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Abstract

This paper is an appendix to [5]. We give precisions on the surfaces
constructed in this previous paper.

Introduction

In [5], M. Traizet and the author construct a familly of properly embedded
minimal surfaces in R

2×S
1. These surfaces have an infinite number of ends,

two limit ends and finite or infinite genus. The construction is based on the
choice of a parameter 0 < ℓ < 1 and a sequence (pi)i∈Z of intergers.

The authors explain that their surfaces can be seen as the “gluing” of
fundamental domains of Karcher and Wei surfaces: the sequence (pi)i∈Z

prescribes in which order the gluing of fundamental domains is made. In
this paper, we give sense to this affirmation.

In fact, we want to give precisions on the behaviour of these surfaces,
so this paper can be understood as an appendix to [5]. We have essentially
two results. The first one deals with the ends of the surface. We know that
each end is of Scherk type. Our result gives some uniformity on the surface
for the behaviour of these ends (see Theorem 4).

Our second result (Theorem 9) tells us that for small ℓ, the surfaces
can be sliced by parallel vertical planes such that each obtained component
is like the fundamental domain of either Karcher surface or Wei surface i.e.
same genus, four parallel Scherk type ends and bounded by two closed curves
(see Figure 3).

In the first section, we quickly explain how the surfaces are built in [5];
for more explanations, we recommend the reading of [5]. We also give a
first result which is a gradient bound for the function used to construct our
surfaces.
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The second section deals with the behaviour of Scherk type ends and
mainly the uniformity of this behaviour.

The third section contains a precision of Proposition 10 in [5]. This
result says that for a fixed ℓ there exists a constant which bounds the Gauss
curvature of all the surfaces built with this ℓ parameter. Our precision
explains how this constant changes with ℓ.

In the last section, we explain in which sense surfaces in [5] can be viewed
as gluing of fundamental domains of Karcher and Wei surfaces.

1 Prelimiaries and notations

1.1 The graphs

In this paper, we consider minimal surfaces as graphs of functions over a
domain in R

2. The graph of u is a minimal surface if u satisfies the minimal
graph equation :

div

(

∇u
√

1 + |∇u|2

)

= 0

The solutions of this equation will be constructed as follow. Let v be a
function over a domain in R

2. We say that v satisfies the maximal graph
equation if :

div

(

∇v
√

1 − |∇v|2

)

= 0 (1)

We notice that |∇v| needs to be less than 1. When v is such a solution, we
can locally define a solution u of the minimal graph equation by :

du = dΦv =
vy

√

1 − |∇v|2
dx − vx

√

1 − |∇v|2
dy

The function v and u are said to be canjugated. For many tools on the
study of these two equations, we refer to [5].

We notice that when a minimal surface is a graph, we always choose as
normal the downward pointing normal.

1.2 The surfaces

In the section, we explain some steps of the construction in [5] and fix some
notations.

Let ℓ be a real number in (0, 1). Let Ω be the strip R × (−ℓ, ℓ). We
remark that Ω depends on ℓ but in the following we shall not make this
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precision. For k in Z, let a+
k = (k, ℓ) and a−k = (k,−ℓ). We then define the

function ϕ on the segment [a±2k−1, a
±
2k+1] by ϕ(p) = |p − a±2k|. The function

ϕ is piecewise affine on ∂Ω, with value 0 at a±2k and 1 at a±2k+1.
Let (pi)i∈Z be a strictly increasing sequence of integers. If we denote by

η(ℓ) the quantity 1−
√

1 − ℓ2, we have the following result (see Proposition
1 in [5]):

Proposition 1. For every sequence (qi)i∈Z such that, for all i ∈ Z, qi ∈
(

2pi − η(ℓ), 2pi + η(ℓ)
)

, there exists a solution v of the maximal surface

equation such that v|∂Ω = ϕ and, for every i ∈ Z, v(qi) = 0. Besides the

solution is unique for that boundary data.

In the following, we shall denote sometimes by v[qi, i ∈ Z] this solution.
Because of the uniqueness, we have :

v(x, y) = v(x,−y) (2)

Let us now define the following three 1-forms :

dX∗
1 =

−vxvydx + (1 − (vy)
2)dy

√

1 − |∇v|2
(3)

dX∗
2 =

−(1 − (vx)2)dx + vxvydy
√

1 − |∇v|2
(4)

dX∗
3 = dv (5)

These three 1-forms are closed so X∗
1 , X∗

2 and X∗
3 are locally well defined

and give a minimal immersion. Since X∗
3 = v, this function is well defined

on Ω \ {qi, i ∈ Z}. Let γi be a small circle around qi. The quantity

∫

γi

dX∗
2

vanishes because of the symmetry (2) of the function v. Then the function
X∗

2 is well defined on Ω \ {qi, i ∈ Z}. We then define the period by :

Fi(qj, j ∈ Z) =

∫

γi

dX∗
1

Then there exists η0 < η(ℓ) which depends only on ℓ such that the following
proposition is true (see Propositions 5 and 6 in [5]).

