
The Dirihlet problem for minimal surfaesequation and Plateau problem at in�nityLaurent MAZET �AbstratIn this paper, we shall study the Dirihlet problem for the min-imal surfaes equation. We prove some results about the boundarybehaviour of a solution of this problem. We desribe the behaviour ofa non-onverging sequene of solutions in term of lines of divergene inthe domain. Using this seond result, we build some solutions of theDirihlet problem on unbounded domain. We then give a new proof ofthe result of C. Cos��n and A. Ros onerning the Plateau problem atin�nity for horizontal ends.2000 Mathematis Subjet Classi�ation. 53A10.Keywords: Minimal Surfae, Dirihlet Problem, Boundary Behaviour.0 IntrodutionOne lassial way to onstrut minimal surfaes in R3 is to see them as thegraph of a funtion u over a domain 
 � R2 (see for example the paper ofH. Karher [8℄). The graph of a funtion u is a minimal surfae if u satis�esthe ellipti partial di�erential equation alled the minimal surfaes equation:div rup1 + jruj2! = 0 (MSE)The problem whih is assoiated to this point of view is the Dirihletproblem for the equation (MSE): for a domain 
 and a funtion f on �
,this problem onsits in �nding a ontinuous funtion u on 
 whih is asolution of the minimal surfaes equation in 
 and suh that u = f on theboundary of 
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for bounded domain has been given by H. Jenkins and J. Serrin in [7℄. Theygive a nie ondition on the domain to solve for any funtion f ; moreover,their result allows us to give in�nite value for the boundary data f . Forunbounded domain, the Dirihlet problem is still an open problem. Weknow that, in the general ase, we lose the uniqueness of solution. In thispaper, using a new approah, we develop some tools for the study of thisproblem.An other interesting and still open problem onerning minimal surfaesis the Plateau problem at in�nity whih is the following: �nding a minimalsurfae for a given asymptoti behaviour. More preisely, we know that, if aomplete minimal surfae has �nite total urvature and embedded ends, eahend of this minimal surfae is asymptoti to a plane or to a half-atenoid;besides, we an assoiate to eah end a vetor in R3 , this vetor is alledthe ux vetor of the end. These vetors satisfy the following ondition: thesum of the ux vetors over all ends is zero. So the problem is: given a�nite number of vetors suh that their sum is zero, an we �nd a minimalsurfae whih has these vetors as ux vetors? Our answer omes from thefollowing idea: seeing a solution of the Plateau problem at in�nity as theonjugate surfae of a solution of the Dirihlet problem on an unboundeddomain.In [2℄, C. Cos��n and A. Ros give a desription of the spae of solutionsof the Plateau problem at in�nity with an asymptoti behaviour whih issymmetri with respet to an horizontal plane (i.e. all the ux vetorsare horizontal). They also restrit themselves to the ase of Alexandrovembedded minimal surfaes; this ondition implies that no ux vetor is zeroand that there is a natural order on the ends of the surfae. Sine the uxvetors are horizontal and their sum is zero, these vetors draw a polygonin R2 . C. Cos��n and A. Ros give a neessary and suÆient ondition on thispolygon to have a solution. See setion 4, for more explanations about theirwork.In this paper, we give a more onstrutive proof of the result of C. Cos��nand A. Ros. Our method is based on the Dirihlet problem on an unbounded\domain" 
. When the polygon given by the ux vetors is onvex, 
 anbe de�ned as the polygonal domain bounded by the ux polygon to whihwe glue a half-strip on eah edge. We note L+i and L�i+1 the two sides ofeah half-strip Si, alternating the sign + and � suh that eah vertex ofthe polygon is ommon to some L�i and L+i . When the ux polygon is non-onvex and satis�es the ondition of C. Cos��n and A. Ros, we need to use theonept of mutli-domain for de�ning 
 (see De�nition 1 for this onept).Our main result for the Dirihlet problem for this kind of domain 
 is2



then (see Theorem 6):There exists a solution u of the minimal surfaes equation on 
 suhthat u tends to +1 on L+i and �1 on L�i . Besides, the solution is uniqueup to an additive onstantThe funtion u in this result is build as the limit of solutions of the Dirihletproblem on bounded domain. We desribe the possible divergenes thatan our for a sequene of solutions of (MSE). In fat, we prove that ifthe sequene diverges at a point, it must diverge along a line passing bythis point. This result is a generalization of the results that H. Jenkins andJ. Serrin use in [7℄. Our result allows us to do the same disussion thatH. Jenkins and J. Serrin made in the partiular ase of monotone sequenesof solutions of (MSE); this is our main tools to prove the existene part ofTheorem 6.The solution to the Plateau problem at in�nity is then the onjugatesurfae to the graph of u. In order to know the geometry of the onjugatesurfae along its boundary, we need to understand the behaviour of thegraph in the neighborhood of the verties of 
 whih are the verties of thepolygon. Some results are known for suh problem onerning the Dirihletproblem in the onvex ase. For example, onsider f a data on the boundaryof a domain 
, we suppose that f has a �nite disontinuity at a point Pwhere the boundary is onvex (i.e. we suppose that f(Q) has a limit ifwe tend to P by the right hand side or by the left hand side and that thedi�erene of these two limits is �nite), then we know that the graph of asolution u over 
 of the Dirihlet problem with f as boundary value, hasa vertial segment over P in its boundary, it was proved in [10℄. In ourase, we an prove that the boundary of the graph is the vertial straightline passing by the vertex ; although the domain is loally an angular setorthat not need to be onvex and the boundary data takes the values +1 onone side of the setor and �1 on the other side.The paper is organized as follows; in the �rst setion, we de�ne multi-domains and extend the result of H. Jenkins and J. Serrin to boundedmulti-domains. The multi-domains are neessary to express the onditionof C. Cos��n and A. Ros. This result will be our �rst tool in the proof of ourmain theorem.The seond setion is devoted to the proof of our result onerning theboundary behaviour of solutions of the Dirihlet problem.In setion 3, we study the sequenes of solutions of (MSE) and de�nethe lines of divergene. 3



In setion 4, we explain the result of C. Cos��n and A. Ros, and reallsome elements of their proof. In the last setion, we give the proof of ourmain result. We then use it to give a new proof of the result of C. Cos��nand A. Ros.Let us �x some notations. In the following, when u is a funtion on adomain of R2 we shall note W =p1 + jruj2. We shall also use the lassialfollowing notations for partial derivatives: p = �u�x , q = �u�y , r = �2u�x2 ,s = �2u�x�y and t = �2u�y2 . Besides, for the graph of u, we shall always hosethe downward pointing normal to give an orientation to the graph.1 The Dirihlet problem on multi-domainsIn this setion, we shall give a generalization of the results of H. Jenkins andJ. Serrin [7℄ for the Dirihlet problem on bounded domain. First we have togeneralize the notion of domain of R2 . Let us onsider a pair (
; ') where 
is a simply-onneted 2-dimensional omplete at manifold with pieewisesmooth boundary and ' : 
 �! R2 is a loal isometry. The map ' is alledthe developing map and the points where the boundary �
 are not smoothare alled verties.De�nition 1. A pair (
; '), where 
 is a simply-onneted 2-dimensionalomplete at manifold with pieewise smooth boundary and ' : 
 �! R2is a loal isometry, is a multi-domain if eah onneted omponent of thesmooth part of �
 is a onvex ar.If (
; ') is as above and a part of �
 is linear then we add two vertiesat the end points of this linear part and we all this new part an edge.Let (
; ') be a multi-domain, if u is a smooth funtion on 
 we shall allgraph of u the surfae in R3 given by f('(x); u(x))gx2
 . If u is a solution ofthe minimal surfaes equation (MSE), the graph of u is a minimal surfae ofR3 . The Dirihlet problem on multi-domain onsists in the determination ofa funtion u satisfying the equation (MSE) on 
 and taking on assignatedvalues on the boundary of 
.As in the ase of a domain in R2 , if u is a solution of (MSE) on 
, we ande�ne a di�erential form d	u on 
 whih orresponds to the di�erential ofthe third oordinate of the onjugate surfae of the graph of u. In using theharts given by the developing map ', we have d	u = pW dy � qW dx. d	u4



