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Eigenfunction Concentration for Polygonal Billiards

ANDREW HASSELL1, LUC HILLAIRET2,
AND JEREMY MARZUOLA3

1Mathematics Department, Australian National University,
Canberra, Australia
2UMR CNRS 6629-Université de Nantes, Nantes, France
3Applied Mathematics Department, Columbia University,
New York, New York, USA

In this note, we extend the results on eigenfunction concentration in billiards as
proved by the third author in [8]. There, the methods developed in Burq and
Zworski [3] to study eigenfunctions for billiards which have rectangular components
were applied. Here we take an arbitrary polygonal billiard B and show that
eigenfunction mass cannot concentrate away from the vertices; in other words, given
any neighborhood U of the vertices, there is a lower bound

∫
U
�u�2 ≥ c

∫
B
�u�2

for some c = c�U� > 0 and any eigenfunction u.

Keywords Control region; Eigenfunction concentration; Polygonal billiards;
Semiclassical measures.

Mathematics Subject Classification 35P20.

1. Introduction

Let B be a plane polygonal domain, not necessarily convex. Let V denote the set
of all vertices of B, and let �B denote the Dirichlet or the Neumann Laplacian on
L2�B�. In this note, we will prove the following

Theorem 1. Let B and V be as above and let U be any neighborhood of V . Then there
exists c = c�U� > 0 such that, for any L2-normalized eigenfunction u of the Dirichlet
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476 Hassell et al.

(or Neumann) Laplacian �B, we have∫
U
�u�2 ≥ c� (1.1)

That is, U is a control region for B, in the terminology of [1, 2].

To understand the issues involved in this proof, first consider the case that every
billiard trajectory meets the set U , or in other words, U geometrically controls B.
In this case, propagation estimates along billiard trajectories show that U
analytically controls B in the sense of (1.1) [9].

So the main point is to deal with cases when geometric control fails. In this
case we exploit the special properties of billiard flow on polygonal domains. It is
known that every billiard trajectory which avoids a neighborhood U of the set of
vertices is periodic [6]. Clearly, periodic trajectories on a polygonal billiard come
in 1-parameter families, which form ‘cylinders’ in B\U . Moreover, there are only
finitely many such cylinders [4].

These geometric results, together with propagation results for eigenfunctions,
imply that if a sequence of eigenfunctions concentrates away from U , it must
concentrate along the families of periodic trajectories that sweep out such cylinders.
But this can be ruled out using the argument of Burq and Zworski [2, 3], as
developed by the third author in [8], which shows that such concentration is not
possible.

We will actually work in the setting of Euclidean surfaces with conical
singularities since this is both more general and, we believe, conceptually simpler.
A Euclidean surface with conical singularities (ESCS) is a surface X equipped with
a metric g such that X may be written X0 ∪ P where the metric g is Euclidean
on X0� and P consists of a finite number of points pi, such that each pi has a
neighborhood isometric to a Euclidean cone whose tip corresponds to pi. Any plane
polygonal domain B can be doubled across its boundary to produce an ESCS.
In this procedure each vertex of B with angle � gives rise to a conic point of X with
angle 2�. A billiard trajectory on B gives rise to a geodesic (locally, just a straight
line in the plane) on X. We will only consider trajectories that do not meet the
vertices (conic points) in this paper.

The Laplacian on X is defined by taking the Friedrichs extension of the operator
with domain C�

c �X0�. This is self-adjoint with discrete spectrum tending to infinity.
Let uj be the L

2-normalized eigenfunctions of the Laplacian on X. Our main result is

Theorem 2. Let X be a compact orientable ESCS and U any neighborhood of the set P
of conic points. Then there exists a positive constant c = c�U� such that any normalized
eigenfunction uk of the Euclidean Laplace operator on X satisfies∫

U
�uk�2 ≥ c� (1.2)

Remark 3. Theorem 2 implies Theorem 1 (see Section 2). However, it also applies
to several settings other than polygonal billiards. For example, it applies to polygons
with slits, to tori with polygonal holes and slits, and to translation surfaces, i.e.,
surfaces that can be realized by identifying by translation the sides of a 2n-gon
pairwise (see [10] for a survey of dynamical results on this kind of surface).
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Eigenfunction Concentration for Polygonal Billiards 477

