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Abstract

In this paper, we give a height estimate for constant mean curva-
ture graphs. Using this result we prove two uniqueness results for the
Dirichlet problem associated to the constant mean curvature equation
on unbounded domains.
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Introduction

Surfaces with constant mean curvature are mathematical models of soap
films. These surfaces appear as interfaces in isoperimetric problems. There
are different points of view on constant mean curvature surfaces, one is to
consider them as graphs.

Let Ω be a domain in R
2. The graph of a function u over Ω has con-

stant mean curvature H > 0 if it satisfies the following partial differential
equation:

div

(

∇u
√

1 + |∇u|2

)

= 2H (CMC)

The graph of such a solution is called an H-graph and has an upward point-
ing mean curvature vector.

The corresponding Dirichlet problem is to solve (CMC) on Ω with pre-
scribed boundary data. For bounded domains, after the work of J. Serrin
[Se1], J. Spruck has given in [Sp] a general answer to the existence and
uniqueness questions. His results are of Jenkins-Serrin type [JS] since infi-
nite data are allowed.

On unbounded domains, there are few constructions of solutions. The
examples are due to P. Collin [Co] and R. Lopéz [Lo1] for graphs over a strip
and R. Lopéz [Lo1, Lo2] for graphs with zero boundary data.
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In this paper, we investigate the uniqueness question for the Dirichlet
problem. To get uniqueness, we need a control of solutions of the Dirichlet
problem, which will enables us to bound the distance between two solutions
with the same boundary data.

Our main result (Theorem 2) provides such a control. We call this result
a “height estimate” since it bounds the difference of heights between two
components of the boundary of an H-graph. The idea of the proof is that
if the difference between heights is too big, we can move a sphere of radius
1
H

through the H-graph, which gives a contradiction with the maximum
principle.

With this height estimate, we can bound the difference between two
solutions of the same Dirichlet problem under certain hypotheses on the
boundary values. For example, if we are on a strip, we prove the uniqueness
of possible solutions for Lipschitz boundary data.

The first section of the paper is devoted to the statement and the proof
of the height estimate.

In Section 2, we give consequences of the height estimate for solutions
of the constant mean curvature equation on unbounded domains.

In the last section, we prove two uniqueness results for the Dirichlet
problem on unbounded domains.

1 The height estimate

In this first section, we give a height estimate for solutions of the constant
mean curvature equation (CMC). This estimate is designed for solutions on
unbounded domains.

First, we need some notations and remarks. If Ω is a domain in R
2 and

u is a function which is defined on Ω, we define F : Ω → R
2 to be the map:

F (x, y) =
(

x, u(x, y)
)

Let us explain what kind of domain we shall consider in the following.
For a > 1

H
and b > 0, we set Ra,b = [−a, a] × [−b, b]. Let Ω ⊂ Ra,b be a

domain with piecewise smooth boundary. We suppose that Ω satisfies the
following three hypotheses :

1. Ω is connected,

2. ∂Ω ∩ {−a} × [−b, b] and ∂Ω ∩ {a} × [−b, b] are non empty,

3. ∂Ω ∩ [−a, a] × {−b} = ∅ and ∂Ω ∩ [−a, a] × {−b} = ∅.
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Let Λ denote the set of the closures of connected components of ∂Ω∩
◦

Ra,b,

where
◦

Ra,b = (−a, a)× (−b, b). Let γ ∈ Λ be one of these boundary compo-
nents, γ is homeomorphic either to a circle or to [0, 1]. If it is homeomorphic
to a segment, either it joins {−a}× [−b, b] to {a}× [−b, b] (by connectedness,
there are exactly two such components) or the two end points are on the
same edge of the rectangle Ra,b.