is a losed form by (MSE) and, sine 
 is simply onneted, we an de�nea funtion 	u on 
 whih is 1-Lipshitz ontinuous, we all this funtionthe onjugate funtion to u. One important result onerning d	u is thefollowing lemma.Lemma 1. Let 
 be a domain bounded in part by a straight segment T ,oriented suh that the right hand normal to T is the outer normal to 
. Letu be a solution of (MSE) in 
 whih assumes the boundary value +1 onT . Then ZT d	u = jT jThis is Lemma 4 in [7℄. For other properties of 	u and d	u, we refer tothis paper.When 
 is ompat there is a �nite number of onneted omponents ofthe smooth part of �
; let us all them C1; : : : ; Cn. When the data on theboundary is bounded, we have this result:Theorem 1. Let (
; ') be a ompat multi-domain with boundary arsC1; : : : ; Cn and let u1; : : : ; un be bounded ontinuous funtions respetivelyon C1; : : : ; Cn. Then there exists a unique solution u of the minimal surfaesequation on 
 suh that ujCi = ui.Proof. The proof of the uniqueness is a partiular ase of the proof of The-orem 2, so we make it later.The existene of the solution on multi-domain is due to a Perron proess,let us reall some elements of this method. If v is a ontinuous funtion on
 and D is a disk in 
, we note by uv;D the solution of (MSE) in D whihtakes the value v on �D. We also noteMD[v℄ the ontinuous funtion whihoinides with v on 
nD and uv;D on D. Let u1; : : : ; un be the data on theboundary of 
; we say that v is a sub-solution of the Dirihlet problem ifv � ui on Ci and v �MD[v℄ for all disks D in 
. Sine the ui are boundedby a onstant M , the lass F of all sub-solutions is non-empty: the onstantfuntion �M is in; besides, eah sub-solution v veri�es v � M . So we ande�ne a funtion u by: 8P 2 
 u(P ) = supv2F v(P ) (1)By standard argument, we an show that u is a solution of (MSE). Sinein our de�nition of multi-domain we suppose that the boundary is loallyonvex, there exist barrier funtions on the boundary (they are onstrutedin using the Sherk surfae). So we an insure that u takes the value ui5



on Ci. For more details on Perron proess, we an refer to the book ofD. Gilbarg and N.S. Trudinger [4℄ or the one of R. Courant and D. Hilbert[3℄ whih illustrate this method for the lassial Laplaian Dirihlet problem,there is also the book of J. C. C. Nitshe [10℄ whih studies the ase of theminimal surfaes equation.The work of H. Jenkins and J. Serrin is to allow in�nite data on theboundary. By the Straight Line Lemma [7℄, we know that in�nite data anonly be allowed on linear parts of the boundary.De�nition 2. Let (
; ') be a multi-domain, a polygonal domain P of 
is a onneted ompat subset of 
 suh that (P; ') is a multi-domain, theboundary of P is only omposed of edges and the verties of P are drawnfrom the verties of 
.We want to solve the Dirihlet problem with in�nite data so let us allA1; : : : ; Ak and B1; : : : ; Bl the edges of 
 suh that we assign the value +1on Aj and �1 on Bj . We all C1; : : : ; Cn the remaining ars on whih weassign ontinuous data.Let P be a polygonal domain of 
. We note, respetively, � and � thetotal length of the edges Aj and the one of the edges Bj whih belong tothe boundary of P and we note  the perimeter of P. We then have thefollowing generalization of the result of H. Jenkins and J. Serrin.Theorem 2. Let (
; ') be a ompat multi-domain with the families fAjg,fBjg and fCjg as above.If the familly fCjg is non-empty, then there exists a solution of theminimal surfae equation in 
 whih assumes the value +1 on eah Aj,the value �1 on eah Bj and arbitrarily assignated ontinuous data oneah Cj, if and only if 2� <  and 2� <  (�)for eah polygonal domain P of 
. If a solution exists, it is unique.If the familly fCjg is empty, then a solution exists, if and only if� = �when P oinides with 
 and (�) holds for all other polygonal domains of
. In this ase, if a solution exists, it is unique up to an additive onstant.Proof. To prove the existene of a solution, we an use the same argumentsthan H. Jenkins and J. Serrin, so we refer to [7℄.6



The proof of the uniqueness in [7℄ works also but we give another proofwhih we an apply in other situations. Let u1 and u2 be di�erent solutionsof (MSE) with the same data on the boundary. In the ase where thefamilly (Cj) is empty, we suppose that u1 � u2 is not onstant; besides, inonsidering ui � ui(P ) (where P 2 
), we an assume that fu1 < u2g andfu1 > u2g are non-empty. In hoosing suÆiently small " > 0, we have 
" =fu1 � u2 > "g 6= ;, besides the hoise of " is suh that �
" is regular. Wenote d~	 = d	u1 � d	u2 , sine d~	 is losed, we have Z�
" d~	 = 0. Beauseu1 and u2 have the same data on the boundary, �
" does not interset [jCjso �
" is omposed of three parts: one is inluded in [jAj[[jBj on whihd~	 = 0 (this is a onsequene of Lemma 1), one is inluded in 
 and a lastpart whih is omposed of some verties of 
 but its ontribution to theintegral is zero. On the seond part, let us all it g�
", ru1 � ru2 pointsin 
", this part is then oriented by the non-diret normal to ru1 �ru2 so,by Lemma 2 of P. Collin and R. Krust in [1℄, Zg�
" d~	 < 0; this gives us aontradition.2 A result of regularity at the vertiesThe aim of this setion is to understand what geometrially happens at avertex of a multi-domain where two edges Aj and Bj onverge.For �1 < �2 and R > 0, we onsider:
�2�1(R) = f(r; �)j 0 � r � R; �1 � � � �2gwith the metri ds2 = dr2 + r2d�2 (we identify all the points (0; �) and thispoint will be alled the vertex of 
�2�1(R)). We de�ne also on 
�2�1(R) themap ' : (r; �) 7! (r os �; r sin �). Then (
�2�1(R); ') is a multi-domain, it isa desription of a neighborhood of a vertex where two edges onverge. Weall L(�) the set of points in 
�2�1(R) suh that � = �. We are interested inthe geometrial \on�guration" of the graph of a solution u of (MSE) suhthat u tends to �1 on L(�2) and +1 on L(�1); suh a solution u will bealled a solution of the problem P.The �rst thing we have to do to understand a solution u of the problemP is being able to bound the funtion u on eah radius L(�). Our argumentsare based on the omparison with the Sherk surfae.Let us onsider ABC an isoseles triangle (jABj = jACj = R), we on-sider the solution w of the Dirihlet problem on ABC suh that w = 0 on7



