
The Diri
hlet problem for minimal surfa
esequation and Plateau problem at in�nityLaurent MAZET �Abstra
tIn this paper, we shall study the Diri
hlet problem for the min-imal surfa
es equation. We prove some results about the boundarybehaviour of a solution of this problem. We des
ribe the behaviour ofa non-
onverging sequen
e of solutions in term of lines of divergen
e inthe domain. Using this se
ond result, we build some solutions of theDiri
hlet problem on unbounded domain. We then give a new proof ofthe result of C. Cos��n and A. Ros 
on
erning the Plateau problem atin�nity for horizontal ends.2000 Mathemati
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tionOne 
lassi
al way to 
onstru
t minimal surfa
es in R3 is to see them as thegraph of a fun
tion u over a domain 
 � R2 (see for example the paper ofH. Kar
her [8℄). The graph of a fun
tion u is a minimal surfa
e if u satis�esthe ellipti
 partial di�erential equation 
alled the minimal surfa
es equation:div rup1 + jruj2! = 0 (MSE)The problem whi
h is asso
iated to this point of view is the Diri
hletproblem for the equation (MSE): for a domain 
 and a fun
tion f on �
,this problem 
onsits in �nding a 
ontinuous fun
tion u on 
 whi
h is asolution of the minimal surfa
es equation in 
 and su
h that u = f on theboundary of 
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e; e-mail mazet�pi
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for bounded domain has been given by H. Jenkins and J. Serrin in [7℄. Theygive a ni
e 
ondition on the domain to solve for any fun
tion f ; moreover,their result allows us to give in�nite value for the boundary data f . Forunbounded domain, the Diri
hlet problem is still an open problem. Weknow that, in the general 
ase, we lose the uniqueness of solution. In thispaper, using a new approa
h, we develop some tools for the study of thisproblem.An other interesting and still open problem 
on
erning minimal surfa
esis the Plateau problem at in�nity whi
h is the following: �nding a minimalsurfa
e for a given asymptoti
 behaviour. More pre
isely, we know that, if a
omplete minimal surfa
e has �nite total 
urvature and embedded ends, ea
hend of this minimal surfa
e is asymptoti
 to a plane or to a half-
atenoid;besides, we 
an asso
iate to ea
h end a ve
tor in R3 , this ve
tor is 
alledthe 
ux ve
tor of the end. These ve
tors satisfy the following 
ondition: thesum of the 
ux ve
tors over all ends is zero. So the problem is: given a�nite number of ve
tors su
h that their sum is zero, 
an we �nd a minimalsurfa
e whi
h has these ve
tors as 
ux ve
tors? Our answer 
omes from thefollowing idea: seeing a solution of the Plateau problem at in�nity as the
onjugate surfa
e of a solution of the Diri
hlet problem on an unboundeddomain.In [2℄, C. Cos��n and A. Ros give a des
ription of the spa
e of solutionsof the Plateau problem at in�nity with an asymptoti
 behaviour whi
h issymmetri
 with respe
t to an horizontal plane (i.e. all the 
ux ve
torsare horizontal). They also restri
t themselves to the 
ase of Alexandrovembedded minimal surfa
es; this 
ondition implies that no 
ux ve
tor is zeroand that there is a natural order on the ends of the surfa
e. Sin
e the 
uxve
tors are horizontal and their sum is zero, these ve
tors draw a polygonin R2 . C. Cos��n and A. Ros give a ne
essary and suÆ
ient 
ondition on thispolygon to have a solution. See se
tion 4, for more explanations about theirwork.In this paper, we give a more 
onstru
tive proof of the result of C. Cos��nand A. Ros. Our method is based on the Diri
hlet problem on an unbounded\domain" 
. When the polygon given by the 
ux ve
tors is 
onvex, 
 
anbe de�ned as the polygonal domain bounded by the 
ux polygon to whi
hwe glue a half-strip on ea
h edge. We note L+i and L�i+1 the two sides ofea
h half-strip Si, alternating the sign + and � su
h that ea
h vertex ofthe polygon is 
ommon to some L�i and L+i . When the 
ux polygon is non-
onvex and satis�es the 
ondition of C. Cos��n and A. Ros, we need to use the
on
ept of mutli-domain for de�ning 
 (see De�nition 1 for this 
on
ept).Our main result for the Diri
hlet problem for this kind of domain 
 is2



