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Abstract

In this paper we prove that a properly embedded constant mean
curvature surface in H

2 × R which has finite topology and stays at
a finite distance from a vertical geodesic line is invariant by rotation
around a vertical geodesic line.

1 Introduction

In 1988, W. Meeks [10] proved that, in R
3, a properly embedded annulus

with non vanishing constant mean curvature (cmc, in the following) must
stay at a bounded distance from a straight line. Then N. Korevaar, R. Kus-
ner and B. Solomon [6] proved that any properly embedded constant mean
curvature surface staying at a bounded distance of a straight line is rota-
tionally invariant and then a Delaunay surface.

These results imply that any end of a finite topology properly embedded
cmc surface is asymptotic to a Delaunay surface. So this allows a description
of the space of all finite topology properly embedded cmc surfaces (see the
paper of R. Kusner, R. Mazzeo and D. Pollack [7]).

N. Korevaar, R. Kusner and B. Solomon used the Alexandrov reflec-
tion procedure to prove their results. In fact, their proof works in higher
dimension and also in H

n [5].
Recently the theory of cmc surfaces is developed in 3-dimensional ho-

mogeneous spaces. One interesting case is the ambient space H
2 × R. The

group of isometries of H2 × R possesses rotations around vertical geodesic
lines p × R where p is a point of H2. So one can look for embedded cmc
surfaces invariant by rotation around such a geodesic line, this was done by
Hsiang and Hsiang in [4]. For any mean curvature H0, they find rotationally
invariant surfaces but these surfaces stay at a bounded distance from the
vertical geodesic axis only for H0 > 1/2. In the sequel, we will focus on
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the case H0 > 1/2. Among these rotationally invariant surfaces, certain are
spheres and, actually, they are the only compact embedded cmc surface in
H

2×R [4]. The other ones are periodic with respect to a vertical translation.
For example, we have the vertical cylinder C ×R where C is a circle in H

2.
So these surfaces correspond to the Delaunay surfaces in R

3 and they are
also called Delaunay surfaces in H

2 ×R.
A subset of H2×R which is at a bounded distance from a vertical geodesic

line will be called cylindrically bounded. So, as in the paper of Korevaar,
Kusner and Solomon: can we classify properly embedded cmc surface that
are cylindrically bounded? The main result of the paper (Theorem 14) gives
an answer to this question.

Theorem. Let Σ be a properly embedded cmc surface in H
2×R.

If Σ has finite topology and is cylindrically bounded, Σ is a
Delaunay surface.

We notice that a vertical cylinder C × R has mean curvature larger
than 1/2. Thus, any properly embedded cmc surface which is cylindrically
bounded has mean curvature H0 > 1/2. This is a consequence of the half
space theorem in H

2 × R (see [11] and [9], for example). So we can only
focus ourselves on the H0 > 1/2 case.

The proof of the theorem is also based on the Alexandrov reflection
technique but the space of planar symmetries in H

2 × R is smaller than in
R
3 (in R

3 it is a 4 dimensional space and in H
2×R it is only 2 dimensional).

So the ideas of Korevaar, Kusner and Solomon can not be applied.
First we remark that we already know that a compact embedded cmc

surface is a rotational sphere so we only consider non compact surfaces. For
a non compact cylindrically bounded cmc surface Σ and a foliation of H2×R

by vertical planes, we associate a function defined on R called the Alexandrov
function α. If α admits a maximum, it is constant and Σ is symmetric with
respect to a vertical plane of the foliation. So to prove that Σ is rotationally
invariant, it suffices to prove that it is symmetric with respect to a lot of
vertical planes. So we want to prove that any Alexandrov function has a
maximum.

If the surface Σ has finite topology, we know by previous results [3] that
it has bounded curvature. So we can control the asymptotic behavior of
the surface. This gives information about the behavior of the Alexandrov
function near ±∞. Then we prove that the α is decreasing closed to +∞
and increasing close to −∞: this implies that α has a maximum. To prove
this monotonicity result we use a flux argument similar to the one of the
Positive flux lemma proved by Korevaar, Kusner, Meeks and Solomon in [5].
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The paper is divided as follows. In Section 2, we recall several result
concerning cylindrically bounded cmc surfaces in H

2 × R. In Section 3, we
recall the construction of the Delaunay surfaces. In Section 4, we define
the Alexandrov function and give its properties, we study the asymptotic
behavior of an annular end of a cylindrically bounded cmc surface. Finally
we state our main result and give the main step of the proof. Section 5 is
devoted to the study of horizontal Killing graph, i.e. cmc surfaces that are
transverse to the horizontal Killing vector field generating the horizontal
translation in H

2 × R. The last section is devoted to the study of the
monotonicity of the Alexandrov function near ±∞. The main idea is to
compare a flux along the surface with the flux along a comparison surface
which is constructed as a horizontal Killing graph.

All along the paper, we use z to denote the real coordinate in H
2 ×

R. On H
2, we consider the polar coordinates (ρ, θ) in Section 3 and a

(s, r) coordinate system in Sections 5 and 6. This last coordinate system
is adapted to the Killing vector field that generates translations along a
geodesic line.

2 Previous results

In this section, we recall different results concerning properly embedded cmc
surfaces in H

2 ×R. Most of them can be found in the paper of D. Hoffman,
J. de Lira and H. Rosenberg [3] and the one by N. Korevaar, R. Kusner
and B. Solomon [6]. We also explain the convergence we will consider for
sequences of cmc surfaces with bounded curvature.

2.1 Flux

This first subsection is devoted to the notion of flux for cmc surfaces that
was introduced in several preceding papers (see for example [6, 3]).

Let U be a bounded domain in H
2 × R whose boundary is the union

of a smooth surface Σ and a smooth surface Q with common boundary
∂Σ = ∂Q. So the boundary ∂U is piecewise smooth. Let us denote by ~n the
unit outgoing normal along ∂U and ~nΣ and ~nQ the respective restriction of
~n along Σ and S (see Figure 1).

Let Y be a Killing vector field of H2 × R, we have

0 =

∫

U
divH2×R Y =

∫

Σ
Y · ~nΣ +

∫

Q
Y · ~nQ

where divH2×R is the divergence operator on H
2 × R.
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Let ~ν be the outgoing unit conormal to Σ along ∂Σ. Along Σ the vector
field Y can be decomposed into the sum of a tangent part Y ⊤ and a normal
part Y ⊥. We have

0 =

∫

Σ
divΣ Y =

∫

Σ
divΣ Y ⊤ +

∫

Σ
divΣ Y ⊥ =

∫

∂Σ
Y · ~ν +

∫

Σ
2HY · ~nΣ

where divΣ is the divergence operator on Σ acting on any vector field of
H

2 × R defined along Σ and H is the mean curvature of Σ computed with
respect to −~nΣ.

Thus, if Σ has constant mean curvature H0, we have

0 =

∫

∂Σ
Y · ~ν − 2H0

∫

Q
Y · ~nQ. (1)

~nΣ

~nQ

U

Q

Σ

~ν

Figure 1: Computation of the flux

Now let us consider Σ a cmc H0 surface and γ a smooth closed curve in
Σ. Let Q be a smooth surface in H

2 × R with boundary γ. For a Killing
vector field Y , we define the quantity

Fγ(Y ) =

∫

γ
Y · ~ν − 2H0

∫

Q
Y · ~nQ

where, as above, ~ν is the conormal unit vector field of Σ along γ and ~nQ is
a unit normal along Q (the choice of these normal vectors is consistent with
the above computations). Because of the formula (1), the quantity Fγ(Y )
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does not depend on the choice of Q and depends only on the homology class
of γ in Σ. Fγ(Y ) is called the flux of Σ along γ in the direction Y .

In fact, the map Y 7→ Fγ(Y ) is linear so it can be seen as an element of
the dual of the vector space of Killing vector fields. This element is called
the flux of Σ along γ.

2.2 Linear area growth

In this subsection, we recall a result concerning the area growth of a cylin-
drically bounded properly embedded cmc surface in H

2 ×R.
Let Σ be a properly embedded cmc surface with possibly non-empty

compact boundary. We say that Σ has linear area growth if there exists two
constants α and β such that Area(Σ ∩ {a ≤ z ≤ b}) ≤ α(b− a) + β for any
a ≤ b ∈ R.

We then have the following result.

Proposition 1 (Corollary 1 in [3]). Let Σ ⊂ H
2×R be a properly embedded

cmc surface with possibly non-empty compact boundary. If Σ is cylindrically
bounded, Σ has linear area growth.