[A;B℄ and [A;C℄ and tends to +1 on [B;C℄; this funtion exists by Theo-rem 2. When ABC is retangle w is the Sherk surfae, after dilatation, wis given by: w(x; y) = h(x; y) = � ln os x+ ln os y (2)In the general ase, the solution w will be alled a pseudo Sherk surfae.We shall use the Sherk surfae to ontrol solutions of the problem P.We �rst onsider the ase where ABC is retangle. In fat, a neighborhoodof B in ABC an be isometrially parametrized by 
0��4 (R) and h is asolution of (MSE) on 
0��4 (R) suh that h = 0 on L(0), +1 on L(��4 ) andsome positive funtion on the third part of the boundary. Sine we have anexpression for h we an see that h is uniformly bounded on 
0�(R) � 
0��4 (R)for every ��4 < � < 0.We do not suppose now that ABC is retangle; but we suppose thatthe angle at the vertex A is greater than �2 . In this ase we an hoosea point A0 suh that A0BC is isoseles and retangle and A0BC ontainsABC. We onsider in ABC the pseudo Sherk surfae w and h the Sherksurfae on A0BC; sine h is positive in A0BC, we have h > w. As above,a neighborhood of B in ABC an be isometrially parametrized by 
0�(R)with � < 0 and w an be seen as the solution of (MSE) on 
0�(R) suh thatw = 0 on L(0), +1 on L(�) and some positive funtion on the third partof the boundary. Sine w < h, w is uniformly bounded on 
0�(R) for every� < � < 0.By our expression for h, there exists m 2 R suh that h � m on [A;B℄and [A;C℄. This proves that h�m � w in ABC. Then in our parametriza-tion of a neighborhood of B, for everyM 2 R there exist � suh that w �Min 
��(R).Lemma 2. Let �1 < �2 and R > 0. We onsider a solution u of the problemP on 
�2�1(R). Then for every �1 < � < �2, there exist M and M 0 in R suhthat u � M in 
�2� (R4 ) and u � M 0 on 
��1(R4 ). For every M 2 R, thereexist � and �0 in ℄�1; �2[ suh that u �M in 
��1(R4 ) and u �M in 
�2�0 (R4 ).Proof. Let us onsider �1 < �2 and R0 > 0. We onsider v the solution ofthe problem P on 
�2�1(R0) suh that v = 0 on the third part of the boundary;v exists beause the hypotheses of Theorem 2 are ful�lled. The isometry of
�2�1(R0) � R de�ned by (r; �; z) 7! (r; �1 + �2 � �;�z) does not hange theboundary data so v is invariant by this isometry beause of the uniquenessof suh a solution. This proves that v = 0 on L(�1+�22 ). Then, by maximum8



priniple, we have v > 0 between L(�1) and L(�1+�22 ) and v < 0 betweenL(�1+�22 ) and L(�2).Let us onsider �1 < � < �2. Let us prove that there exists a onstantM suh that v � M in 
�2� (R02 ). If � � �1+�22 , M = 0 works. We notee� = �1+�22 . We suppose � � e� then we take a suÆiently big n suh thate���n � �4 and e���n � ���1. We note B the vertex of 
�2�1(R0). For k � 2n+1we note �(k) = e� � k e�� �2n and for k � 2n � 1 we note Ak the points ofoordinates (R02 ; �(k)) and Ck the point of seond oordinate �(k + 2) suhthat AkBCk is an isoseles triangle at Ak (see Figure 1). We have v = 0on [B;A0℄ and v is bounded on [A0; C0℄, then, by adding a onstant, wean put a pseudo Sherk surfae above v over A0BC0. This proves that vis upper-bounded in 
�2�(1)(R02 ). Sine v is upper-bounded on [B;A1℄ and[A1; C1℄, we an put a pseudo Sherk surfae above v over A1BC1 then v isbounded on 
�2�(2)(R02 ). We an do this for every k then we obtain that v isuniformly upper-bounded on 
�2� (R02 ).

A2n�1L(�1) L(�)C2n�1

L(�2)
A0A1A2 C0

C2

B

C1
Figure 1:With the same method, we an prove that there exists M 0 suh thatv �M 0 on 
��1(R02 ). 9



Let us now onsider our original problem. We have u and � and we wantto prove the existene of M . We onsider �1 < �0 < �, sine u tends to �1along L(�2), there exists m suh that u � m at all the points of oordinates(R2 ; �) with �0 � � < �2. We onsider on 
�2�0 (R2 ) the solution v that we havestudied above, by maximum priniple, we have u � v +m on 
�2�0 (R2 ). Wethen have the existene of M beause of the result on v. We onstrut M 0in the same way.Let us now onsider u a solution of P and M 2 R. We onsider �1 <� < �2 suh that � � �1 � �4 , we onsider the point A of oordinates (R2 ; �)and C the point on L(�1) suh that ABC is a isoseles triangle (where Bis the vertex of 
�2�1). By what we have just proved, u is lower-bounded on[B;A℄ and [A;C℄ then we an put a pseudo Sherk surfae under u. Theexistene of � is due to the last remark that we made about pseudo SherksurfaesUsing this result, we an prove the following geometrial result.Theorem 3. Let (
; ') be a multi-domain and P a vertex of 
 suh thattwo edges L1 and L2 have P as end point (L1 and L2 are enumerated withrespet to the orientation). Let u be a solution of (MSE) on 
 suh that utends to �1 on L1 and +1 on L2. We onsider 	u the onjugate funtionto u normalized suh that 	u(P ) = 0. Then, if 	u is non-negative in aneighborhood of P , the vertial straight line passing through '(P ) is theboundary of the graph of u above a neighborhood of P .First, we remark that, ifQ is a point on L1 or L2, then 	u(Q) = jPQj � 0by Lemma 1. This proves that, if the angle at P is stritly less than �, thehypothesis on 	u is always veri�ed; so we have the result for a onvex orner.Proof. By a translation and a rotation, we an isometrially parametrizeda neighborhood of P by 
0�(R) for � < 0 and R small enough. Then u anbe seen as a solution of the problem P. We suppose that 	u � 0 in 
0�(R).First partFirst, we prove that there exists M1 2 R suh that '(P )�℄ �1;M1[ isa part of the boundary of the graph. We take ��2 < � < 0, we suppose that� > �2 . Then 
0�(R) � 
0�(R) an be parametrized by eulidean parameters(x; y), in fat 
0�(R) is embedded in R2 . The idea is to see the part of thegraph whih is over 
0�(R) as a graph over the vertial plane given by theequation y = 0. Let R0 < R2 , then for all Q 2 
0�(R0) the nearest point from10



Q on �
 is on L1. If we take R0 small enough and � suh that tan� > �18 ,then every point of 
0�(R0) veri�es the hypothesis of Lemma 1 in [7℄. Thislemma implies that, at every point of 
0�(R0), q = �u�y < 0. Using oureulidean parameters, we note, for (x; y) 2 
0�(R0), �(x; y) = (x; u(x; y)).We have: d� = 0� 1 0�u�x �u�y1ASine q < 0, this proves that � is a loal di�eomorphism. Sine u stritlydereases when y inreases, � is injetive. By Lemma 2, we know that thereexists K 2 R suh that u � K on L(�), we put x1 = R0 os�. We thenhave ℄0; x1[�℄�1;K[� � �
0�(R0)�. We note � = ��1 on ℄0; x1[�℄�1;K[;we then have y = �(2)(x; z) on the graph of u (we note �(2) the seondoordinate funtion of �) then �(2) veri�es (MSE). When x �! 0, wehave y = �(2)(x; z) �! 0, it is due to the shape of 
0�(R0). From Lemma2, there exist � < �0 < 0 and r suh that 
0�0(r) � im�. By results ofboundary regularity, �(2) is regular at the boundary, atually we an extend�(2) by making a reetion with respet to the axis fx = 0; y = 0g. Wenow show that a part of this axis is a part of the boundary of the wholegraph. By lemma 2, there exists M 0 suh that u � M 0 in 
�0� (r). We noteM1 =M 0� 1 < K; then if a sequene of points of the graph of u over 
0�(r)tends to a point of '(P )�℄ �1;M1[, we have (x; y) in im� after a ertainrank. Then the graph of u over im� is a neighborhood of '(P )�℄�1;M1[;as �(2) is regular through the boundary, '(P )�℄ �1;M1[ is a part of theboundary.With the same arguments, we an show that there exists M2 suh that'(P )�℄M2;+1[ is a part of the boundary.Seond partThe �rst part proves that outside a ompat the graph of u has a goodbehaviour above the point '(P ). Now, we prove that we an extend, byreetion, this ompat part through the verial straight line passing by'(P ).From what we have just done, there exist � < �2 < �1 < 0 suh thatthe graph above 
�2� (R) and 
0�1(R) is regular above P . We hoose M1and M2 as in the �rst part suh that ('(P );M1) 2 �Graph(uj
0�1 (R)) and('(P );M2) 2 �Graph(uj
�2� (R)). We shall onstrut a urve � as follow:we start from the point A1 = (0; 0;M1) ((0; 0) = '(P )), we go down11