then (see Theorem 6):There exists a solution u of the minimal surfa
es equation on 
 su
hthat u tends to +1 on L+i and �1 on L�i . Besides, the solution is uniqueup to an additive 
onstantThe fun
tion u in this result is build as the limit of solutions of the Diri
hletproblem on bounded domain. We des
ribe the possible divergen
es that
an o

ur for a sequen
e of solutions of (MSE). In fa
t, we prove that ifthe sequen
e diverges at a point, it must diverge along a line passing bythis point. This result is a generalization of the results that H. Jenkins andJ. Serrin use in [7℄. Our result allows us to do the same dis
ussion thatH. Jenkins and J. Serrin made in the parti
ular 
ase of monotone sequen
esof solutions of (MSE); this is our main tools to prove the existen
e part ofTheorem 6.The solution to the Plateau problem at in�nity is then the 
onjugatesurfa
e to the graph of u. In order to know the geometry of the 
onjugatesurfa
e along its boundary, we need to understand the behaviour of thegraph in the neighborhood of the verti
es of 
 whi
h are the verti
es of thepolygon. Some results are known for su
h problem 
on
erning the Diri
hletproblem in the 
onvex 
ase. For example, 
onsider f a data on the boundaryof a domain 
, we suppose that f has a �nite dis
ontinuity at a point Pwhere the boundary is 
onvex (i.e. we suppose that f(Q) has a limit ifwe tend to P by the right hand side or by the left hand side and that thedi�eren
e of these two limits is �nite), then we know that the graph of asolution u over 
 of the Diri
hlet problem with f as boundary value, hasa verti
al segment over P in its boundary, it was proved in [10℄. In our
ase, we 
an prove that the boundary of the graph is the verti
al straightline passing by the vertex ; although the domain is lo
ally an angular se
torthat not need to be 
onvex and the boundary data takes the values +1 onone side of the se
tor and �1 on the other side.The paper is organized as follows; in the �rst se
tion, we de�ne multi-domains and extend the result of H. Jenkins and J. Serrin to boundedmulti-domains. The multi-domains are ne
essary to express the 
onditionof C. Cos��n and A. Ros. This result will be our �rst tool in the proof of ourmain theorem.The se
ond se
tion is devoted to the proof of our result 
on
erning theboundary behaviour of solutions of the Diri
hlet problem.In se
tion 3, we study the sequen
es of solutions of (MSE) and de�nethe lines of divergen
e. 3



In se
tion 4, we explain the result of C. Cos��n and A. Ros, and re
allsome elements of their proof. In the last se
tion, we give the proof of ourmain result. We then use it to give a new proof of the result of C. Cos��nand A. Ros.Let us �x some notations. In the following, when u is a fun
tion on adomain of R2 we shall note W =p1 + jruj2. We shall also use the 
lassi
alfollowing notations for partial derivatives: p = �u�x , q = �u�y , r = �2u�x2 ,s = �2u�x�y and t = �2u�y2 . Besides, for the graph of u, we shall always 
hosethe downward pointing normal to give an orientation to the graph.1 The Diri
hlet problem on multi-domainsIn this se
tion, we shall give a generalization of the results of H. Jenkins andJ. Serrin [7℄ for the Diri
hlet problem on bounded domain. First we have togeneralize the notion of domain of R2 . Let us 
onsider a pair (
; ') where 
is a simply-
onne
ted 2-dimensional 
omplete 
at manifold with pie
ewisesmooth boundary and ' : 
 �! R2 is a lo
al isometry. The map ' is 
alledthe developing map and the points where the boundary �
 are not smoothare 
alled verti
es.De�nition 1. A pair (
; '), where 
 is a simply-
onne
ted 2-dimensional
omplete 
at manifold with pie
ewise smooth boundary and ' : 
 �! R2is a lo
al isometry, is a multi-domain if ea
h 
onne
ted 
omponent of thesmooth part of �
 is a 
onvex ar
.If (
; ') is as above and a part of �
 is linear then we add two verti
esat the end points of this linear part and we 
all this new part an edge.Let (
; ') be a multi-domain, if u is a smooth fun
tion on 
 we shall 
allgraph of u the surfa
e in R3 given by f('(x); u(x))gx2
 . If u is a solution ofthe minimal surfa
es equation (MSE), the graph of u is a minimal surfa
e ofR3 . The Diri
hlet problem on multi-domain 
onsists in the determination ofa fun
tion u satisfying the equation (MSE) on 
 and taking on assignatedvalues on the boundary of 
.As in the 
ase of a domain in R2 , if u is a solution of (MSE) on 
, we 
ande�ne a di�erential form d	u on 
 whi
h 
orresponds to the di�erential ofthe third 
oordinate of the 
onjugate surfa
e of the graph of u. In using the
harts given by the developing map ', we have d	u = pW dy � qW dx. d	u4