Proposition 2. There exists a sequence (qi)i∈Z, such that |qi − 2pi| ≤ η0

and, for every j ∈ Z, Fj(qi, i ∈ Z) = 0.
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The proposition says that the sequence (qi)i∈Z can be chosen such that
X∗

1 is also well defined on Ω \ {qi, i ∈ Z}. In the following, we shall say that
the sequence of singularities (qi)i∈Z solves the Period Problem for the data
(pi)i∈Z or simply solves the Period Problem without precising the data.

We notice that the functions X∗
k depends on ℓ and (qi)i∈Z; in the fol-

lowing, we shall precise these parameters only when it is necessary. Be-
sides, these functions are defined up to a constant, so, in general, we choose
(X∗

1 ,X∗
2 ,X∗

3 )((−1, 0) = (0, 0, v(−1, 0)).
When the Period Problem is solved, the map (X∗

1 ,X∗
2 ,X∗

3 ) defines a
minimal embedding whose image is a minimal surface in R

2 × [0, 1]. The
boundary of this surface is included in {z = 0} and {z = 1}. Hence by
completed by symmetry with respect to horizontal planes, we get a complete
minimal surface M[qi, i ∈ Z]. We notice that the surface M[qi, i ∈ Z] is
periodic of period (0, 0, 2); then it can be seen as a surface in R

2×S
1. In the

following, we shall use both points of view. If u is the conjugate function to
u, the image of the immersion is the conjugate surface to the minimal graph
of u.

We notice that this construction can also be made when (pi)∈I is a
strictly increasing sequence of integers with I finite or I = N, −N.

In [5] (see Proposition 10), it is proved that for every ℓ there exists a
constant C(ℓ) such that the curvature of the surface M[qi, i ∈ Z] is bounded
by C(ℓ) for every sequence (qi)i∈Z that solves the period problem.

1.3 Bounded gradient

In this subsection, we give the first result on the solutions v we are interested
in. Let us denote by Ω[qi, i ∈ Z] the set Ω\{qi, i ∈ Z}. For ε > 0, we denote
by Ω[qi, i ∈ Z]ε the set of point in Ω[qi, i ∈ Z] which are a a distance at least
ε from ∂Ω and the points qi. We then have

Proposition 3. Let η1 < η(ℓ) and (qi)i∈Z be such that, for every i ∈ Z,

|qi−2pi| ≤ η1. Let v be the solution v[qi, i ∈ Z] given by Proposition 1. Then

for every ε > 0 there exists c > 0 such that |∇v| < 1 − c in Ω[qi, i ∈ Z]ε.

Proof. Let us fix ε > 0. If the proposition is not true there exists a sequence
Pn in Ω[qi, i ∈ Z]ε such that |∇v|(Pn) → 1.

Let us write Pn = (2kn + xn, yn) where xn ∈ [−1, 1] and kn ∈ Z. Let
us consider vn(x, y) = v(x + 2kn, y). We have vn = v[qn

i , i ∈ Z] where
qn
i = qi − 2kn.

Let Sn ⊂ R be the set {qn
i , i ∈ Z}. Since for every n ∈ N and i ∈ Z,

qn
i+1 − qn

i > 2(1 − η1), the sequence (Sn)n∈N is uniformly locally finite i.e.
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for every compact subset K ∈ R there exists NK ∈ N such that, for every
n ∈ N, #(Sn ∩ K) ≤ NK . Then we can assume that the sequence (Sn)n∈N

converges to S∞ ⊂ R for the Hausdroff topology on compact subsets. S∞

can be written {q∞i , i ∈ I} where I is one of the following possibilities :
{0, · · · , p} (possibly empty), N, −N or Z; and such that, for every i ∈ I,
q∞i < q∞i+1.

Since for every i ∈ Z |qi − 2pi| ≤ η1, the study of divergence lines
of (vn)n∈N proves that vn → v[q∞i , i ∈ I] and the convergence is smooth on
compact subsets of Ω[q∞i , i ∈ I] (see [5]). Then ∇vn is uniformly bounded far
from 1 on Ω[q∞i , i ∈ I]ε/2∩ ([−1, 1]×R). This contradicts |∇vn|(xn, yn) → 1
and the proposition is proved since (xn, yn) ∈ Ω[q∞i , i ∈ I]ε/2 ∩ ([−1, 1] ×R)
for great n.

2 Behaviour far from x=0

In this section, the ℓ parameter is fixed.
Let us consider the Karcher and Wei surfaces (see Figure 1), these sur-

faces are invariant by some vector (0, t, 0) and the plane x = 0 is one of their
symmetry planes. Far from this plane, the two surfaces look like infinitely
many parallel planes. Because of the periodicity this picture is uniform in
y. In this section, we prove that this behaviour is also true for the surfaces
M[qi, i ∈ Z].