vertially to the point A2 = (0; 0;M1 � 1), then we go to some pointA3 = (" os �; " sin �;M1 � 1) in following the level urve fu = M1 � 1g(we suppose " small and � > �1), we then follow the urvet 7! (" os t; " sin t; u(" os t; " sin t));we let t dereases to some �0 < �2 suh that u(" os �0; " sin �0) = M2 + 1(we note A4 the end point), following the level urve fu = M2 + 1g wego to the point A5 = (0; 0;M2 + 1) and �nally we go down to the pointA6 = (0; 0;M2). We an smooth � at the points A2; A3; A4 and A5 suhthat A2 and A5 are always in the smooth � and the new � is embedded inthe graph of u. The vertial projetion of � on 
0�(R) bounds a domain e
.We note � the graph of u above e
. Beause of our hoie of �, � extendsin a minimal surfae �0 through � (The only problem is through [A1; A2℄and [A5; A6℄, but the �rst part says us that we an extend � through thesetwo segments by symmetry). Beause � is a graph, � is simply onnetedand its boundary is not empty; the same is true for �0. This remark saysus that we have onformal parametrization h1 : D �! �0 and h2 : D �! �(D is the unit disk). We put eD = h�11 (�) and eh : eD �! D de�ned byeh = h�12 Æ h1; eh is a biholomorphi map. As h�11 (�) is embedded in D,the property of Sh�onies is veri�ed at every point ; by the Carath�eodory'sTheorem, eh extends to an homeomorphism of eD[h�11 (�) into D[V whereV is part of the boundary of D (for all this argument we refer to appendixA). This proves that we an extend h2 in an homeomorphism of D [ Vinto � [ �. Let us onsider f : D �! D� (D� = f(x; y) 2 Dj y < 0g) abiholomorphi map, then f extends to the boundary. Let us onsider thefollowing points on �: A1:5 = (0; 0;M1 � 0:5) and A5:5 = (0; 0;M2 + 0:5).We note X = h2 ÆH Æ f�1 where H is a Moebius transformation of the unitdisk. We note Bi = X�1(Ai) for every i. Then, for a suitable hoie of H,we an have the situation desribed by Figure 2.Let us show that X extends to the whole disk. We shall note x1; x2and x3 the three oordinates of X, this three funtions are harmoni sine� is minimal. First we observe that x1 and x2 tend to 0 when z 2 D�tends to D0 = fz 2 Dj z 2 Rg, this is due to the shape of e
. Then, byShwarz reetion priniple, x1 and x2 extend to D in harmoni funtions.Let us onsider x�3 the harmoni onjugate to x3 on D�, we normalized x�3by x�3(B2) = 0. By our hoie of normalization, for every z 2 D�, we have	u(X(z)) = x�3(z); this proves that x�3 tends to 0 when z tends to D0, wean extend x�3 by reetion to D. By taking the onjugate funtion, wehave proved that x3 extends to D. We then have onstruted a minimal12
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Figure 2:immersion X on D, then � extends through [A1; A6℄. This extention isgiven by the reetion with respet to [A1; A6℄.Third partThe last thing we have to show is that the minimal immersion X hasno branh point. If it has a branh point then it must be on D0, sine, onthe other part, the surfae is a graph and then there is no branh point.Let z0 be a branh point, then rx�3(z0) = 0. Sine x�3 is harmoni, its loalbehaviour is quite similar to the one of <(z � z0)p with p � 2 (in fat,in some holomorphi hart we have x�3(z) = <(z � z0)p). This implies thatthere exists z in D� suh that x�3(z) < 0, but this ontradits our hypothesis	u � 0.We then have proved that there is no branh point so the vertial straightline passing by '(P ) is the boundary of the graph.Remark 1. We an remark that in the �rst two parts we do not use thehypothesis on 	u. So in suh a situation we an always extend the graphby making a reetion with respet to the vertial axis. But what we obtainis a minimal surfae with, may be, a �nite number of branh points on thevertial axis.Remark 2. We an make an other remark. If we onsider a vertex P ,two edges L1 and L2 having P as end point, and u suh that u assumesthe data +1 (or �1) on L1 and L2, the hypothesis on 	u did not have13



any more sense and the angle at the vertex P must be greater than �. Butwe an always apply the two �rst parts of the proof. The only problem isthat we need a result similar to Lemma 2; this is given by Theorem 10.3 in[11℄. So we an aÆrm that on the boundary of the graph of u we have ahalf straight line with a �nite number of branh points. Obviously, we musthave a branh point at the end point of the half straight line.3 Convergene and divergene of sequene of so-lutions of (MSE)In this setion we shall explain what we an say when we have a sequene(un) of solutions of (MSE) about its onvergene: an we make onvergea subsequene by some ompatness result? What are the di�erent waysof divergene? In [7℄, it is shown that for a monotone sequene, it appearslines whih separate domains of onvergene and domains of divergene (thisworks only for subsequene). We shall show that suh lines always appear(Theorem 4).First, we have to determine the domain on whih we an make onvergea sequene, sine eah surfae is a graph, if we want the limit to be a graph,the normal to the surfae needs to stay lose by the vertial unit vetor andthen Wn have to be bounded. We have then the following lemma.Lemma 3. Let 
 be a domain and (un) a sequene of solutions of (MSE)on 
. Let P 2 
; we suppose that Wn(P ) is bounded by a onstant M ; thenthere exists R > 0 whih depends only of M and the distane of P to �
suh that Wn is bounded by 2M on the disk of enter P and radius R.Proof. We �x an index n. We know (see [9℄) that there exists a onstant suh that if u is a solution of (MSE) on the disk f(x; y)j x2 + y2 < R2g wehave: r2(0) + 2s2(0) + t2(0) � R2W 4(0) (3)Let R be suh that 2R = d(P; �
) then, for all Q in D(P;R), the aboveequation gives r2(Q) + 2s2(Q) + t2(Q) � R2W 4(Q). We have rW =(rp+ sqW ; sp+ tqW ), so, in D(P;R), we have jjrW jj � eCW 2 with eC whihdepends only of R. Let z be the funtion suh that z(0) =M and z0 = eCz2,z is de�ned on [0; 1M eC [ by: 1M � 1z = eCr (4)14



Beause of our estimate on jjrW jj, we have, in polar oordinates, W (r; �) �z(r). Then W is bounded by 2M on D(P;min(R; 12M eC )).Let (un) be a sequene of solutions of (MSE) on a domain 
. We thende�ne B(un) as the set of the point Q 2 
 suh that (Wn(Q)) is bounded.Lemma 3 says us that B(un) is an open set and thatWn is uniformly boundedon eah ompat inlued in B(un). Then if D is a onneted omponent ofB(un) and P 2 D there exists an extration � suh that u�(n) � u�(n)(P )onverges uniformly on eah ompat of D to a solution u of (MSE); here,we use some lassial ompatness results (see [9℄). This proves that thedivergene of the sequene is due to the behaviour of the sequene over
nB(un).If P 2 
nB(un), there exists a subsequene un0 suh that Wn0(P ) �!+1. As the normal Nn to the graph at (P; un(P )) is given by:Nn(P ) = � pnWn (P ); qnWn (P );� 1Wn (P )� (5)we an suppose that Nn0(P ) onverges to an horizontal unit vetor. Thefollowing proposition desribes what loally happens.Proposition 1. Let r be positive. Let (un) be a sequene of solutions of(MSE) on the disk D(0; r). We suppose that Nn(0) onverges to (1; 0; 0).Let � 2℄0; 1[, then there exists an extration � suh that N�(n) onverges to(1; 0; 0) at almost every point of f0g � [��r; �r℄.Proof. Let n 2 N, we know (see [11℄ and [7℄) that there exists �n : (x; y) 7!(�; �) with �n(0; 0) = (0; 0) and:d� = �1 + 1 + p2nWn �dx+ pnqnWn dy (6)d� = pnqnWn dx+�1 + 1 + q2nWm �dy (7)We know that �n inreases distane so it is bijetive on its image. Thisimage ontains the disk of enter (0; 0) and radius r. Besides, we knowthat (�; �) are onformal parameters for the graph of un. On the �� diskD(0; r) we then have the Gauss map gn(� + i�) whih orresponds to thestereographi projetion of Nn; gn is holomorphi. We note zn = gn(0),by hypothesis we have zn �! 1. We note z = � + i�; by our hoie of15