We notice that in this result we do not make any hypothesis on the
topology of the surface Σ. Besides, the original proof in [3] contains a
mistake, it has been corrected by Rosenberg in [15].

2.3 The height function

On a properly embedded surface Σ in H
2×R the restriction to the surface of

the real coordinate is called the height function on Σ. For a cmc H0 surface,
this height function has several properties.

Lemma 2. Let Σ be a non compact properly embedded cylindrically bounded
cmc H0 surface in H

2 × R. The height function can not be neither bounded
from above nor bounded from below.

The idea of the proof can be found in the proof of Theorem 1.1 in [12]
or Proposition 2 in [3].

Proof. For example, let us assume that the height function is bounded from
below. We can apply Alexandrov reflection technique with respect to hor-
izontal slice H

2 × {t}. Since Σ is bounded from below, for t small, Σ does
not intersect H

2 × {t}. Thus we can start the reflection procedure up to a
first contact point. But since Σ is non compact, a first contact point can
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not exist. Indeed, if there is a first contact point, the maximum principle
would imply that Σ is symmetric with respect to some H

2 × {t0} and thus
compact.

So the reflection procedure can be done for any t and this implies that
the part of Σ below {z = t} is a vertical graph with boundary in {z = t}.
The height of such a vertical graph is bounded from above by a constant
that depends only on H0 (see [1]); thus the Alexandrov procedure has to
stop. We get a contradiction.

When the surface Σ is an annulus we have the following property (see
Lemma 4.1 in [6]).

Lemma 3. Let H0 > 1/2 be a real number, there exists an M > 0 that
depends only on H0 > 0 such the following is true. Let A be an embedded
annulus A ⊂ H

2 × R of constant mean curvature H0 with boundary outside
H

2 × [0,M ]. Then A∩H
2 × [0,M ] has at most one connected component Ã

such that z(Ã) = [0,M ].

2.4 Uniform curvature estimate

In this subsection, we recall an estimate of the norm of the second funda-
mental form of a cylindrically bounded properly embedded cmc surface in
H

2 × R. Precisely, Hoffman, de Lira and Rosenberg proved the following
result.

Proposition 4 (Theorem 3 in [3]). Let Σ be a properly embedded cmc sur-
face with finite topology and possibly non-empty compact boundary. If Σ
is cylindrically bounded, the norm of the second fundamental form |A| is
bounded on Σ.

2.5 Convergence of sequences of cmc surfaces

In the following, we will consider sequences of cmc surfaces coming from
the translations of a given cmc surfaces with bounded curvature. In this
subsection, we explain how these sequences converge to a limit cmc surface.
The surfaces we consider have a uniform curvature bound.

In fact, considering the normal coordinates around a point in H
2 ×R, a

constant mean curvature surface in H
2 ×R can be viewed has an immersed

surface in R
3. A bound of its second fundamental form inH

2×R is equivalent
to a bound in R

3. We have the following classical result.

6



Proposition 5. [6, 14] Let Σ be an immersed surface in R
3 whose second

fundamental form satisfies |A| ≤ 1/(4δ) for some δ > 0. Then for any x ∈ Σ
with d(x, ∂Σ) > 4δ there is a neighborhood of x in Σ which is a graph of a
function u over the Euclidean disk of radius

√
2δ centered at x in the tangent

plane to Σ at x. Moreover

|u| < 2δ, |∇u| < 1, and |∇2u| < 1

δ

Let Σ be a cmc H0 surface (H0 6= 0) that bounds a domain D in H
2 ×R

(D is in the mean convex side of Σ) and with a uniform curvature bound.
Let p ∈ Σ be a point and γ be the geodesic line starting from p in the
direction of the mean curvature vector. Let q be a the first point where γ
meets Σ (if it exists). If q is close to p, Proposition 5 implies that γ is close
to be normal to Σ at q. Moreover, since γ is in D between p and q, the mean
curvature vector to Σ at q points in the opposite direction to the velocity
vector of γ at q. But since H0 > 0, this implies that p and q can not be
too close from each other. More precisely, we have the following result that
gives a local description of the surface.

Proposition 6. Let Σ be an embedded cmc H0 surface in H
2 ×R (H0 > 0)

which bounds a domain D in its mean convex side. Moreover we assume
that its second fundamental form satisfies |A| ≤ k for some k > 0. Then
there exists R = R(k) > 0 such that the following is true. For any p ∈
H

2 ×R, there exists at most two disks ∆1 and ∆2 in Σ∩B(p, 2R) such that
Σ ∩B(p,R) = (∆1 ∪∆2) ∩B(p,R). Moreover, when there is two disks, the
domain between the two disks in B(p,R) is outside D

The above proposition says that a local description of the surface Σ is
given by one of the pictures in Figure 2.

Now let us assume that we have a sequence (Σn) of properly embedded
cmc H0 surfaces with uniformly bounded curvature and bounding a domain
Dn in their mean convex side. For each compact K of H2 × R, (K ∩ Σn)
is a sequence of compacts sets so by a diagonal process we can assume that
for each K the sequence converges in the Hausdorff topology to a limit that
we call Σ. Let p be in Σ, there exists pn ∈ Σn such that pn → p. From
Proposition 5, pn is the center of a geometrically controlled disk ∆1

n. By
considering a subsequence we can assume that ∆1

n′ converges to a cmc H0

disk ∆1. We then have ∆1 ⊂ Σ.
Let R be given by Proposition 6. If Σ ∩ B(p,R) = ∆1 ∩ B(p,R), this

implies that the whole sequence ∆1
n converges to ∆1. If there is q ∈ (Σ ∩

B(p,R)) \∆1, there exist qn ∈ Σn and qn is in the second disk ∆2
n given by
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∆1

∆2

∆1

One disk:

Two disks:

No disk:

D

D

D

Figure 2: The local description of a cmc surface

Proposition 6. By considering a subsequence we can assume ∆2
n′ converges

to a cmc H0 disk ∆2. We notice that ∆2 is different from ∆1 since it
contains q. We then have ∆2 ⊂ Σ. From Proposition 6, we can be sure
that Σ∩B(p,R) = (∆1 ∪∆2)∩B(p,R). In fact this implies that the whole
sequence (∆2

n) converges to ∆2.
To complete our local description of Σ, we notice that ∆1 and ∆2 can

touch each other but, at these contact points, the mean curvature vector
have opposite value. Besides Σ bounds the domain D which is constructed
has the limit of the domain Dn. This prove that Σ is what we call a weakly
embedded cmc H0 surface.

Definition 1. A properly immersed cmc surface Σ is said to be weakly
embedded if there exists an open set Ω such that Σ is the boundary of Ω and
the mean curvature vector of Σ points into Ω.

As an example, two rotational cmc spheres that are tangent form a
weakly embedded surface. The union of two vertical cylinders tangent along
a common vertical geodesic line is also weakly embedded.

We say that a weakly embedded surface is connected if the underlying
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surface Σ is connected. As an example, two rotational cmc sphere tangent
at a point is not a connected weakly embedded surface.

Finally, we remark that we have proved that the sequence Σn converges
smoothly in any compact sets to the surface Σ.

3 Delaunay surfaces

In this section, we briefly recall the construction of the embedded cmc sur-
faces that are rotationally invariant around a vertical axis. We only focus
on surfaces with H > 1/2 (see [4] and [13] for more details).

Let (ρ, θ) be the polar coordinates onH
2 so the metric is dρ2+(sinh ρ)2dθ2.

We look for surfaces of revolution; so we can look for the graph of a func-
tion u = f(ρ), we will orient this graph using the up pointing unit normal.
Since we want the graph to have constant mean curvature H, the function
f satisfies the following equation

f ′

√
1 + f ′2

sinh ρ− 2H(cosh ρ− 1) = τ

where τ is a constant. In order to have a solution, τ has to satisfy

− sinh ρ− 2H(cosh ρ− 1) ≤ τ ≤ sinh ρ− 2H(cosh ρ− 1)

The graphs of these two functions are given in Figure 3. So in order to
have a solution with non empty definition set, τ has to be chosen less than
2H −

√
4H2 − 1. Actually, for τ = 2H −

√
4H2 − 1, we find the surface

ρ = argth 2H which is the vertical cylinder of constant mean curvature H.
For all value of τ < 2H −

√
4H2 − 1, a solution f can be defined for

ρ ∈ [ρmin(τ), ρmax(τ)]. This solution f has the following properties (see
Figure 4):

• if 0 < τ , 0 < ρmin(τ), f is increasing and f ′(ρmin(τ)) = +∞ =
f ′(ρmax(τ)).

