.1, that is,
mc′

x′ = mc′

y1 ⋆ m
c′

y2 ⋆ · · · ⋆ m
c′

yk
.

Recall that this is a product of reflections in standard form, namely, the reflections
obtained in the following way: if P is a polygon of x′ with set of vertices indexed
by {d1, . . . , dm} where di < di+1, the reflections using to build the various subwords
mc′

yi
are by construction the reflections (di, di+1), i = 1, . . . , m − 1 and we will call

them special (with respect to x′). We write x′c
′

i for the number of occurrences of si
in mc′

x′. Thanks to the order we chose on polygons, notice that we have mc
x = mx

and hence xci = xi for any x ∈ Pc. Notice that mc′

x′ is not necessarily a reduced
expression for x′; for example, in case c′ = s2s1s3 and x′ = (1, 3)(2, 4) = s2s1s3s2,
one has mc′

x′ = s2s1s2s3s2s3.

Definition 3.7.5. A word mc′

x′ obtained as described above is called a standard form
of x′ ∈ Pc′

Remark 3.7.6. Again, notice that since the decomposition into disjoint cycles is
unique only up to permutation of the cycles and since moreover the standard forms
mc′

yi
are not unique in general as pointed out in Remark 3.7.4, it follows that mc′

x′

is not unique in general. But various such words are built with the same syllables
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but occurring in a possibly different order, hence the number of occurrences of
simple reflections is the same. In case c′ = c, we had chosen a specific order on the
polygons because it was useful for the proof of the criterion but we can as well define
a standard form as any concatenation of the standard forms of polygons (which in
case c′ = c are unique).

3.7.3 Bijections between Pc′ and Pc and lattice structure on

Pc′

Proposition 3.7.7. The map φc′,c : Pc′ → Pc, x
′ 7→ x is a bijection. Moreover, one

has x′c
′

i = xi.

Remark 3.7.8. One can summarize the situation as follows: let d be any Coxeter
element, let φd : Pd → V, x 7→ (xdi )

n
i=1. Then the following diagram of bijections

commutes
Pc′

∼

φc′,c

//

φc′

  A
AA

AA
AA

AA
AA

AA
AA

A
Pc

φc

��
V

Notice that φc is an isomorphism of posets while φc′,c and φc′ are bijections; one
can therefore order Pc′ by the componentwise order on V which corresponds to the
Bruhat order on Pc; such an order is not in general the Bruhat order on Pc′!

Proof. Since the set of vertices as well as the sets of initial, terminal, non initial and
non terminal vertices are all preserved by the geometrical process, one has U c′

x′ = U c
x

and Dc′

x′ = Dc
x. But (Dc′

x′, U
c′

x′) = (Dc
x, U

c
x) lies in I (Lemma 3.2.9) and there is a

bijection Pd → I, y 7→ (Dd
y , U

d
y ) for any Coxeter element d, in particular for d = c, c′

(obtained by composing the bijection from Proposition 3.2.10 with the involution
(Dd

x̄, U
d
x̄) 7→ (Dd

x, U
d
x). It implies that our map x′ 7→ x is bijective.

Now it suffices to modify our word mc′

x′ at each elementary step of our geometrical
process such that the number of occurrences of simple reflections does not change
and such that the word obtained at the end of the process has the same number of
occurrences of simple reflections as mx. This is done in the following way: the arcs in
the initial diagram correspond exactly to the special reflections, which have standard
forms occurring as disjoint subwords building the wordmc′

x′ . The geometrical process
consists at each step of replacing two crossing reflections (i, k)(j, ℓ) where i < j <

k < ℓ and represented by arcs by the two noncrossing reflections (i, ℓ) and (j, k). It
suffices to replace the standard form of (i, k) in mc′

x′ by the standard form of (i, ℓ)
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and that of (j, ℓ) by that of (j, k) (or vice-versa; the order in which the standard
forms of (i, ℓ) and (j, k) occur in the modified word do not matter since we are
just interested by the number of simple reflections occurring in the word). This
replacement does not change the number of simple reflections occurring in the new
word. Iterating the process, we get at the end a word which is a product of the
special reflections with respect to x in standard form (but they are not necessarily
in the right order, that is, such a word does not necessarily represent x!). As a
consequence such a word has a same number of occurrences of simple reflections as
mx, since at each step the total number of occurrences of a given simple reflection
in the word does not change, which concludes. Notice that the order in which we
choose to replace crossings does not affect the result since it is geometrically clear
that the special reflections obtained at the end are the same for any order; what can
change is the order in which the special reflections appear in the final word, but we
are only interested by the number of occurrences of simple reflections in the final
word which is not affected by permuting the special reflections.

Example 3.7.9 Figure 3.15 gives the Hasse diagram of this new ordering in type A3

in case c′ = s2s1s3 compared with the Bruhat order which did not yield a lattice
structure in that case (see figure 3.12).

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3s2s1s2 s3s2s3

s2s1s2s3 s3s2s3s1

s3s2s1s2s3

s2s1s2s3s2s3

e

s1 s2 s3

s2s1 s1s3 s2s3

s2s1s3s2s1s2 s3s2s3

s2s1s2s3 s3s2s3s1

s2s1s3s2

s3s2s1s2s3

Fig. 3.15: With the new ordering, the Hasse diagram (which was
not a lattice for the Bruhat order, represented here on the left) in
type A3 for c′ = s2s1s3 is given here on the right. The element
s2s1s3s2 from the left is replaced on the right by an equivalent
word which is a product of reflections in standard forms and moves
to the top of the diagram, yielding a lattice.

Remark 3.7.10. Notice that the bijections φc′,c we obtain are distinct from those
we can obtain by conjugations in the Coxeter group (any two Coxeter elements are
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conjugate and this defines bijections Pc′ → Pc). For example, it follows from the
construction that the set T of reflections which lies in both Pc′ and Pc is pointwise
fixed by φc′,c.

3.8 Triangularity

The aim of this section is to show that if we order Pc′ by any linear extension of the
order <V from the previous subsection (see Remark 3.7.8) and if we consider the total
order which is induced on Wf by this order <V under the bijection ϕc′ : Pc′ →Wf ,
then the change of basis matrix between the diagram basis and the generalized Zinno
basis corresponding to the Coxeter element c′ is upper triangular with invertible
coefficient on the diagonal.

3.8.1 Order of the polygons

Definition 3.8.1. The various words

[di, di+1] = sdi+1−1sdi+1−2 · · · sdi+1sdisdi+1 · · · sdi+1−1

that are used in Lemma 3.7.1 to build the standard form mc′

x of x ∈ Pc′ with

|Pol(x)| = 1 are called the syllables of mc′

x . Notice that a simple reflection can-

not occur as letter of two distinct syllables of mc′

x since d1 < d2 < · · · < dk. We

say that sdi is the center of the syllable (or a center of mc′

x ) and that sdi+1−1 is

at the top of the syllable. The center of the syllable splits the syllable into a left
part sdi+1−1sdi+1−2 · · · sdi+1 and a right part sdi+1 · · · sdi+1−1. An integer k satisfying

di < k < di+1 is said to be nested in the syllable [di, di+1]; it implies that k is nested

(as defined in 3.2.3) in the unique polygon P of x. We will often say that the polygon

P contains the syllable [di, di+1] or any of its letters. Notice that k is nested in P

if and only if sk appears in mc′

x but not as a center, which is equivalent to say that

sk appears exactly twice in mc′

x since the various syllables have disjoint support and

any letter which is not at the center of a syllable occurs twice in the syllable while

the centers occur only once. More generally if x has more than one polygon, we say

that a polygon Q is nested in a polygon P if minP < minQ and maxQ < maxP .

