Optimal length estimates for stable CMC surfaces in 3-space-forms

Laurent Mazet

Abstract

In this paper, we study stable constant mean curvature H surfaces in \mathbb{R}^{3}. We prove that, in such a surface, the distance from a point to the boundary is less that $\pi /(2 H)$. This upper-bound is optimal and is extended to stable constant mean curvature surfaces in space forms.

1 Introduction

A constant mean curvature (cmc) surface Σ in a Riemannian 3 -manifold \mathbb{M}^{3} is stable, if its stability operator $L=-\Delta-\operatorname{Ric}(n, n)-|A|^{2}$ is nonnegative. The nonnegativity of this operator means that Σ is a local minimizer of the area functional on surfaces regard to the infinitesimal deformations fixing its boundary.

The stability hypothesis was studied by several authors and has many consequences (see [6] for an overview). For example, D. Fischer-Colbrie and R. Schoen [4] studied the case of complete stable minimal surfaces when \mathbb{M}^{3} has non-negative scalar curvature. They obtain that the universal cover of Σ is not conformally equivalent to the disk and, as a consequence, prove that the plane is the only complete stable minimal surface in \mathbb{R}^{3}. From this, R. Schoen [8] has derived a curvature estimate for stable cmc surfaces.

In [2], T. H. Colding and W. P. Minicozzi introduced new technics and obtained area and curvature estimates for stable cmc surfaces. Afterward, these technics were used by P. Castillon [1] to answer a question asked in [4] about the consequences of the positivity of certain elliptic operators. Recently, the same ideas have been used by J. Espinar and H. Rosenberg [3] to obtain similar results.

In [7], A. Ros and H. Rosenberg study constant mean curvature H surfaces in \mathbb{R}^{3} with $H \neq 0$: they prove a maximum principle at infinity. One of their tools is a length estimate for stable cmc surface. In fact, they prove
that the intrinsic distance from a point p in a stable cmc surface Σ to the boundary of Σ is less than π / H. The aim of this paper is to improve this result. In fact, applying the ideas of [2], we prove that the distance is less than $\pi /(2 H)$. This estimate is optimal since, for a hemisphere of radius $1 / H$, the distance from the pole to the boundary is $\pi /(2 H)$. Actually we prove that the hemisphere of radius $1 / H$ is the only stable cmc H surface where the distance $\pi /(2 H)$ is reached. We can generalized this result to stable cmc H surfaces in $\mathbb{M}^{3}(\kappa)$, where $\mathbb{M}^{3}(\kappa)$ is the 3 -space form of sectional curvature κ. We prove that when $H^{2}+\kappa>0$ such an optimal estimate exists. In fact, it is already known that, when $\kappa \leq 0$ and $H^{2}+\kappa \leq 0$, there is no such estimate since there exist complete stable cmc H surfaces. But, in some sense, our results is an extension of the fact that the planes (resp. the horospheres) are the only stable complete constant mean curvature H surfaces in $\mathbb{R}^{3}\left(\right.$ resp. $\left.M^{3}(\kappa), \kappa<0\right)$ when $H=0\left(\right.$ resp. $\left.H^{2}+\kappa=0\right)$.

2 Definitions

On a constant mean curvature surface Σ in a Riemannian 3-manifold \mathbb{M}^{3}, the stability operator is defined by $L=-\Delta-\operatorname{Ric}(n, n)-|A|^{2}$, where Δ is the Laplace operator on Σ, Ric is the Ricci tensor on \mathbb{M}^{3}, n is the normal to Σ and A is the second fundamental form on Σ. When it is necessary, we will denote the stability operator by L_{f} to refer to the immersion f of Σ in \mathbb{M}^{3}.

The surface Σ is called stable if the operator L is nonnegative i.e., for every compactly supported function u, we have

$$
0 \leq \int_{\Sigma} u L(u) \mathrm{d} \sigma=\int_{\Sigma}\|\nabla u\|^{2}-\left(\operatorname{Ric}(n, n)+|A|^{2}\right) u^{2} \mathrm{~d} \sigma
$$

We remark that this property is sometimes called strong stablility since it means that the second derivatives of the area functional is nonnegative with respect to any compactly supported infinitesimal deformations u whereas Σ is critical for this functional only for compactly supported infinitesimal deformations with vanishing mean value i.e. $\int_{\Sigma} u \mathrm{~d} \sigma=0$.

In the following, on a cmc surface, the normal n is always chosen such that H is non-negative.

We will denote by d_{Σ} the intrinsic distance on Σ and by K the sectional curvature of the surface.