• if τ = 0, 0 = ρmin(0), f is increasing, f ′(0) = 0 and f ′(ρmax(0)) = +∞.

• if τ < 0, 0 < ρmin(τ), f
′(ρmin(τ)) = −∞ and f ′(ρmax(τ)) = +∞.

In each case, the graph of the function u is a piece of a cmc H surface of
revolution that can be extended along its boundary by symmetry to produce
a complete rotationally invariant cmc H surface Dτ . When τ > 0 we produce
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− sinh ρ− 2H(cosh ρ− 1)

2H −
√
4H2 − 1

ρmin(τ)

sinh ρ− 2H(cosh ρ− 1)

ρmax(τ)

τ

Figure 3: The domain of definition of solutions

an embedded surface called unduloid. When τ = 0 we produce a cmc sphere.
For τ < 0, we get a non-embedded surface called a nodoid.

The parameter τ can be interpreted as a flux on the surface. More
precisely, if γ is the circle Dτ ∩ {z = t}, 2πτ is the flux of Dτ along γ in the
direction ∂z.

τ > 0 τ = 0 τ < 0

ρmin(τ) ρmax(τ) ρmax(0) ρmin(τ) ρmax(τ)

Figure 4: The solution of the equation
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4 The Alexandrov function and the main result

In this section we introduce the notion of Alexandrov functions. Then we
study the annular end of a cylindrically bounded properly embedded cmc
surface. We then explain the proof of our main theorem

4.1 Alexandrov function

The notion of Alexandrov function was introduced by Korevaar, Kusner and
Solomon in [6] for R3. Let us explain what is the situation in H

2 × R.
Let Γ = (γt)t∈R be a smooth family of geodesic lines that foliates H

2.
We define Γ+

t = ∪s>tγs, Γ
+
t is a half hyperbolic space bounded by γt; we

also define Γ−
t = ∪s<tγs. Let Πt be the vertical plane γt ×R in H

2 ×R. Let
St be the symmetry of H2 with respect to γt. St extend to the symmetry
of H2 × R with respect to Πt, we still denote by St this symmetry. Among
all these foliations, we say that Γ is a translation foliation if all the geodesic
lines γs are orthogonal to one geodesic line g.

For I a open interval of R, let G be a cylindrically bounded domain
in H

2 × Ī such that ∂G ∩ (H2 × I) is a smooth connected surface Σ with
possibly non empty boundary in the horizontal slices at height given by the
end points of I.

Let us fix some z0 in I, we focus on what happens at height z0. So we
denote Σz0 = Σ ∩ {z = z0} which bounds Gz0 = G ∩ {z = z0} and we
consider that Γ foliates H

2 × {z0}. Since G is cylindrically bounded, for t
large Σz0(t) = Σz0 ∩ Γ+

t is empty. If Σz0 is non empty, there is a largest
t1 such that Σz0(t1) 6= ∅. For t ≤ t1 we consider Σ̃z0(t) = St(Σz0(t)) the
symmetric of Σz0(t) with respect γt. We notice that Σ̃z0(t) is included in
Γ−
t and that, for small t, Σ̃z0(t) is outside Gz0 . So we can define

t2(z0) = sup{t ≤ t1 | Σ̃z0(t) ∩ Σz0 6= ∅}

We also define

t3(z0) = sup{t ≤ t1 | ∃p ∈ Σz0 ∩ γt, TpΣ is orthogonal to γt × R}

Finally we define αΓ(z0) = max(t2(z0), t3(z0)), if Σz0 is empty we define
αΓ(z0) = −∞. This number can be understood as the first time where
there is a contact between Σ̃z0(t) and Σz0 ∩ Γ−

t . In fact, for t > αΓ(z0),
Σ̃z0(t) ⊂ Gz0 . The function z0 7→ αΓ(z0) is called the Alexandrov function
of Σ associated to the foliation Γ. This Alexandrov function has a first
important property.
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Lemma 7. The Alexandrov function αΓ is upper semi-continuous.

Proof. Let (zn) be a sequence in I converging to z0 in I. If Σz0 is empty,
Σzn is empty for large n, so αΓ is upper semi-continuous if αΓ(z0) = −∞.
So we can assume αΓ(zn) > −∞ for every n. We can also assume that either
αΓ(zn) = t2(zn) for all n or αΓ(zn) = t3(zn) for all n. In the second case, we
have a sequence of point pn ∈ Σzn ∩ γt3(zn) such that TpnΣ is orthogonal to
γt3(zn) ×R. We can assume that t3(zn) → lim supαΓ(zn) = t0 and pn → p0.
Then p0 ∈ Σz0 ∩ γt0 and Tp0Σ is orthogonal to γt0 × R. This implies that
t0 ≤ t3(z0) ≤ αΓ(z0).

If we are in the first case, there is a sequence of point pn in Σzn(t2(zn))
such that St2(zn)(pn) ∈ Σzn . We can assume that t2(zn) → lim supαΓ(zn) =
t0 and pn → p0. Thus p0 ∈ Σz0(t0) or p0 ∈ Σz0 ∩ γt0 . In the first case
St0(p0) ∈ Σz0 so t0 ≤ t2(z0) ≤ αΓ(z0). In the second, since St2(zn)(pn) ∈ Σzn

and converge to p0, the tangent space Tp0Σ is orthogonal to γt0 × R. So
t0 ≤ t3(z0) ≤ αΓ(z0). This finishes the proof.

The second important property is a consequence of the maximum prin-
ciple when Σ has constant mean curvature.

Lemma 8. Assume that Σ is connected, has constant mean curvature and
the mean curvature vector points into G. If the Alexandrov function αΓ

has a local maximum at z, αΓ is constant on the connected component J of
{αΓ > −∞} containing z and Σ ∩ (H2 × J) is symmetric with respect to
ΠαΓ(z).

Proof. Assume that z is a local maximum of αΓ. Let p ∈ Σz such that
p ∈ Σz(αΓ(z)) and SαΓ(z)(p) ∈ Σz if αΓ(z) = t2(z) or p ∈ γαΓ(z) × R and
TpΣ is orthogonal to γαΓ(z) × R if αΓ(z) = t3(z). In both case, since z
is a local maximum of αΓ, near SαΓ(z)(p), SαΓ(z)(Σ) is on one side of Σ.
Moreover these two surfaces have the same orientation at SαΓ(z)(p). So
applying the maximum principle or the maximum principle at the boundary
for cmc surface, we get that Σ is symmetric with respect to ΠαΓ(z)

These two results has the following consequence

Lemma 9. With the same hypotheses as in Lemma 8, if αΓ > −∞ on [a, b]
then:

• αΓ is monotonous, or

• there exists c ∈ [a, b] such that αΓ is decreasing on [a, c) and increasing
on (c, b].
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Proof. Assume αΓ is not monotonous on [a, b]. Let x, y be in [a, b]. Since αΓ

is upper semi-continuous, sup[x,y] αΓ is reached and because of Lemma 8 it
can only be reached at x or y. So we have sup[x,y] αΓ = sup{αΓ(x), αΓ(y)}.

Let (xn) be a monotonous sequence converging to c ∈ [a, b] such that
limαΓ(xn) = inf [a,b] αΓ. We assume that (xn) decreases (the same argument
can be done if it increases).

Let us consider x < y < c. If αΓ(y) = inf [a,b] αΓ, for any z ∈ (y, c),
αΓ(z) ≤ αΓ(xn) so αΓ(z) = inf [a,b] αΓ. αΓ is constant on (y, c) so it is
constant on [a, b]. So we can assume αΓ(y) > limαΓ(xn). Since αΓ(y) ≤
max{αΓ(x), αΓ(xn)}, we get αΓ(x) ≥ αΓ(y): αΓ decreases on [a, c).

Let us now consider c < x < y. As above we can assume αΓ(x) >
limαΓ(xn). Since αΓ(x) ≤ max{αΓ(y), αΓ(xn)}, we get αΓ(x) ≤ αΓ(y): αΓ

increases on (c, b].

If Σ is a weakly embedded cmc surface which is cylindrically bounded,
we notice that the Alexandrov functions can also be defined on it. These
functions satisfies also to Lemmas 8 and 9.

4.2 Asymptotical Delaunay ends

In this subsection we prove that a cylindrically bounded annular ends of a
cmc surface is asymptotic to one of the Delaunay surface Dτ .