It implies that if sk is any letter contained in Q, then k is nested in P .

Lemma 3.8.2. Let x ∈ Pc′ and assume |Pol(x)| = 1. Assume that sk is the center

of a syllable w of mc′

x , that is, k indexes a non terminal vertex of the unique polygon

P of x. Assume that sk−1 occurs in mc′

x , that is, k is also non initial (if sk−1 occurs

it must be at the top of its syllable, otherwise sk would occur in two different syllables
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of the same polygon). Then if k ∈ Rc′ (resp. k ∈ Lc′), the unique syllable of mc′

x

containing sk−1 occurs before (resp. after) w in mc′

x .

Proof. Recall that if {d1, d2, . . . , dm} are the integers labelling the vertices of P
where di < dj if i < j, then the standard form is a concatenation of the syllables
[di, di+1], 1 ≤ i < k in some order, the order depending on the Coxeter element.
Under our assumptions we have that k = di for some i 6= 1, m. We can without
loss of generality assume that m = 3 with d2 = k. Since k ∈ Rc′ (resp. k ∈ Lc′),
if we go along the circle in clockwise order from d1 to d3 (resp. from d3 to d1),
we must meet d2; therefore the standard form corresponding to such a polygon is
[d1, d2 = k] ⋆ [d2 = k, d3] (resp. [d2 = k, d3] ⋆ [d1, d2 = k]) and sk−1 occurs in [d1, d2],
hence before (resp. after) w = [d2, d3].
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Fig. 3.16

Example 3.8.3 Consider the Coxeter element c′ = s2s1s3s5s4 = (1, 3, 4, 6, 5, 2). The
noncrossing partition on the left in figure 3.16 is the cycle x′ = (1, 3, 6, 2) ∈ Pc′. The
x ∈ Pc which is the image of x′ under the bijection φc′,c (also given by Lemma 3.7.1)
is equal to the cycle (1, 2, 3, 6) as drawn on the right in figure 3.16. A standard form
of x′ as built in the proof of 3.7.1 is given by mc′

x′ = s2(s5s4s3s4s5)s1. The standard
form mx of x is given by mx = s1s2(s5s4s3s4s5). The number of occurrences of
simple reflections in mx and mc′

x′ are the same. Moreover, 2 ∈ Lc′ while 2 ∈ Rc. As
an illustration of Lemma 3.8.2, one sees that s1 occurs after s2 in mc′

x′ while it occurs
before in mx.

We now introduce a non obvious order on Pol(x). Recall that Lc′ ∩Rc′ = {1, n+

1}. Among all the polygons of x, first consider the polygons such that at least one
vertex is indexed by an integer in Lc′ and at least one vertex is indexed by an integer
in Rc′. We call such a polygon an alternating polygon. We order the alternating
polygons inductively on the number of such polygons in the following way: when
going along the diagonal joining the point labeled by 1 to the point labeled by
n + 1, every alternating polygon is crossed exactly once. Write P ≺ Q if P occurs
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before Q when going from 1 to n + 1 and notice that it defines a total ordering on
the set of alternating polygons. We define a new order inductively by explaining
where the last polygon P met by the segment going from the point with index 1 to
the point with index n + 1 is put relatively to the polygons met previously by the
segment. It is done as follows: if the smallest index of P is in Lc′, then P will be
put after all the previously met polygons. If it is in Rc′, the P will be put before
all the previously met polygons. This defines inductively a total order on the set
of alternating polygons which we denote by <. We want to extend this order to
Pol(x). To this end, consider the polygons having none of their vertices indexed by
integers in Lc′ (resp. Rc′) and call them right (resp. left) polygons. We then order
the right (resp. left) polygons by ascending order (resp. decreasing order) of their
maximal indices and decide that any right (resp. left) polygon is smaller than (resp.
greater than) any alternating polygon. This gives a total ordering of the polygons
of x. We denote this order by <. Notice that if we write the ordered set of polygons
of a noncrossing partition x as

P1 < P2 < · · · < Pm,

the left polygons occur on the right while the right polygons occur on the left!

Remark 3.8.4. Notice that if we invert the Coxeter element c′, from the point of
view of geometry the labelling of the indices on the circle is the mirror image of the
labelling corresponding to c′, in other words, one has Lc′ = Rc′−1 and Rc′ = Lc′−1 .
For x ∈ Pc′ one has x−1 ∈ Pc′−1 and the geometrical representation of x−1 is the
mirror image of the geometric representation of x. In particular they have the same
number of polygons with same sets of numbers indexing the vertices (this is also clear
if one keeps in mind that these are just the supports of the various cycles occurring
in the decomposition into a product of disjoint cycles). The order on Pol(x) is the
reversed order of the order on Pol(x−1). A reflection sk is a center of mc′

x if and only
if it is a center of mc′−1

x−1 . An index k is nested in a polygon P of x if and only if it
is nested in a polygon P ′ of x−1.

Lemma 3.8.5. Let x ∈ Pc′, P ∈ Pol(x). Let k ∈ P be a non terminal index of P ,

or equivalently, let sk be a center of a syllable of mc′

x .

1. If k ∈ Lc′ and k is nested in Q ∈ Pol(x), then Q < P .

2. If k ∈ Rc′ and k is nested in Q ∈ Pol(x), then Q > P .

Proof. Using Remark 3.8.4, it suffices to prove the first claim. Notice that P is
either left or alternating since k ∈ Lc′ .
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Example of the order on alter-
nating polygons. We have four
alternating polygons; one has
P1 ≺ P2 ≺ P3 ≺ P4 and

P4 < P3 < P1 < P2.

If P is left, the only case to consider is the case where Q is also left since otherwise
one has by definition of the order that Q < P . In that case, since k is nested in Q,
one must have maxP < maxQ, hence Q < P .

Now assume that P is alternating. Notice that k cannot be nested in a left
polygon since there is at least one vertex of P indexed by an integer k′ lying in Rc′ :
the segment joining k and k′ (which is either an edge or a diagonal of P ) would then
cross a segment joining two vertices of Q with indices lying in Lc′ in which k would
be nested, contradicting the noncrossing property (since this segment is either an
edge or a diagonal of Q). Hence Q is either alternating or right. If it is right, then
by definition Q < P . If Q is alternating, first assume that Q ≺ P . We make two
cases: if minP ∈ Rc′ , since k ∈ P and k lies in Lc′ , then maxQ < k since Q is met
before P , contradicting the fact that k is nested in Q. Now assume minP ∈ Lc′ ;
P must therefore be the last polygon in the order among the alternating polygons
P ′ with P ′ ≺ P , in particular, Q < P . Now assume that Q ≻ P . If minQ ∈ Lc′ ,
since k ∈ Lc′ and Q occurs after P , then k < minQ, hence k cannot be nested in
Q. Therefore minQ needs to be right, forcing Q < P ′ for any alternating polygon
P ′ satisfying P ′ ≺ Q, in particular, Q < P .