3 Results

The main result of this paper is the following theorem.
Theorem 1. Let H be positive. Let Σ be a stable constant mean curvature H surface in \mathbb{R}^{3}. Then, for $p \in \Sigma$, we have :

$$
\begin{equation*}
d_{\Sigma}(p, \partial \Sigma) \leq \frac{\pi}{2 H} \tag{1}
\end{equation*}
$$

Moreover, if the equality is satisfied, Σ is a hemisphere.
In \mathbb{R}^{3}, the stability operator can be written $L=-\Delta-4 H^{2}+2 K$.
Proof. We denote by R_{0} the distance $d_{\Sigma}(p, \partial \Sigma)$ and assume that $R_{0} \geq$ $\pi /(2 H)$. If $R_{0}<\pi / H$ we denote by I the segment $\left[\pi /(2 H), R_{0}\right]$, otherwise $I=[\pi /(2 H), \pi / H)$. In fact, because of the work of Ros and Rosenberg [7], we already know that $R_{0} \leq \pi / H$. Let R be in I.

The surface Σ has constant mean curvature H thus its sectional curvature is less than H^{2}. So the exponential map $\exp _{p}$ is a local diffeomorphism on the disk $D(0, R) \subset T_{p} \Sigma$ of center 0 and radius R. On this disk, we consider the induced metric and the operator $\mathcal{L}=-\Delta-4 H^{2}+2 K$. The surface Σ is stable so it exists a positive function g on Σ such that $L(g)=0$ (see Theorem 1 in [4]). On $D(0, R)$, the function $\tilde{g}=g \circ \exp _{p}$ is then positive and satisfies $\mathcal{L}(\tilde{g})=0$ since $D(0, R)$ and Σ are locally isometric. The operator \mathcal{L} is thus nonnegative on $D(0, R)$ [4].

For $r \in[0, R]$, we define $l(r)$ as the length of the circle $\{v,|v|=r\} \subset$ $D(0, R)$ and $\mathcal{K}(r)=\int_{D(0, r)} K \mathrm{~d} \sigma$. Since $D(0, R)$ and Σ are locally isometric, the sectional curvature K of $D(0, R)$ is less than H^{2}. Then

$$
\begin{equation*}
l(r) \geq \frac{2 \pi}{H} \sin H r \tag{2}
\end{equation*}
$$

By Gauss-Bonnet, we have:

$$
\begin{equation*}
\mathcal{K}(r)=2 \pi-l^{\prime}(r) \tag{3}
\end{equation*}
$$

Let us consider a function $\eta:[0, R] \rightarrow[0,1]$ with $\eta(0)=1$ and $\eta(R)=0$. Let us write the nonnegativity of \mathcal{L} for the radial function $u=\eta(r)$.

$$
0 \leq \int_{0}^{R}\left(\eta^{\prime}(r)\right)^{2} l(r) \mathrm{d} r-4 H^{2} \int_{0}^{R} \eta^{2}(r) l(r) \mathrm{d} r+2 \int_{0}^{R} \mathcal{K}^{\prime}(r) \eta^{2}(r) \mathrm{d} r
$$

Hence, following the ideas in [2] and using (3) and the boundary values of η, we have:

$$
\begin{aligned}
\int_{0}^{R}\left(4 H^{2} \eta^{2}-\eta^{\prime 2}\right) l \mathrm{~d} r & \leq 2\left(\left[\mathcal{K}(r) \eta^{2}(r)\right]_{0}^{R}-\int_{0}^{R} \mathcal{K}(r)\left(\eta^{2}(r)\right)^{\prime} \mathrm{d} r\right) \\
& \leq-2 \int_{0}^{R} \mathcal{K}(r)\left(\eta^{2}(r)\right)^{\prime} \mathrm{d} r \\
& \leq-2 \int_{0}^{R}\left(2 \pi-l^{\prime}(r)\right)\left(\eta^{2}(r)\right)^{\prime} \mathrm{d} r \\
& \leq 4 \pi+2 \int_{0}^{R}\left(\eta^{2}(r)\right)^{\prime} l^{\prime}(r) \mathrm{d} r \\
& \leq 4 \pi+\left[2\left(\eta^{2}(r)\right)^{\prime} l(r)\right]_{0}^{R}-2 \int_{0}^{R}\left(\eta^{2}(r)\right)^{\prime \prime} l(r) \mathrm{d} r \\
& \leq 4 \pi-2 \int_{0}^{R}\left(\eta^{2}(r)\right)^{\prime \prime} l(r) \mathrm{d} r
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\int_{0}^{R}\left(4 H^{2} \eta^{2}-\eta^{\prime 2}+2\left(\eta^{2}\right)^{\prime \prime}\right) l \mathrm{~d} r \leq 4 \pi \tag{4}
\end{equation*}
$$