Let A be a properly embedded annular end with cmc H and which
is cylindrically bounded. The annulus A can be viewed as the punctured
disk embedded in H

2 × R with boundary in H
2 × {0}. The height function

converges to ±∞ at the puncture. If the limit of the height function is +∞
A is said to be a top end and if the limit is −∞ A is a bottom end. In
the sequel we always study top ends and since the property of bottom ends
can be deduced by symmetry with respect to {z = 0}. The annular end
A bounds a cylindrically bounded domain G so we can define Alexandrov
functions on A.

From Proposition 1, A has linear area growth. Proposition 4 gives a
uniform bound on the second fundamental form on A. This two properties
are sufficient to study the limit of slight-back sequences t−zn(A) where (zn)
is an increasing sequence going to +∞ and tz̄ denote the vertical translation
by z̄.

Proposition 10. Let A be a properly embedded annular end with cmc H
which is cylindrically bounded (H > 1/2). Let (zn) be an increasing se-
quence converging to +∞. There is a parameter τ ∈ (0, 2H −

√
4H2 − 1]

that depends only on A and a subsequence (zn′) of (zn) such that t−zn′ (A)
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converges to a rotationally invariant Delaunay surface Dτ . Moreover the
axis of Dτ only depends on A.

Proof. Let s 7→ γ(s) be a geodesic in H
2. Let γ1s denote the geodesic line

of H2 orthogonal to γ at γ(s). Then Γ1 = (γ1s )s∈R is a foliation of H2, so
we can consider the Alexandrov function αΓ1 of A. From Lemma 9, αΓ1 is
monotonous close to +∞. Moreover, it is bounded so it has a limit at +∞.
by changing the parametrization of γ, we assume that this limit is 0.

Let θ be an irrational angle and consider γ2t to be the geodesic line of H2

which meets γ10 with an angle θ at γ10(t). Γ
2 = (γ2t )t∈R is a foliation of H2 so

we consider the Alexandrov function αΓ2 of A. As above, this function has
a limit at +∞ and we can assume it is 0. We denote by p the point where
γ10 and γ20 meet. We notice that the position of this point p will fix the axis
of the Delaunay limit surface.

Now let us consider an increasing sequence (zn) with limit +∞. From
Subsection 2.5, a subsequence of t−zn(A) (still denoted t−zn(A)) converges
to a properly weakly embedded surface Σ with constant mean curvature H.
Moreover Σ is cylindrically bounded.

Claim 11. The surface Σ is connected and non-compact.

Proof of the Claim. Assume Σ has a compact connected component Σ′. This
implies that, for large n, there is a part of t−zn(A) that is graph over Σ′. So
A would possess a compact component, this gives a contradiction.

Assume now that Σ has two non compact connected components Σ′ and
Σ′′. We recall that the height function on Σ′ and Σ′′ can not be lower or
upper bounded (Lemma 2). So there is a connected component of Σ′∩{0 ≤
z ≤ M} and one of Σ′′ ∩ {0 ≤ z ≤ M} with boundary in both {z = 0} and
{z = M}. So this implies that for large n, A∩{zn ≤ z ≤ zn+M} possesses
at least two connected components with boundary in both {z = zn} and
{z = zn +M}. This is a contradiction with Lemma 3.

Since Σ is connected, we can consider the Alexandrov functions αΓ1,Σ

and αΓ2,Σ of Σ.

Claim 12. The Alexandrov functions αΓ1,Σ and αΓ2,Σ are equal to 0.

Proof of the Claim. We give the proof for the first Alexandrov function. Let
z0 be a regular value of the height function on Σ. Because of the properness,
any value z close to z0 is also a regular value of the height function. So
Σ ∩ {z0 − ε ≤ z ≤ z0 + ε} consist of a finite union of annuli transverse
to horizontal slices of H2 × R. Now, because of the smooth convergence of
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t−zn(A) to Σ, we get that αΓ1,Σ(z0) = limαΓ1(z0 + zn) = 0. Thus, for any
regular value of the height function on Σ, αΓ1,Σ vanishes so, by monotonicity,
the Alexandrov function is constant equal to 0.

Since the Alexandrov function are constants, Σ is symmetric with respect
to γ10 × R and γ20 × R. It is thus invariant by the rotation R of angle 2θ
around the vertical axis {p} × R. Since 2θ is irrational, Σ is invariant by
rotation around {p} × R.

This implies that Σ is equal to some Delaunay surface Dτ of axis {p}×R.
The height 0 is a regular value of Dτ and 2πτ is the flux of Dτ along Dτ∩{z =
0} in the direction ∂z. So 2πτ is the limit of the flux of A along A∩{z = zn}
in the direction ∂z. This flux does not depends on n and is equal to the flux
of A along A∩{z = 0} in the direction ∂z. So the parameter τ only depends
on A.

4.3 The main theorem

In this section we settle the main theorem of this paper and explain its proof.
Actually, the main theorem is based on the following proposition which

is proved in Section 6.

Proposition 13. Let A be a properly embedded annular top end with cmc
H which is cylindrically bounded. Let Γ = (γs)s∈R be a translation foliation
of H

2 by geodesic lines. The Alexandrov function αΓ : R+ → R is then
decreasing.

With this proposition we can prove our main result.

Theorem 14. Let Σ be a properly embedded cmc surface in H
2 × R. If Σ

has finite topology and is cylindrically bounded, Σ is a Delaunay surface (i.e.
Σ is rotationally invariant).

If Σ is compact the result is already know [4], so we focus on the non
compact case.

Proof. Let us consider Γ = (γs)s∈R be a translation foliation of H2. Let
us denote by E+

1 , . . . , E
+
p the annular top end of Σ and E−

1 , . . . , E
−
q the

annular bottom ends of Σ. We consider the Alexandrov functions αΓ,Σ and
αΓ,E±

i
. We can assume that the Alexandrov functions αΓ,E+

i
are defined on

[M,+∞) and the αΓ,E−

i
are defined on (−∞,−M ]. By Proposition 13, the

functions αΓ,E+

i
decrease and the functions αΓ,E−

i
increase.
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Besides, on [M,+∞), we have:

αΓ,Σ(z) = max
1≤i≤p

αΓ,E+

i
(z)

and, on (−∞,−M ], we have:

αΓ,Σ(z) = max
1≤i≤q

αΓ,E−

i
(z)

So the function αΓ,Σ increases on (−∞,−M ] and decreases on [M,+∞).
By Lemma 9, this implies that αΓ,Σ is constant and Σ is symmetric with
respect to some γs × R.

Let Γ1 be a translation foliation of H2, Σ is then symmetric with respect
to some γ1s . We can assume that it is symmetric with respect to γ10 × R.
Let Γ2 be the translation foliation of H

2 composed by the geodesic line
orthogonal to γ10 . Σ is then symmetric with respect to some γ2s × R. We
can also assume it is γ20 . Let p be the intersection point of γ10 and γ20 . Let
g be a geodesic passing by p and Γ3 be the translation foliation composed
by the geodesic lines orthogonal to g. Σ is then symmetric with respect to
some γ3s ×R. Since Σ is cylindrically bounded γ3s passes by p. This implies
that Σ is symmetric with respect to any vertical plane passing by p, so Σ is
invariant by rotation around the vertical axis p× R.

5 Horizontal Killing graphs

Let us consider a new model for H
2: H

2 = {(s, r) ∈ R
2} with the metric

dr2 + (cosh r)2ds2. In this model {r = 0} is a geodesic and {r = c} are
its equidistant lines. Moreover ∂s is the Killing vector field corresponding
to the translation along {r = 0}. In this section, we will use this model of
H

2 to describe H
2 × R. The surfaces {s = c} are then totally geodesic flat

planes.
Let Ω be a domain in R

2 and u be a smooth function on Ω. Using the
above model for H2, we can consider the surface in H

2 ×R parametrized by
(r, z) 7→ (u(r, z), r, z). Such a surface is called the horizontal Killing graph
of u, it is transverse to the Killing vector field ∂s and any integral curve of
∂s intersect at most once the surface.

5.1 The mean curvature equation

In the following, we are interested in horizontal Killing graph with constant
mean curvature H0. This condition implies that the function u satisfies a
partial derivatives equation.
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Let Ω and u be as above. A unit normal vector to the horizontal Killing
graph of u is given by the following expression:

N =
−∂s + (cosh r)2∇u

cosh r
√
1 + (cosh r)2|∇u|2

(2)

where ∇ is the Euclidean gradient operator and | · | is the Euclidean norm.
In the sequel, we will use this unit normal vector to compute the mean
curvature of a horizontal Killing graph.

Lemma 15. Let Ω and u be as above, the mean curvature H of the hori-
zontal Killing graph of u satisfies:

−2H cosh r = div
(cosh r)2∇u√

1 + (cosh r)2|∇u|2
(3)

with div the Euclidean divergence operator.