Example 3.8.6 In the example of figure 3.17, we have that 5 ∈ P2∩Lc′ is non terminal
and nested in P1 and we have seen that P1 < P2. We have that 12 ∈ P4 ∩Rc′ is non
terminal and nested in P3 and we have already seen that P3 > P4.

3.8.2 Canonical forms

Definition 3.8.7. Given any x ∈ Pc′, write Pol(x) = {P1, . . . , Pk} where d < d′ if

and only if Pd < Pd′. For each 1 ≤ i ≤ k let yi ∈ Pc correspond to Pi and let mc′

yi
be
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the standard form of yi. We define the Coxeter word qx to be the concatenation

qx = mc′

y1 ⋆ m
c′

y2 ⋆ · · · ⋆ m
c′

yk
.

This is the canonical form of x. It is not necessarily an S-reduced expression. The

syllables of the various standard forms mc′

yi
are also called the syllables of qx. A

center of a syllable of qx will be a center of qx. Notice that sk is a center of qx if

and only if k ∈ Dc′

x .

Remark 3.8.8. Notice that the terminology is a bit abusive since the various mc′

yi

are unique up to commutation of some syllables corresponding to reflections with
commute with each other (see Remark 3.7.4). We want to insist here on the fact
that the order of the subwords which are standard forms of polygons is unique.
The canonical form is a standard form where we also fix the order of the subwords
corresponding to the polygons.

Example 3.8.9 Let c′ = s2s1s3. One has Lc′ = {1, 2, 4}, Rc′ = {1, 3, 4}. Consider
the noncrossing partition x = (1, 3)(2, 4) ∈ Pc′. It has two polygons P1, P2 that are
both alternating: P1 corresponding to the cycle y1 = (1, 3) and P2 corresponding to
the cycle y2 = (2, 4) with P1 < P2. We have

qx = mc′

y1
⋆ mc′

y2
= (s2s1s2) ⋆ (s3s2s3) = s2s1s2s3s2s3.

Notice that qx is not an S-reduced expression of x. A reduced expression is given
by s2s1s3s2.

We can reformulate Lemma 3.8.5 using the canonical form and remarks we made
about nested indices in definition 3.8.1, which will turn out to be more convenient
for the next proofs:

Lemma 3.8.10. Let x ∈ Pc′, P ∈ Pol(x). Write

qx = w1 ⋆ w2 ⋆ · · · ⋆ wp

where wi are the various syllables. Let sk be the center of wi for some i.

1. If k ∈ Lc′ and if sk occurs in wj for j 6= i, then j < i. In other words, the

occurrence of sk at the center of wi is the last occurrence of sk in qx.

2. If k ∈ Rc′ and if sk occurs in wj for j 6= i, then j > i. In other words, the

occurrence of sk at the center of wi is the first occurrence of sk in qx.
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We should think of the order we put on the set of polygons as an order giving
the property above, that is, an order such that a center sk with k ∈ Lc′ is the last
occurrence of sk in the word qx and a center sk with k ∈ Rc′ is the first occurrence
of sk in qx. This order also has consequences on the locations of the tops of the
syllables in qx, which we state in the following lemma:

Lemma 3.8.11. Let x ∈ Pc′. Write qx = w1⋆w2⋆ · · ·⋆wp, where wi are the syllables

of qx. Assume that sk occurs at the top of a syllable wi of qx. Then (at least) one

of the following is true

• For any j < i, wj does not contain sk,

• For any j > i, wj does not contain sk.

In other words, wi is either the first or the last syllable containing sk. More precisely,

one has

1. If sk is a center of qx and k ∈ Rc′ (resp. Lc′), then

• if wi 6= sk, then wi is the last (resp. first) syllable containing sk,

• if wi = sk, then wi is the first (resp. last) syllable containing sk.

2. If sk is not a center of qx, then

• if k + 1 ∈ Rc′, then wi is the first syllable containing sk,

• if k + 1 ∈ Lc′, then wi is the last syllable containing sk.

Proof. Using Remark 3.8.4, we can assume that k ∈ Rc′ . If sk is a center, then
k ∈ Dc′

x . We also have that k + 1 ∈ U c′

x since sk is at the top of wi. If wi = sk,
then sk is the center of wi, hence wi is the first syllable containing sk by Lemma
3.8.10. Now assume that wi 6= sk. If k+1 ∈ Rc′, then the only way to have k ∈ Dc′

x ,
k + 1 ∈ U c′

x and both k and k + 1 in Rc′ is in case wi (which has sk at its top) also
has sk at its center, that is, wi = sk, a contradiction. So we can assume k+1 ∈ Lc′ .

We now prove that if k + 1 ∈ Lc′, then wi is the last syllable containing sk
(without assuming that sk is a center or not, which therefore proves simultaneously
the first point of 1 and the second point of 2). Write P for the polygon having wi
as syllable. If P is left, then P > Q for each Q right or alternating by definition
of <; hence we must show that P > Q for any left polygon Q containing sk; but
since sk is at the top of wi, if another left polygon Q contains sk, then P must be
nested in Q implying maxP < maxQ, whence Q < P . Hence wi is the last syllable
containing sk. If P is alternating, then no left polygon Q can contain sk since P
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has an edge or a diagonal from k + 1 ∈ Lc′ to an index in Rc′ which would cross Q.
Hence a polygon Q containing sk is either right or alternating. If Q is right, then
Q < P . If Q is alternating, first assume that Q ≻ P . It implies that minQ ∈ Rc′

(since Q contains sk any of its indices lying in Lc′ is bigger than k + 1 ∈ P because
Q ≻ P ), whence Q < P by definition of <. Now assume that Q ≺ P . We make two
cases. If minP ∈ Lc′ , we have P > Q by definition of <. If minP ∈ Rc′, then no
polygon P ′ with P ′ ≺ P can contain sk, contradicting Q ≺ P . Hence P is in all the
cases the last polygon containing sk.

Now assume that sk is not a center. The case k + 1 ∈ Lc′ has already been
proven in the previous paragraph, hence assume that k+1 ∈ Rc′. If P is right, then
P < Q for each Q right and containing sk (since maxQ > maxP ), hence P < Q for
any Q containing sk since right polygons are the smallest polygons by definition of
<. If P is alternating and Q 6= P contains sk, then Q is not right since otherwise
it would cross the diagonal or vertex of P joining the point with index k+ 1 to any
point with index in Lc′ ∩ P 6= ∅. If Q is left, then Q > P by definition of <. If
Q is alternating, first assume minP ∈ Rc′, implying P < Q whenever Q ≺ P . If
Q ≻ P , then minQ ∈ Lc′ (since k + 1 ∈ P ∩ Rc′) implying Q > P . Now assume
that minP ∈ Lc′. Then no P ′ with P ′ ≺ P can contain sk. Hence Q ≻ P . Since
Q contains sk we have minQ ∈ Lc′, whence Q > P . Hence P < Q in all the cases,
proving that P is always the first polygon containing sk.