Let c : [0, 1] → Ra,b be a continuous path with c(0) ∈ [−a, a] × {−b},

c(1) ∈ [−a, a]×{b} and c(t) ∈
◦

Ra,b for 0 < t < 1. We denote by Jc the set of
connected components of [0, 1]∩c−1(Ω). Let j ∈ Jc, there exist ej , oj ∈ (0, 1)
such that j = [ej , oj ]. There is a total order on Jc. Let j, j′ ∈ Jc, we write
j ⊳ j′ if oj < ej′ ; the order E is then a total order. We remark that Jc has
a minimum jmin and a maximum jmax. We then have the following lemma.

Lemma 1. Let Ω and c be as above. Let j ∈ Jc with j 6= jmin. We consider

j′ ⊳ j and denote by γ the element of Λ to which c(ej) belongs. Then there

exists j′′ with j′ E j′′ ⊳ j such that c(oj′′) belongs to γ.

Proof. We define j0 = sup{i ∈ Jc | i ⊳ j}. There are two possibilities. First,
j0 ⊳ j, in this case j0 D j′ and c(oj0 , ej) is a curve outside Ω. Because of the
different cases for γ, c(oj0) is then in γ. The second possibility is j0 = j.
This implies that there exists i ∈ Jc with oi < ej and ej − oi as small as we
want. The point c(ej) is at a non zero distance from the complement of γ in
∂Ω. Since c is uniformly continuous, there exists j′Ei⊳j with c(oi) ∈ γ.

If c is injective, the c[ej , oj ] are the connected components of c
(

[0, 1]
)

∩Ω.
We denote by ∆1 the connected component of Ra,b\Ω that contains

(0,−b) and ∆2 the one that contains (0, b). For i ∈ {1, 2}, let γi denote the
element of Λ that are included in the boundary of ∆i. γ1 and γ2 are the two
elements of Λ that are homeomorphic to a segment and join {−a} × [−b, b]
to {a} × [−b, b].

Let us give a last definition. If A and B are two compact sets in R, we
define the distance between A and B by:

d(A,B) = min{|p − q| | p ∈ A, q ∈ B}

We are then able to give our height estimate.

Theorem 2. Let a > 1
H

and b > 0 be real numbers. We consider a domain

Ω ⊂ Ra,b with piecewise smooth boundary that satisfies the above hypotheses

1., 2. and 3.. We define Λ, γ1 and γ2 as above. Let Λ = Λ1 ∪ Λ2 be a

partition of Λ such that γ1 ∈ Λ1 and γ2 ∈ Λ2. For i ∈ {1, 2}, let Γi denote
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the part of the boundary
⋃

γ∈Λi
γ. Let u be a solution of (CMC) on Ω which

is continuous on Ω. We then have the following upper bound :

d
(

F (Γ1), F (Γ2)
)

≤
2

H

where F is defined at the beginning of this section.

First we shall prove a weaker version of this result

Theorem 2’. Let a > 1
H

and b > 0 be real numbers. We consider Ω ⊂ Ra,b,
Λ and Λ = Λ1 ∪ Λ2 a partition as in Theorem 2. For i ∈ {1, 2}, we define
Γi =

⋃

γ∈Λi
γ. Let u be a solution of (CMC) on Ω which is continuous on

Ω. We then have the following upper bound :

d
(

F (Γ1), F (Γ2)
)

≤ 2a

Proof. The idea of the proof is that, if the estimate on the distance does
not hold, we would be able to move a sphere of radius 1

H
through the graph

of u and this gives a contradiction with the maximum principle. So let us
assume that the distance d

(

F (Γ1), F (Γ2)
)

is larger than 2a.
The first part of the proof consists in finding the place where the sphere

will be located.
Since γ1 and γ2 join {−a} × [−b, b] to {a} × [−b, b] in Ra,b, F (γ1) and

F (γ2) join {−a} × R to {a} × R in [−a, a] × R. Let γ be in Λ1 and (x, z)
be a point in F (γ). Since d

(

F (Γ1), F (Γ2)
)

> 2a, no point of F (Γ2) has
z as second coordinate, then, if γ′ ∈ Λ2, F (γ′) is either above F (γ) (i.e.
minF (γ′) z ≥ maxF (γ) z) or below (i.e. maxF (γ′) z ≤ minF (γ) z). Then γ

defines a partition Λ2 = Λ−

2 (γ)∪Λ+
2 (γ) with Λ−

2 (γ) (resp. Λ+
2 (γ)) is the set

of γ′ ∈ Λ2 such that F (γ′) is below (resp. above) F (γ). In the same way,
γ ∈ Λ2 defines a partition Λ1 = Λ−

1 (γ) ∪ Λ+
1 (γ).