normal gn : D(0; r) �! D(0; 1), then there exists hn : D(0; r) �! D(0; 1)holomorphi with hn(0) = 0 suh that:gn(z) = hn(z) + zn1 + znhn(z) (8)Sine zn �! 1, the sequene of holomorphi funtions z 7�! z + zn1 + znzonverges simply to 1 onD(0; 1) and uniformly on the diskD(0; �) for all � <1. But by Shwarz Lemma, we have, for all n 2 N, hn�D(0; �r)� � D(0; �),we then have uniform onvergene of gn to 1 on D(0; �r). In using (5), thisproves that for every ", if n is big enough, we an say that: pnWn � 1 � "and jqnjWn � " in ��1n (D(0; �r)). So to onlude, we need to understand theshape of ��1n (D(0; �r)); we shall see that these sets are onentrating alongthe segment f0g � [��r; �r℄.For all n 2 N, we onsider, in the �� disk, the path n :℄�r; r[�! D(0; r)de�ned by n(0) = 0 and 0n = rynjjrynjj where yn is the seond oordinate of��1n . We have (see [11℄):ryn = �� pnqnJnWn ; Wn + 1 + p2nJnWn � (9)where Jn = det(d�n) =Wn+2+ 1Wn .Beause (5), ryn onverges uniformlyto (0; 1) on the disk D(0; �r) for all � < 1.Let � 2℄0; 1[, we note A� and B� the points in the xy-disk D(0; r) ofrespetive oordinates (0;��r) and (0; �r). In the following, we prove thatZ[A�;B�℄ d	un �! 2�r.Let e� > �, then for n big enough, we have jjrynjj > �e� in D(0; e�r).Beause, for t 2 [�e�r; e�r℄, n(t) 2 D(0; e�r), there exists e�r � tn0 < tn1 � e�rsuh that yn(n(tn0 )) = ��r and yn(n(tn1 )) = �r. Along [tn0 ; tn1 ℄, yn Æ ninreases stritly from ��r to �r, then the path �n = ��1n Æ n on [tn0 ; tn1 ℄an be parametrized by y 2 [��r; �r℄: we have a funtion fn on [��r; �r℄
16



suh that for t 2 [tn0 ; tn1 ℄ xn(n(t)) = fn�yn(n(t))�. We have:jxn Æ n(t)j � ����Z t0 j(xn Æ n)0(u)jdu����� ����Z t0 jjrxnjj(n(u))du���� = �����Z t0 � 1 + q2n(1 +Wn)2� 12 (�n(u))du�����(10)(for the last equality see [11℄), then for n big enough jxn Æ nj on [tn0 ; tn1 ℄an be bounded by a onstant uniformly small; this is due to the fat thatjqnjWn � " for big n. We then have proved that the path �n is lose by thesegment [A�; B�℄ for big n.Let us now alulate Z�n d	un. We have:Z�n pnWndy � qnWndx = Z �r��r � pnWn (fn(y); y)� qnWn (fn(y); y)f 0n(y)� dy (11)We have jf 0n�yn(n(t))�j � jjrxnjjjjrynjj (n(t)) �! 0, the onvergene is uniformso f 0n tends uniformly to 0 on [��r; �r℄. This proves that Z�n d	un �! 2�rLet us onsider the path f�n whih onsists on the segment [A�; B�℄, thenthe segment [B�;�(tn1 )℄, then ��n, then, �nally, the segment [�n(tn0 ); A�℄.Let " > 0, for n big enough, we an suppose that Z�n d	un � 2�r � " and� 1 + q2n(1 +Wn)2� 12 � " on ��1n �D(0; e�r)�. As d	un is losed Zf�n d	un = 0; wethen have:2�r � Z[A�;B�℄ d	un = �Z[B�;�(tn1 )℄ d	un � Z��n d	un � Z[�n(tn0 );A�℄ d	un� Z�n d	un � jxn�(tn1 )�j � jxn�(tn0 )�j� 2�r � "� "jtn1 j � "jtn0 j� 2�r � "(1 + 2e�r) (12)This proves that Z[A�;B�℄ d	un �! 2�r. We have Z[A�;B�℄ d	un =17



Z[A�;B�℄ pnWndy. Beause pnWn � 1, the preeding equalities prove that pnWnonverges to 1 in L1([A�; B�℄). Then there exists an extration � suh thatp�(n)W�(n) onverges simply to 1 at almost every point in [A�; B�℄; thus theproposition is proved.This proposition gives us a loal result and we have the following globalresultTheorem 4. Let (
; ') be a multi-domain. Let (un) be a sequene of solu-tions of (MSE) on 
. Let P 2 
 and N a unit tangent vetor at P , we allD the geodesi of 
 passing at P and normal to N . If the sequene (Nn(P ))onverges to N , then Nn(Q) onverges to N at every point of D.As 
 is loally isometri to R2 , we have allowed us to all N the paralleltransport of N along D.Proof. We �rst get a parametrization of D by ar-length with P as origin-point; then D is parametrized by ℄a; b[, ℄�1; b[; ℄a;+1[ or ℄�1;+1[, weshall suppose that we are in the ase ℄a;+1[ (the other ases are similar).We then onsider the set F of t 2 R�+ suh, if �1 is an extration, thereexists a sub-extration �2 suh that N�2(n)(Q) onverge to N at almostevery Q of the part of D parametrized by ℄a + jajt+ 1 ; t[ (a < 0). Let usprove that F = R�+ . First, we observe that, if t1 2 F and t2 < t1, t2 2 F .From Proposition 1, there exists t > 0 suh that t 2 F . Let t0 = supF andsuppose that t0 < +1. We onsider P1 and P2 the points onD parametrizedby a+ jaj1 + t0 and t0. We hoose R > 0 suh that D(Pi; R) � 
 for i = 1; 2.Let �1 be an extration. Sine t0 = supF , there exist Q1 2 D(P1; R3 ) \D,Q2 2 D(P2; R3 ) \ D and a sub-extration �2 suh that N�2(n) onverges toN at Q1 and Q2. We have D(Qi; 2R3 ) � 
, we then apply Proposition 1 topoints Q1 and Q2 with � = 34 . We then have a sub-extration �3 suh thatN�3 onverges to N at almost every point of D(Qi; R2 ) \D for i = 1; 2; thisproves that t0 is not supF , beause N�3 onverges to N at almost everypoint of the part of D parametrized by an open interval that ontains thesegment [a+ jajt0 + 1 ; t0℄.By a standard diagonal proess, we an then onstrut an extration� suh that N�(n) onverges to N at almost every point of D. Let Q bein D and we onsider N 0 a luster point of the sequene N�(n)(Q), if the18