We shall apply this equation to the function $\eta(r)=\cos \frac{\pi r}{2 R}$. In this case we have

$$
\begin{aligned}
\eta^{\prime 2} & =\frac{\pi^{2}}{4 R^{2}} \sin ^{2} \frac{\pi r}{2 R} \\
\left(\eta^{2}\right)^{\prime \prime} & =-\frac{\pi^{2}}{2 R^{2}}\left(\cos ^{2} \frac{\pi r}{2 R}-\sin ^{2} \frac{\pi r}{2 R}\right)
\end{aligned}
$$

Thus

$$
4 H^{2} \eta^{2}-\eta^{\prime 2}+2\left(\eta^{2}\right)^{\prime \prime}=\left(4 H^{2}-\frac{\pi^{2}}{R^{2}}\right) \cos ^{2} \frac{\pi r}{2 R}+\frac{3 \pi^{2}}{4 R^{2}} \sin ^{2} \frac{\pi r}{2 R}
$$

As $R \geq \frac{\pi}{2 H}, 4 H^{2} \eta^{2}-\eta^{\prime 2}+2\left(\eta^{2}\right)^{\prime \prime}$ is non-negative and, by (2),

$$
\begin{aligned}
\left(4 H^{2} \eta^{2}-\eta^{\prime 2}+2\left(\eta^{2}\right)^{\prime \prime}\right) l & \geq\left(\left(4 H^{2}-\frac{\pi^{2}}{R^{2}}\right) \cos ^{2} \frac{\pi r}{2 R}+\frac{3 \pi^{2}}{4 R^{2}} \sin ^{2} \frac{\pi r}{2 R}\right) \frac{2 \pi}{H} \sin H r \\
& \geq \frac{\pi}{H}\left(\left(4 H^{2}-\frac{\pi^{2}}{4 R^{2}}\right) \sin H r+\left(4 H^{2}-\frac{7 \pi^{2}}{4 R^{2}}\right) \frac{1}{2}\left(\sin \left(\frac{\pi}{R}+H\right) r-\sin \left(\frac{\pi}{R}-H\right) r\right)\right)
\end{aligned}
$$

Thus integrating in (4), we obtain (we recall that $R<\pi / H$)

$$
\begin{aligned}
4 \pi \geq & \frac{\pi}{H}\left(\left(4 H^{2}-\frac{\pi^{2}}{4 R^{2}}\right) \frac{1}{H}(1-\cos H R)\right. \\
& \left.+\left(4 H^{2}-\frac{7 \pi^{2}}{4 R^{2}}\right) \frac{1}{2}\left(\frac{R}{\pi+H R}(1-\cos (\pi+H R))-\frac{R}{\pi-H R}(1-\cos (\pi-H R))\right)\right)
\end{aligned}
$$

After some simplifications in the above expression, we obtain

$$
4 \pi \geq \pi \frac{\left(-32 H^{2} R^{4}+24 \pi^{2} H^{2} R^{2}-\pi^{4}\right)-\left(10 \pi^{2} H^{2} R^{2}-\pi^{4}\right) \cos H R}{4 H^{2} R^{2}\left(\pi^{2}-H^{2} R^{2}\right)}
$$

Now, passing 4π on the right-hand side of the above inequality and simplifying by π, we obtain:

$$
0 \geq \frac{-\left(4 H^{2} R^{2}-\pi^{2}\right)^{2}-\left(10 \pi^{2} H^{2} R^{2}-\pi^{4}\right) \cos H R}{4 H^{2} R^{2}\left(\pi^{2}-H^{2} R^{2}\right)}
$$

We denote by $F(R)$ the right-hand term of the above inequality. Hence we have proved that, for every R in $I, F(R) \leq 0$. If we write $R=\pi /(2 H)+x$, we compute the Taylor expansion of F and obtain

$$
F\left(\frac{\pi}{2 H}+x\right)=2 H x+o(x)
$$

which is positive if $x>0$. Thus, if $R_{0}>\pi /(2 H)$, we get a contradiction and the inequality (1) is proved.

Now if $R_{0}=\pi /(2 H)$, we have in fact equality all along the computation, so $l(r)=2 \pi / H \sin H r$ and $\mathcal{K}(r)=2 \pi-l^{\prime}(r)=2 \pi(1-\cos H r)$. But we also know that the sectional curvature is less than H^{2} thus $\mathcal{K}(r) \leq$ $H^{2} \int_{0}^{r} l(u) \mathrm{d} u=2 \pi(1-\cos H r)$. Since this inequality is in fact an equality, the sectional curvature is in fact H^{2} at every point. Thus the principal curvatures of a point in Σ are H and H i.e. there are only umbilical points. Hence Σ is a piece of a sphere of radius $1 / H$ and, since $d_{\Sigma}(p, \partial \Sigma)=\frac{\pi}{2 H}$, it contains the hemisphere of pole p. A hemisphere can not be strictly contained in a stable subdomain of the sphere, so Σ is a hemisphere.