In the following, we assume that γ1 ∈ Λ−

1 (γ2) (F (γ1) is below F (γ2)). If
γ1 ∈ Λ+

1 (γ2), the proof is the same by exchanging the labels 1 and 2.
We then define:

u1 = max







u(x, y)
∣

∣

∣
(x, y) ∈

⋃

γ∈Λ−

1
(γ2)

γ,−
1

H
≤ x ≤

1

H







We consider a point (x1, y1) ∈
⋃

γ∈Λ−

1
(γ2) γ such that u(x1, y1) = u1. Let

g1 ∈ Λ−

1 (γ2) denote the boundary component that contains (x1, y1). We
then define:

u2 = min







u(x1, y)
∣

∣

∣
(x1, y) ∈

⋃

γ∈Λ+

2
(g1)

γ
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γ2 ∈ Λ+
2 (g1) and, since γ2 join {−a} × [−b, b] to {a} × [−b, b], there is a

point in γ2 with x1 as first coordinate; this proves that u2 exists. We have
u2 > u1 and:
Fact 1. For all z ∈ (u1, u2), there exists y such that (x1, y) ∈ Ω and
u(x1, y) = z.

Let us prove this fact. We consider c : [−b, b] → Ra,b defined by c(t) = (x1, t).
We consider the set Jc with its order. Let j0 ∈ Jc be such that c(ej0) or
c(oj0) is (x1, y1) ∈ g1. We then define:

j1 = min{j ⊲ j0 |u(c(oj)) ≥ u2}

Since c(ojmax) ∈ γ2, u(c(ojmax)) ≥ u2; then the segment j1 exists. Besides
j0 ⊳ j1. First let us prove that u(c(ej1) ≤ u1. Let γ denote the element of
Λ to which c(ej1) belongs. By Lemma 1, there exists i ∈ Jc with j0 E i ⊳ j1

such that c(oi) ∈ γ. We have u(c(oi)) < u2 by definition of j1. If γ ∈ Λ1,
u(c(oi)) < u2 implies that γ ∈ Λ−

1 (γ2) and then u(c(ej1)) ≤ u1 (definition of
u1). If γ ∈ Λ2, u(c(oi)) < u2 implies that γ belongs to Λ−

2 (g1) (definition of
u2) and u(c(ej1)) ≤ u1. Now, since c([ej1 , oj1 ]) is connected and included in
Ω, (u1, u2) ⊂ u ◦ c(ej1 , oj1) and this proves Fact 1.

Let t be in R and Dt be the closed disk in [−a, a]×R with center (0, u1+t)
and radius 1

H
. D0 contains the point (x1, u1). The diameter of Dt is 2

H
which

is less than 2a, hence we have:

Dt ∩ F (Γ1) 6= ∅ =⇒ Dt ∩ F (Γ2) = ∅

Dt ∩ F (Γ2) 6= ∅ =⇒ Dt ∩ F (Γ1) = ∅

We define:
t0 = inf {t > 0 |Dt ∩ F (Γ1) = ∅}

By compactness, Dt0 ∩ F (Γ1) 6= ∅ and then Dt ∩ F (Γ2) = ∅ for 0 ≤ t ≤ t0.
Fact 2. We have u1 + t0 < u2.

Actually, if u1 + t0 ≥ u2, t′ = u2 − u1 is less than t0 and Dt′ contains the
point of F (Γ2) that realizes u2. This implies that Dt′ ∩ F (Γ1) = ∅ and
contradicts the definition of t0.