third oordinate of N 0 is negative then there exists a sub-extration �0 suhthat W�0(n)(Q) is bounded but this is impossible sine, by Lemma 3, W�0(n)would be bounded in a neighborhood of Q and W�(n) diverges at almostevery point of D. Thus the third oordinate of N 0 is 0; if N 0 6= N , applyingwhat we have already proved, it appears a seond geodesi D0 passing byQ normal to N 0 and an extration �0 suh that N�0(n) onverges to N 0 atalmost every point of D0. We parametrized D and D0 by ar-length in usingthe orientation given by the diret normal to N and N 0, we hoose Q asorigin point. Let " > 0; we note A the point on D of oordinate �" and Bthe point on D0 of oordinate ". For " small enough, the triangle AQB isin 
 and then ZAQB d	u�0(n) = 0. We let n tends to +1 and then obtainjACj+ jBCj � jABj whih ontradits the triangle inequality. We then haveproved that N�(n) onverges to N at every point of D. We then have provedthat for every extration � we an onstrut a sub-extration �0 suh thatN�0(n) onverges to N at every point of DTo �nish the proof, we take a point Q in D and suppose that N�(n)(Q)onverge to N 0 with � an extration. Sine N�(n)(P ) �! N , there exists asub-extration �0 suh that N�0(n) onverges to N at every point of D, inpartiular at Q, then N = N 0.Remark 3. We then understand the struture of the omplementary ofB(un), it is a set of geodesis of 
; one of these geodesis will be alled aline of divergene. Then when we have a sequene of solutions of (MSE), theproblem of the onvergene of the sequene is linked to the understandingof: whih lines of divergene are possible? The answer is, in general, givenby the behaviour at the boundary. The existene of suh lines will permitus to use arguments that are similar to the ones used by H. Jenkins andJ. Serrin in [7℄.The behaviour of the normal along a line of divergene says us that thelimit of ZT d	un , where T is a segment of a line of divergene with theorientation given by the limit normal, is jT j. In the following, we shall drawthis limit normal on the �gures to explain our arguments.4 The Plateau problem at in�nityIn this setion, we explain the problem studied by C. Cos��n and A. Ros in[2℄ and give the main results of their paper with some elements of proofs.19



Let M be a omplete minimal surfae with �nite total urvature in R3 ;we know that M is isometri to a ompat Riemann surfae minus a �nitenumber of points (we an refer to [11℄). M then has a �nite number ofannular ends; when these ends are embedded they are asymptoti either toa half-atenoid or to a plane. A properly immersed minimal surfae withr embedded ends will be alled a r-noid. We an assoiate to eah enda vetor whih araterizes the diretion and the growth of the asymptotihalf-atenoid (when the end is asymptoti to a plane this vetor is zero); thisvetor is alled the ux of the end (for a preise de�nition of the ux see[6℄). If v1; : : : ; vr are the uxes at eah end, we have the following balaningondition: v1 + � � �+ vr = 0 (13)This ondition tells us that the total ux of the system vanishes. If v1; : : : ; vrare vetors in R3 suh that (13) is veri�ed and g is a non-negative integer,the Plateau problem at in�nity for these data is to �nd an r-noid of genusg whih has v1; : : : ; vr as uxes at its ends.Let  : M �! R3 be an r-noid. M is onformally equivalent to a om-pat surfae M minus a �nite number of points p1; : : : ; pr. We will say thatM is Alexandrov-embedded ifM bounds a ompat 3-manifold 
 and the im-mersion  extends to a proper loal di�eomorphism f : 
nfp1; : : : ; prg �!R3 . An Alexandrov-embedded surfae has a anonial orientation; we hoosethe Gauss map to be the outward pointing normal. An Alexandrov-embeddedr-noid an not have a planar end (see [2℄). We all Mr the spae ofAlexandrov-embedded r-noids of genus 0 and r horizontal atenoidal ends.We identify two elements inMr whih di�er by a translation. In [2℄, C. Cos��nand A. Ros give a nie desription of the spae Mr.Let  : M �! R3 be a nonat immersion of a onneted orientablesurfae M and � be a plane in R3 , normalized to be fx3 = 0g. We note byS the Eulidiean symmetry with respet to � and onsider the subsets:M+ = fp 2M jx3(p) > 0gM� = fp 2M jx3(p) < 0gM0 = fp 2M jx3(p) = 0gWith these notation we have:De�nition 3. We shall say that M is strongly symmetri with respet to �if 20



� There exists an isometri involution s : M �! M suh that  Æ s =S Æ  .� fp 2M js(p) = pg =M0.� The third oordinate N3 of the Gauss map of M takes positive (resp.negative) values on M+ (resp. M�).In [2℄, C. Cos��n and A. Ros proveProposition 2. Let M be an r-noid with horizontal ends. Then M isstrongly symmetri with respet to an horizontal plane if and only if M isAlexandrov-embedded.We then use the notion of strong symmetry to studyMr; in the following,we always suppose that the plane of strong symmetry is the plane fx3 = 0g.If M 2 Mr, s extends to M = C , the involution s is z 7! 1z and the pointsp1; : : : ; pr are in fz 2 C j jzj = 1g. We then have an order on fp1; : : : ; prg,let us suppose that p1; : : : ; pr are put in this order. Let v1; : : : ; vr be vetorsin R3 suh that 2vi is the ux at the end pi. We have v1 + � � � + vr = 0, soif we draw the vetors onseutively in the plane, we get a piee-wise linearlosed urve: a polygon. We note F (M) this polygon.We say that a polygon V bounds an immersed polygonal disk if thereexists a ompat multi-domain (P; ') suh that �P is only omposed ofedges and '(�P) = V .Then the most important result in [2℄ isTheorem 5. Let v1; : : : ; vr be horizontal vetors suh that v1+ � � �+ vr = 0and V the assoiated polygon, then there exists M 2Mr suh that F (M) =V if, and only if, V bounds an immersed polygonal diskBesides, we have as muh M 2 Mr suh that F (M) = V as immersedpolygonal disks bounded by V . Let V be a polygon and (P; ') a ompatmulti-domain suh that '(P) is an immersed polygonal disk bounded by V .Let P1; : : : ; Pr be the verties of P whih are identi�ed with the ones of V ;we put P1 = Pr+1. Let i 2 f1; : : : ; rg, we an glue to P along [Pi; Pi+1℄ ahalf-strip Si isometri to [Pi; Pi+1℄� R+ . We get a multi-domain whih weall 
(P); the boundary of 
(P) is omposed of 2r half straight-lines, weall L�i (resp. L+i ) the half line in the boundary whih has Pi as end pointand is in Si�1 (resp. Si).Let M be in Mr, we onsider (M+)� the onjugate surfae to M+ forthe outward pointing normal. In [2℄, the authors prove that it exists (P; ')21



a multi-domain bounded by F (M) suh that (M+)� is a graph over themulti-domain 
(P); the normal to the graph is the upward pointing normalby De�nition 3. If u is the funtion on 
(P) that gives (M+)�, they provethat u tends to +1 (resp. �1) on L+i (resp. L�i ). C. Cos��n and A. Rosuse these arguments to prove that if the Plateau problem at in�nity has asolution the ux polygon F (M) bounds an immersed polygonal disk. Forthe other impliation, they prove that the map F :M 7! F (M) is a overingmap to onlude, they use a ompatness argument and prove that the spaeMr has a smooth struture.In the next setion, we shall solve on 
(P) the Dirihlet problem for theboundary data +1 on L+i and �1 on L�i . We shall then take the onjugateof the graph of the solution for the downward pointing normal and so buildthe solution to the Plateau problem at in�nity. The hange of orientationmakes that we get the surfae we want.5 The onstrution of a solution of the Plateauproblem at in�nityThe �rst part of this setion will be devoted to the proof of our main result.Theorem 6. Let V be a polygon wih bounds an immersed polygonal disk(P; '), we de�ne 
(P) as in the preeding setion. Then there exists asolution u of (MSE) on 
(P) suh that u tends to +1 on L+i and �1 onL�i . Besides, the solution is unique up to an additive onstant.Let us �rst onsider u a solution of (MSE) on the half-strip [0; a℄ � R+suh that u tends to �1 on fag�R�+ and +1 on f0g�R�+ . This situationdesribes the behaviour in the r half-strips Si. Then by Lemma 1 in [7℄ wehave: jqjW (x; y) � 1� a2x2 (14)jpjW (x; y) � p2ax (15)when x � 4a. We onsider now the general problem.We begin in proving the uniqueness part of Theorem 6. Let u1 and u2 betwo di�erent solutions of the problem (i.e. u1 � u2 is non-onstant). As inthe proof of Theorem 2, we an suppose that fu1 > u2g and fu1 < u2g arenon-empty. Let us all 
l the subset of 
(P) whih is the union of P and22