Proof. We extend the vector field N to the whole R × Ω by using the ex-
pression given in (2). The mean curvature of the horizontal Killing graph
of u is then given by

−2H = divH2×R N

= (∇ ∂s
cosh r

N,
∂s

cosh r
) + (∇∂rN, ∂r) + (∇∂zN, ∂z)

Let W denote
√

1 + (cosh r)2|∇u|2, we then have:

(∇ ∂s
cosh r

N,
∂s

cosh r
) =

1

(cosh r)2

( −1

W cosh r
(∇∂s∂s, ∂s)

+
cosh r

W
(ur(∇∂s∂r, ∂s) + uz(∇∂s∂z, ∂s)

)

=
ur

W cosh r
(∇∂s∂r, ∂s)

=
ur sinh r

W

and for a = r or a = z:

(∇∂aN, ∂a) = (∇∂a

−∂s
W cosh r

, ∂a) + (∇∂a

(cosh r)∇u

W
, ∂a)

= (∇∂a

(cosh r)∇u

W
, ∂a)
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Summing all this terms and using the fact that the surfaces {s = c} are
totally geodesic and flat, we get:

−2H =
ur sinh r

W
+ div(

(cosh r)∇u

W
)

=
1

cosh r

(
(∇(cosh r), (cosh r)∇u)

W
+ (cosh r) div(

(cosh r)∇u

W
)

)

=
1

cosh r
div(

(cosh r)2∇u

W
)

Thus the constant mean curvature H0 equation for a function u can be
written

div
(cosh r)2∇u√

1 + (cosh r)2|∇u|2
= −2H0 cosh r (4)

or after expanding all the terms

(

1 + (cosh r)2u2
z

2 + (cosh r)2|∇u|2

)

urr − 2

(

(cosh r)2uruz

2 + (cosh r)2|∇u|2

)

urz +

(

1 + (cosh r)2u2
r

2 + (cosh r)2|∇u|2

)

uzz

+ (tanh r)ur = −2H0

(1 + (cosh r)2|∇u|2)3/2

(cosh r)(2 + (cosh r)2|∇u|2)
(5)

For H0 = 0, we get the minimal surface equation:

div
(cosh r)2∇u√

1 + (cosh r)2|∇u|2
= 0 (6)

We notice that the maximum principle is true for these equations. Thus
we have uniqueness of a solution to the Dirichlet problem associated to these
equation on bounded domains.

5.2 A gradient estimate

An important result concerning solutions of (4) is a gradient estimate.

Proposition 16. Let u be a nonnegative solution of (4) on a disk centered
at p = (rp, zp) and radius R. Then there is a constant M that depends only
on rp, R and H0 such that

|∇u|(p) ≤ max(2, 32M(u(p)/R))e6Mu(p)+4M2 (u(p)/R)2
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The proof of this result is similar to the one of the gradient estimate
proved by J. Spruck in [17]; but our result does not seem to be a corollary
of his result.

Before beginning the proof, let us make some preliminary computation.
So let u be as in the proposition and let Σ denote the horizontal Killing
graph of u. We denote Ñ = −N (see (2))and define ν = (Ñ , ∂s) and
µ = ν/(cosh r). We have ν > 0 and, ∂s being a Killing vector field,

∆Σν = −(Ric(Ñ , Ñ ) + |A|2)ν

where |A|2 is the square of the norm of the second fundamental form and
Ric is the Ricci tensor.

Let us denote by h the restriction of s along Σ. We have

∇Σh =
1

(cosh r)2
∂⊤
s and |∇Σh|2 =

1

(cosh r)2
(1− µ2)

If (e1, e2) is an orthonormal basis of TΣ we have

∆Σh = divΣ(
1

(cosh r)2
∂⊤
s ) = − 2 tanh r

(cosh r)2
(∂⊤

r , ∂
⊤
s ) +

1

(cosh r)2
divΣ(∂s − νÑ)

=
2 tanh r

cosh r
µ(∂r, Ñ) +

1

(cosh r)2
(−ν)

2∑

i=1

(∇eiÑ , ei)

=
2 tanh r

cosh r
µ(∂r, Ñ)− 2H0µ

cosh r

Let us define the distance function d = ((r − rp)
2 + (z − zp)

2)1/2. The
vector field ∂d = ((r− rp)∂r +(z− zp)∂z)/d is well defined in H

2×R outside
R× {p} and has unit length; d∂d is well defined everywhere. We have:

∇Σd
2 = 2d∂⊤

d and |∇Σd
2|2 = 4d2|∂⊤

d |2

We denote r̃ = r − rp and z̃ = z − zp. We then have:

∆Σd
2 = 2divΣ(r̃∂

⊤
r + z̃∂⊤

z )

= 2(|∂⊤
r |2 + |∂⊤

z |2) + 2
2∑

i=1

(
r̃(∇ei(∂r − (∂r, Ñ)Ñ , ei) + z̃(∇ei(∂z − (∂z, Ñ )Ñ , ei)

)

= 2(1 + µ2) + 2
2∑

i=1

(
r̃(∇ei∂r, ei)−

(
r̃(∂r, Ñ) + z̃(∂z, Ñ )

)
(∇eiÑ , ei)

)

= 2(1 + µ2) + 2r̃

2∑

i=1

(∇ei∂r, ei)− 2H0(d∂d, Ñ )
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We define f1 = ∂s/(cosh r), f2 = ∂r and f3 = ∂z an orthonormal basis of
TH2 × R and we write ei =

∑
j λ

j
ifj. We then have

2∑

i=1

(∇ei∂r, ei) =

2∑

i=1

3∑

k,l=1

λk
i λ

l
i(∇fk∂r, fl)

=

2∑

i=1

(λ1
i )

2 1

(cosh r)2
(∇∂s∂r, ∂s)

= tanh r(1− µ2)

So ∆Σd
2 = 2(1 + µ2) + 2r̃ tanh r(1 − µ2) − 2H0d(∂d, Ñ). Using the above

computations, we are ready to write the proof.

Proof of Proposition 16. Let us introduce the second order operator Lf =
∆Σf − 2ν(∇Σ

1
ν ,∇Σf) on Σ. We notice that the maximum principle is true

for L. We have:

∆Σ
1

ν
= divΣ(−

1

ν2
∇Σν) = 2ν|∇Σ

1

ν
|2 + (Ric(Ñ , Ñ) + |A|2) 1

ν

Since Ric(Ñ , Ñ) ≥ −1, we have L 1
ν ≥ − 1

ν . Let us define u = η 1
ν with η a

positive function. We have:

Lu = ηL
1

ν
+

1

ν
∆Ση ≥ (∆Ση − η)

1

ν

We define on Σ the function ϕ = ((− h
2h0

+ 1 − ε − ( d
R )

2)+ which is less
than 1 (ε > 0) where h0 = u(p) = h(P ) with P = (u(p), p). Moreover,
ϕ(P ) = 1/2 − ε and ϕ = 0 close to ∂Σ. We define η = eKϕ − 1 with K a
positive constant that will be chosen later. We then have maxu > 0 and it
is reached inside the support of ϕ.

We have ∆Ση = divΣ(e
KϕK∇Σϕ) = eKϕ(K2|∇Σϕ|2 +K∆Σϕ) so:

∆Ση − η = eKϕ(K2|∇Σϕ|2 +K∆Σϕ− 1) + 1

≥ eKϕ(K2|∇Σϕ|2 +K∆Σϕ− 1)
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We have

|∇Σϕ|2 = | − 1

2h0
∇Σh− 1

R2
∇Σd

2|2

=
1

4h20 cosh
2 r

(1− µ2) +
4d2

R2
|∂⊤

d |2 +
2d

h0R2 cosh2 r
(∂⊤

s , ∂
⊤
d )

≥ 1

4h20 cosh
2 r

(1− µ2)− 2d

h0R2 cosh r
µ(∂d, N)

≥ 1

4h20 cosh
2 r

(1− µ2 − 8
h0
R

Mµ)

where we use d ≤ R andM is a constant chosen to be larger than cosh r
√
4 + 2R + 2H0R

on the disk of center p and radius R. So:

if µ ≤ min(
1

2
,

R

32Mh0
), |∇Σϕ|2 ≥

1

8h20(cosh r)
2

Besides, we have

∆Σϕ = − 1

2h0
∆Σh− 1

R2
∆Σd

2

= − 1

2h0
(
2 tanh r

cosh r
µ(∂r, Ñ)− 2H0µ

cosh r
)− 1

R2
(2(1 + µ2) + 2r̃ tanh r(1− µ2)− 2H0d(∂d, Ñ ))

≥ − µ

h0 cosh r
− 1

R2
(2(1 + µ2) + 2R(1− µ2) + 2H0R)

≥ − 1

h20(cosh r)
2

(
Mh0 +

h20(cosh r)
2

R2
(4 + 2R + 2H0R)

)

≥ − 1

h20(cosh r)
2

(
Mh0 +

h20M
2

R2

)

We deduce from the above computation that, if µ ≤ min(12 ,
R

32Mh0
),

K2|∇Σϕ|2 +K∆Σϕ− 1 ≥ 1

8h20(cosh r)
2
K2 +K(− 1

h20(cosh r)
2
)
(
Mh0 +

h20M
2

R2

)
− 1

≥ 1

8h20(cosh r)
2

(
K2 − 8K(Mh0 +

h20M
2

R2
)− 8h20M

2
)

So if K = (12Mh0+8h20M
2/R2) we obtain that K2|∇Σϕ|2+K∆Σϕ−1 > 0

and then Lu > 0. By the maximum principle applied to L, it implies that the
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maximum of u can only be attained at a point q where µ ≥ min(12 ,
R

32Mh0
).