By compactness, there exists t1 > t0 such that u1+t1 < u2, Dt1∩F (Γ1) =
∅ and Dt ∩ F (Γ2) = ∅ for all 0 ≤ t ≤ t1.
Fact 3. Let γ ∈ Λ be a boundary component, then there are no Z1, Z2 ∈ R

such that there exist X1,X2 ∈ [− 1
H

, 1
H

] with (Xi, Zi) ∈ F (γ) and:

Z1 < u1 + t1 −

√

1

H2
− X2

1 ≤ u1 + t1 +

√

1

H2
− X2

2 < Z2
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(F (γ) can not have points above and below the disk Dt1)

First we suppose that γ ∈ Λ1. Since Z2 > u1, the definition of u1 implies
that γ belongs to Λ+

1 (γ2). Since γ2 joins {−a} × [−b, b] to {a} × [−b, b],
F (γ2) has a point of coordinates (x1, z); by definition of u2, z ≥ u2. Then
the second coordinate of every point of F (γ) needs to be larger than u2, this
contradicts Z1 < u1 + t1. Now if γ ∈ Λ2, Dt does not intersect F (Γ2) for
0 ≤ t ≤ t1, so letting go down the disk Dt from t1 to 0, we get Z1 ≤ u1 and
then γ belongs to Λ−

2 (g1). This implies that the second coordinate of every
point of F (γ) is smaller than u1. This contradicts Z2 > u1 + t1 and proves
Fact 3.

The idea is now to consider a suitable sphere of radius 1
H

projecting onto
the disk Dt1 . Let Sv denote the sphere of radius 1

H
and center (0, v, u1 + t1).

When v changes, Sv moves in an horizontal cylinder with vertical section
Dt1 . For far from zero negative v, Sv is out Ω × R. Since Dt1 ∩ F (Γ1) = ∅
and Dt1 ∩ F (Γ2) = ∅, Sv does not intersect the boundary of the graph of u

for any v. The graph of u splits Ω×R into two connected components: G+,
above the graph, and G− which is below. Since u1 ≤ u1 + t1 ≤ u2, there
exists v such that Sv intersects the graph of u by Fact 1.

We start with far from zero negative v and let v increase until v0 which
is the first contact between the graph and the sphere. This first contact does
not occur in the boundary of the graph since the sphere never intersects it.
Then, since the graph is not a piece of a sphere because of the size of Ω, the
maximum principle implies that, in the neighborhood of the contact point,
the sphere Sv0

is in G− (we recall that the mean curvature vector of the
graph points to G+ because of the equation (CMC)). But, in fact, we have:
Fact 4. In the neighborhood of the contact point, the sphere Sv0

is in G+.

This fact is not obvious since, because of the shape of the domain Ω, the
sphere keeps getting in and out Ω × R. We consider the first contact point
p = (x, y, z); we know that (x, z) ∈ Dt1 . We define c : s 7→ (x, s) ∈ Ra,b and
consider Jc. We have (x, s, z) ∈ G− for s < y near y since the sphere Sv0

is
in G− in a neighborhood of p. Then there exists:

s0 = min
{

s ≥ −b | (x, s, z) ∈ G−
}

Since p is the first contact point, there is j ∈ Jc such that s0 = ej . We
know that Dt1 is above F (γ1) then (x, ejmin

, z) ∈ G+, so j ⊲ jmin. Then
there exists j′ ⊳ j such that c(ej) and c(oj′) belong to the same element
of Λ. Then, if (x, ej , z) ∈ G−, (x, oj′ , z) ∈ G−, this is due to Fact 3. This
implies that (x, s, z) ∈ G− for s < oj′ near oj′ and then s0 < ej ; we have our
contradiction.
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This ends the proof of d
(

F (Γ1), F (Γ2)
)

≤ 2a.

We remark that Theorem 2’ will be sufficient for most of the applications
and Theorem 2 is just an improvement. So let us replace 2a by 2

H
to get

Theorem 2.