Theorem 4. Let ε > 0. There exists x0 = x0(ℓ, ε) > 0 such that, for every

(qi)i∈Z which solves the Period Problem, at every point P of M[qi, i ∈ Z] ∩
{|x| ≥ x0}, the normal N(P ) satisfies d(N(P ), ey) < ε or d(N(P ),−ey) < ε
where ey is the vector (0, 1, 0).

Proof. Since the surfaces M[qi, i ∈ Z] are symmetric with respect to the
plane x = 0, we can restrict the study to M[qi, i ∈ Z] ∩ {x ≥ 0} i.e. the
image of Ω+ = Ω ∩ {y ≥ 0} by (X∗

1 ,X∗
2 ,X∗

3 ). Let α > 0 be small and, for
every k ∈ Z, define Tα(k) the following small triangle : (x, y) ∈ R×(0, ℓ) is in
Tα(k) if k ≤ x ≤ k+1, (y−ℓ) > −(x−k) tan α and (y−ℓ) > (x−k−1) tan α.
We then define Dα =

⋃

k∈Z
Tα(k). Because of Lemma 1 in [3], for every ε,

there exists α > 0 such that, for every P ∈ Dα, |∇v(P ) − (1, 0)| < ε or
|∇v(P ) + (1, 0)| < ε. Then for every ε > 0, there exists α > 0 such that, for
every P ∈ Dα, the normal N to M[qi, i ∈ Z] at the point (X∗

1 ,X∗
2 ,X∗

3 )(P )
satisfies d(N, ey) < ε or d(N,−ey) < ε.

Let us fix ε > 0. If the theorem is not true, for every n ∈ N, there exists
a sequence of singularities (qn

i )i∈Z such that the Period Problem is solved
and a point Pn in Ω+ \ {qi, i ∈ Z} such that :
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Figure 1: Left : one of the Karcher surfaces. Right : one of Wei surfaces.
A fundamental domain is highlighted for each. Both surfaces extend peri-
odically vertically and horizontally. Computer images made by the authors
using J. Hoffman’s MESH software.

• X∗
1 (Pn) > n and

• d(Nn, ey) ≥ 2ε and d(Nn,−ey) ≥ 2ε, where Nn is the normal to
M[qn

i , i ∈ Z] at the point Qn = (X∗
1 ,X∗

2 ,X∗
3 )(Pn).

Besides, by translating the sequence (qn
i )i∈Z by an even integer, we can

assume that the point Pn is in −1 ≤ x ≤ 1.
Let us consider the horizontal translation Tn such that Tn(Qn) ∈ {(0, 0)}×

[0, 1]. Since the curvature of all the M[qn
i , i ∈ Z] is uniformly bounded by a

constant C(ℓ) (Proposition 10 in [5]), we can assume that Tn(Qn) → Q∞ and
Tn(M[qn

i , i ∈ Z]) → Σ where Σ is an embedded minimal surface. Because of
the hypothesis on Nn, the normal N∞ to Σ at Q∞ satisfies d(N∞, ey) ≥ 2ε
and d(N∞,−ey) ≥ 2ε. We notice that, for every n ∈ N, the normal to
M[qn

i , i ∈ Z] at a point in {z = 0} ∪ {z = 1} is horizontal. Hence if
Q∞ ∈ {z = 0} ∪ {z = 1}, N∞ is horizontal then Σ is transverse to the
corresponding horizontal plane. So we can ensure that there exists η > 0
and a point B∞ ∈ Σ such that :

• dΣ(Q∞, B∞) ≤ 2η,

• B∞ ∈ R
2 × [η, 1 − η] and
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• the normal N ′
∞ to Σ at B∞ satisfies d(N ′

∞, ey) ≥ 3ε/2 and d(N ′
∞,−ey) ≥

3ε/2.

When Q∞ /∈ {z = 0} ∪ {z = 1}, we can choose B∞ = Q∞.
By construction of Σ, for every n in N, we can choose a point Bn in

M[qn
i , i ∈ Z] such that the sequence (Tn(Bn))n∈N converges to B∞. Besides

we can assume that, for every n ∈ N :

• dM[qn

i
,i∈Z](Qn, Bn) ≤ 3η,

• Bn ∈ R
2 × [η/2, 1 − η/2] and

• the normal N ′
n to M[qn

i , i ∈ Z] at Bn satisfies d(N ′
n, ey) ≥ ε and

d(N ′
n,−ey) ≥ ε.