With this result we have an important corollary.
Corollary 2. Let $H \geq 0$ and $\kappa \in \mathbb{R}$ such that $H^{2}+\kappa>0$. Let Σ be a stable contant mean curvature H surface in $\mathbb{M}^{3}(\kappa)$. Then for $p \in \Sigma$, we have :

$$
d_{\Sigma}(p, \partial \Sigma) \leq \frac{\pi}{2 \sqrt{H^{2}+\kappa}}
$$

Moreover, if the equality is satisfied, Σ is a geodesical hemisphere of $\mathbb{M}^{3}(\kappa)$.

The proof is based on the Lawson's correspondence between constant mean curvature surfaces in space forms (see [5]).

Proof. First, the case $\kappa=0$ is Theorem 1 .
Let $\Pi: \widetilde{\Sigma} \rightarrow \Sigma$ be the universal cover of Σ. We then have a constant mean curvature immersion of $\widetilde{\Sigma}$ in $\mathbb{M}^{3}(\kappa)$, let $\mathcal{L}=-\Delta-2 \kappa-|A|^{2}$ be the stability operator on $\widetilde{\Sigma}$. Σ is stable, so there exists a positive function g on Σ such that $L(g)=-\Delta g-\left(2 \kappa+|A|^{2}\right) g=0$. Thus the function $\tilde{g}=g \circ \Pi$ is a positive function on $\widetilde{\Sigma}$ satisfying $\mathcal{L}(\tilde{g})=0$. Hence $\widetilde{\Sigma}$ is stable. Let I and S be respectively the first fundamental form and the shape operator on $\widetilde{\Sigma}$. They satisfy the Gauss and Codazzi equations for $\mathbb{M}^{3}(\kappa)$.

We define $S^{\prime}=S+\left(-H+\sqrt{H^{2}+\kappa}\right)$ id on $\widetilde{\Sigma}$. Then I and S^{\prime} satisfy the Gauss and Codazzi equations for $\mathbb{M}^{3}(0)=\mathbb{R}^{3}$ (see [5]). Hence there exists an immersion f of $\widetilde{\Sigma}$ in \mathbb{R}^{3} with first fundamental form I and shape operator S^{\prime} (we notice that the induced metric is the same). Its mean curvature is then $H+\left(-H+\sqrt{H^{2}+\kappa}\right)=\sqrt{H^{2}+\kappa}$ i.e. the immersion has constant mean curvature. The stability operator is

$$
\begin{aligned}
L_{f} & =-\Delta-\left\|S^{\prime}\right\|^{2} \\
& =-\Delta-\left(\|S\|^{2}+4 H\left(-H+\sqrt{H^{2}+\kappa}\right)+2\left(-H+\sqrt{H^{2}+\kappa}\right)^{2}\right) \\
& =-\Delta-\left(\|S\|^{2}+2 \kappa\right) \\
& =\mathcal{L}
\end{aligned}
$$

Hence the surface $f(\widetilde{\Sigma})$ is stable. So, from Theorem 1, we have

$$
d_{\Sigma}(p, \partial \Sigma)=d_{\widetilde{\Sigma}}(\tilde{p}, \partial \widetilde{\Sigma}) \leq \frac{\pi}{2 \sqrt{H^{2}+\kappa}}
$$

where $\Pi(\tilde{p})=p$.
The equality case comes from the equality case in Theorem 1 and since the Lawson's correspondence sends spheres into spheres.

References

[1] Philippe Castillon. An inverse spectral problem on surfaces. Comment. Math. Helv., 81:271-286, 2006.
[2] Tobias H. Colding and William P. Minicozzi, II. Estimates for parametric elliptic integrands. Int. Math. Res. Not., pages 291-297, 2002.
[3] Jose M. Espinar and Harold Rosenberg. A Colding-Minicozzi stability inequality and its applications. preprint.
[4] Doris Fischer-Colbrie and Richard Schoen. The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math., 33:199-211, 1980.
[5] H. Blaine Lawson, Jr. Complete minimal surfaces in \mathbb{S}^{3}. Ann. of Math. (2), 92:335-374, 1970.
[6] William H. Meeks, III, Joaquín Pérez, and Antonio Ros. Stable constant mean curvature surfaces. preprint.
[7] Antonio Ros and Harold Rosenberg. Properly embedded surfaces with constant mean curvature. preprint.
[8] Richard Schoen. Estimates for stable minimal surfaces in threedimensional manifolds. In Seminar on minimal submanifolds, volume 103 of Ann. of Math. Stud., pages 111-126. Princeton Univ. Press, 1983.