Proof of Theorem 2. Let us consider a′ > 0 with 1
H

< a′ < a. The idea
of the proof is to apply Theorem 2’ to a well chosen connected component
of Ω ∩ Ra′,b. Let Di denote the connected components of Ω ∩ Ra′,b. First
we remark that, among these components, there are ones that satisfy the
hypotheses 1., 2. and 3. . For example, since γ1 joins {−a} × [−b, b] to
{a} × [−b, b], one connected component of γ1 ∩Ra′,b joins {−a′} × [−b, b] to
{a′} × [−b, b]; then a Di that has this component in its boundary satisfies
the three hypotheses. A component of Ω∩Ra′,b that satisfies the hypotheses
is called a good component and the other ones are the bad ones; we rename
these good components D1, . . . ,Dk. There is only a finite number of such
components since the length of the part of ∂Ω in Ra′,b is finite.

Let us consider a good component Di. As defined at the beginning of
this section, a set of boundary component Λi is associated to Di. In Λi there
are two particular elements: these are the two boundary components which
are homeomorphic to a segment and joins {−a′} × [−b, b] to {a′} × [−b, b].
To avoid any confusion, we denote these components by γi

α and γi
β (γi

α is a

part of the boundary of the connected component of Ra′,b\D
i that contains

(0,−b) and γi
β is the other one). Each element of Λi is a part of an element

of Λ, then we get a partition Λi = Λi
1 ∪ Λi

2: an element of Λi is in Λi
1 (resp.

Λi
2) if it is a part of an element of Λ1 (resp. Λ2). Now the proof consists in

applying Theorem 2’ to a component Di such that γi
α ∈ Λi

1 and γi
β ∈ Λi

2.

To each good component Dj , we can associate a real number which
is the second coordinate of the end point of γ

j
α in {−a} × [−b, b]. In the

following, we order the good components with respect to this real number
and rename the good components D1, . . . ,Dk with respect to this order. The
order is the same if we consider the second coordinate of γ

j
α ∪ {a} × [−b, b],

γ
j
β ∪ {−a} × [−b, b] or γ

j
β ∪ {a} × [−b, b].

Let D be a bad component of Ω∩Ra′,b. In fact, it is a bad component only
because of Hypothesis 2.; then, in D, there is no path from {−a′} × [−b, b]
to {a′} × [−b, b]. This implies that, as in Figure 1, there exists a path
c : [0, 1] → Ra′,b that joins (0,−b) to (0, b), is outside all the bad components
and such that there exist 0 < e1 < o1 < e2 < · · · < ek < ok < 1 with:

c([0, 1]) ∩ Ω =
⋃

i

c(ei, oi)
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and c(ei, oi) ⊂ Di. First we remark that c(e1) is in γ1 so it is in γ1
α ∈ Λ1

1

and c(ok) is in γ2 so it is in γk
β ∈ Λk

2 . Then there exists:

i0 = min
{

i
∣

∣

∣
γi

β ∈ Λi
2

}

(0, b)

(0,−b)−a a−a′ a′

Di

Ω

c(oi)

c(ei)

c

γ2

γ1

Figure 1:

Let us prove that the good component Di0 is such that γi0
α ∈ Λi0

1 . First
we assume that it is not the case, i.e. γi0

α ∈ Λi0
2 . Since γ1

α ∈ Λ1
1, i0 > 0.

γi0
α is a part of an element γ of Λ2 then c(ei0) ∈ γi0

α ⊂ γ. Besides we know,
by Lemma 1, that c(oi0−1) belongs to the same component as c(ei0). Then
c(oi0−1) ∈ γ and γi0−1

β ⊂ γ; this implies that γi0−1
β ∈ Λi0−1

2 . This is a
contradiction with the definition of i0.