Remark 4. In the case that X has at least one conic point p with angle of the form
2�/n, where n is an integer, the result of Theorem 2 can be sharpened, by taking U
to be a neighborhood only of those conic points with angle � such that 2�/� is not
an integer. To see that we can exclude p with angle 2�/n from our control region,
we form the n-fold cover X̃ of X around p. Then the Laplacian on X lifts to the
Laplacian on X̃, acting on functions invariant under rotations of angle 2�/n about
the lift p̃ of p. On X̃, p̃ is a removable singularity, and the result follows by applying
Theorem 2 to the ESCS obtained from X̃ by excluding p̃ from the set of conic points
of X̃.

The proof of this theorem splits naturally into a geometric/dynamical part and
an analytical part. To make this division as transparent as possible, we make the
following definition.

Definition 5. Let X be a compact orientable ESCS. A region U ⊂ X is said to
satisfy condition �CC� (the ‘cylinder condition’) if the following two properties hold.

(1) Any orbit that avoids U is periodic.
(2) There exists a finite collection of cylinders ��i�i≤N such that any orbit that

avoids U belongs to some �i.

Here, by a cylinder we mean an isometric immersion of �1
l × I into X0, where

I ⊂ � is an interval and �1
l is the circle of length l (see Lemma 6 below). Notice

that on an orientable ESCS, any periodic orbit is part of a 1-parameter family of
parallel periodic orbits, which together form a cylinder. Therefore, the key point in
the second condition above is the finiteness of the number of cylinders.

We separate the proof of Theorem 2 into Proposition 9, in which we show
that any neighborhood of P in X satisfies �CC� (the geometric/dynamical part),
and Proposition 12, in which we show that any U ⊂ X satisfying �CC� is a control
region, i.e., satisfies (1.2) (the analytic part). The organization of the paper reflects
these two steps of the proof. We first recall in Section 2 some basic facts about
ESCSs, semiclassical measures and the doubling procedure that allows one to treat
polygonal billiards as ESCSs. In Section 3, we prove Proposition 9. This result is
already contained in [4, 6] in the special case of billiards, so our contribution is to
extend this to ESCSs. Finally, in Section 4, we will prove Proposition 12, using a
straightforward adaptation of the argument in [8] which is based in turn on [2].

2. ESCSs, Polygons and Semiclassical Measures

From now on, we work in the setting of Euclidean surfaces X with conical
singularities (ESCSs), which were defined in the Introduction. Let P be the set of
conic points and X0 = X\P as before.

We first show that for any plane polygonal billiard B, possibly with polygonal
holes and/or slits, the following doubling procedure gives a ESCS X� Take two
copies B and �B of the polygon where � is a reflection of the plane. The double X is
obtained by considering the formal union B ∪ �B where two corresponding sides are
identified pointwise, see Figure 1. The reflection � then gives an involution of X that
commutes with the Laplace operator. The latter thus decomposes into odd and even
functions and the reduced operators are then equivalent to the Laplace operator in
P with Dirichlet and Neumann boundary condition respectively. In particular, for
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478 Hassell et al.

Figure 1. Doubling a billiard B, here with a slit, to form an ESCS X. Each vertex with
angle � gives rise to a conic point with angle 2�, and the endpoints of the slit become conic
points with angle 4�.

any un eigenfunction of the Neumann, resp. Dirichlet Laplace operator in P, we can
construct an eigenfunction of the Laplace operator in X by taking u in P and u � �,
resp., −u � � in �P� Using this construction we see immediately that Theorem 1 is a
consequence of Theorem 2.

On such a surface, we shall consider the geodesic flow induced by the Euclidean
metric on X0� A geodesic that hits a conical point will be called singular. A non-
singular geodesic will thus be a geodesic that can be extended infinitely while staying
in X0� The following lemma shows that a non-singular periodic geodesic on a ESCS
is always part of a family.

