Positively multiplicative graphs, representation theory and alcove walks

C. Lecouvey, in collaboration with J. Guilhot & P. Tarrago

Institut Denis Poisson Tours

Paris juin 2022

I Basics on positively multiplicative graphs

Consider a finite oriented graph Γ

- rooted at \mathbf{v}_0 with vertices $\mathbf{v}_0, v_1, \ldots, v_{n-1}$
- whose edges are weighted by monomials cR^{β} in R_1, \ldots, R_k with $c \geq 0$.

Its adjacency matrix A belongs to $M_n(\mathbb{A})$ with $\mathbb{A}=\mathbb{R}[R_1,\ldots,R_k]$

Example : Γ_2 with

$$M_2 = \left(\begin{array}{cc} 0 & R_1 + R_2 \\ 1 & 0 \end{array}\right)$$

 Γ is positively multiplicative if there exists an algebra $\mathcal A$ s.t.

$$\mathbb{A}[A] \subset \mathcal{A} \subset M_n(\mathbb{A})$$

with a distinguished basis $\mathfrak{B} = \{b_0, b_1, \dots, b_{n-1}\}$ s.t.

- $b_0 = 1$,
- ② for all j = 0, ..., n-1

$$Ab_j = \sum_{i=0}^{n-1} a_{i,j} b_i$$

1 the structure constants $c_{i,j}^k$ of the products $b_i b_j$ belong to \mathbb{A}_+ the set of polynomials in R_1, \ldots, R_k with nonnegative coefficients.

Rq : by considering the cone $C = \bigoplus_{i=0}^{n-1} \mathbb{A}_+ b_i$, this is equivalent to

$$b_0=1$$
, $A\in\mathcal{C}$ and $\mathcal{C}^2=\mathcal{C}$

In the previous example, we have

$$\mathbb{A}[A] = \mathbb{A}I_2 \oplus \mathbb{A}A$$

and Γ_2 rooted at v_0 is PM with $\mathfrak{B}=\{b_0=l_2,b_1=A\}$ since

$$A^2 = (R_1 + R_2)I_2$$
, $A \times I_2 = I_2 \times A = A$.

We can expand Γ_2 has the infinite graph Γ_2^e with set of vertices

$$\{(v_0, R_1^a R_2^b), (v_1, R_1^a R_2^b) \mid (a, b) \in \mathbb{N}^2\}$$

and arrows

II. Combinatorics

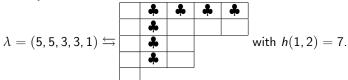
A partition of rank I is a sequence $\lambda = (\lambda_1 \ge \cdots \ge \lambda_m) \in \mathbb{Z}_{>0}$ s.t.

$$\lambda_1 + \cdots + \lambda_m = I$$
.

 λ is encoded by its Young diagram.

Each box c in λ has a hook length h(c)

Example:

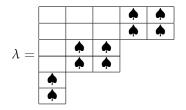


Let $k \geq 1$ be an integer.

A (k+1)-core is a partition λ with no hook length equal to k+1.

Write $|\lambda|_k$ for nb of boxes with hook length less or equal to k.

Example: The partition



is a 4-core with $|\kappa|_3 = 10$ (but not a 3-core).

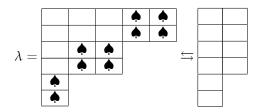
Rq : λ is a (k+1)-core i.f.f. its transposed $tr(\lambda)$ is.

A partition is k-bounded when its parts are at most k. There is a bijection

$$\{\lambda \mid k+1\text{-core s.t. } |\lambda|_k = I\} \stackrel{\mathfrak{c}}{\underset{\mathfrak{c}^{-1}}{\longleftrightarrow}} \{\mu \mid k\text{-bounded of rank } I\}$$

obtained by deleting the boxes with hook lengths greater than k and next left align.

Example: For the 4-core



The map $\iota = \mathfrak{c}^{-1} \circ \operatorname{tr} \circ \mathfrak{c}$ is an involution on the *k*-bounded partitions.