the set of points in eah Si that are at a distane less than l from [Pi; Pi+1℄;we de�ne 
+l = 
l \ fu1 > u2g. Let us onsider:I = Z�
+l d~	 (16)where d~	 = d	u1 � d	u2 . Sine d~	 is losed, we have I = 0. �
+l isomposed of a part whih is inluded on �[iL+i ℄�S�[iL�i � where d~	 = 0,a part inluded in the interior of 
(P), noted �l, and a part in Ii;l whih isthe part in Si parametrized by [Pi; Pi+1℄� flg. On the part inluded in Ii;lif l is big enough the integral of d~	 is less than 2p2 jPiPi+1j2l by (15). Wethen have: 0 = I � Z�l d~	+ rXi=1 2p2 jPiPi+1j2l (17)By Lemma 2 in [1℄, Z�l d~	 is negative and dereases as l inreases. Be-ause rXi=1 p2 jPiPi+1j2l ����!l!+1 0, we get a ontradition. This proves that,if u1 and u2 are two solutions of our Dirihlet problem, there exists  2 Rsuh that u1 = u2 + .We now prove the existene of the solution. We �x a point P0 in P. Letus onsider in Si the point Qki whih is the middle point of Ii;k, we thende�ne 
k to be the ompat subdomain of 
(P) bounded by the segments[Pi; Qki ℄ and [Qki ; Pi+1℄. Let Gki be the set of the points Q in 
k suh thatd(Q;Qki ) < d(Pi; Qki ); if k is big enough the sets Gki are disjoint, this provesthat the onditions of Theorem 2 are ful�lled for big k. Then by Theorem 2,we an build a funtion uk on 
k suh that uk tends to �1 (resp. +1) on[Qki ; Pi+1℄ (resp. on [Pi; Qki ℄) and uk(P0) = 0. Following Remark 3 in setion3, we shall prove that this sequene (uk) of solutions of (MSE) has no lineof divergene, then the limit u of (uk) will be our solution. We shall makedisussions that are similar to the ones made by H. Jenkins and J. Serrin.We note d	uk = d	k. We reall that, if T is a segment inluded in a line ofdivergene, ����ZT d	k���� onverge to the length of T for a subsequene.Suppose there exists a line of divergene L. We �rst prove that L annot have an end point in the interior of a L+i or a L�i . Suppose that L hasan end point D in L�i (the same argument works for L+i ). Let A be a pointin L \ Si�1, we orient L by ��!AD, we suppose that the limit normal along L23



points on the right-hand side of L. We hose a point B of L�i on the right-hand side of D. Beause of the triangle inequality, there exists a point C on[A;D℄ suh that jACj+ jDBj > jCDj+ jBAj. for k big enough we have Aand C in 
k we then putDk = [A;D℄\[Pi; Qki�1℄ and Bk = [A;B℄\[Pi; Qki�1℄(see Figure 3).L�i
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A
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Figure 3:Let Tk be the triangle ADkBk with this orientation. We then have:0 = ZTk d	k � Z[A;C℄ d	k � jCDkj+ jDkBkj � jBkAj� Z[A;C℄ d	k � jCDj+ jDkBkj � jBAj (18)But jDkBkj �! jDBj and Z[A;C℄ d	k �! jACj for the subsequene thatmakes L appear; this gives us a ontradition.We have now only a �nite number of possibilities for a line of diver-gene. If it has an end point, it must be one Pi. By onstrution, we haveZ[Pi;Pi+1℄ d	k = 0 (beause the integral of d	k along the triangle PiQki Pi+1is zero and we know d	k along [PiQki ℄ and [Qki Pi+1℄ by Lemma 1) so if � isa urve joining Pi to Pj we have Z� d	k = 0. Then, by passing to the limit,if � is a line of divergene, we obtain jPiPj j = 0 whih is not possible. Thisproves that a line of divergene has at most one end point. Suppose that aline of divergene L has no end point, we are in the situation of Figure 4.24



Let A and B be point on L as in Figure 4 suh that jABj > jPiPi+1j. Wenote D (resp. C) the projetion of A (resp. B) on L�i+1. For k big enoughwe note Ck = [B;C℄ \ [Pi+1; Qki ℄ and Dk = [A;D℄ \ [Pi+1; Qki ℄. We thenhave:0 = ZABCkDk d	k � Z[A;B℄ d	k � jBCkj+ Z[Ck;Dk℄ d	k � jDkAj� Z[A;B℄ d	k � 2jPi; Pi+1j+ jCkDkj (19)We have jCkDkj �! jCDj = jABj and Z[A;B℄ d	k �! jABj for a sub-sequene, so we get a ontradition and a line of divergene must have oneend point.
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Figure 4:Let L be a line of divergene, we know that we are in the ase where Lhas Pi as end point and goes to in�nity in one Sj. By what we have donejust above, we have only one possiblity for the limit normal: we are in thesame situation as in the semi-strip Sj in Figure 4. Then, by hanging L ifneessary, we an suppose that the part of L in Sj is parametrized by fAg�R+ with A 2℄Pj; Pj+1[ and the domain e
 parametrized by [A;Pj+1℄ � R+is in B(uk). Let � be an extration that makes L appear, sine e
 � B(uk),there exists an extration �0 suh that u�0(k) is a subsequene of u�(k) andu�0(k) � u�0(k)(K) (where K 2 e
) onverges to v a solution of (MSE) on e
.25



We shall now prove that v tends to �1 on L�j+1 and +1 on L. LetB 2 [A;Pj+1℄ and C and D be the points whih are respetively parametrizedby (B; ) and (B; d) ( < d). We note:E the projetion of D on L�j+1F the projetion of C on L�j+1G the projetion of D on LH the projetion of C on LWe note also, when k is big enough, Ek = [D;E℄ \ [Pj+1; Qkj ℄ and Fk =[C;F ℄ \ [Pj+1; Qkj ℄. Beause d	k is losed we have:�����Z[C;D℄ d	�0(k) � jF�0(k)E�0(k)j����� � 2jBPj+1j (20)�����Z[C;D℄ d	�0(k) � Z[H;G℄ d	�0(k)����� � 2jBAj (21)Thus, in letting k tends to in�nity, we obtain:�����Z[C;D℄ d	v � jCDj����� � 2jBPj+1j (22)�����Z[C;D℄ d	v � jCDj����� � 2jBAj (23)So we an alulate d	v on L and L�j+1, we remark that d	v has thesame behaviour as if v assumes the boundary values +1 on L and �1 onL�j+1. We prove that this is, in fat, the ase. We onsider now two pointsA1 and A2 on L \ e
 and two points A3 and A4 on L�j+1. There exists asolution v0 of (MSE) on the domain bounded by the polygon A1A2A3A4suh that v0 = v on [A1; A4℄ and [A2; A3℄, v0 tends to +1 on [A1; A2℄ andtends to �1 on [A3; A4℄. Sine we know the value of d	v on [A1; A2℄ and[A3; A4℄, the uniqueness part of the proof of Theorem 2 proves that v = v0.We then have proved that v tends to +1 on L and �1 on L�j+1.We shall now get a ontradition to the existene of the line of divergeneL. We have Z[A;Pj+1℄ d	v = Ze
\Ij;l d	v, then, by (15) and letting l tends to26