3.8.3 Fully commutative subword

Let x ∈ Pc. We consider a subword wx of qx defined by the following rules:

• Each syllable of qx contributes to wx any simple reflection occurring in it
exactly once. In particular each center of syllable must contribute.

• If si is a center of a syllable and i ∈ Lc′ , then the si are contributed from the
left part of the other syllables in which they occur,

• If si is a center of a syllable and i ∈ Rc′ , then the si are contributed from the
right part of the other syllables in which they occur,

• If si is not a center and i ∈ Lc′ , then the si are contributed from the right part
of the syllables in which they occur,

• If si is not a center and i ∈ Rc′ , then the si are contributed from the left part
of the syllables in which they occur.
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Example 3.8.12 Let us consider again the noncrossing partition x ∈ Pc′ from exam-
ple 3.8.9. Recall that we have

qx = (s2s1s2) ⋆ (s3s2s3) = s2s1s2s3s2s3.

We have that s1 is the center of the first syllable and s2 is the center of the second
syllable. If we apply the rules given above we get the subword whose letters are
underlined

s2s1s2s3s2s3

hence wx = s2s1s3s2. In that case as element of the Coxeter group we have wx = x

but this fails in general; for example if x′ = (1, 3) ∈ Pc′ , the canonical form is
qx′ = s2s1s2 while wx′ = s1s2. In fact we will show at the end of the subsection that
the subword we defined is always fully commutative.

Remark 3.8.13. These rules generalize Zinno’s rules from [42] recalled in subsection
3.2.2 for the case c′ = c.

Before proving that the subword is fully commutative and that we recover in that
way our bijection ϕc′ : Pc′ → Wf from subsection 3.2.2, we prove the following
technical lemma which will be useful in the next (also technical) proofs:

Lemma 3.8.14. Let x ∈ Pc′. Write qx = w1 ⋆ w2 ⋆ · · · ⋆ wp where the wi are the

syllables.

1. Assume that k, k + 1 ∈ Rc′ (or k, k + 1 ∈ Lc′). If sk is the center of wi and

the top of wj, then i = j and wi = sk.

2. Assume that k ∈ Lc′, k + 1 ∈ Rc′ (or k ∈ Rc′, k + 1 ∈ Lc′). Assume that

wi = sk. Then sk does not occur in wj for j 6= i. Moreover, there is at most

one occurrence of sk+1 in qx (which must be as a center of a syllable of P ,

where P is the polygon containing sk).

Proof. 1. Thanks to Remark 3.8.4, we can assume that k, k + 1 ∈ Rc′. If a syllable
has sk at its center (resp. at its top), it means that such a syllable is in a polygon
P (resp. P ′) which has k as non terminal (resp. k + 1 as non initial) index; in
particular, if P 6= P ′, then P (resp. P ′) must have an edge or a diagonal joining
the point indexed by k (resp. k + 1) to a point indexed by m > k and m 6= k + 1

whence m > k + 1 (resp. m′ < k + 1 and m′ 6= k, whence m′ < k). If follows that
the two segments (k,m) and (m′, k + 1) are crossing (see figure 3.18), which is a
contradiction. Indeed, since the segment (k,m) defines two half planes, one of which
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Fig. 3.18: A figure (on the left) for the proof of point 1. of Lemma
3.8.14 and one (on the right) for the proof of point 2.

contains the point with index k + 1 and any other point contained in it has index
bigger than k, implying that (k,m) and (m′, k+1) are crossing. Therefore we must
have P = P ′ and wi = wj = sk.

2. Under these assumptions, there is a polygon P ∈ Pol(x) having both k and
k + 1 as vertices, hence alternating. Another polygon Q containing sk would then
cross the segment joining the point with index k to the point with index k+1 since
this segment cuts the plane in two half planes, one containing the points labeled by
indices smaller than k and another containing the points labeled by indices bigger
than k+ 1. Hence P is the unique polygon containing sk and its standard form has
a unique occurrence of sk since it is a center. The letter sk+1 can then only appear
as a center since otherwise we would again have a polygon Q crossing the segment
(k, k + 1) as one can see on figure 3.18.

Proposition 3.8.15. Let x ∈ Pc′. Between any two successive occurrences of sk in

wx, there is exactly one occurrence of sk−1.

Proof. Thanks to Remark 3.8.4, we can assume that k ∈ Rc′.
First assume that sk is the center of a syllable w of qx. Therefore w is the first

syllable containing sk in qx (Lemma 3.8.10), hence the first sk in wx comes from
w. Write P for the polygon containing w. Since a letter can be the center of at
most one syllable, any other syllable containing sk must also contain sk−1. There is
therefore at least one occurrence of sk−1 between any two successive occurrences of
sk in wx since the sk is taken from the right part of these syllables; one just has to
make sure that there cannot be another occurrence of sk−1 at some place between
two successive occurrences of sk. But if it would be the case, such an sk−1 would
come from a syllable w′ where it is at the top since otherwise sk has to occur; but
w′ would then be in P since P has a syllable with sk at its center. Hence by Lemma
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3.8.2 w′ would occur before w. This is absurd, since the sk coming from w is the
first one in qx.

Now assume that sk is not a center. It implies that sk−1 occurs in any syllable in
which sk occurs. Since k ∈ Rc′, the syllables contribute the sk from their left part.
The only possible way to have a contribution of sk−1 from a syllable w′ not involving
sk is with sk−1 at the top of w′. Such a syllable would either be the first or the last
one containing sk−1 (Lemma 3.8.11). We claim that in all the possible cases, such
a syllable is the first one, which concludes since the sk are always contributed from
the left parts. We now prove the claim: if sk−1 is not a center, then point 2 of 3.8.11
tells us that the syllable is the first (since we have k ∈ Rc′); if sk−1 is a center and
k − 1 ∈ Rc′, since k ∈ Rc′ the only possible way to have a syllable w with sk−1 at
its center and a syllable w′ with sk−1 at its top is that w = w′ = sk−1 (point 1 of
Lemma 3.8.14) in which this syllable is again the first in which sk−1 occurs (Lemma
3.8.10). If k − 1 ∈ Lc′ then the syllable is the first one if it is not reduced to sk−1

(point 1 of Lemma 3.8.11). If it is reduced to sk−1, then since k ∈ Rc′ and k−1 ∈ Lc′
we have a single occurrence of sk−1 in wx by point 2 of 3.8.14, hence w′ is the only
syllable containing sk−1, in particular the first one.

Proposition 3.8.16. Let x ∈ Pc′. Between any two successive occurrences of sk in

wx, there is exactly one occurrence of sk+1.