For every n in N, we can write Bn = (X∗
1 ,X∗

2 ,X∗
3 )(An). Because of

the first item above, d(An, Pn) < 3η then An is in (−(1 + 3η), 1 + 3η) ×
(−3η, ℓ). Because of the second item and since X∗

3 = v[qn
i , i ∈ Z] is 1-

Lipschitz continuous, An is at least at a distance η/2 from the points a±k
and the singularities qn

i (i ∈ Z). The third item says that there exists α > 0
such that, for every n ∈ N, An is outside Dα (see Figure 2).

An
η

Dα

−3η

0q∞i

−(1 + 3η) 1 + 3η

a+
−1 a+

0 a+
1

Figure 2:

Let Sn ⊂ R be the set {qn
i , i ∈ Z}. As in the preceding section, the

sequence (Sn)n∈N is uniformly locally finite. Then we can assume that the
sequence (Sn)n∈N converges to S∞ ⊂ R in the Hausdroff topology on com-
pact subsets. S∞ can be written {q∞i , i ∈ I} where I is one of the following
possibilities : {0, · · · , p} (possibly empty), N, −N or Z; and such that, for
every i ∈ I, q∞i < q∞i+1.
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The study of divergence lines of (v[qn
i , i ∈ Z])n∈N proves that v[qn

i , i ∈
Z] → v[q∞i , i ∈ I] and the convergence is smooth on compact subsets of
Ω\{q∞i , i ∈ I}. Besides (q∞i )i∈I solves the Period Problem. Then X∗

1 [qn
i , i ∈

Z] → X∗
1 [q∞i , i ∈ I] and X∗

1 [qn
i , i ∈ Z] is uniformly bounded on compact

subset in Ω \ {q∞i , i ∈ I}.
Because of the constraint on the position of An, An moves in a compact

subset of Ω \ {q∞i , i ∈ I}. So there exists a constant M such that, for every
n ∈ N, X∗

1 (An) ≤ M . This gives us :

n ≤ X∗
1 (Pn) = X∗

1 (Pn) − X∗
1 (An) + X∗

1 (An)

≤ |X∗
1 (Pn) − X∗

1 (An)| + X∗
1 (An)

≤ 3η + M

The last inequality comes from the first item above. We then have a con-
tradiction.

Corollary 5. There exists a constant M(ℓ) such that, for every (qi)i∈Z

which solves the Period Problem, the curvature K of M[qi, i ∈ Z] satisfies

|K(P )| ≤ M(ℓ)

|x(P )|2

Proof. We already know that the curvature of M[qi, i ∈ Z] is uniformly
bounded thus we have to prove the inequality for great x.

Let us fix ε = 1
100 . Theorem 4 gives one x0 which depends only on ℓ. Let

(qi)i∈Z which solves the Period Problem. Let Σ be a connected component
of M[qi, i ∈ Z] ∩ {|x| ≥ x0}. By Theorem 4 the image of Σ by the Gauss
map is small thus Σ is stable (see [1]) and then for every P on Σ :

|K(P )| ≤ c

d(P, ∂Σ)2
≤ c

(|x| − x0)2

where c is a universal constant (see [6]). The corollary is then proved.

3 Bounded curvature

In [5], it is proved that there exists a constant C(ℓ) such that the curvature is
uniformly bounded by C(ℓ) on every surface M[qi, i ∈ Z] which is built with
the ℓ parameter. In this section, we precise the behaviour of this constant
in ℓ.

In fact, we need mainly an improvement of Proposition 9 in [5]. We use
the notation ΩL = (−L,L) × (−ℓ, ℓ).
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Proposition 6. There exists κ > 0 such that the following is true. Let ℓ be

in (0, 1) and consider q ∈ (−η(ℓ), η(ℓ)) and S ⊂ (−2,−2+η(ℓ))∪(2−η(ℓ), 2).
Let v be a solution of the maximal graph equation in Ω2 \ ({q} ∪ S) with

boundary value ϕ on [−2, 2] × {−ℓ, ℓ} and 0 at {q} ∪ S; besides, we require

that 0 ≤ v ≤ 1 on the two vertical edges. Let u be the conjugate function to

v. Let γ be a small circle around q. Then

∣

∣

∣

∣

∫

γ
du

∣

∣

∣

∣

≥ κℓ.

Proof. Because of Proposition 9 in [5], if the proposition is not true the
exists a sequence (ℓn)n∈N which tends to 0 and, for each n ∈ N, a point qn,
a set Sn and a function vn as above such that if un is the conjugate to vn :

∣

∣

∣

∣

∫

γ
dun

∣

∣

∣

∣

≤ ℓn

n
(6)

Let us consider for each n the homothetic of all these data by 1/ℓn. We then
get, in the domain (−2/ℓn, 2/ℓn)×(−1, 1), a point q̃n ∈ (−η(ℓn)/ℓn, η(ℓn)/ℓn),
a set S̃n which is outside [−1/ℓn, 1/ℓn] and a function ṽn which is a solution
of the maximal graph equation and is defined by ṽn(x, y) = 1

ℓn
vn(ℓnx, ℓny).