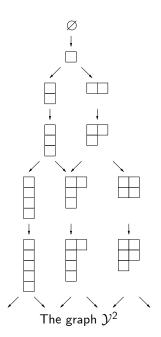
Let \mathcal{Y}^k the graph with vertices the k-bounded partitions with oriented edges $\lambda \to \mu$ s.t.

- ullet μ is obtained by adding one box to λ
- $\iota(\mu)$ is obtained by adding one box to $\iota(\lambda)$.

 \mathcal{Y}^k can also be interpreted as

- the poset of (k+1)-core (by using c^{-1})
- the orbit of the basic weight Λ_0 of $\widehat{\mathfrak{sl}}_{k+1}$ under the action of the affine Weyl group $\widehat{\mathfrak{S}}_{k+1}$ of type $A_k^{(1)}$.
- ullet the poset of alcoves in the dominant Weyl chamber in type A_k .

Observe that $\lim_{k\to+\infty} \mathcal{Y}^k = \mathcal{Y}$ is the Young lattice of ordinary partitions.



III. Harmonic functions

A function $f:\mathcal{Y}^k o\mathbb{R}_{\geq 0}$ is harmonic when $f(\varnothing)=1$ and for any $\lambda\in\mathcal{Y}^k$

$$f(\lambda) = \sum_{\lambda \to \mu} f(\mu).$$

The positive harmonic functions parametrize the central Markov chains on \mathcal{Y}^k : the transition matrix associated to f is

$$\Pi(\lambda,\mu) = \frac{f(\mu)}{f(\lambda)} \mathbf{1}_{\lambda \to \mu}$$

and

$$\Pi(\lambda^{(1)},\lambda^{(2)},\ldots,\lambda^{(l)}) = \frac{f(\lambda^{(l)})}{f(\lambda^{(1)})}$$

only depends on the ends of the trajectory $\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(I)}.$

If f and g are positive harmonic, for any $t \in [0, 1]$

$$tf + (1-t)g$$

also is. The set of such functions is a convex cone.

Problem : Find the extremal harmonic functions on \mathcal{Y}^k ?

The graph \mathcal{Y}^k is positively multiplicative : there exists a \mathbb{R} -algebra \mathcal{A} with a distinguished basis $\mathbb{B} = \{s_\lambda^{(k)} \mid \lambda \in \mathcal{Y}^k\}$ s.t.

- $s_{0}^{(k)} = 1$
- $ullet s_{\lambda}^{(k)} s_{1}^{(k)} = \sum_{\lambda
 ightarrow \mu} s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)} s_{\mu}^{(k)}$ decomposes on $\mathbb B$ with nonnegative coefficients.

The algebra $\mathcal A$ is the cohomology ring of $\widehat{\mathfrak S}_{k+1}/\mathfrak S_{k+1}$ the affine Grassmannian and the $s_\lambda^{(k)}$ are the affine Schubert classes (Lam 2008).

Theorem (Kerov-Vershik 1989): The nonnegative extremal harmonic functions of \mathcal{Y}^k are given by the morphisms $\theta:\mathcal{A}\to\mathbb{R}$ s.t. $\theta(s_1^{(k)})=1$ and $\theta(s_\lambda^{(k)})\geq 0$ for any $\lambda\in\mathcal{Y}^k$ by setting

$$f(\lambda) = \theta(s_{\lambda}^{(k)})$$

IV. The k-Schur functions

Let $\Lambda = \mathit{Sym}_{\mathbb{R}}(x_1, \ldots, x_n, \ldots)$ be the algebra of symmetric functions. The functions

$$h_a = \sum_{1 \leq i_1 \leq \dots \leq i_a} x_{i_1} \cdots x_{i_a}$$
 with $a \geq 1$

generate Λ

By results of T. Lam

- $\mathcal{A} = \langle h_1, \ldots, h_k \rangle$
- the $s_{\lambda}^{(k)}$ coincide with the *k*-Schur functions (Lascoux and al. (2003)).