Proof. Thanks to Remark 3.8.4, we can assume that k ∈ Rc′.
First suppose that sk is the center of a syllable w of a polygon P ∈ Pol(x). Then

w is the first syllable containing sk by Lemma 3.8.10. Assume k + 1 ∈ Rc′. If sk+1

is a center then it may be in P (which is equivalent to w = sk) or not, in which
case it is in a polygon Q with Q < P as one sees easily. In the first case, the sk+1

coming from the center is just after the first sk since k + 1 ∈ Rc′ (Lemma 3.8.2);
any other sk+1 must come from all the other syllables containing sk except possibly
the last one (which may have sk at its top, see Lemma 3.8.11) and they must come
from the right part of their syllable. Therefore the claim holds since in any syllable
containing both sk and sk+1, the sk+1 is contributed from the right part, hence the
sk is contributed before it. In the second case, since Q < P and w 6= sk, any syllable
containing sk (including w) except possibly the last one contributes an sk+1 from its
right part; these syllables together with the syllable of Q having sk+1 as center are
the only syllables containing sk+1, giving the claim again. If sk+1 is not a center,
then it appears exactly in all the syllables containing sk except possibly in a syllable
w′ having sk at its top; if there is no such syllable, the claim holds. If there is such
a syllable w′ then thanks to point 1 of Lemma 3.8.14 one has w = w′ = sk. In
that case the claim holds again since the sk+1 are contributed from the left of the
syllables.
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Now assume k + 1 ∈ Lc′. The letter sk+1 has to occur in any syllable in which
sk occurs except possibly w and the last one w′ (with sk at its top). If it appears
in some syllable w′′ where sk does not occur, then it is the center of w′′ and there
is only one such w′′. In that case, if sk is at the top of w′, then w′′ appears in the
same polygon as w′ and before it (Lemma 3.8.2) implying the claim since the sk+1

are contributed from the left of the syllables different from w′′ where they occur:
the order of the syllables (containing either sk or sk+1) is given by

w · · ·w′′w′

and w contributes (possibly an sk+1 from the left part and) an sk from the center,
any syllable in the · · · part contributes both sk+1 and sk in this order, w′′ contributes
a single sk+1 and w′ a single sk. If sk is not at the top of w′, then w′′ occurs after w′

since it must be the last occurrence of sk+1 by Lemma 3.8.10 giving the claim again.
Now if sk+1 is not a center, it can only appear in syllables in which sk appears and
is contributed from the right of the syllables in which it occurs, in which case the
claim holds except possibly between w and the second syllable in which sk appears
in case w is reduced to sk; but in that case there is a single occurrence of sk in wx
thanks to point 2 of Lemma 3.8.14.

Now assume that sk is not a center. Then sk+1 occurs in any syllable in which
sk occurs except possibly in a syllable with sk at its top (which must be either the
first or the last syllable containing sk); any other contribution of sk+1 comes from a
center. If there is no syllable with sk at its top, then using the fact that sk+1 occurs
in any syllable in which sk occurs together with Lemma 3.8.10 one sees that the
claim holds. Hence assume that there is a syllable w with sk at its top; if k+1 ∈ Rc′

then by Lemma 3.8.11 w is the first syllable containing sk. In that case if sk+1 is
a center of w′ then w and w′ come from the same polygon and w′ appears after w
(Lemma 3.8.2); moreover, any other sk+1 is contributed from the right implying the
claim. If sk+1 is not a center then it appears in any syllable containing sk but distinct
from w and is contributed from the left, also giving the claim. Now if k + 1 ∈ Lc′,
a syllable w with sk at its top is the last syllable containing sk. All the sk+1 are
contributed from the right if sk+1 is not a center giving the claim; if sk+1 is a center
of w′, then w and w′ come from the same polygon and w′ comes before w. Since
any other contribution from sk+1 is from the left, we get the result again.

Corollary 3.8.17. Let x ∈ Pc′. Then wx is an S-reduced expression of a fully

commutative element.

Proof. Put 3.8.15 and 3.8.16 together. By point 4 of Proposition 1.1.2, the obtained
statement is equivalent to the full commutativity of wx.
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Before reading the two next proofs, the reader may have a look at Remark
3.2.15 to keep in mind how the bijections ϕc′ and ψc′ are built. We also recall that a
reflection sk is a center of qx if and only if k ∈ Dc′

x and that k is a non initial index
of a polygon if and only if k ∈ U c′

x . In the following two lemmas, we abuse notation
and use wx to denote the defined subword of qx as well as the corresponding (fully
commutative) element of the Coxeter group W.

Lemma 3.8.18. Let x ∈ Pc′. Let k ∈ {1, . . . , n}. Then if k = 1, k ∈ Jwx
if and

only if sk appears in qx. If k 6= 1, then

k ∈ Jwx
⇔






k ∈ Rc′ and sk is a center of qx, or

k ∈ Lc′ and k is an initial index of a polygon of x, or

k ∈ Lc′ and k /∈ Vert(x) but k is nested in a polygon of x.

Proof. We recall that k ∈ Jwx
if and only if in any S-reduced expression of wx, there

is no occurrence of sk−1 after the last occurrence of sk in wx. In case k = 1, notice
that there is at most one occurrence of s1 in qx since s1 can only occur as a center;
by definition of wx, each center has to contribute, hence the claim for k = 1 is clear.
In case k 6= 1, we first show that if any of the three conditions given on the right
hand side holds, then k ∈ Jwx

. We then prove that if they fail, then k cannot lie in
Jwx

. Notice that in case k 6= 1, one has that k /∈ Lc′ if and only if k ∈ Rc′.

If k ∈ Rc′ and sk is a center, then the first occurrence of sk in qx is as a center
(Lemma 3.8.10). If there is a syllable w with sk−1 at its top, it must be in the polygon
P having sk as a center and w occurs before sk in qx (Lemma 3.8.2). Therefore there
is no contribution of sk−1 after the last sk since if there are other syllables containing
either sk or sk−1, they must contain both sk and sk−1 and sk is always contributed
from the right of these syllables by definition of wx.

If k ∈ Lc′ and k is a minimal index of a polygon, then sk is a center, hence the
last occurrence of sk in qx is as a center (Lemma 3.8.10) and by assumption there is
no syllable with sk−1 at its top since k is the minimal index of its polygon. Hence
there is no sk−1 after the last occurrence of sk in wx implying that k ∈ Jwx

.

If k ∈ Lc′, k /∈ Vert(x) but k is nested in a polygon of x, then by assumption
there is no syllable with k−1 at its top (otherwise k would be terminal, in particular
k ∈ Vert(x)) and sk is contributed from the right of any syllable in which it occurs,
implying again that there is no sk−1 after the last occurrence of sk, hence k ∈ Jwx

.

Now assume that k ∈ Rc′ but that sk is not a center of qx. Therefore if sk appears
in a syllable of qx, sk−1 also appears; since sk is contributed from the left in such
syllables, there is always an sk−1 on its right implying k /∈ Jwx

.