is a 
losed form by (MSE) and, sin
e 
 is simply 
onne
ted, we 
an de�nea fun
tion 	u on 
 whi
h is 1-Lips
hitz 
ontinuous, we 
all this fun
tionthe 
onjugate fun
tion to u. One important result 
on
erning d	u is thefollowing lemma.Lemma 1. Let 
 be a domain bounded in part by a straight segment T ,oriented su
h that the right hand normal to T is the outer normal to 
. Letu be a solution of (MSE) in 
 whi
h assumes the boundary value +1 onT . Then ZT d	u = jT jThis is Lemma 4 in [7℄. For other properties of 	u and d	u, we refer tothis paper.When 
 is 
ompa
t there is a �nite number of 
onne
ted 
omponents ofthe smooth part of �
; let us 
all them C1; : : : ; Cn. When the data on theboundary is bounded, we have this result:Theorem 1. Let (
; ') be a 
ompa
t multi-domain with boundary ar
sC1; : : : ; Cn and let u1; : : : ; un be bounded 
ontinuous fun
tions respe
tivelyon C1; : : : ; Cn. Then there exists a unique solution u of the minimal surfa
esequation on 
 su
h that ujCi = ui.Proof. The proof of the uniqueness is a parti
ular 
ase of the proof of The-orem 2, so we make it later.The existen
e of the solution on multi-domain is due to a Perron pro
ess,let us re
all some elements of this method. If v is a 
ontinuous fun
tion on
 and D is a disk in 
, we note by uv;D the solution of (MSE) in D whi
htakes the value v on �D. We also noteMD[v℄ the 
ontinuous fun
tion whi
h
oin
ides with v on 
nD and uv;D on D. Let u1; : : : ; un be the data on theboundary of 
; we say that v is a sub-solution of the Diri
hlet problem ifv � ui on Ci and v �MD[v℄ for all disks D in 
. Sin
e the ui are boundedby a 
onstant M , the 
lass F of all sub-solutions is non-empty: the 
onstantfun
tion �M is in; besides, ea
h sub-solution v veri�es v � M . So we 
ande�ne a fun
tion u by: 8P 2 
 u(P ) = supv2F v(P ) (1)By standard argument, we 
an show that u is a solution of (MSE). Sin
ein our de�nition of multi-domain we suppose that the boundary is lo
ally
onvex, there exist barrier fun
tions on the boundary (they are 
onstru
tedin using the S
herk surfa
e). So we 
an insure that u takes the value ui5



on Ci. For more details on Perron pro
ess, we 
an refer to the book ofD. Gilbarg and N.S. Trudinger [4℄ or the one of R. Courant and D. Hilbert[3℄ whi
h illustrate this method for the 
lassi
al Lapla
ian Diri
hlet problem,there is also the book of J. C. C. Nits
he [10℄ whi
h studies the 
ase of theminimal surfa
es equation.The work of H. Jenkins and J. Serrin is to allow in�nite data on theboundary. By the Straight Line Lemma [7℄, we know that in�nite data 
anonly be allowed on linear parts of the boundary.De�nition 2. Let (
; ') be a multi-domain, a polygonal domain P of 
is a 
onne
ted 
ompa
t subset of 
 su
h that (P; ') is a multi-domain, theboundary of P is only 
omposed of edges and the verti
es of P are drawnfrom the verti
es of 
.We want to solve the Diri
hlet problem with in�nite data so let us 
allA1; : : : ; Ak and B1; : : : ; Bl the edges of 
 su
h that we assign the value +1on Aj and �1 on Bj . We 
all C1; : : : ; Cn the remaining ar
s on whi
h weassign 
ontinuous data.Let P be a polygonal domain of 
. We note, respe
tively, � and � thetotal length of the edges Aj and the one of the edges Bj whi
h belong tothe boundary of P and we note 
 the perimeter of P. We then have thefollowing generalization of the result of H. Jenkins and J. Serrin.Theorem 2. Let (
; ') be a 
ompa
t multi-domain with the families fAjg,fBjg and fCjg as above.If the familly fCjg is non-empty, then there exists a solution of theminimal surfa
e equation in 
 whi
h assumes the value +1 on ea
h Aj,the value �1 on ea
h Bj and arbitrarily assignated 
ontinuous data onea
h Cj, if and only if 2� < 
 and 2� < 
 (�)for ea
h polygonal domain P of 
. If a solution exists, it is unique.If the familly fCjg is empty, then a solution exists, if and only if� = �when P 
oin
ides with 
 and (�) holds for all other polygonal domains of
. In this 
ase, if a solution exists, it is unique up to an additive 
onstant.Proof. To prove the existen
e of a solution, we 
an use the same argumentsthan H. Jenkins and J. Serrin, so we refer to [7℄.6