Now, we apply Theorem 2’ to Di0 . For j ∈ {1, 2}, we write Γ′
j =

⋃

γ∈Λ
i0
j

γ. Then we have γi0
α ⊂ Γ′

1 and γi0
β ⊂ Γ′

2; so we can apply the
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theorem and we get:
d
(

F (Γ′
1), F (Γ′

2)
)

≤ 2a′

Besides, we have Γ′
1 ⊂ Γ1 and Γ′

2 ⊂ Γ2 then:

d
(

F (Γ1), F (Γ2)
)

≤ d
(

F (Γ′
1), F (Γ′

2)
)

≤ 2a′

This inequality is true for every a′ > 1
H

, so:

d
(

F (Γ1), F (Γ2)
)

≤
2

H

2 Some consequences of Theorem 2

The aim of this section is to give some consequences of Theorem 2 for so-
lutions of the Dirichlet problem associated to the constant mean curvature
equation (CMC) on unbounded domains.

First we explain what kind of domains we shall consider. Let b− and
b+ : R+ → R be two continuous functions such that, for every x ≥ 0,
b−(x) < b+(x). We are interested in domains of the type Ω = {(x, y) ∈
R+ × R | b−(x) < y < b+(x)}. When u is a solution of (CMC) on Ω and
continuous on Ω, we define two continuous functions f− and f+ by f±(x) =
u(x, b±(x)). f− and f+ are the boundary values of u.

Finally, if x ∈ R+, we define Ix = {x} × [b−(x), b+(x)]. We then have
the following height estimate:

Proposition 3. Let b−and b+ be continuous functions on R+ with b−(x) <

b+(x). We define Ω = {(x, y) ∈ R+ × R | b−(x) < y < b+(x)}. Let u be a

solution of (CMC) on Ω and continuous on Ω. We consider x0 > 2
H

and

M such that:

min
[x0−

2

H
,x0+

2

H
]
(f−, f+) ≥ M (1)

Then:

min
Ix0

u ≥ M −
3

H

Proof. Let ε be a positive number. Since f− and f+ are continuous, there
exists η > 0 such that:

min
[x0−

2

H
−η,x0+

2

H
+η]

(f−, f+) ≥ M − ε
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Let us assume that there is a piecewise smooth injective path c : [0, 1] →
Ω
⋂

[x0 −
2
H

− η, x0] × R that joins Ix0−
2

H
−η to Ix0

such that:

u ◦ c(t) < M − ε −
2

H
(2)

We consider the domain D bounded by c, the curve y = b−(x) for x ∈
[x0 −

2
H

− η, x0], a segment included in Ix0−
2

H
−η and one included in Ix0

; D

satisfies the three hypotheses of Section 1. In fact, since the function b− is
only continuous, the boundary of D is not piecewise smooth, but Theorem 2
can be applied because of the shape of D. Because of (1) and (2), Theorem 2
is not satisfied; then the above assumption can not be realized. Finally, this
implies that there exists a path c1 : [0, 1] → Ω

⋂

[x0−
2
H
−η, x0]×R that joins

the curve y = b−(x) to the curve y = b+(x) such that u◦ c1(t) ≥ M − ε− 2
H

.
By the same arguments, there exists a path c2 : [0, 1] → Ω

⋂

[x0, x0 +
2
H

+ η]× R that joins the curve y = b−(x) to the curve y = b+(x) such that
u ◦ c2(t) ≥ M − ε − 2

H
.

Ω

D

c2

c1

x0 + 2
Hx0x0 −

2
H

y = b+(x)

y = b−(x)

Figure 2:

Now the domain D bounded by c1, c2, a piece of y = b−(x) and a piece
of y = b+(x) contains Ix0

(see Figure 2). Besides on the boundary of D, u

is everywhere larger than M − ε− 2
H

by (1) and above. Then by a classical
height estimate [Se2], u is larger than M − ε − 3

H
in D. This gives us:

min
Ix0

u ≥ M − ε −
3

H
(3)
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Letting ε tend to zero, we get the expected result.

We also have a simple upper-bound in this case.