If k ∈ Lc′ and sk appears in qx, assume that k is not initial and that either
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k ∈ Vert(x) or k is not nested in a polygon of x. In particular, sk is either a center
or a terminal index. If it is a center, then the last occurrence of sk in qx is as a
center, but since k is not initial, there is a syllable w with sk−1 at its top and w

appears after the sk which is at the center (Lemma 3.8.2). If k is terminal, it means
exactly that there is a syllable w with sk−1 at its top. By Lemma 3.8.11, w is the
last syllable containing sk−1. Moreover, since k is terminal, if sk appears in qx, then
sk appears in any syllable containing sk−1 and different from w and it occurs only
in these syllables. Again, the last contribution of sk is therefore followed by an sk−1

contributed from w implying k /∈ Jwx
.

Lemma 3.8.19. Let x ∈ Pc′. Let k ∈ {2, . . . , n+ 1}. If k 6= n+ 1, then

k − 1 ∈ Iwx
⇔





k ∈ Rc′ and k is a non initial index of a polygon of x, or

k ∈ Lc′ and k is a terminal index of a polygon of x, or

k ∈ Lc′ and k /∈ Vert(x) but k is nested in a polygon of x.

while n ∈ Iwx
if and only if sn appears in qx.

Proof. We recall that j ∈ Iwx
if and only if in any S-reduced expression of wx, there

is no occurrence of sj+1 before the first occurrence of sj in wx. If sn appears in qx,
then there is an sn contributed to wx, which forces n ∈ Iwx

since the biggest index
for a simple reflection is n. In case k 6= n+ 1, we first show that if any of the three
conditions given on the right hand side holds, then k− 1 ∈ Iwx

. We then prove that
if they fail, then k− 1 cannot lie in Iwx

. Notice that in case k 6= n+1, one has that
k /∈ Lc′ if and only if k ∈ Rc′.

First assume that k ∈ Rc′ and that k indexes a non initial vertex of a polygon.
It means that sk−1 is at the top of a syllable w of qx. Write P for the polygon
containing w. If sk is contained in P then sk is at the center of a syllable w′ of
P which appears after w (Lemma 3.8.2). We need to show that any other polygon
containing sk satisfies Q > P . If P is right it is clear since any Q right and containing
sk will satisfy maxQ > maxP . Assume that P is alternating. Then a right polygon
cannot contain sk. Any Q ≻ P with Q containing sk must have its miminal index
in Lc′ implying Q > P . If Q contains sk with Q ≺ P , then minP ∈ Rc′ whence
Q > P . Hence there is no occurrence of sk before the first occurrence of sk−1 in wx
since any polygon Q 6= P containing sk satisfies Q > P , hence the standard form
of the cycle corresponding to Q occurs after that of the cycle corresponding to P in
qx. But in P , we have since that the contributions of sk if there are any come from
a syllable w′ appearing after w. Hence we have that k − 1 ∈ Iwx

.
Now assume that k ∈ Lc′ and k is a terminal index of a polygon of x. It means

that sk−1 is at the top of a syllable w contained in a polygon P which does not
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contain sk. In particular, sk−1 occurs in any syllable in which sk occurs and the only
other occurrences of sk−1 are in w. If sk−1 is a center and k − 1 ∈ Rc′, then there is
no occurrence of sk (there is at most one and if there is one it would be as a center
of a syllable of P , see Lemma 3.8.14). If sk−1 is a center and k − 1 ∈ Lc′, then w

is the first syllable containing sk−1 in case w 6= sk−1 by Lemma 3.8.11 and the last
one in case w = sk−1; in the first case, we have the claim since sk is not a center,
hence any syllable containing sk must contain sk−1. In the second case, since sk is
not a center and k ∈ Lc′ the sk are all contributed from the right, hence there is
always an sk−1 contributed at their left since sk−1 appears in any syllable in which
sk appears, whence k − 1 ∈ Iwx

. If sk−1 is not a center then since k ∈ Lc′ we obtain
by Lemma 3.8.11 again that w is the last syllable containing sk−1 but since k ∈ Lc′
and k is not a center, all the sk are contributed from the right, hence there is always
an sk−1 on their left.

Now assume that k ∈ Lc′ and k /∈ Vert(x) but k is nested in a polygon of x.
This means exactly that both sk and sk−1 appear in qx and that they appear in the
same syllables; since k ∈ Lc′ and k is not a center, all the sk are contributed from
the right of the syllables implying again k − 1 ∈ Iwx

since there is always an sk−1

contributed from the same syllable on their left.

Now assume k ∈ Rc′ and either k indexes an initial vertex of a polygon or
k /∈ Vert(x). In the first case sk is a center and the first occurrence of sk in qx
is at the center; therefore there is no occurrence of sk−1 before it since otherwise
sk−1 would be at the top of a syllable, hence in the same polygon as the first sk
contradicting the assumption that k is initial. In the latter case this means exactly
that sk and sk−1 occur in the same syllables of qx if they occur, but since k ∈ Rc′

and k is not a center, it is contributed from the left, and there is no sk−1 before the
first sk. In both cases we have k − 1 /∈ Iwx

.

If k ∈ Lc′ and the two corresponding conditions in the right hand side fail, it
means that k is not a terminal index of a polygon and that either k ∈ Vert(x) or k is
not nested in a polygon. If k is not a terminal index of a polygon and k ∈ Vert(x),
it means exactly that k is a non terminal index of a polygon or equivalently that
k ∈ Dc′

x . If k is not a terminal index of a polygon and k is not nested in a polygon, it
implies that either k ∈ Dc′

x or that k /∈ Vert(x) and k is not nested in a polygon. In
that last case, there is no syllable with k−1 at its top; if there is a syllable with sk−1

appearing not at the top, then k would be nested in such a syllable, a contradiction.
Hence if k is not in Vert(x) and k is not nested, we have that sk−1 does not occur
in qx, implying that it cannot occur in wx hence k− 1 /∈ Iwx

. We have to show that
if k ∈ Dc′

x . then k − 1 /∈ Iwx
. Hence assume that sk is a center of qx. If there is a

syllable with sk−1 at its top then it is a syllable of P which occurs after sk (Lemma
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3.8.2). In any other syllable in which sk−1 occurs, sk also occurs and since sk is a
center and k ∈ Lc′ , the sk are contributed from the left, hence there is an sk before
the first sk−1, implying k − 1 /∈ Iwx

.

Corollary 3.8.20. Let x ∈ Pc′. Then wx = ϕc′(x).

Proof. Thanks to Remark 3.2.15, this is an immediate consequence of 3.8.18 and
3.8.19.

3.8.4 Triangularity

We recall from the introduction that an element w ∈ W with S-reduced expression
given by si1si2 · · · sik is fully commutative if and only if for any 1 ≤ i ≤ n,

ni(w) := |{j | ij = i}|

depends only on w and not on the choice of the S-reduced expression.
We also recall from the previous sections that for x ∈ Pc′, the notation xc

′

i is for
the number of occurrences of si in any standard form of x (for example in qx).