The proof of the uniqueness in [7℄ works also but we give another proofwhi
h we 
an apply in other situations. Let u1 and u2 be di�erent solutionsof (MSE) with the same data on the boundary. In the 
ase where thefamilly (Cj) is empty, we suppose that u1 � u2 is not 
onstant; besides, in
onsidering ui � ui(P ) (where P 2 
), we 
an assume that fu1 < u2g andfu1 > u2g are non-empty. In 
hoosing suÆ
iently small " > 0, we have 
" =fu1 � u2 > "g 6= ;, besides the 
hoise of " is su
h that �
" is regular. Wenote d~	 = d	u1 � d	u2 , sin
e d~	 is 
losed, we have Z�
" d~	 = 0. Be
auseu1 and u2 have the same data on the boundary, �
" does not interse
t [jCjso �
" is 
omposed of three parts: one is in
luded in [jAj[[jBj on whi
hd~	 = 0 (this is a 
onsequen
e of Lemma 1), one is in
luded in 
 and a lastpart whi
h is 
omposed of some verti
es of 
 but its 
ontribution to theintegral is zero. On the se
ond part, let us 
all it g�
", ru1 � ru2 pointsin 
", this part is then oriented by the non-dire
t normal to ru1 �ru2 so,by Lemma 2 of P. Collin and R. Krust in [1℄, Zg�
" d~	 < 0; this gives us a
ontradi
tion.2 A result of regularity at the verti
esThe aim of this se
tion is to understand what geometri
ally happens at avertex of a multi-domain where two edges Aj and Bj 
onverge.For �1 < �2 and R > 0, we 
onsider:
�2�1(R) = f(r; �)j 0 � r � R; �1 � � � �2gwith the metri
 ds2 = dr2 + r2d�2 (we identify all the points (0; �) and thispoint will be 
alled the vertex of 
�2�1(R)). We de�ne also on 
�2�1(R) themap ' : (r; �) 7! (r 
os �; r sin �). Then (
�2�1(R); ') is a multi-domain, it isa des
ription of a neighborhood of a vertex where two edges 
onverge. We
all L(�) the set of points in 
�2�1(R) su
h that � = �. We are interested inthe geometri
al \
on�guration" of the graph of a solution u of (MSE) su
hthat u tends to �1 on L(�2) and +1 on L(�1); su
h a solution u will be
alled a solution of the problem P.The �rst thing we have to do to understand a solution u of the problemP is being able to bound the fun
tion u on ea
h radius L(�). Our argumentsare based on the 
omparison with the S
herk surfa
e.Let us 
onsider ABC an isos
eles triangle (jABj = jACj = R), we 
on-sider the solution w of the Diri
hlet problem on ABC su
h that w = 0 on7