We notice that 0 ≤ ṽn ≤ 1/ℓn and, on [−1/ℓn, 1/ℓn] × {−1, 1}, the function
ṽn takes the value: ṽn(x,±1) = |x|.

Let us study the divergence lines of (ṽn)n∈N. First, since ℓn → 0, η(ℓn)
ℓn

=
1
2ℓn+o(ℓn); hence q̃n → (0, 0). The limit domain is then R×(−1, 1)\{(0, 0)}.
Since 0 ≤ ṽn, a divergence line L needs to have at least one end-point.
Because of the value of ṽn on ∂R × (−1, 1) and Lemma 3 in [5], the only
possible end-points are (0,−1), (0, 0) and (0, 1). For these three points,
lim ṽn is 0 then L can not be a segment joining two of them. This implies
that the end-point can not be (0,−1) and (0, 1) and L is either R+ ×{0} or
R− × {0}. Let us prove that these two half-lines are in fact the divergence
lines of the sequence.

Let ũn be the conjugate to ṽn. Let us fix x such that |x| > 9. Let n ∈ N

be enough large such that 1/ℓn − |x| > 9. The distance from (x, y) to the
boundary of (−2/ℓn, 2ℓn)× (−1, 1) \ ({q̃n}∪ S̃n) is then less than 1. Besides
ũn takes the value +∞ on (0, 1/ℓn) × {−1} and (−1/ℓn, 0) × {1} and the
value −∞ on (0, 1/ℓn) × {1} and −1/ℓn, 0) × {−}. So the distance in the
graph of ũn from the point (x, y, ũn(x, y)) to the boundary of the graph is
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larger than 8. Then by Lemma 1 in [3], we have:

|∂xṽn|(x, y) =

∣

∣

∣

∣

∣

∂yũn
√

1 + |∇ũn|2

∣

∣

∣

∣

∣

(x, y) ≥ 1 − 4

(|x| − 1)2
(7)

|∂y ṽn|(x, y) =

∣

∣

∣

∣

∣

∂xũn
√

1 + |∇ũn|2

∣

∣

∣

∣

∣

(x, y) ≤ 2

|x| − 1
(8)

Besides because of the value of ũn on the boundary ∂yũn is positive if x < 0
and negative if x > 0. Because of (8), ṽn(x, 0) ≥ |x| − 2

|x|−1 .

Let us assume for example that R+ × {0} is not a divergence line, then
there exists c > 0 such that ṽn(1, 0) ≤ 1− c, for every n ∈ N. Thus for every
x > 1, ṽn(x, 0) ≤ 1 − c + |x − 1| = x − c. Let us chose x > 1 such that

2
|x|−1 < c, then for large n, we get :

x − 2

|x| − 1
≤ ṽn(x, 0) ≤ x − c < x − 2

|x| − 1

We have our contradiction and the divergence lines are known.
Then on R × (−1, 0) and R × (0, 1), a subsequence of (ṽn) converges to

a solution v of the maximal graph equation which takes on R × {−1, 0, 1}
the value v(x, y) = |x|, Let u− and u+ the respective conjugate of v on
R× (−1, 0) and R× (0, 1). u− takes the value +∞ on R

∗
−×{0}∪R

∗
+×{−1}

and the value −∞ on R
∗
−×{−1}∪R

∗
+×{0}. Such a solution of the minimal

graph equation is unique (see Theorem 1 in [2] or Theorem 5.1 in [4]) and
the graph of u− is a part of an helicoid : u−(x, y) = −x tan(π(y + 1/2)). In
the same way, we obtain that u+(x, y) = −x tan(π(y − 1/2)).

Let us now fix x0 be greater than 9 and consider Γ the rectangle with
vertices A1 = (x0, 1/2), A2 = (−x0, 1/2), A3 = (−x0,−1/2) and A4 =
(x0,−1/2). For large n, because of (6), we have:

1

n
≥
∣

∣

∣

∣

∣

∫

γ/ℓn

dũn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Γ
dũn

∣

∣

∣

∣
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Using (7), let us estimate the last term :
∫

Γ
dũn =

∫

[A1,A2]
dũn +

∫

[A2,A3]
dũn +

∫

[A3,A4]
dũn +

∫

[A4,A1]
dũn

=

∫

[A1,A2]
du+ +

∫ −1/2

1/2
∂yũn(−x0, y)dy +

∫

[A3,A4]
du−

+

∫ 1/2

−1/2
∂yũn(x0, y)dy + o(1)

≤
∫

[A1,A2]
du+ +

∫ −1/2

1/2

√

(x0 − 1)2

4
− 1 dy +

∫

[A3,A4]
du−

+

∫ 1/2

−1/2
−
√

(x0 − 1)2

4
− 1 dy + o(1)

≤ −
√

(x0 − 1)2 − 4 + u+(A2) − u+(A1) + u−(A4) − u−(A3) + o(1)

By the expression of u+ and u−, the two terms u+(A2) − u+(A1) and
u−(A4)− u−(A3) vanishes. This gives us a contradiction; the proposition is
proved.