Lemma 3.8.21. Let w ∈ Wf . Then

• If si is a center of qx, then 2ni(w)− 1 = ψc′(w)
c′

i ,

• If si is not a center of qx then 2ni(w) = ψc′(w)
c′

i .

Proof. Thanks to Corollary 3.8.20, we have that w = wψc′ (w)
. The claims are then

clear by the first point of the definition of the subword wx of qx where x ∈ Pc′ , given
at the beginning of subsection 3.8.3.

Notation. Given x ∈ Pc′ , we write Subf(x) for the set of fully commutative el-
ements having an S-reduced expression which is a subword of qx. In particular,
thanks to subsection 3.8.3, we have that ϕc′(x) ∈ Subf (x).

Remark 3.8.22. In case c = c′, Subf (x) consists exactly of the fully commutative
elements w such that w <S x, where <S denotes the Bruhat order; more generally
this holds if qx is an S-reduced expression for x (which is always true in case c = c′).

Notation. We denote by <V the order on Pc′ giving the lattice structure considered
in the previous section, that is, for x, y ∈ Pc′ , we have x <V y if and only if for all
i ∈ {1, . . . , n}, xc

′

i ≤ yc
′

i . In case c = c′ recall that this is just the restriction of the
Bruhat order on Pc.
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Lemma 3.8.23. There is a unique subword of qx that is an S-reduced expression

of ϕc′(x), namely wx.

Proof. Assume that there is a subword w of qx which is an S-reduced expression of
ϕc′(x). Then any syllable of qx should contribute to that subword each reflection
in its support exactly once:if not, it means that there is a syllable somewhere con-
tributing two instances of a reflection si in its support (or no instances of si, but in
that case there must be another syllable which contributes two si to compensate),
which ends in a non fully commutative word since there is no occurrence of si+1

between these two si.
Now assume w 6= wx. It means that there exists at least one syllable w′ of qx

where the contributions are different, that is, one reflection si which is contributed
from the left of the syllable in one case and from the right in the other case. Hence
in one case, the contribution of si from w′ is before the contribution of si−1 from w′

and after in the other case. Since there must be the same number of contributions
of si and si−1 coming from the left of w′ in the two subwords, it implies that one of
the two subwords has no occurrence of si before the first si−1 while the second one
has, hence that they cannot represent the same fully commutative element.

Proposition 3.8.24. Let si1 · · · sik be a subword of qx and consider the correspond-

ing Temperley-Lieb element

bi1bi2 · · · bik ,

which is equal to (v + v−1)mbw for a unique m ∈ Z≥0 and a unique w ∈ Wf . There

exists at least one subword of si1 · · · sik which is an S-reduced decomposition of w

and if m > 0, there is more than one subword which is a reduced expression for w.

Proof. This is a consequence of the fact that if si1 · · · sik is not fully commutative
(which is equivalent to saying that m > 0), then one can apply either the relation
b2i = (v + v−1)bi or the relation bibi±1bi = bi in the corresponding Temperley-Lieb
element (possibly after having applied commutation relations); but since in any of
these two relations, there are two bi which reduce to a single bi, after applying
successive such relations and possibly commutation relations, the resulting w must
have an S-reduced expression which is a subword of the original word. But then
it will be a subword in at least two different ways, since if one of the two relations
was applied for at least one index i, then there is more than one subword equivalent
representing w since one can choose in si1 · · · sik the si located at the same place as
the first bi to contribute to the subword w or the si located at the same place as the
second bi.

Lemma 3.8.25. Let x ∈ Pc′, w ∈ Subf(x). Then
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• If si is a center of qx, one has 2ni(w)− 1 ≤ xc
′

i .

• If si is not a center of x, one has 2ni(w) ≤ xc
′

i .

Proof. When reading an S-reduced expression of w as a subword of qx, si can occur
at most once in any syllable of x (otherwise by applying commutation relations in
our S-reduced expression we would get an expression having as substring either sisi
or sisi−1si, hence our initial expression could not be an S-reduced expression of a
fully commutative element). Depending on whether si is the center of a syllable of
qx or not, one gets the claim.

Theorem 3.8.26 (Generalization of [42], Theorem 5). Let x ∈ Pc′, w ∈ Subf(x).

Then

ψc′(w) <V x.

Proof. We have to show that for any i = 1, . . . , n,

ψc′(w)
c′

i ≤ xc
′

i .

Set y := ψc′(w). If si is a center of qy, then we have that 2ni(w) − 1 = yc
′

i thanks
to Lemma 3.8.21, in which case Lemma 3.8.25 implies that yc

′

i ≤ xc
′

i . If si is not a
center of qy, there would be a problem if si is a center of qx and xc

′

i = 2ni(w) − 1

since we would have yc
′

i = 2ni(w) > xc
′

i . But we will show that if si is a center of qx
and 2ni(w)− 1 = xc

′

i , then si is also a center of qy.
Hence assume that si is a center of qx and 2ni(w)− 1 = xc

′

i . We abuse notation
and will not distinguish between w and a subword of qx which is an S-reduced
expression for w. Notice that xc

′

i = 2ni(ϕc′(x))− 1 thanks to Lemma 3.8.21, hence
there are as much contributions of si from qx to w as to the subword wx; as a
consequence, any syllable of qx which contains si must contribute a single si to w.
If i ∈ Rc′, it implies that si first occurs in qx as a center (3.8.10) of a syllable of a
polygon P . If there is a syllable in qx with si−1 at its top, then that syllable must
be in P and hence it appears before the first si thanks to Lemma 3.8.2. Any other
syllable w′ containing si−1 must also contain si (and hence appears after the syllable
with si at its center) and these are the only other syllables in which si appears. In
particular, the si appearing at the right of any such syllable must contribute to w,
otherwise there would be at some place in w two successive occurrences of si with
no occurrence of si−1 between them. In particular, the last si is contributed from
the right of a syllable and there is no si−1 on its right, implying i ∈ Jw. Since
i ∈ Rc′, one then has that si is a center of qy (see Remark 3.2.15). Now if i ∈ Lc′
thanks to Remark 3.8.4 one gets that there is no contribution of si−1 before the first
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occurrence of si in qx, implying that i−1 /∈ Iw. Since i ∈ Lc′ , by Remark 3.2.15 this
means that either i ∈ Vert(x) with i not terminal or i is not nested in any polygon
and also not terminal. Since we in addition know that si appears in qx, si must be
contained in at least one polygon, hence must either be a center or nested in some
polygon. Hence the two conditions force si to be a center of qx: the first condition
says exactly that si is a center. If the second condition is satisfied this forces si to
be a center since it has to be either a center or nested.

Lemma 3.8.27. Let t ∈ T , t = (i, k + 1) with i ≤ k. The image of ic′(t) under the

injection B∗
c′ →֒ B is represented by the braid word

s
ǫk
k s

ǫk−1

k−1 · · · s
ǫi+1

i+1 sis
−ǫi+1

i+1 · · · s
−ǫk−1

k−1 s
−ǫk
k ,

where for all i+ 1 ≤ j ≤ k, ǫj = 1 if j ∈ Lc′, ǫj = −1 if j ∈ Rc′.