This implies that

u(p) = (eK(1/2−ε) − 1)
1

ν(p)
≤ eK − 1

ν(q)
≤ eK − 1

min(12 ,
R

32Mh0
)

So letting ε tending to 0 we get:

ν(p) ≥ min(
1

2
,

R

32Mh0
)e−K/2

So:
|∇u|(p) ≤ max(2, 32M(h0/R))e6Mh0+4M2(h0/R)2

5.3 An existence result for the Dirichlet problem

In this subsection, we give a result concerning the existence of a solution of
the Dirichlet problem for the equation (4) on small domains. Actually, it is
a consequence of the work of J. Serrin in [16].

Proposition 17. Let p = (rp, zp) be a point R
2 and H0 be a nonnegative

constant. Then, there exists a constant R > 0 that depends only on H0 and
|rp| such that the Dirichlet problem for the equation (4) can be solved on the
disk D(p, R̃) centered at p and radius R̃ less than R. More precisely, for
any continuous function ϕ on the boundary of D(p, R̃) (R̃ ≤ R) there exists

u ∈ C2(D(p, R̃)) ∩ C0(D(p, R̃)) such that u solves (4) and u = ϕ on the
boundary of the disk.

Proof. if ϕ is C2 the result is a consequence of Theorem 14.3 in [16]. We
notice that the hypotheses of this theorem are satisfied by Equation (4). In
fact in order to have the same notation as J. Serrin, the equation has to be
written in the form (5). Moreover, since the coefficients of (5) only depend
on r and H0, the radius R only depends on rp and H0.

When ϕ is only continuous, we proceed by approximation. Let (ϕn) be
a sequence of C2 functions converging to ϕ in the C0 norm. We denote
by un the solution of (4) with ϕn as boundary value. The sequence un
is uniformly bounded. So, by the gradient estimate (Proposition 16) and
elliptic estimates, the sequence (un) converges to a solution u of (4) on the
disk. Let us consider ε > 0 and n ∈ N such that ϕn − ε ≤ ϕ − ε/2 <
ϕ + ε/2 ≤ ϕn + ε, for m large we have ϕn − ε ≤ ϕm ≤ ϕn + ε. So by the
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maximum principle, un−ε ≤ um ≤ un+ε. This implies un−ε ≤ u ≤ un+ε,
so on the boundary of the disk

ϕ− 3ε/2 ≤ ϕn − ε ≤ lim inf
∂D(p,R̃)

u ≤ lim sup
∂D(p,R̃)

u ≤ ϕn + ε ≤ ϕ+ 3ε/2

Letting ε going to 0, we see that u is continuous up to the boundary and
u = ϕ there.

5.4 A uniqueness result

In this section we give a uniqueness result for the Dirichlet problem associ-
ated to (4) when the domain is unbounded.

Proposition 18. Let Ω be an unbounded domain in R
2 such that the r

coordinate is bounded on Ω. Let u and v be two solutions of (4) on Ω which
are continuous up to the boundary of Ω and such that u = v along this
boundary. If the function |v − u| is bounded on Ω, then u = v.

The proof is based on the same ideas as Theorem 2 in [2]

Proof. Let us define Ωa = {p ∈ Ω | |p| < a} and Ca = {p ∈ Ω | |p| = a}. let
us define w = v − u and X = cosh r∇v√

1+cosh2 r|∇v|2
− cosh r∇u√

1+cosh2 r|∇u|2
. We denote

by ~η the outgoing normal to Ωa.
We then have

∫

Ca

w(cosh rX) · ~η =

∫

∂Ωa

w(cosh rX) · ~η =

∫

Ωa

∇w · (cosh rX)

By Lemma 1 in [2],

∇w · (cosh rX) = (cosh r∇v − cosh r∇u) ·
( cosh r∇v√

1 + cosh2 r|∇v|2
− cosh r∇u√

1 + cosh2 r|∇u|2

)

≥

∣∣∣∣∣∣
cosh r∇v√

1 + cosh2 r|∇v|2
− cosh r∇u√

1 + cosh2 r|∇u|2

∣∣∣∣∣∣

2

≥ |X|2

Let a0 > 0 be such that Ωa0 6= ∅ and denote µ =
∫
Ωa0

∇w · (cosh rX);

µ > 0 if u 6= v. Since w is bounded by a constant M and r is bounded on
Ω, cosh r is bounded also by M . We then have:

µ+

∫

Ωa\Ωa0

|X|2 ≤ M2

∫

Ca

|X|
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Let us define I(a) =
∫
Ca

|X| and la to be the length of Ca; we remark that
la ≤ 2πa. We have

I2(a) =
( ∫

Ca

|X|
)2

≤ la

∫

Ca

|X|2

Then

µ+

∫ a

a0

I2(t)

2πt
dt ≤ M2I(a) (7)

Let ζ be the function defined on [a0, a0 exp(4πM
4/µ)) by the following

equation:

−1

ζ
+

2M2

µ
=

1

2πM2
ln

a

a0

ζ satisfies ζ(a0) = µ/(2M2) and M2ζ ′ = ζ2/(2πa). Equation (7) then
implies that I(a) ≥ ζ(a). But this is impossible since ζ(a) converge to +∞
when a → a0 exp(4πM

4/µ). Then u and v are equal.

6 The monotonicity of the Alexandrov function

This section is entirely devoted to the proof of Proposition 13. This will
finish the proof of our main result (Theorem 14).

6.1 The geometric configuration

Let us consider A a properly embedded annular top end with cmc H0 which
is cylindrically bounded. Let Γ = (γt)t∈R be a translation foliation of H2 by
geodesic lines. We assume that αΓ is not decreasing.

By considering only A ∩ {z ≥ z0} for some z0 > 0 large, we can assume
that αΓ is increasing. Because of Proposition 10, we can also assume that
any horizontal section A∩{z = z′} is composed of one curve with curvature
strictly larger than 1.

Using the model introduced in Section 5 for H
2, we can assume that

the foliation Γ is given by γt = {s = t}. Moreover, by changing the origin
of the s variable, we can assume that αΓ(0) < 0 and lim+∞ αΓ > 0. We
also can assume that the intersection A ∩ {s = 0} is transverse. We define
A+ = A ∩ {s > 0} and A− = A ∩ {s < 0}.

The idea of the proof of Proposition 13 is to obtain a control of the flux
of A along ∂A+ in the direction ∂s.
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{s = 0}

{z = 0}

A+

D
Ã−A−

Figure 5: The annular end A

6.2 A Dirichlet problem

The annulus A bounds a cylindricaly bounded domain D in H
2 × R

∗
+. Let

Ω denote the domain {(r, z) ∈ R× R
∗
+ | (0, r, z) ∈ D}.

Let us denote by Ã− the symmetric of A− by {s = 0}. We then define
on Ω the function f by f(r, z) = inf{s ∈ R+ | (s, r, z) ∈ A+ ∪ Ã−}. Since A
is cylindrically bounded, f is uniformly bounded on Ω. Since the curvature
of the curve A∩ {z = z′} is larger than 1, f extend continuously to ∂Ω and
this boundary value is 0 along ∂Ω ∩ {z > 0}.

Since αΓ(0) < 0, the reflection procedure described in Section 4.1 implies
that A+ ∩ {z = 0} is the horizontal Killing graph of f over ∂Ω ∩ {z = 0}.