We now can give our bound on the curvature of the surface M[qi, i ∈ Z].

Theorem 7. There exists C0 > 0 such that, for every ℓ and every sequence

of singularities (qi)i∈Z that solves the Period Problem, the curvature of the

surface M[qi, i ∈ Z] is uniformly bounded by
C0

ℓ2
.

Proof. Let ℓ be positive and (qi)i∈Z a sequence of singularities that solves
the Period problem. By symmetry it suffices to bound the curvature of
the graph M of the conjugate u to v[qi, i ∈ Z]. We recall u is defined on
Ω+ = R × (0, ℓ).

By proposition 6, there exists κ such that |
∫

γi

du| ≥ κℓ for i ∈ Z. We

apply Lemma 5 in [5] with C = 100 and obtain a δ1 < 1 such that |∇u| ≥ 100
in D(qi, δ1ℓ), i ∈ Z. We apply Lemma 6 in [5] with again C = 100 and obtain
a δ2 < 1 such that |∇u| ≥ 100 in D(a+

k , δ2ℓ), k ∈ Z. We take δ = min{δ1, δ2},
we notice that δ does not depend on ℓ or (qi)i∈Z. Fix some i ∈ Z. Let U
be the graph of u above the half disk D(qi, δℓ) ∩ Ω+. Since |∇u| ≥ 100, the
Gauss image of U is included in the spherical domain S

2∩{|z| ≤ 1/100}. The
boundary of U consists of a vertical segment, two horizontal segments and a
helix-like looking curve which is a graph on S

1(qi, δℓ)∩Ω+. Completing by all
symmetries, we obtain a minimal surface Σ which is bounded by two helix-
like looking curves, and which is complete in the cylinder D(qi, δℓ)×R. The
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surface Σ is of course not a graph anymore. However its Gauss image is still
included in S

2 ∩ {|z| < 1/100}. As the spherical area of this domain is less
than 2π, Σ is stable by the theorem of Barbosa Do Carmo [1]. Consider now
a point (x, y) ∈ D(qi, (δ/2)ℓ) and let p = (x, y, u(x, y)) be the corresponding
point on Σ. Since p ∈ Σ is at distance more than (δ/2)ℓ from the boundary
of Σ, the theorem of Schoen [6] ensures that the Gauss curvature at p is
bounded by c/((δ/2)ℓ)2 for some universal constant c. The same argument
gives the same estimate for the Gauss curvature when (x, y) ∈ D(a+

k , δ/2),
k ∈ Z.

Assume now that (x, y) ∈ Ω+ is at distance more than (δ/2)ℓ from all
points qi and all points a+

k . Let again p = (x, y, u(x, y)). If y > (δ/4)ℓ,
then the distance of p to the boundary of M is greater than (δ/4)ℓ (because
u = ±∞ on the top edges). Since M is a graph, it is stable, so the Gauss
curvature at p is bounded by c/((δ/4)ℓ)2 .

It remains to understand the case 0 < y < δ/4. There exists i such that
qi < x < qi+1. Consider the box (qi, qi+1) × (−(δ/2)ℓ, (δ/2)ℓ). As this is a
simply connected domain of Ω, u is well defined on it. Let V be the graph
of u on this box. The distance of p = (x, y, u(x, y)) to the boundary of V
is greater than (δ/4)ℓ. Since V is stable, we conclude again that the Gauss
curvature at p is bounded by c/((δ/4)ℓ)2 . Then the constant C = 16c/δ2 is
an answer to the theorem.

4 Cutting the surface

In this section we prove that the heuristic idea which says that the surface
M[qi, i ∈ Z] is built as a “gluing” of fundamental domains of Karcher and
Wei surfaces is true. We study what happens when we cut these surfaces by
vertical planes {y = c}.

Let us fix some notations. Let (qi)i∈Z be a sequence of singularities that
solves the Period Problem, we denote by v the function v[qi, i ∈ Z]. Near a
point a±k , the graph of u = Φv is bounded by a vertical straight-line which
becomes in M[qi, i ∈ Z] a strictly convex curve C±

k in {z = 0 or 1} of total
curvature π. On C±

k , the normal goes from (0, 1, 0) to (0,−1, 0) thus, on
C+

k , there is one and only one point on it where the normal is either (1, 0, 0)
if k is odd or (−1, 0, 0) if k is even and the symmetric on C−

k . We denote by
x±

k and y±k the first two coordinates of this point. We recall that C+
k and

C−
k are symmetric with respect to the plane {x = 0}; this implies x+

k = −x−
k

and y+
k = y−k .