[A;B℄ and [A;C℄ and tends to +1 on [B;C℄; this fun
tion exists by Theo-rem 2. When ABC is re
tangle w is the S
herk surfa
e, after dilatation, wis given by: w(x; y) = h(x; y) = � ln 
os x+ ln 
os y (2)In the general 
ase, the solution w will be 
alled a pseudo S
herk surfa
e.We shall use the S
herk surfa
e to 
ontrol solutions of the problem P.We �rst 
onsider the 
ase where ABC is re
tangle. In fa
t, a neighborhoodof B in ABC 
an be isometri
ally parametrized by 
0��4 (R) and h is asolution of (MSE) on 
0��4 (R) su
h that h = 0 on L(0), +1 on L(��4 ) andsome positive fun
tion on the third part of the boundary. Sin
e we have anexpression for h we 
an see that h is uniformly bounded on 
0�(R) � 
0��4 (R)for every ��4 < � < 0.We do not suppose now that ABC is re
tangle; but we suppose thatthe angle at the vertex A is greater than �2 . In this 
ase we 
an 
hoosea point A0 su
h that A0BC is isos
eles and re
tangle and A0BC 
ontainsABC. We 
onsider in ABC the pseudo S
herk surfa
e w and h the S
herksurfa
e on A0BC; sin
e h is positive in A0BC, we have h > w. As above,a neighborhood of B in ABC 
an be isometri
ally parametrized by 
0�(R)with � < 0 and w 
an be seen as the solution of (MSE) on 
0�(R) su
h thatw = 0 on L(0), +1 on L(�) and some positive fun
tion on the third partof the boundary. Sin
e w < h, w is uniformly bounded on 
0�(R) for every� < � < 0.By our expression for h, there exists m 2 R su
h that h � m on [A;B℄and [A;C℄. This proves that h�m � w in ABC. Then in our parametriza-tion of a neighborhood of B, for everyM 2 R there exist � su
h that w �Min 
��(R).Lemma 2. Let �1 < �2 and R > 0. We 
onsider a solution u of the problemP on 
�2�1(R). Then for every �1 < � < �2, there exist M and M 0 in R su
hthat u � M in 
�2� (R4 ) and u � M 0 on 
��1(R4 ). For every M 2 R, thereexist � and �0 in ℄�1; �2[ su
h that u �M in 
��1(R4 ) and u �M in 
�2�0 (R4 ).Proof. Let us 
onsider �1 < �2 and R0 > 0. We 
onsider v the solution ofthe problem P on 
�2�1(R0) su
h that v = 0 on the third part of the boundary;v exists be
ause the hypotheses of Theorem 2 are ful�lled. The isometry of
�2�1(R0) � R de�ned by (r; �; z) 7! (r; �1 + �2 � �;�z) does not 
hange theboundary data so v is invariant by this isometry be
ause of the uniquenessof su
h a solution. This proves that v = 0 on L(�1+�22 ). Then, by maximum8



prin
iple, we have v > 0 between L(�1) and L(�1+�22 ) and v < 0 betweenL(�1+�22 ) and L(�2).Let us 
onsider �1 < � < �2. Let us prove that there exists a 
onstantM su
h that v � M in 
�2� (R02 ). If � � �1+�22 , M = 0 works. We notee� = �1+�22 . We suppose � � e� then we take a suÆ
iently big n su
h thate���n � �4 and e���n � ���1. We note B the vertex of 
�2�1(R0). For k � 2n+1we note �(k) = e� � k e�� �2n and for k � 2n � 1 we note Ak the points of
oordinates (R02 ; �(k)) and Ck the point of se
ond 
oordinate �(k + 2) su
hthat AkBCk is an isos
eles triangle at Ak (see Figure 1). We have v = 0on [B;A0℄ and v is bounded on [A0; C0℄, then, by adding a 
onstant, we
an put a pseudo S
herk surfa
e above v over A0BC0. This proves that vis upper-bounded in 
�2�(1)(R02 ). Sin
e v is upper-bounded on [B;A1℄ and[A1; C1℄, we 
an put a pseudo S
herk surfa
e above v over A1BC1 then v isbounded on 
�2�(2)(R02 ). We 
an do this for every k then we obtain that v isuniformly upper-bounded on 
�2� (R02 ).

A2n�1L(�1) L(�)C2n�1

L(�2)
A0A1A2 C0

C2

B

C1
Figure 1:With the same method, we 
an prove that there exists M 0 su
h thatv �M 0 on 
��1(R02 ). 9