Besides, if p ∈ ∂Ω ∩ {z > 0} and the tangent space to A at (0, p) is not
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normal to {s = 0}, for q ∈ Ω

f(q)

d(q, ∂Ω)
is bounded in neighborhood of p

where d(q, ∂Ω) is the Euclidean distance from q to ∂Ω.
The aim of this section is to solve a Dirichlet problem for (4): we prove

the following result.

Lemma 19. There exists a unique nonnegative solution u on Ω of Equa-
tion (4) which is continuous up to the boundary with boundary value f and
such that u ≤ f on Ω.

Proof. The uniqueness comes from Proposition 18 since Ω is cylindrically
bounded.

For the existence part, we use the Perron method to solve the Dirichlet
problem. Let us recall the framework of the Perron method.

Let v be a continuous function on Ω, v is called a subsolution for our
problem if v ≤ f and if, for any compact subdomain U ⊂ Ω and any solution
h of (4) with v ≤ h on the boundary of U , we have v ≤ h on U . If S denote
the set of all subsolutions, we define our solution by the following formula:

u(q) = sup
v∈S

v(q)

We notice that S is non empty since the function 0 is a subsolution; thus u ≥
0. Moreover if v and w are subsolutions, the continuous function max(v,w)
is also a subsolution. It is also clear that u ≤ f but it is not clear that u is
a solution to our problem.

Since Ω is cylindrically bounded, Proposition 17 implies there is a R > 0
such that, for any disk ∆ ⊂ Ω of radius less thanR, the Dirichlet problem can
be solved on ∆ for Equation (4). Thus for any such disk ∆ and subsolution
v, we can define the continuous function M∆(v) on Ω as M∆(v) = v outside
∆ and M∆(v) is equal to the solution of (4) in ∆ with v as boundary value.
Since v is a subsolution, v ≤ M∆(v). The graph of v is below A+ and Ã−

so, by the maximum principle for cmc H0 surfaces, the graph of M∆(v) is
below A+ and Ã−. This imlpies that M∆(v) is a subsolution.

Claim 20. The function u is a solution of (4) in Ω.

Proof of Claim 20. Let us consider p ∈ Ω and ∆ a disk in Ω centered at
p with radius less than R. Let vn be a sequence of subsolutions such that
vn(p) → u(p). By considering max(0, vn) we can assume vn ≥ 0. We have
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M∆(vn) is also a sequence of subsolutions with M∆(vn)(p) → u(p). On
∆, M∆(vn) is a bounded sequence of solutions of (4). So by considering a
subsequence if necessary, we can assume that it converges to a solution v̄ on
∆ with u ≥ v̄ and v̄(p) = u(p). Let us prove that u = v̄ on ∆, so u will be
a solution of (4).

If it is not the case there is a point q ∈ ∆ where u(q) > v̄(q). So there
is a subsolution w such that w(q) > v̄(q). So let us consider the sequence
of subsolutions M∆(max(w, vn)). We have M∆(max(w, vn)) ≥ M∆(vn) and
M∆(max(w, vn)) ≥ w. Moreover on ∆, it is a sequence of solutions of (4);
so considering a subsequence, it converges to a solution w̄ of (4) with w̄ ≥ v̄
and w̄(q) ≥ w(q) > v̄(q). But since w̄(p) = v̄(p), we have w̄ = v̄ on ∆ which
contradicts w̄(q) ≥ w(q) > v̄(q). The claim is proved.

Since 0 ≤ u ≤ f , the function u is continuous up to the part of ∂Ω not
in {z = 0} and u = 0 = f there. For ∂Ω ∩ {z = 0}, we need to construct
some barriers for the problem.

Claim 21. Let r0, M > 0 and ε > 0 be real numbers. There exist a
neighborhood V of (r0, 0) in R×R+ as small as we want and a solution h of
(6) in V which is continuous up to ∂V such that 0 ≤ h ≤ M on V , h = 0
on ∂V ∩ (R× R

∗
+) and h(r0, 0) = M − ε.

Proof of Claim 21. Let us consider r0 ∈ R, M > 0, ε > 0 as in the claim and
R > 0 such that the Dirichlet problem for the minimal surface equation (6)
can be solved on the disk ∆ centered at (r0, 0) and radius R (Proposition 17).
On ∂∆, let ϕn be a continuous function such that

• 0 ≤ ϕn ≤ 2M .

• 0 = ϕn on ∂∆ ∩ {z > 1/n} and ϕn ≤ M on {z ≥ 0}.

• ϕn(r, z) = 2M − ϕn(r,−z).

Moreover, we assume ϕn ≥ ϕn+1 on ∂∆ ∩ {z ≥ 0}. Let hn be the solution
of (6) on ∆ such that hn = ϕn on ∂∆. By uniqueness of the solution and
the maximum principle, we have

• 0 ≤ hn ≤ 2M .

• hn(r, z) = 2M − hn(r,−z) so hn(r, 0) = M .

• hn is decreasing and hn ≤ M on ∆ ∩ {z ≥ 0}
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Since the sequence is bounded, it converges to a solution h̄ of (6) on ∆.
Because of the monotonicity, h̄ is continuous up to the boundary except at
the points (r0 + R, 0) and (r0 − R, 0). h̄ is equal to 0 on ∂∆ ∩ {z > 0}
and to M on ∆ ∩ {z = 0}. So by continuity there is an η > 0 such that
h̄(r0, η) = M − ε. So if we consider the restriction of h̄ to ∆ ∩ {z ≥ η} we
have constructed a neighborhood V of (r0, η) in {z ≥ η} and a solution h̄ of
(6) on V which is continuous up to the boundary such that 0 ≤ h̄ ≤ M on
V , h̄ = 0 on ∂V ∩{z > η} and h̄(r0, η) = M−ε. We notice that by choosing
R small, we can assume V as small as we want.

With these barriers we can finish the proof of Lemma 19.

Claim 22. The function u is continuous up to the boundary of Ω and takes
the value f on it.

Proof of Claim 22. The problem is only on ∂Ω ∩ {z = 0} minus its end
points; so take a point p ∈ ∂Ω ∩ {z = 0}. Let us consider ε > 0 and I a
segment in {z = 0} containing p such that f ≥ f(p)− ε on I. Now from our
construction of barriers, we know that there exist an neighborhood V of p
in Ω such that V ∩ {z = 0} ⊂ I and a solution h of (6) on V continuous
up to the boundary and such that h = 0 on ∂V ∩ Ω, h ≤ f(p) − ε on
∂V ∩ {z = 0} and h(p) = f(p) − 2ε. Let us extend the definition of h by
0 to the whole Ω. By the maximum principle, h is a subsolution for our
problem, so u ≥ h. This implies that lim infp u ≥ f(p)− 2ε. Since u ≤ f on
Ω we have lim supp u ≤ f(p). Then u is continuous at p and takes the value
f(p).

6.3 The asymptotic behaviour of u

We know from Proposition 10 that the annular end A is asymptotic for large
z to a Delaunay surface. In this subsection, we will see that this asymptotic
behavior passes to the function u.

Let (zn) be a sequence such that zn ր +∞ and t−zn(A) converges to a
Delaunay surface Dτ , let us denote by G the cylindrically bounded domain
whose boundary is Dτ . We notice that by our normalization of A, the axis
of Dτ is {r = 0, s = lim+∞ αΓ}.

Let us also denote by t−zn the translation by −zn in the (r, z) plane.
Because of the asymptotic behavior of A, the sequence of domains t−zn(Ω)
converges to the domain Ω0 defined by Ω0 = {(r, z) ∈ R

2 | (0, r, z) ∈ G} (the
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convergence is smooth on any compact). Let us define D−
τ = Dτ ∩ {s < 0}

and D̃−
τ the symmetric of D−

τ by {s = 0}. D̃−
τ is a horizontal Killing graph

of a function f0 on Ω0. Actually, f0 = lim f ◦ tzn .
Let us consider the sequence u◦tzn ≤ f ◦tzn on t−zn(Ω), it is a uniformly

bounded sequence. So if we consider a subsequence, we can assume that
u◦tzn converges to a solution u0 of (4) on Ω0. Moreover we have 0 ≤ u0 ≤ f0.
This implies that u0 is continuous up to ∂Ω0 and takes value 0 there. We
then have u0 and f0 two solutions of (4) on Ω0 with the same vanishing
boundary value; so, by Proposition 18, u0 = f0.

The uniqueness of the possible limit implies that the whole sequence
u ◦ tzn converges to f0.