Proposition 4. Let b− and b+ be continuous functions on R+ with b−(x) <

b+(x). We define Ω = {(x, y) ∈ R+ × R | b−(x) < y < b+(x)}. Let u be a

solution of (CMC) on Ω and continuous on Ω. We consider x0 > 1
2H

and

M such that:

max
[x0−

1

2H
,x0+

1

2H
]
(f−, f+) ≤ M

Then:

max
Ix0

u ≤ M

Proof. Let ε be a positive number. Since f− and f+ are continuous, there
exist η > 0 such that:

max
[x0−

1

2H
−η,x0+

1

2H
+η]

(f−, f+) ≤ M + ε

Let us consider the cylinder of radius 1
2H

which is centered on the axis
{x = x0} ∩ {z = t}. For big t, the cylinder is above the graph and we
can let t decrease. Until t = M + 1

2H
+ ε, the cylinders can not touch the

boundary of the graph of u. The maximum principle then says us that, for
t = M + 1

2H
+ ε, the cylinder is still above the graph; so we get:

max
Ix0

u ≤ M + ε

Letting ε goes to zero, we get the expected result.

Let f : I → R be a function, we define the variation of f around the
point x0 by:

Vt(x0, f) = sup
[x0−t,x0+t]

f − inf
[x0−t,x0+t]

f

Let f and g be two continuous functions I → R; we define the variation of
the pair (f, g) around x0 by:

Vt(x0, f, g) = max (Vt(x0, f), Vt(x0, g))

The two preceding propositions give us the following result:
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Theorem 5. Let b− and b+ be continuous functions on R+ with b−(x) <

b+(x). We define Ω = {(x, y) ∈ R+ × R | b−(x) < y < b+(x)}. Let u a

solution of (CMC) on Ω and continuous on Ω. We consider x0 > 2
H

and

M such that:

V 2

H
(x0, f−, f+) ≤ M

Then there exists M ′ which depends only on M and H such that:

max
Ix0

u − min
Ix0

u ≤ M ′

For example, M ′ = 4M + 5
H

works.

Proof. We have for x ∈ [x0−
2
H

, x0 + 2
H

], |f−(x)−f−(x0)| ≤ M and |f+(x)−
f+(x0)| ≤ M . Then if we apply Theorem 2 to Ω

⋂

[x0 −
2
H

, x0 + 2
H

]× R, we
get that, over this segment, the graph of f− is at a distance less than 2

H
from

the one of f+. Since, for α ∈ {−,+}, the graph of fα is in the horizontal
strip fα(x0)−M ≤ z ≤ fα(x0)+M , we have |f−(x0)−f+(x0)| ≤ 2(M + 1

H
).

This implies that, for every x, x′ ∈ [x0 − 2
H

, x0 + 2
H

], |fα(x) − fβ(x′)| ≤
4M + 2

H
with α, β ∈ {−,+}. Then there exists A ∈ R such that, for every

x ∈ [x0 −
2
H

, x0 + 2
H

], we have:

|f−(x) − A| ≤ 2M +
1

H
(4)

|f+(x) − A| ≤ 2M +
1

H
(5)

These two equations with Proposition 3 implies that:

min
Ix0

u ≥ A − 2M −
4

H
(6)

With Proposition 4, we get:

max
Ix0

u ≤ A + 2M +
1

H
(7)

Then, in bringing together (6) and (7), we obtain:

max
Ix0

u − min
Ix0

u ≤ 4M +
5

H

Theorem 5 has an easy corollary.
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Corollary 6. Let b− and b+ be continuous functions on R+ with b−(x) <

b+(x). We define Ω = {(x, y) ∈ R+ × R | b−(x) < y < b+(x)}. Let u be a

solution of (CMC) on Ω and continuous on Ω. We consider x0 > 2
H

and

M such that:

V 2

H
(x0, f−, f+) ≤ M

Then there exists M ′ which depends only on M and H such that, for

every p ∈ Ix0
and α ∈ {−,+}, we have:

fα(x0) − M ′ ≤ u(p) ≤ fα(x0) + M ′

For example, M ′ = 4M + 5
H

works.

Proof. It is just the fact that (x0, b−(x0)) and (x0, b+(x0)) are in Ix0
.