12



Near a singularity qi the graph of Φv is bounded by a vertical straight-
line which becomes a closed convex curve in M[qi, i ∈ Z]. We denote by γi

this curve. With these notations, we have the following proposition.

Proposition 8. For every k, the intersection M[qi, i ∈ Z] ∩ {y = y±k }
consists in either one or two closed curves.

Proof. To study M[qi, i ∈ Z] ∩ {y = y±k } consists in studying X∗
2 = y±k in

Ω. By symmetry of v, we can restrict our study of X∗
2 = y±k to Ω∩{y ≥ 0}.

We have
∂X∗

2

∂x
=

−(1 − v2
x)

√

1 − |∇v|2
< 0 then there is at most one point on each

line {y = y0} where X∗
2 = y±k (where 0 < y0 < ℓ). Besides because of

Proposition 3, for every ε, ∇v is bounded on Ω[qi, i ∈ Z]ε; hence there exists
exactly one point in each line {y = y0} where X∗

2 = y±k . Then {X∗
2 = y±k }

is a graph of the y-coordinate over (0, ℓ). By definition of y±k , one end point
of {X∗

2 = y±k } is a+
k ; at this point, X∗

2 = y±k is normal to {y = ℓ}. The set
has an other end point on {y = 0} since ∇v is bounded on Ω[qi, i ∈ Z]ε.
If this end point is a qi, the intersection M[qi, i ∈ Z] ∩ {y = y±k } consists
then in two closed curves. If the end point is not a qi, {X∗

2 = y±k } extend
smoothly across y = 0 by symmetry and M[qi, i ∈ Z]∩{y = y±k } consists in
one closed curve.

We have the following result, which says that we can cut the surfaces
M[qi, i ∈ Z] by vertical planes to get pieces which are similar to the funda-
mental domains of Karcher and Wei surfaces.

Theorem 9. There exists 0 < ℓ0 < 1 such that, for every ℓ < ℓ0 and

every (qi)i∈Z a sequence of singularity that solves the Period Problem for the

sequence (pi)i∈Z, if k is odd, the intersection M[qi, i ∈ Z]∩{y = y±k } consists

in one closed curve. Besides if 2pi < k, we have γi ⊂ (y±k ,+∞) × S
1.

Let ℓ be less than ℓ0. Take a surface M[qi, i ∈ Z] and slice it by the
vertical planes {y = y±k } for all odd k. The theorem says that each connected
component of this cutting is like the fundamental domain of either Karcher
surface or Wei surface: same genus, four Scherk type ends and the boundary
is composed of two closed curves. Besides the model surface is prescribed
by the sequence (pi)i∈Z (see Figure 3).

Proof. In fact, we shall prove that for small ℓ, the point in Ω∩{y = 0} where
X∗

2 = y±k is in (k − ℓ, k + ℓ). Since all the qi are outside (k −
√

1 − ℓ2, k +√
1 − ℓ2), this will prove the theorem.
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γi
Wei like domain

Karcher like domain

y = y±k+1

y = y±k

y = y±k−1

in plane z = 0 in plane z = 1

Figure 3:

If it is false, there exists a decreasing sequence (ℓn)n∈N which tends to 0
and, for every n, a sequence (qn

i )i∈Z of singularities that solves the Period
problem and a odd number kn such that X∗

2 − y±kn
is either positive or

negative on (kn − ℓn, kn + ℓn)×{0}. In the following, we assume that these
quantity is positive.

For every n ∈ N, let us translate Ω \ {qn
i , i ∈ Z} by (−kn, 0, 0) and

expand it by 1/ℓn. We get R × (−1, 1) \ {(qn
i − kn)/ℓn, i ∈ Z}. Doing

the same transformation on vn, we get ṽn a solution of the maximal graph
equation which is defined by :

ṽn(x, y) = 1 +
vn(x + kn, y) − 1

ℓn

We notice that we have conserved the equality max ṽn = 1. On the bound-
ary, ṽn takes the value 1−|x− k/ℓn| where k ∈ N is even and k− 1 ≤ xℓn ≤
k + 1.

Let Σn be the complete minimal surface in R3 which is the image of
M[qn

i , i ∈ Z] by the translation of vector (−x+
kn

,−y+
kn

, 0) then by the homo-
thety of center (0, 0, 1) and ratio 1/ℓn. On R×(−1, 1)\{(qn

i −kn)/ℓn, i ∈ Z},
we can define the three functions X̃∗

1,n, X̃∗
2,n and X̃∗

3,n such that the image by
these functions after being completed by symmetries is Σn. These functions
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are defined by:

X̃∗
1,n(x, y) =

X∗
1 (x + kn, y) − x+

n

ℓn

X̃∗
2,n(x, y) =

X∗
2 (x + kn, y) − y+

n

ℓn

X̃∗
3,n(x, y) = ṽn(x, y)

We notice that the point (0, 0, 1) ∈ Σn is the image of the point (x+
kn

, y+
kn

, 1) ∈
M[qn

i , i ∈ Z], then the convex horizontal curve in Σn that pass by (0, 0, 1)
comes from the behaviour of X̃∗

1,n, X̃∗
2,n and X̃∗

3,n near (0, 1) ∈ R × [−1, 1].