Lemma 6. Let X be an orientable ESCS. Let g 	 � → X be a non-singular T -periodic
geodesic, then there exists 
 > 0 such that g extends to a map h from �× �−
� 
� into
X0 such that

(1) h�t� 0� = g�t��
(2) h is a local isometry from �× �−
� 
� equipped with the flat metric into X0,
(3) h is T -periodic in t.

Thus h may be viewed as defined on the cylinder �
�T 	= �1
T × �−
� 
�.

Proof. Let T be the smallest period of g. For any t < T there exists 
t such that the
square �−
t� 
t�

2 is isometric to a neighborhood of g�t�� Moreover, this isometry,
say ht, may be chosen so that the horizontal segment �−
t� 
t�× �0� maps to g�t −

t� t + 
t� with ht�t1� 0� = g�t + t1�� Using compactness, 
 = inf�
t� t ∈ 0� T�� exists
and is positive. Gluing the ht by continuity defines a local isometry h 	 �× �−
� 
�
into X0� By construction, for any s, h�t� s� is at distance �s� of the geodesic g and this
distance is realized by g�t�� Thus, there are only two possible choices for h�t + T� s��
Since X is orientable, necessarily h�t + T� s� = h�t� s�� �

Let � ∈ �−
� 
�. As � ↑ 
, the periodic geodesics h�t� �� converge to a possibly
singular periodic geodesic (and similarly for � ↓ −
). The cylinder �
�T will be called
maximal if both these geodesics are singular. In the geometric condition �CC�, we
may assume that the cylinders are maximal.

We now define the Euclidean Laplace operator on a ESCS. First note that the
Euclidean metric on X provides us with a well-defined L2 norm and that smooth
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Eigenfunction Concentration for Polygonal Billiards 479

functions compactly supported in X0 are dense in L2�X�. For any such function, we
can also define the quadratic form q�u� = ∫

X
��u�2dx in which � is taken with respect

to the Euclidean metric and dx is the Euclidean area element. The Laplace operator
is the self-adjoint operator associated with the closure of this quadratic form. It is
also the Friedrichs extension of the usual Euclidean Laplace operator defined on
��

0 �X0�� It is standard that this operator has compact resolvent so that its spectrum
is purely discrete and we may consider its eigenvalues and eigenfunctions.

Let un be a sequence of eigenfunctions on X associated with a sequence of
eigenvalues going to infinity. We want to associate to this sequence a so-called
semiclassical measure. Since we do not want to look precisely at what is happening
at the conical point, our semiclassical measure � will be a positive distribution
acting on ��

0 �S
∗X0�� where S∗X0 denotes the unit cotangent bundle over X0� Our

semiclassical measure is then given by the usual recipe. In particular, for any a ∈
��

0 �S
∗X0� and any zeroth-order pseudodifferential operator A on X with principal

symbol a we have

lim
n→�Aun� un� =

∫
S∗X0

ad��

Remark 7. It is considerably simpler to define a pseudodifferential operator on X0

than on X. In particular we may use local isometries with the Euclidean plane.

Remark 8. It should be noted that, in contrast with the usual semiclassical measure,
with this definition, a semiclassical measure need not be a probability measure. In
order to be a probability measure one has to prove that, loosely speaking, no mass
accumulates at the conical points. In our proof, however, this subtlety is avoided
since, by hypothesis, the mass goes to zero in a neighborhood of P (see (4.1)).

The invariance property of this measure by the geodesic flow also has to be
taken carefully. The infinitesimal version of this invariance is true at each point in
X0 using the standard commutator argument and Egorov’s theorem. One can then
integrate this property along any geodesic until it reaches a conic point.

3. Condition �CC� for Neighborhoods of the Conic Set P

In this section we prove that any neighborhood of the set P of conic points of a
compact ESCS X satisfies the cylinder condition �CC�. Clearly it suffices to consider
the � neighborhood U� of P, for arbitrary � > 0.

Proposition 9. Let X be an orientable ESCS with singular set P.

(i) For any geodesic �, either � is periodic, or the closure of � meets P.

(ii) Let U� denote the � neighborhood of P. Then any periodic geodesic avoiding
U� (which is periodic by part (i)) belongs to a maximal cylinder and the number of such
maximal cylinders is finite.