3 Two uniqueness results

In this section, we use Corollary 6 to prove uniqueness theorems for the
Dirichlet problem associated to (CMC).

Theorem 7. Let b−, b+ be two continuous functions on R+ such that b−(0) =
b+(0) and b−(x) < b+(x) for every x > 0. We define Ω = {(x, y) ∈
R+ × R | b−(x) < y < b+(x)}. Let f−, f+ be two continuous functions on

R+ such that f−(0) = f+(0). We suppose that there exist an increasing

positive sequence (xn)n∈N with lim xn = +∞ and a sequence (Mn)n∈N with

Mn = o(ln xn) such that, for every n ∈ N, we have:

V 2

H
(xn, f−, f+) ≤ Mn

Then, if there exists a solution u of (CMC) on Ω with value f− and f+ on

the boundary, this solution is unique.

Proof. Let u1 and u2 be two different solutions of the Dirichlet problem with
f− and f+ as boundary data. A result of P. Collin and R. Krust [CK] says
that:

lim inf
x→+∞

maxIx |u1 − u2|

lnx
> 0

But by Corollary 6, we know that:

max
Ixn

|u1 − f−(xn)| ≤ 4Mn +
5

H

max
Ixn

|u2 − f−(xn)| ≤ 4Mn +
5

H

13



So, we get:

max
Ixn

|u1 − u2| ≤ 8Mn +
10

H

By the hypothesis on Mn, we have:

lim
n→∞

maxIxn
|u1 − u2|

ln xn

= 0

This gives us a contradiction since xn → +∞.

We also have a second theorem.

Theorem 8. Let b−, b+ be two continuous functions on R such that b−(x) <

b+(x) for every x ∈ R. We define Ω = {(x, y) ∈ R
2 | b−(x) < y < b+(x)}.

Let f−, f+ be two continuous functions on R. We suppose that there exist one

increasing sequence (xn)n∈N with lim xn = +∞ and one decreasing sequence

(x′
n)n∈N with lim x′

n = −∞ and two sequences (Mn)n∈N and (M ′
n)n∈N such

that Mn = o(ln |xn|), M ′
n = o(ln |x′

n|) and, for every n ∈ N, we have:

V 2

H
(xn, f−, f+) ≤ Mn

V 2

H
(x′

n, f−, f+) ≤ M ′
n

Then, if there exists a solution u of (CMC) on Ω with value f− and f+ on

the boundary, this solution is unique.

Proof. Let u1 and u2 be two different solutions of the Dirichlet problem with
f− and f+ as boundary data. We know ([CK]) that:

max
Ix∪I−x

|u1 − u2| −−−−→
x→+∞

+∞ (8)

We define C = maxI0 |u1 −u2|. Then we have u2 −C − 1 < u1 < u2 + C + 1
on I0 and because of (8) the set {|u1 − u2| > M + 1} is non-empty. Then
we can assume that there exists a subdomain Ω∗ ⊂ Ω ∩ R

− × R which is a
connected component of {u1 > u2 + M + 1}. By Theorem 2 in [CK], we
have:

lim inf
x→−∞

maxIx∩Ω∗ |u1 − u2 − C − 1|

ln |x|
> 0

As in the preceding proof, Corollary 6 says us that, for every n, we have:

max
Ix′n

|u1 − u2 − C − 1| ≤ 8M ′
n +

10

H
+ C + 1

14



By the hypothesis on M ′
n, we have:

lim
n→∞

maxIx′n
|u1 − u2 − C − 1|

ln |x′
n|

= 0

This gives us a contradiction since x′
n → −∞ and ends the proof.

This theorem can be used to study the uniqueness of the solutions which
were constructed by P. Collin in [Co] and by R. Lopéz in [Lo1]. For a
complete proof of uniqueness in these examples, we refer to [Ma].

There are others results of uniqueness which we can prove with the same
arguments. For example, if we assume that b+− b− is bounded in Theorems
7 and 8, we need only to assume that Mn = o(xn) and M ′

n = o(|x′
n|) to get

the uniqueness.
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