Then the hypothesis X∗
2 − y±kn

> 0 on (kn − ℓn, kn + ℓn) × {0} becomes

X̃∗
2,n > 0 on (−1, 1) × {0}.

Let us study the convergence of the sequence (ṽn)n∈N. First of all, since
for all i, qn

i is outside (kn −
√

1 − ℓ2
n, kn +

√

1 − ℓ2
n), we have (qn

i − kn)/ℓn

outside (−
√

1 − ℓ2
n/ℓn,

√

1 − ℓ2
n/ℓn). So R × (−1, 1) \ {(qn

i − kn)/ℓn, i ∈ Z}
converges to R × (−1, 1). Since for every n, ṽn ≤ 1, each divergence line L
has at least one end-point. Besides, we know that on (−1/ℓn, 1/ℓn)×{−1, 1}
the boundary value of ṽn is 1− |x|. This implies that the only possible end-
points are (0,−1) and (0, 1). Hence L must be the segment between these
two points and :

2 = |L| = lim
n→+∞

|ṽn(0,−1) − ṽn(0, 1)| = 0

This is a contradiction and we have proved that the sequence (ṽn)n∈N has
no divergence line. Then a subsequence can be assumed to converge to a
solution ṽ of the maximal graph equation. On the boundary R×{−1, 1}, ṽ
takes the value 1 − |x|, such a solution is unique, and if ũ is the conjugate
to ṽ: ũ(x, y) = x tan(πy/2) i.e. the graph of ũ is a piece of an helicoid
(see Theorem 1 in [2] or Theorem 5.1 in [4]). We notice that because of the
uniqueness of the limit ũ, we can ensure that the whole sequence (ṽn)n∈N

converges to ṽ.
Let us now study the sequence (Σn)n∈N. Because of Theorem 7, we know

that the curvature of the surfaces Σn is uniformly bounded by a constant
C0. Then we can assume that a subsequence of (Σn) converges to a minimal
surface Σ. We shall prove that Σ is in fact the catenoid which corresponds
to ṽ.

We know that for every n the point (0, 0, 1) is in Σn and at this point the
normal to Σn is always −ex = (−1, 0, 0) then (0, 0, 1) ∈ Σ and the normal
to Σ at this point is −ex. This implies that there exists ε > 0, η > 0 and a
point B such that
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• dΣ(B, (0, 0, 1)) ≤ 2η,

• B ∈ R
2 × (0, 1 − η) and

• d(N(B),−ex) < ε where N is the Gauss map on Σ.

Since Σ is the limit of (Σn)n∈N. There exist Bn ∈ Σn such that

• dΣn
(Bn, (0, 0, 1)) ≤ 2η,

• Bn ∈ R
2 × (0, 1 − η) and

• d(Nn(Bn),−ex) < ε where Nn is the Gauss map on Σn.

Since Bn ∈ R
2 × (0, 1 − η), there exists An ∈ R × (0, 1) such that Bn =

(X̃∗
1,n, X̃∗

2,n, X̃∗
3,n)(An). Since ṽn(An) = X̃∗

3,n(An) ≤ 1−η, An is at a distance
at most η from the point (0, 1). Since dΣn

(Bn, (0, 0, 1)) ≤ 2η, the point An

is at a distance less than 2η from (0, 1). The property d(Nn(Bn),−ex) < ε
implies that there exist α > 0 such that An is outside the set {(x, y) ∈
[−1, 1] × (−1, 1) | |y − 1| < |x| tan α}. Then the sequence (An) moves in a
compact subset of R × (−1, 1). Since the convergence ṽn → ṽ is smooth
on compact subset, the surface Σ near the point B is the catenoid which
corresponds to ṽ. Then Σ is the catenoid which corresponds to ṽ. As
above the uniqueness of the limit implies that the whole sequence (Σn)n∈N

converges to the catenoid Σ.
Then (X̃∗

1,n, X̃∗
2,n, X̃∗

3,n) which is associated to the ṽn converges to the

map (X̃∗
1 , X̃∗

2 , X̃∗
3 ) associated to ṽ and normalized such that :

lim
t→1

(X̃∗
1 , X̃∗

2 , X̃∗
3 )(0, t) = (0, 0, 1)

Then X̃∗
2 (0, 0) = 0 and X̃∗

2 is negative on (0, 1) which contradicts the hy-
pothesis on X̃∗

2,n. The theorem is proved.
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