Let us now 
onsider our original problem. We have u and � and we wantto prove the existen
e of M . We 
onsider �1 < �0 < �, sin
e u tends to �1along L(�2), there exists m su
h that u � m at all the points of 
oordinates(R2 ; �) with �0 � � < �2. We 
onsider on 
�2�0 (R2 ) the solution v that we havestudied above, by maximum prin
iple, we have u � v +m on 
�2�0 (R2 ). Wethen have the existen
e of M be
ause of the result on v. We 
onstru
t M 0in the same way.Let us now 
onsider u a solution of P and M 2 R. We 
onsider �1 <� < �2 su
h that � � �1 � �4 , we 
onsider the point A of 
oordinates (R2 ; �)and C the point on L(�1) su
h that ABC is a isos
eles triangle (where Bis the vertex of 
�2�1). By what we have just proved, u is lower-bounded on[B;A℄ and [A;C℄ then we 
an put a pseudo S
herk surfa
e under u. Theexisten
e of � is due to the last remark that we made about pseudo S
herksurfa
esUsing this result, we 
an prove the following geometri
al result.Theorem 3. Let (
; ') be a multi-domain and P a vertex of 
 su
h thattwo edges L1 and L2 have P as end point (L1 and L2 are enumerated withrespe
t to the orientation). Let u be a solution of (MSE) on 
 su
h that utends to �1 on L1 and +1 on L2. We 
onsider 	u the 
onjugate fun
tionto u normalized su
h that 	u(P ) = 0. Then, if 	u is non-negative in aneighborhood of P , the verti
al straight line passing through '(P ) is theboundary of the graph of u above a neighborhood of P .First, we remark that, ifQ is a point on L1 or L2, then 	u(Q) = jPQj � 0by Lemma 1. This proves that, if the angle at P is stri
tly less than �, thehypothesis on 	u is always veri�ed; so we have the result for a 
onvex 
orner.Proof. By a translation and a rotation, we 
an isometri
ally parametrizeda neighborhood of P by 
0�(R) for � < 0 and R small enough. Then u 
anbe seen as a solution of the problem P. We suppose that 	u � 0 in 
0�(R).First partFirst, we prove that there exists M1 2 R su
h that '(P )�℄ �1;M1[ isa part of the boundary of the graph. We take ��2 < � < 0, we suppose that� > �2 . Then 
0�(R) � 
0�(R) 
an be parametrized by eu
lidean parameters(x; y), in fa
t 
0�(R) is embedded in R2 . The idea is to see the part of thegraph whi
h is over 
0�(R) as a graph over the verti
al plane given by theequation y = 0. Let R0 < R2 , then for all Q 2 
0�(R0) the nearest point from10



Q on �
 is on L1. If we take R0 small enough and � su
h that tan� > �18 ,then every point of 
0�(R0) veri�es the hypothesis of Lemma 1 in [7℄. Thislemma implies that, at every point of 
0�(R0), q = �u�y < 0. Using oureu
lidean parameters, we note, for (x; y) 2 
0�(R0), �(x; y) = (x; u(x; y)).We have: d� = 0� 1 0�u�x �u�y1ASin
e q < 0, this proves that � is a lo
al di�eomorphism. Sin
e u stri
tlyde
reases when y in
reases, � is inje
tive. By Lemma 2, we know that thereexists K 2 R su
h that u � K on L(�), we put x1 = R0 
os�. We thenhave ℄0; x1[�℄�1;K[� � �
0�(R0)�. We note � = ��1 on ℄0; x1[�℄�1;K[;we then have y = �(2)(x; z) on the graph of u (we note �(2) the se
ond
oordinate fun
tion of �) then �(2) veri�es (MSE). When x �! 0, wehave y = �(2)(x; z) �! 0, it is due to the shape of 
0�(R0). From Lemma2, there exist � < �0 < 0 and r su
h that 
0�0(r) � im�. By results ofboundary regularity, �(2) is regular at the boundary, a
tually we 
an extend�(2) by making a re
e
tion with respe
t to the axis fx = 0; y = 0g. Wenow show that a part of this axis is a part of the boundary of the wholegraph. By lemma 2, there exists M 0 su
h that u � M 0 in 
�0� (r). We noteM1 =M 0� 1 < K; then if a sequen
e of points of the graph of u over 
0�(r)tends to a point of '(P )�℄ �1;M1[, we have (x; y) in im� after a 
ertainrank. Then the graph of u over im� is a neighborhood of '(P )�℄�1;M1[;as �(2) is regular through the boundary, '(P )�℄ �1;M1[ is a part of theboundary.With the same arguments, we 
an show that there exists M2 su
h that'(P )�℄M2;+1[ is a part of the boundary.Se
ond partThe �rst part proves that outside a 
ompa
t the graph of u has a goodbehaviour above the point '(P ). Now, we prove that we 
an extend, byre
e
tion, this 
ompa
t part through the veri
al straight line passing by'(P ).From what we have just done, there exist � < �2 < �1 < 0 su
h thatthe graph above 
�2� (R) and 
0�1(R) is regular above P . We 
hoose M1and M2 as in the �rst part su
h that ('(P );M1) 2 �Graph(uj
0�1 (R)) and('(P );M2) 2 �Graph(uj
�2� (R)). We shall 
onstru
t a 
urve � as follow:we start from the point A1 = (0; 0;M1) ((0; 0) = '(P )), we go down11