That is, U� satisfies (CC).

Before proving Proposition 9, we introduce some notation and definitions.
A strip is an isometric immersion h 	 �× I → X0� where I is a nonempty open
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480 Hassell et al.

interval and �× I is equipped with the Euclidean metric. We will also sometimes
call the image of h a strip. The width of the strip is the length of the interval I�

For any strip, the mappings �c 	= h�·� c�, c ∈ I , are geodesics of X0. Since h is a
local isometry and X is orientable, if one �c is periodic of length L then, for any c′�
�c′ is also periodic with length L.

A maximal strip is a strip that cannot be extended to �× I ′ for any open I ′

properly containing I . A strip is maximal if and only if P intersects the closure of
h��× I� on its left and on its right.

For any geodesic � we will denote by �̃ the geodesic lifted to the unit tangent
bundle SX0 and we denote by � the projection of SX0 in X� We also denote by d�·� ·�
the distance on X�

Proposition 9 is a straightforward consequence of the following lemma, which
is closely related to results of [6].

Lemma 10. Let h 	 �× I → X0 be a strip of positive width. Then there exists L such
that h�t + L� s� = h�t� s��

Proof. We follow closely the ideas of [6]. We may assume that h is maximal and I =
�−
� 
� and we will prove that �0 is periodic. Observe that for any t, d��0�t�� P� ≥ 
�
We denote by Z ⊂ SX0 the forward limit set of the lifted geodesic �̃0� By continuity,
we have that d���Z�� P� ≥ 
� This implies first that Z is compact and then that the
geodesic flow is continuous on Z� Using Furstenberg’s uniform recurrence theorem
[5], there exists a point x that is uniformly recurrent in Z� We denote by G the
geodesic emanating from x (observe that G̃��� ⊂ Z). We also denote by H 	 �×
�−�−� �+� the maximal strip around G� Uniform recurrence means the following:
for any neighborhood W̃ ⊂ SM0 that intersects G̃���, there exists L ∈ � such that

∀t� ∃s ∈ t� t + L� such that �G�s�� Ġ�s�� ∈ W̃ �

The uniform recurrence and the maximality of the strip imply

∀� > 0� ∃L such that ∀t� d�H�t� t + L�× ��+ − ���� P� < 2�� (3.1)

Indeed, by maximality, for any � > 0, there exists t0 such that the geodesic �̄
emanating from the point in phase space given by �G�t0�� Ġ�t0�− �

2 � hits a conical
point in time less than �+ + �

2 � In particular

d�H�t0� �
+ − ��� P� ≤ 3�

2
�

By continuity, we can find a neighborhood Ṽ of �G�t0�� Ġ�t0�� such that, for any
�m� �� in this neighborhood, the geodesic starting from �m� �− �

2 � stays in the �
2

tubular neighborhood of �̄ until time �+ − �� Using uniform recurrence, there exists
L such that, for any t, there exists s ∈ t� t + L� so that �G�s�� Ġ�s�� belongs to Ṽ �
Using the preceding property we have that

d�H�s� �+ − ���H�t0� �
+ − ��� <

�

2
�

We conclude (3.1) using the triangle inequality.
Observe that (3.1) means that if we represent the strip H by a vertical strip in

�2 then we can find a vertical strip of width 2� (that contains the right boundary
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Eigenfunction Concentration for Polygonal Billiards 481

of the strip H) such that any rectangle of height L contained in this strip contains
at least one conical point.

We fix local coordinates near x so that x = ��0� 0�� �
2 �� Since x is in the forward

limit set, there exists tn such that �̃0�tn� converges to x� We set �̃0�tn� = �zn� �n��

Represent now in �2� the strip H around �0� 0� and the strip h around zn� By
standard Euclidean geometry, for � � 
 the intersection of any vertical strip of
width 2� with h contains a vertical rectangle of width 2� and height that goes to �
when � goes to �

2 (see Figure 2). Indeed, denoting by � = �
2 − �, this height is

2

sin ��� −

2�
tan ��� �

Using (3.1), since there is no conical point in h� this implies that we have �n = �
2

for n large enough. The strip h around zn is thus represented by a vertical strip
of width 2
� Then maximality of both h and H implies that the strips coincide up
to a translation in the first variable; in particular, the widths coincide, and zn is
independent of n. But this implies that the geodesic �0 is periodic. �

Figure 2. Illustration of the argument in the proof of Lemma 10. For sufficiently large n,
if �n �= �/2 then the strip h would contain a rectangle of size 2�× L, as illustrated. This is
not possible as any such rectangle intersects P.
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482 Hassell et al.