The $s_{\lambda}^{(k)}$ can be computed by "Pieri rules" $s_{\lambda}^{(k)} \times h_a$ encoded in $\mathcal{Y}^{(k)}$. In particular

$$s_1^{(k)} s_\lambda^{(k)} = \sum_{\lambda
ightarrow \mu ext{ in } \mathcal{Y}_k} s_\mu^{(k)}.$$

Observe that $\lim_{k\to+\infty} s_{\lambda}^{(k)} = s_{\lambda}$ is the usual Schur function associated to λ .

When $h(\lambda) \leq k$, we get $s_{\lambda}^{(k)} = s_{\lambda}$.

 $\lambda \in \mathcal{Y}^k$ is k-irreducible when λ does not contain any rectangle $R_a = (k-a+1) \times a$ for $a=1,\ldots,k$.

Theorem : For all $\lambda \in \mathcal{P}^{(k)}$, their exists a unique decomposition

$$s_{\lambda}^{(k)}=s_{R_1}^{p_1}\cdots s_{R_k}^{p_k}s_{\kappa}^{(k)}$$

with $\kappa \in \mathcal{P}_{\mathrm{irr}}^{(k)}$.

Example : For k = 3 we have

$$R_1 =$$
, $R_2 =$, $R_3 =$

and for

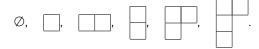
$$s_{\lambda}^{(3)} = s_{(3)} s_{(2,2)} s_{(2,1,1)}^{(3)}$$

We have $\operatorname{card}(\mathcal{P}_{\operatorname{irr}}^{(k)}) = k!$

Example:

For k = 2, there are 2 irreducible partitions \emptyset , and \square .

For k = 3, there are 6 irreducible partitions



The positive morphisms θ are such that.

$$\left\{ \begin{array}{l} \theta(s_{\emptyset}) = 1 \\ \theta(s_{R_a}) \geq 0 \text{ for } a = 1, \ldots, k \\ \theta(s_{\kappa}^{(k)}) \geq 0 \text{ for } \kappa \in \mathcal{P}_{\mathrm{irr}}^{(k)}. \end{array} \right.$$

By using the rectangle factorization, one can write for $\kappa \in \mathcal{P}_{\mathrm{irr}}^{(k)}$

$$s_{\kappa}^{(k)} \cdot s_{(1)} = \sum_{\kappa \to \mu} s_{\mu}^{(k)} = \sum_{\kappa' \in \mathcal{P}_{\mathrm{irr}}^{(k)}} m_{\kappa,\kappa'}(s_{R_1}, \ldots, s_{R_k}) s_{\kappa'}^{(k)}$$

where $m_{\kappa,\kappa'}(s_{R_1},\ldots,s_{R_k})\in\mathbb{Z}_{\geq 0}[s_{R_1},\ldots,s_{R_k}]$ defines a matrix $k!\times k!$ written $M_k(s_{R_1},\ldots,s_{R_k})$.

Example : k = 3,

$$\times \square = \square + \square + \square$$

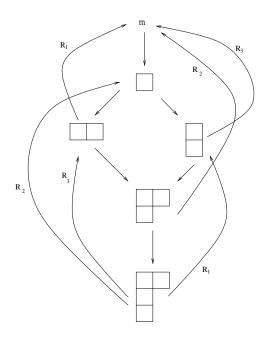
$$= R_1 \square + R_2 \square + R_3 \square .$$

The matrix $M_k(R_1,\ldots,R_k)$ is the matrix of a simply connected graph $\Gamma_{{}_{\! \Delta}^{(1)}}.$

Example : For k = 3, we get

$$M_3 = \begin{pmatrix} 0 & 0 & R_1 & R_3 & R_2 & 0 \\ 1 & 0 & 0 & 0 & 0 & R_2 \\ 0 & 1 & 0 & 0 & 0 & R_3 \\ 0 & 1 & 0 & 0 & 0 & R_1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

which is the matrix of the simply connected graph $\Gamma_{A_3^{(1)}}$.