6.4 Computation of fluxes

The idea of this section is to compute the flux of A along the boundary of
A+ in the direction of ∂s and find a contradiction which will prove Proposi-
tion 13.

Let (zn) be an increasing sequence such that zn → +∞ and Ω0 be the
associated limit domain. This domain is either a strip if τ = 2H0−

√
4H2

0 − 1
or a periodic domain composed of successive ”bubbles” if 0 < τ < 2H0 −√

4H2
0 − 1. By adding a constant to (zn), we assume that {z = 0} is a line

of symmetry of Ω0. If u0 = limu ◦ tzn , we get that u0(r, z) = u0(r,−z) and
Dτ is symmetric with respect to {z = 0}.

The boundary of A+
n = A+ ∩ {0 < z < zn} is composed of four smooth

arcs: γ1 = A+ ∩ {z = 0}, γ2n = A+ ∩ {z = zn} and γ3n = A ∩ {s = 0} ∩ {0 ≤
z ≤ zn} (γ3n is actually composed of two arcs). The flux of A along ∂A+

n

in the direction of ∂s is equal to 0 since ∂A+
n is homologically trivial. The

idea is to use the graph of u as a barrier for the computation of F∂A+
n
(∂s)

to prove that it can not vanish for large n.
Let us denote by Ωzn the subdomain Ω ∩ {0 < z < zn}. In order to

compute the flux, we need a surface Q bounded by ∂A+
n : we define Q as the

union of G ∩ {s ≥ 0, z = 0}, G ∩ {s ≥ 0, z = zn} and {0} × Ωzn . The term
(∂s, ~nQ) is zero along the first two parts and is equal to − cosh r along the
second part so the flux of A along ∂A+

n is equal to

0 = F∂A+
n
(∂s) =

∫

∂A+
n

(~ν, ∂s) + 2H0

∫

Ωzn

cosh rdrdz (8)
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On an other hand, we have from (4)

0 =

∫

∂Ωzn

(
cosh2 r∇u√

1 + cosh2 r|∇u|2
, ~η)ds+

∫

Ωzn

2H0 cosh rdrdz (9)

with ~η the outgoing unit normal to Ωzn . We notice that, even if we do not
know that u is smooth up to the boundary of Ω, the first integral is well
defined since the vector field cosh2 r∇u√

1+cosh2 r|∇u|2
is bounded and Equation (4) is

satisfied.
Thus Equations (8) and (9) give

0 =

∫

∂Ωzn

(
cosh2 r∇u√

1 + cosh2 r|∇u|2
, ~η)ds−

∫

∂A+
n

(~ν, ∂s) (10)

In order to compare the terms in the above equality, we need to study
the regularity of u at the boundary of Ω.

Let us define c1 = ∂Ωzn ∩ {z = 0}, c2n = ∂Ωzn ∩ {z = zn} and c3n =
∂Ωzn \ (c1 ∪ c2n). We notice that γ3n = {0} × c3n, so the same notation can be
used to denote the two curves.

Claim 23. The function u is C2 up to the boundary at each point of c1

(except its end-points) and each point in c3n where A is not normal to {s =
0}.

Proof. Let p be a point c3n where A is not normal to {s = 0}. As written
at the beginning of subsection 6.2, there is a neighborhood of p such that
f/d(·, ∂Ω) is bounded. Since 0 ≤ u ≤ f , Proposition 16 gives a uniform
upper-bound for |∇u| in a neighborhood of p. Since u satisfies Equation (4)
and the boundary data are smooth, elliptic regularity theory implies that u
is C2 up to the boundary near p (see for example [8], Theorem 4.6.1 gives
C1,α regularity and Theorem 4.6.3 gives C2 regularity).

For the regularity at a point in c1, the argument is the same but we have
to prove the uniform upper bound for the gradient. We notice that, near
γ1, A+ is the graph of f . So, near c1, f is a smooth function. Since u ≤ f
this give a barrier from above with bounded gradient for u. The problem is
to obtain a barrier from below.

The curves γ1 and {0}× c1 bounded a convex domain in H
2×{0} whose

boundary is thus composed of an arc of curvature larger than 1 and a
geodesic arc. Let us denote by U this domain viewed in H

2 × {0}. Let
q be the middle of {0} × c1. Let ε be positive and Γε be the Jordan arc in
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H
2×R composed by γ1 and two geodesic arc joining the end points of γ1 to

tε(q). When ε is small, the two geodesic arcs are included in {0} × Ω. Let
Σε be the solution of the Plateau problem in H

2 × R with Γε as boundary.
Since Γε is a vertical graph above the boundary of the convex domain U , Σε

is unique and is a vertical graph above U . Moreover, this graph is smooth
up to the boundary (barriers from above and below can be easily found). Σε

is included in {z ≥ 0} and can not be tangent to {z = 0} by the maximum
principle. The translate t−a(Γε) for a > 0 never meets the graph of u. So
by the maximum principle, t−a(Σε) never meets the graph of u and then Σε

is inside {(s, r, z) ∈ R× Ω | s ≤ u(r, z)}. Since Σε is not tangent to {z = 0}
along γ1, Σε is a good barrier from below for u.

We then get a uniform bound for the gradient of u near any points of c1

(Proposition 16); this gives us the C2 regularity up to the boundary.

Using the regularity of the function u, we prove the following statement.

Claim 24. We have:
∫

c1
(

cosh2 r∇u√
1 + cosh2 r|∇u|2

, ~η)−
∫

γ1

(~ν, ∂s) > 0

and ∫

c3n

(
cosh2 r∇u√

1 + cosh2 r|∇u|2
, ~η)−

∫

γ3
n

(~ν, ∂s) > 0

Proof. The curve γ1 is the graph of the function f over c1 and, in fact, close
to γ1, A+ is the graph of f so we have

∫

γ1

(~ν, ∂s) =

∫

c1
(

cosh2 r∇f√
1 + cosh2 r|∇f |2

, ~η)

Now since u ≤ f and by the maximum principle u and f can not have
the same gradient on c1 this implies that along c1 we have

(
cosh2 r∇u√

1 + cosh2 r|∇u|2
, ~η) > (

cosh2 r∇f√
1 + cosh2 r|∇f |2

, ~η)

This give the first inequality.
For a point p in γ3n, if A is normal to {s = 0} (~ν, ∂s) = − cosh r. Since
cosh2 r∇u√

1+cosh2 r|∇u|2
has a norm less than cosh r everywhere, we get a large in-

equality at p between the to integrand.
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If A is not normal to {s = 0} at p, we remark that the term (~ν, ∂s) give
the same result if ~ν is the conormal to A+ or Ã−. Besides the graph of u
is regular up to the boundary and is below A+ and Ã−. So, with ~νu the
conormal to the graph of u and ~νA the one for A+, the maximum principle
implies that (~νu, ∂s) > (~νA, ∂s) at p. After integration we get the second
inequality since there is always point where A is not normal to {s = 0} on
γ3n.

We have the following limits for the integrals along γ2n and c2n.

Claim 25. We have the following limits:

lim
n→∞

∫

γ2
n

(~ν, ∂s) = 0

and

lim
n→∞

∫

c2n

(
cosh2 r∇u√

1 + cosh2 r|∇u|2
, ~η) = 0

Proof. Since t−zn(A) converges to Dτ , the first limit is equal to the integral
of (~ν, ∂s) along the curve Dτ ∩ {s ≥ 0, z = 0}. By our choice of (zn), the
surface Dτ is symmetric with respect to {z = 0}. The conormal is then
equal to ∂z and the scalar product vanishes. The limit is then 0.

For the second limit, we know that u ◦ tzn converges to u0 this implies
that the limit of the integral is equal to

∫

Ω0∩{z=0}
(

cosh2 r∇u0√
1 + cosh2 r|∇u0|2

, ∂z)

We notice that a priori the convergence of u◦tzn is smooth only on compact
subdomains of Ω0 but since the integrand is uniformly bounded it is sufficient
to take the limit of the integral. Now, we have u0(r, z) = u0(r0,−z) so ∇u0
is normal to ∂z on Ω0 ∩ {z = 0} and the limit integral vanishes.

Now using Equation (10) and Claims 24 and 25, we get our contradiction
which finishes the proof of Proposition 13

0 = lim
(∫

∂Ωzn

(
cosh2 r∇u√

1 + cosh2 r|∇u|2
, ~η)ds−

∫

∂A+
n

(~ν, ∂s)
)

≥
∫

c1
(

cosh2 r∇u√
1 + cosh2 r|∇u|2

, ~η)ds−
∫

γ1

(~ν, ∂s)

> 0
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