verti
ally to the point A2 = (0; 0;M1 � 1), then we go to some pointA3 = (" 
os �; " sin �;M1 � 1) in following the level 
urve fu = M1 � 1g(we suppose " small and � > �1), we then follow the 
urvet 7! (" 
os t; " sin t; u(" 
os t; " sin t));we let t de
reases to some �0 < �2 su
h that u(" 
os �0; " sin �0) = M2 + 1(we note A4 the end point), following the level 
urve fu = M2 + 1g wego to the point A5 = (0; 0;M2 + 1) and �nally we go down to the pointA6 = (0; 0;M2). We 
an smooth � at the points A2; A3; A4 and A5 su
hthat A2 and A5 are always in the smooth � and the new � is embedded inthe graph of u. The verti
al proje
tion of � on 
0�(R) bounds a domain e
.We note � the graph of u above e
. Be
ause of our 
hoi
e of �, � extendsin a minimal surfa
e �0 through � (The only problem is through [A1; A2℄and [A5; A6℄, but the �rst part says us that we 
an extend � through thesetwo segments by symmetry). Be
ause � is a graph, � is simply 
onne
tedand its boundary is not empty; the same is true for �0. This remark saysus that we have 
onformal parametrization h1 : D �! �0 and h2 : D �! �(D is the unit disk). We put eD = h�11 (�) and eh : eD �! D de�ned byeh = h�12 Æ h1; eh is a biholomorphi
 map. As h�11 (�) is embedded in D,the property of S
h�on
ies is veri�ed at every point ; by the Carath�eodory'sTheorem, eh extends to an homeomorphism of eD[h�11 (�) into D[V whereV is part of the boundary of D (for all this argument we refer to appendixA). This proves that we 
an extend h2 in an homeomorphism of D [ Vinto � [ �. Let us 
onsider f : D �! D� (D� = f(x; y) 2 Dj y < 0g) abiholomorphi
 map, then f extends to the boundary. Let us 
onsider thefollowing points on �: A1:5 = (0; 0;M1 � 0:5) and A5:5 = (0; 0;M2 + 0:5).We note X = h2 ÆH Æ f�1 where H is a Moebius transformation of the unitdisk. We note Bi = X�1(Ai) for every i. Then, for a suitable 
hoi
e of H,we 
an have the situation des
ribed by Figure 2.Let us show that X extends to the whole disk. We shall note x1; x2and x3 the three 
oordinates of X, this three fun
tions are harmoni
 sin
e� is minimal. First we observe that x1 and x2 tend to 0 when z 2 D�tends to D0 = fz 2 Dj z 2 Rg, this is due to the shape of e
. Then, byS
hwarz re
e
tion prin
iple, x1 and x2 extend to D in harmoni
 fun
tions.Let us 
onsider x�3 the harmoni
 
onjugate to x3 on D�, we normalized x�3by x�3(B2) = 0. By our 
hoi
e of normalization, for every z 2 D�, we have	u(X(z)) = x�3(z); this proves that x�3 tends to 0 when z tends to D0, we
an extend x�3 by re
e
tion to D. By taking the 
onjugate fun
tion, wehave proved that x3 extends to D. We then have 
onstru
ted a minimal12



B1:5B2
B4
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Figure 2:immersion X on D, then � extends through [A1; A6℄. This extention isgiven by the re
e
tion with respe
t to [A1; A6℄.Third partThe last thing we have to show is that the minimal immersion X hasno bran
h point. If it has a bran
h point then it must be on D0, sin
e, onthe other part, the surfa
e is a graph and then there is no bran
h point.Let z0 be a bran
h point, then rx�3(z0) = 0. Sin
e x�3 is harmoni
, its lo
albehaviour is quite similar to the one of <(z � z0)p with p � 2 (in fa
t,in some holomorphi
 
hart we have x�3(z) = <(z � z0)p). This implies thatthere exists z in D� su
h that x�3(z) < 0, but this 
ontradi
ts our hypothesis	u � 0.We then have proved that there is no bran
h point so the verti
al straightline passing by '(P ) is the boundary of the graph.Remark 1. We 
an remark that in the �rst two parts we do not use thehypothesis on 	u. So in su
h a situation we 
an always extend the graphby making a re
e
tion with respe
t to the verti
al axis. But what we obtainis a minimal surfa
e with, may be, a �nite number of bran
h points on theverti
al axis.Remark 2. We 
an make an other remark. If we 
onsider a vertex P ,two edges L1 and L2 having P as end point, and u su
h that u assumesthe data +1 (or �1) on L1 and L2, the hypothesis on 	u did not have13