V Alcove walks in type A

For
$$i=1,\ldots,k-1$$
, set $\alpha_i=e_i-e_{i+1}$ in \mathbb{R}^k and $\alpha_0=-(\alpha_1+\cdots+\alpha_k)$.

Consider the tessellation of \mathbb{R}^k by alcoves defined from the hyperplanes

$$H_{i,m} = \{ v \in \mathbb{R}^k \mid (v, \alpha_i) = m \}$$

with i = 0, ..., k-1 et $m \in \mathbb{Z}$.

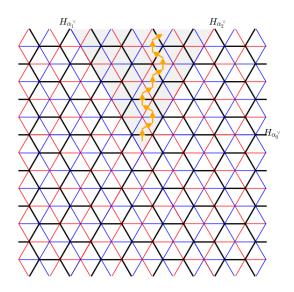


FIG.: A reduce walk on the alcoves for k=2

The dominant alcoves are those whose points satisfy $(v, \alpha_i) \ge 0$ for all i = 1, ..., k.

They are in bijection with the (k+1)-cores or the k-bounded partitions.

A path in \mathcal{Y}^k gives a reduced expression in $\widehat{\mathfrak{S}}_{k+1}/\mathfrak{S}_{k+1}$: an hyperplane can only be crossed once.

Set $S_k = \{(u_1, \dots, u_k) \in \mathbb{R}^k_{\geq 0} \mid u_1 + \dots + u_k = 1\}.$

Theorem (Tarrago-L 2018):

- To each $\vec{r} \in \mathcal{S}_k$ corresponds a unique morphism $\theta : \mathcal{A} \to \mathbb{R}$ with $\theta(s_1) = 1$, positive on the k-Schur functions and s.t. $\theta(s_{R_a}) = r_a$ for all $a = 1, \ldots, k$.
- **3** The correspondence is explicit: given \vec{r} , the $\theta(s_{\kappa}^{(k)})$'s are the coordinates of the Perron Frobenius vector in M_k specialized in \vec{r} .
- **1** To each $\vec{r} \in \mathcal{S}_k$ corresponds a central random walk $(v_n)_{n \geq 0}$ on dominant alcoves satisfying a law of large numbers.

VI General result on positively multiplicative graphs

Remind : Γ is a finite oriented graph Γ

- rooted at v_0 with vertices $\mathbf{v}_0, v_1, \dots, v_{n-1}$
- whose edges are weighted by monomials cR^{β} in R_1, \ldots, R_k with $c \geq 0$.

Its adjacency matrix A belongs to $M_n(\mathbb{A})$ with $\mathbb{A}=\mathbb{R}[R_1,\ldots,R_k]$

Example:

$$M_3 = \left(egin{array}{ccccccc} 0 & 0 & R_1 & R_3 & R_2 & 0 \ 1 & 0 & 0 & 0 & 0 & R_2 \ 0 & 1 & 0 & 0 & 0 & R_3 \ 0 & 1 & 0 & 0 & 0 & R_1 \ 0 & 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \end{array}
ight)$$

 Γ is positively multiplicative if there exists an algebra ${\mathcal A}$ s.t.

$$\mathbb{A}[A] \subset \mathcal{A} \subset M_n(\mathbb{A})$$

with a distinguished basis $\mathfrak{B} = \{b_0, b_1, \ldots, b_{n-1}\}$ s.t.

- $b_0 = 1$,
- ② for all j = 0, ..., n-1

$$Ab_j = \sum_{i=0}^{n-1} a_{i,j} b_i$$

• the structure constants $c_{i,j}^k$ of the products $b_i b_j$ belong to \mathbb{A}_+ the set of polynomials in R_1, \ldots, R_k with nonnegative coefficients.

Warning: the property of being PM depends on the chosen root!