in�nity, we get Z[A;Pj+1℄ d	v = 0. If we follow L between Pi and A and thesegment [A;Pj+1℄, we get a path joining Pi to Pj+1. Then we have:0 = Z[Pi;A℄ d	�0(k) + Z[A;Pj+1℄ d	�0(k) (24)Let k tend to in�nity, we get 0 = jPiAj + Z[A;Pj+1℄ d	v = jPiAj; butPi =2 [Pj ; Pj+1℄, this is our ontradition.We then have prove that B(uk) = 
(P), as uk(P0) = 0 for all k thereexists a subsequene uk0 whih onverges to a solution u of (MSE). Thesame arguments that we used just above for v prove that u tends to +1(resp. �1) on L�i (resp. L+i ); we have then established Theorem 6.We are then able to build the solution to the Plateau problem at in�n-ity. Let V be a polygon and (P; ') a polygonal disk bounded by V . Weonsider the solution u of the Dirihlet problen given by Theorem 6. Wenote P1; : : : ; Pr the verties of V , we onsider 	u normalized by 	u(P1) = 0,from the proof above, we have 	u(Pi) = 0 for all i. Then on L+i and L�i wehave 	u(Q) = jQPij; sine 	u is 1-Lipshitz ontinuous, we have 	u(Q) � 0for all Q 2 Si. Suppose that fQ 2 
(P)j 	u(Q) � 0g is not redued tofP1; : : : ; Prg then there exists a point in the interior of P suh that 	u isminimal at this point. But 	u orresponds to x�3, the third oordinate onM� the onjugate surfae to the graph of u; sine x�3 is harmoni on M�, itan not have a minimum in the interior of M�. We then have proved that	u > 0 in the interior of 
(P).By Theorem 3, the boundary of the graph of u is omposed of the rvertial lines over the points '(Pi). Let M be the graph of u with these rvertial lines. We onsider M� the onjugate surfae to M . The boundaryof M� is omposed of r horizontal planar geodesi urves, sine 	u(Pi) = 0for all i the r urves are all in the plane fx3 = 0g. Finally, we onsider � theunion of M� and of its symmetry by fx3 = 0g. The surfae � is a regularminimal surfae, it is omplete and its ux polygon is V by onstrution.By onstrution, we know also that � is strongly symmetri with respet tofx3 = 0g.The last thing we have to prove about � for being sure that it is thesolution of the Plateau problem at in�nity is that it has �nite total urvature.We know (see [11℄) that there exists a onstant  suh that if u is asolution of (MSE) on a domain D and A 2 D, M is the graph of u and d is27



the distane along M of the point in M over A to the boundary of S thenthe urvature K of M at the point over A is bounded by d2W 2(A) .Let us onsider a half-strip S = [0; a℄ � R+ and u a solution of (MSE)on S suh that u takes the value +1 (resp. �1) on f0g � R�+ (resp.fag�R�+). The boundary of the graph of u is over [0; a℄�f0g. We then haveK(x; y) � x2W 2(x; y) . We onsider the part S0 � S suh that x � x0 > 0.For a domain D we note K(D) the total urvature of the graph over D. Wethen have: K(S0) = ZS0 K(x; y)W (x; y)dxdy� ZS0 x2W (x; y)dxdy� Z +1x0 ax2dx = ax0 < +1We now use arguments that are similar to the �rst part of the proof ofTheorem 3. We onsider, for � 2℄0; �2 [,S(�) = f(x; y) 2 Sj a� y � x tan�g. Let us take � suh that tan� < 18 ,then Lemma 1 of [7℄ proves that for every (x; y) 2 S(�) q(x; y) < 0. Wenote L(�) the segment in S(�) suh that a � y = x tan�. By Lemma 2,u is lower-bounded by m1 on L(�) and upper bounded by m2 on the partof L suh that x < x0 < a. We then de�ne � : (x; y) 7! (x; u(x; y)). �is a di�eomorphism of S(�) into its image im�. We de�ne � = ��1 then�(2) is a solution of MSE on im�. We observe that � extends smoothly to�(L). We have �(2)(x; z) tends to a as x tends to 0 so we an extend �(2)by symmetry to im� [ f(x; z) 2 R2 j(�x; z) 2 im�g. To ompute the totalurvature of the graph of u over D(�)\fx < x0g, we use its parametrizationas a graph over im� \ f0 � x � x0g:
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K(D(�) \ fx < x0g) = K(im� \ f0 � x � x0g)= Zim�\f0�x�x0g\fz�m1�1gK(x; z)W (x; z)dxdz+ Zim�\f0�x�x0g\fz�m1�1gK(x; z)W (x; z)dxdz� Zim�\f0�x�x0g\fz�m1�1g (z �m1)2W (x; z)dxdz+ Zim�\f0�x�x0g\fz�m1�1gK(x; z)W (x; z)dxdz� Z +11 x0z2 dz + Cbeause im� \ f0 � x � x0g \ fz � m1 � 1g is ompat< +1We an do the same work for f(x; y) 2 Sj y � x tan�g.We then ontrol the urvature on eah semi-strip Si. There is a last partin 
(P). This part is ompat and by Lemma 2, u is bounded on this part;besides the graph is regular at the boundary. So the graph above this lastpart is a ompat part of the whole graph then it has �nite total urvature.We then have proved that the graphM has �nite total urvature. SineM�is isometri to M , it has �nite total urvature and then � has �nite totalurvature beause it is twie as many as the one of M�.A The Carath�eodory's TheoremIn this setion, we give some explanations on an argument of the proof ofTheorem 3. The problem is: when we have a biholomorphi map betweentwo open sets of C , an we extend it to the boundary?We onsider U an open set inluded in C and P a point of �U . We saythat P has the property of Sh�onies if, for all radii R, there exists a radiusr = r(R) suh that for all two points in U \D(P; r) there exists a path inU \D(P;R) joining these two points.We then have the following theorem that we use in our proof.Theorem 7 (Carath�eodory). Let U be a simply onneted open set in Cand V an open set of the boundary of U . We onsider f : U �! D = fz 229



C j jzj < 1g a biholomorphi map. We suppose that every point of V has theproperty of Sh�onies , then f extends to an homeomorphism from U [ Vinto D [ C where C � �D.A proof of this theorem an be found in [5℄. In our proof, we have toverify the property of Sh�onies at the points of a part of the boundary. Weknow that this part of the boundary is embedded in C so we an build neigh-borhoods of every point of the boundary in using "-tubular neighborhoodof the boundary. These neighborhoods prove that we have the property ofSh�onies.Referenes[1℄ P. Collin and R. Krust, Le probl�eme de Dirihlet pour l'�equationdes surfaes minimales sur des domaines non born�es, Bul. So. Math.Frane. 119 (1991), 443{462.[2℄ C. Cos��n and A. Ros, A Plateau problem at in�nity for properlyimmersed sufaes with �nite total urvature, Indiana Univ. Math. J.50 (2001),847{879.[3℄ R. Courant and D. Hilbert,Methods of Mathematial Physis, Vol.II (Intersiene, 1962).[4℄ D. Gilbarg and N.S. Trudinger, Ellipti Partial Di�erential Equa-tions of Seond Order, 2nd edit. (Springer-Verlag, 1983).[5℄ M. Herv�e, Les Fontions Analytiques (Presses Universitaires deFrane, 1982).[6℄ D. Hoffman and H. Karher, Complete embedded minimal sur-faes of �nite total urvature, Geometry V, Enylopaedia Math. Si. 90(1997) 5{93[7℄ H. Jenkins and J. Serrin, Variational problems of minimal surfaetype II, Arh. Rational Meh. Anal. 21 (1966), 321{342.[8℄ H. Karher, Embedded minimal surfaes derived from Sherk's ex-amples, Manusripta Math. 62 (1988) 83{114[9℄ J.C.C. Nitshe, On new results on the theory of minimal surfaes,Bull. Amer. Math. So. 71 (1965), 195{270.30
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