Proof of Proposition 9. (i) Let us consider a geodesic g such that g��� contains
no conical point. There exists � > 0 such that ∀t� B�g�t�� �� ∩ P = ∅� For, otherwise,
we could find sequences �n� tn� and pn such that d�g�tn�� pn� < �n contradicting the
hypothesis. This implies that the geodesic g 	 � → X0 extends to a strip of positive
width and Lemma 10 concludes the proof.

(ii) We only have to prove the finiteness property. Denote by �i the maximal
cylinders. By definition the middle geodesic of �i is at distance at least � of the
conical points. So that the �/2 strip around this geodesic consists in periodic
geodesics at distance at least �/2 of the conical points. Denote by Si this strip. The
proof of Lemma 4.2 of [7] (see also Figure 2 of this reference and [4]) implies that
if �i and �j are two periodic geodesics in strip Si and Sj respectively then, at any of
their intersections, they make an angle � satisfying

1
sin �

≤ min�Li� Lj�

�
�

We can now adapt the argument of [4]. For any i we consider the following region
Vi of SX0�

Vi =
{
�x� ��� x ∈ Si� ��− �i� <

�

2Li

}
�

The preceding estimate implies:

(1) Vi is isometric to �−�/2� �/2�× �Li
× �− �

2Li
� �
2Li

��

(2) for different cylinders, the regions Vi are distinct.

The first point implies that the volume of Vi is bounded away from zero
independently of the cylinder, and the second point coupled with the fact that the
unit tangent space to X has finite volume yields the result. �

Remark 11. We have seen that the � neighborhood U� of the conical points satisfies
(CC). Since any geodesic that enters the �-neighborhood also enters the annular
region �/2 ≤ d�x� P� ≤ �, the union of these annular regions also satisfies (CC).
A similar argument also shows that for any 
 > 0 and any � > 0 the �-neighborhood
of the union of the normal co-bundle to the circles d�x� p� = 
 satisfies �CC� (in the
cotangent bundle!).

4. Proof that Regions Satisfying �CC� are Control Regions

Let X be a compact orientable ECSC, and let U a domain of X. We will denote by
U0 = U\P and subsequently U� = U\B�P� ��, where B�P� �� is given by the union of
balls of radius � about the points p ∈ P.

Proposition 12. Let X and U be as above, and assume that U satisfies condition �CC�.
Then the conclusion of Theorem 2 holds for U .
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Eigenfunction Concentration for Polygonal Billiards 483

Proof. The proof is by contradiction. Suppose that there exists a sequence un of
normalized eigenfunctions of the Laplacian on X such that

lim
n→�

∫
U
�un�2 = 0� (4.1)

Let � be any semiclassical measure associated to �un�. Then we have the following
(standard) properties of �:

Lemma 13.

(i) The support of � is disjoint from �−1�U0�.
(ii) � is a probability measure that is invariant under the geodesic flow.

Proof of Lemma. (i) Suppose that there is a point q ∈ supp � with ��q� ∈ U0.
Choose a nonnegative function � ∈ C��X0� supported in U0, with � ≡ 1 in a small
neighborhood G of ��q�. Since � ≥ 0 and � is a positive measure, we have ���� ≥
0. If ���� = 0 then �� �� = 0 for every � ∈ C�

0 �S
∗X0� supported in �−1�G�, since

we have � = ��, and by the positivity of � and �, ��� ���� is bounded by
��������. But this would mean that �−1�G� is disjoint from the support of �,
which is not the case. Thus we conclude that ���� > 0. This means that

lim
n→�

∫
B
�un�2� > 0�

contradicting our assumption about the sequence �un�. This proves (i).