Examples

- ullet The graphs $\Gamma_{{\cal A}_{
 u}^{(1)}}$ and their analogues for all the affine root systems.
- Every graph constructed from a fusion algebra \mathcal{F} with basis $\mathfrak{B} = \{b_0, b_1, \dots, b_{n-1}\}$ and an element

$$a = \sum_{i=0}^{n-1} x_i b_i$$
 with $x_i \ge 0$ for $i = 0, ..., n-1$.

ullet In particular for ${\mathcal F}$ a character ring or a group algebra.

Theorem(Guilhot-L-Tarrago 2021):

① Generalization of the previous results on harmonic functions for all non twisted affine types $X^{(1)}$.

- Generalization of the previous results on harmonic functions for all non twisted affine types $X^{(1)}$.
- Similar resultsfor PM graphs defined from the orbits of classical weights of level zero.

- **①** Generalization of the previous results on harmonic functions for all non twisted affine types $X^{(1)}$.
- Similar resultsfor PM graphs defined from the orbits of classical weights of level zero.
- Each PM graph admits an infinite expanded version (analog of alcove walks). One can describe their positive extremal harmonic functions.

- **•** Generalization of the previous results on harmonic functions for all non twisted affine types $X^{(1)}$.
- Similar resultsfor PM graphs defined from the orbits of classical weights of level zero.
- Each PM graph admits an infinite expanded version (analog of alcove walks).
 One can describe their positive extremal harmonic functions.
- **Orange** Simple algorithm to compute the coefficients $c_{i,j}^k$ when dim $\mathbb{A}[A] = n$.

- **①** Generalization of the previous results on harmonic functions for all non twisted affine types $X^{(1)}$.
- Similar resultsfor PM graphs defined from the orbits of classical weights of level zero.
- Each PM graph admits an infinite expanded version (analog of alcove walks).
 One can describe their positive extremal harmonic functions.
- Simple algorithm to compute the coefficients $c_{i,j}^k$ when dim $\mathbb{A}[A] = n$.
- Characterization of the finite PM which can be rooted at any vertex in terms of Cayley graphs.

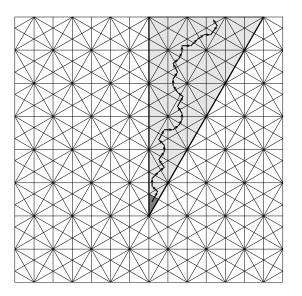


FIG.: Alcove walk of type G_2

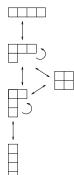
Hamermesh graphs

Let χ_{λ} the character associated to $\lambda \vdash n$ for the symmetric group \mathfrak{S}_n . We have

$$\chi_{\lambda} \times \chi_{(n-1,1)} = (I_{\lambda} - 1)\chi_{\lambda} + \sum_{\mu \neq \lambda} \chi_{\mu}$$

where μ is obtained by moving one box of λ and l_{λ} is the number of distinct parts of λ .

The associated Hamermesh graph is PM with $\mathfrak{B} = \{\chi_{\lambda} \mid \lambda \dashv n\}$.



Affine orbit of a dominant weight

R is an affine root system of rang k and $W_a = \langle s_i, i = 0, ..., k \rangle$ its affine Weyl group.

For each weight $\lambda \in P$, let W^{λ} be the set of minimal length representatives in W_a/W_{λ} .

 W^{λ} has a graph structure Γ_{λ} given by the weak Bruhat order on $W=\langle s_i, i=1,\ldots,k\rangle$

$$\forall i \in \{1,\ldots,k\} \quad w \to ws_i \text{ if } \ell(ws_i) = \ell(w) + 1.$$

We have

$$W_a = W \ltimes Q$$

where Q is the root lattice of R.

For each $\lambda \in P_+$, the graph $\Gamma_{\lambda,a}$ is obtained by adding to Γ_{λ} the edges

$$w \to w'$$
 if $s_0 w = w' t_\beta$ with $\beta \in Q$.

Theorem (GLP): For all $\lambda \in P_+$ the graph $\Gamma_{\lambda,a}$ rooted in w_0W_λ is positively multiplicative.