Proof. We argue by induction on k − i. If k − i = 0, then si represents the simple
element ic′(si) in the braid group. Assume that k− i > 0. If k ∈ Rc′, then the triple
((i, k), sk, (i, k + 1)) is admissible hence we have in B∗

c′ the relation

ic′((i, k))ic′(sk) = ic′(sk)ic′((i, k + 1)).

If we embed it into the braid group and use induction we have that ic′((i, k + 1)) is
represented by the braid word

s
−1
k (s

ǫk−1

k−1 · · · s
ǫi+1

i+1 sis
−ǫi+1

i+1 · · · s
−ǫk−1

k−1 )sk

where for all i+ 1 ≤ j ≤ k − 1, ǫj = 1 if j ∈ Lc′ , ǫj = −1 if j ∈ Rc′ .
If k ∈ Lc′, then the triple ((i, k+ 1), sk, (i, k)) is admissible hence we have in B∗

c

the relation
ic′(sk)ic′((i, k)) = ic′((i, k + 1))ic′(sk)

from which we also derive the claimed formula.

Theorem 3.8.28. Let x ∈ Pc′ and write Zc′

x ∈ TLn(v + v−1) for the image of the

simple element ic′(x) in the Temperley-Lieb algebra. Then for w ∈ Wf , there exist

coefficients cxw ∈ Z[v, v−1], with cxϕc′(x)
invertible, such that

Zc′

x =
∑

w∈Wf ,ψc′(w)<Vx

cxwbw.

In other words, if one considers any linear extension of the order V on Pc′ together

with the total order induced on Wf by ϕc′, then there is an upper triangular matrix
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with invertible coefficient on the diagonal which allows one to pass from the diagram

basis to the set {Zc′

x }x∈Pc′
.

Remark 3.8.29. In Zinno’s ([42]) and Lee and Lee’s ([31]) proofs, the Coxeter element
is not arbitrary. We already know from Vincenti’s work (see [41]) that the set
{Zc′

x }x∈Pc′
is a basis of the Temperley-Lieb algebra (it is proven using the same

method as Lee’s). The theorem above gives a new proof of this fact. In addition
it shows that there are orders making the change of basis matrix upper triangular.
Hence we get a generalization of both Zinno’s and Vincenti’s results.

Proof. Recall that the standard form qx is a Coxeter word representing the element x
and that it is obtained by concatenating various words mc′

yj
which are standard forms

of the cycles yj corresponding to the polygons of x. The words mc′

yj
are obtained from

specific T -reduced decompositions where we replaced each reflection by an S-reduced
decomposition of it called a syllable. As a consequence, if qx = w1 ⋆ w2 ⋆ · · ·wm
where w1, . . . , wm are the syllables, then the corresponding simple element ic(x) of
the dual braid monoid is equal to the product of the atoms ic′(t1) · · · ic′(tm) where
t1, . . . , tm are the reflections for which w1, . . . , wm are S-reduced expressions. But
recall that the syllable wℓ corresponding to the reflection tℓ = (i, k + 1) is equal
to the word wℓ = sksk−1 · · · si · · · sk−1sk. Thanks to Lemma 3.8.27, the atom ic′(tℓ)

embedded in the braid group has an expression in the dual braid monoid of the form
sk
ǫksk−1

ǫk−1 · · · si · · · sk−1
−ǫk−1sk

−ǫk where ǫj = ±1 for each i+1 ≤ j ≤ k. It implies
that ic′(x) is represented by a word obtained from qx by replacing each of the si by
si or si

−1. Now in the Temperley-Lieb algebra, si is mapped to bi − v while si
−1 is

mapped to bi − v−1. Hence putting together Lemma 3.8.23, Proposition 3.8.24 and
Theorem 3.8.26, one gets the result.
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Appendix A

Weyl lines and reflection length.

In this appendix, we give a reformulation of the partial order on Pc in terms of
parabolic subgroups.

Let V be the geometric representation of a finite Coxeter system (W, S). Let
T ⊂ W be the set of reflections and <T the absolute order. Set

V x = {v ∈ V | xv = v}.

For x ∈ W, we have (see [10], Lemma 2)

ℓT (x) = dimV − dimV x.

Let c ∈ W be a Coxeter element. In [7], the following is proven:

Proposition A.0.30. Let x, y ∈ W such that x, y <T c. Then

x <T y ⇔ V y ⊂ V x.

Recall that a Weyl line is a one dimensional subspace of V which is an intersec-
tion of reflecting hyperplanes. Weyl lines are in bijection with maximal parabolic
subgroups ofW. We write Z ⊂ V for the union of all the Weyl lines. It is clear that
W acts on Z.

Lemma A.0.31. Let x ∈ W. Suppose that ℓT (x) < dimV . Then there exists

z ∈ W such that

ℓT (xz) = ℓT (x) + ℓT (z) = dim V.

Proof. Let x = t1 · · · tk be a reduced expression, with ti ∈ T . Since ℓT (x) < dim V

one has that V x 6= 0. It suffices to show that there exists a reflection t ∈ T such
that ℓT (xt) > ℓT (x), in other words that V t ∩ V x 6= V x, and then iterate. If this
fails, then V x ⊂

⋂
t∈T V

t = 0, a contradiction.

155
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We now prove the following

Lemma A.0.32. Let x ∈ W. The vector space generated by Zx is exactly V x.

Proof. Set n = dimV . We use induction on dimV x = n−ℓT (x). If ℓT (x) = n−1, let
x = t1 · · · tn−1 a reduced T -decomposition of x. Then V x = Ht1 ∩Ht2 ∩ · · · ∩Htn−1 ,
which is a Weyl line. Since any Weyl line fixed by x is in V x we conclude that
V x = Zx. Now suppose ℓT (x) < n − 1. Let t ∈ T such that ℓT (xt) > ℓT (x). By
induction V xt is equal to the vector space generated by Zxt. We have that V xt ⊂ V x,
hence Zxt ⊂ Zx. Suppose that the vector space U generated by Zx is different from
V x. Since dim(V x/V xt) = 1 this forces U = V xt. But V xt ⊂ Ht since t <T xt, hence
U ⊂ Ht. Using the lemma above, let z ∈ W such that ℓT (xtz) = ℓT (xt)+ℓT (z) = n.
We have xtz = x(tzt)t. We have ℓT (xtzt) = dimV − 1. Write xtzt = q1 · · · qn−1,
qi ∈ T a reduced decomposition. Then Hq1 ∩ · · · ∩ Hqn−1 is a Weyl line which is
x-fixed but cannot be t-fixed since x(tzt)t fixes no line. This is a contradiction with
U ⊂ Ht.

Putting A.0.30 and A.0.32 together we get

Proposition A.0.33. Let x, y ∈ W such that x, y <T c. Then

x <T y ⇔ Zy ⊂ Zx.

Let x ∈ W. Write P(x) for the set of maximal parabolic subgroups of W
containing x.

Corollary A.0.34. Let x, y <T c. Then

x <T y ⇔ P(y) ⊂ P(x).

Proof. Use 2.1.3.
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