(ii) Consider a cutoff function � that is identically 1 near each conical point
and identically 0 outside U� According to statement (i), we have

∫
X0
�1− ��d� =∫

X0
1d�� By (4.1),

∫
X0
�1− ���un�2 → 1� thus proving that � is a probability measure.

The invariance holds since � is a semiclassical measure. �

Continuation of the Proof of Proposition 12. Let � be as above, and let �z� �� ∈ T ∗X0

be in the support of �� According to the preceding lemma and the invariance
property of �, condition �CC� implies that z belongs to a cylinder periodic in the
direction ��

The support of � is thus included in the union of the maximal cylinders �i

defined in condition �CC��
Let � be such a cylinder. By definition, there is a local isometry between �1

L ×
�0� a� and �� Using it, we can pull-back the eigenfunction un to �. We now apply
the argument of [8] to this function un on �. Let us use Cartesian coordinates �x� y�
on �, where x ∈ 0� L�, y ∈ 0� a� with x = 0 and x = L identified. Thus �y = 0�
and �y = a� are the two long sides of the cylinder, and the variable y parametrizes
periodic geodesics. Choose a cutoff function � ∈ C�

c 0� a� such that � = 1 on an
open set containing all y parametrizing all paths disjoint from U� (as opposed to
U�/2). In other words, we take � such that ��y� = 1 for y ∈ ��� a− �� and ��y� = 0
for y ∈ 0� �

2 � ∪ �a− �
2 � a�. Then �un vanishes near the long sides of �, and thus may

be regarded as a function on a torus T . So we now have a sequence vn = �un on
T . Consider any semiclassical measure � associated with the sequence �vn� on T .
By compactness, the vn are bounded in L2, so there exists at least one semiclassical
measure associated with �vn� (on the torus). This could be the zero measure; this
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would be the case if �vn�L2 → 0, for example. Since � is supported on a finite
number of cylinders, there are only a finite number of directions in the support of
�. So we can find a constant-coefficient pseudodifferential operator � on T that is
microlocally 1 in a neighborhood of directions parallel to dx, i.e., in the direction of
the unwrapped periodic paths, but vanishes microlocally in a neighborhood of every
other direction in the support of �. (See [8] for a discussion of constant-coefficient
pseudodifferential operators on a torus.)

Consider the sequence of functions ��vn� on T . The semiclassical measures �′

associated to this sequence are related to those for the sequence �vn� by �′ = �����,
where ���� is the principal symbol of the operator �. Thus, the support of �′ is
restricted to directions parallel to dx and to geodesics parametrized by y such that
��y� = 1 (because of Lemma 13 and the way we chose �).

Now we apply the proposition on p. 46 of [3] which says:

Proposition 14. Let � = −��2x + �2y� be the Laplacian on a rectangle R = 0� l�x ×
0� a�y. For any open � ⊂ R2 of the form 0� l�x × �y, there is C independent of � such
that, for any solution of

��− �2�w = f + �xg

on R, satisfying periodic boundary conditions, we have

�w�2L2�R� ≤ C
(�f�2L2�R� + �g�2L2�R� + �w�2L2���

)
�

(This proposition is stated in [3] for Dirichlet boundary conditions on a
rectangle, but applies equally well to periodic boundary conditions as noted in [8].)
We apply this with w = wn = �vn, f = fn = ����2y��un�, g = gn = −2����y��un�,
and � contained in the set �� = 0�. (Note that � commutes with � and �y.) Since f
and g are supported on the support of ��, their support is disjoint from that of �′, so
�fn�2L2�R�

+ �gn�2L2�R�
→ 0 as n → �. Also, by our choice of �, we have �wn�2L2���

=
0. It follows that �wn�2L2�R�

→ 0. But this means that �′ = 0. This implies that � has
no mass along directions parallel to dx, which means that � has no mass along
the cylinder �. Since � is arbitrary, and the number of such cylinders is finite, this
means that � has no mass, i.e., it is the zero measure. This contradicts part (ii) of
Lemma 13. We conclude that Proposition 12 holds. �
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