any more sense and the angle at the vertex P must be greater than �. Butwe 
an always apply the two �rst parts of the proof. The only problem isthat we need a result similar to Lemma 2; this is given by Theorem 10.3 in[11℄. So we 
an aÆrm that on the boundary of the graph of u we have ahalf straight line with a �nite number of bran
h points. Obviously, we musthave a bran
h point at the end point of the half straight line.3 Convergen
e and divergen
e of sequen
e of so-lutions of (MSE)In this se
tion we shall explain what we 
an say when we have a sequen
e(un) of solutions of (MSE) about its 
onvergen
e: 
an we make 
onvergea subsequen
e by some 
ompa
tness result? What are the di�erent waysof divergen
e? In [7℄, it is shown that for a monotone sequen
e, it appearslines whi
h separate domains of 
onvergen
e and domains of divergen
e (thisworks only for subsequen
e). We shall show that su
h lines always appear(Theorem 4).First, we have to determine the domain on whi
h we 
an make 
onvergea sequen
e, sin
e ea
h surfa
e is a graph, if we want the limit to be a graph,the normal to the surfa
e needs to stay 
lose by the verti
al unit ve
tor andthen Wn have to be bounded. We have then the following lemma.Lemma 3. Let 
 be a domain and (un) a sequen
e of solutions of (MSE)on 
. Let P 2 
; we suppose that Wn(P ) is bounded by a 
onstant M ; thenthere exists R > 0 whi
h depends only of M and the distan
e of P to �
su
h that Wn is bounded by 2M on the disk of 
enter P and radius R.Proof. We �x an index n. We know (see [9℄) that there exists a 
onstant 
su
h that if u is a solution of (MSE) on the disk f(x; y)j x2 + y2 < R2g wehave: r2(0) + 2s2(0) + t2(0) � 
R2W 4(0) (3)Let R be su
h that 2R = d(P; �
) then, for all Q in D(P;R), the aboveequation gives r2(Q) + 2s2(Q) + t2(Q) � 
R2W 4(Q). We have rW =(rp+ sqW ; sp+ tqW ), so, in D(P;R), we have jjrW jj � eCW 2 with eC whi
hdepends only of R. Let z be the fun
tion su
h that z(0) =M and z0 = eCz2,z is de�ned on [0; 1M eC [ by: 1M � 1z = eCr (4)14



Be
ause of our estimate on jjrW jj, we have, in polar 
oordinates, W (r; �) �z(r). Then W is bounded by 2M on D(P;min(R; 12M eC )).Let (un) be a sequen
e of solutions of (MSE) on a domain 
. We thende�ne B(un) as the set of the point Q 2 
 su
h that (Wn(Q)) is bounded.Lemma 3 says us that B(un) is an open set and thatWn is uniformly boundedon ea
h 
ompa
t in
lued in B(un). Then if D is a 
onne
ted 
omponent ofB(un) and P 2 D there exists an extra
tion � su
h that u�(n) � u�(n)(P )
onverges uniformly on ea
h 
ompa
t of D to a solution u of (MSE); here,we use some 
lassi
al 
ompa
tness results (see [9℄). This proves that thedivergen
e of the sequen
e is due to the behaviour of the sequen
e over
nB(un).If P 2 
nB(un), there exists a subsequen
e un0 su
h that Wn0(P ) �!+1. As the normal Nn to the graph at (P; un(P )) is given by:Nn(P ) = � pnWn (P ); qnWn (P );� 1Wn (P )� (5)we 
an suppose that Nn0(P ) 
onverges to an horizontal unit ve
tor. Thefollowing proposition des
ribes what lo
ally happens.Proposition 1. Let r be positive. Let (un) be a sequen
e of solutions of(MSE) on the disk D(0; r). We suppose that Nn(0) 
onverges to (1; 0; 0).Let � 2℄0; 1[, then there exists an extra
tion � su
h that N�(n) 
onverges to(1; 0; 0) at almost every point of f0g � [��r; �r℄.Proof. Let n 2 N, we know (see [11℄ and [7℄) that there exists �n : (x; y) 7!(�; �) with �n(0; 0) = (0; 0) and:d� = �1 + 1 + p2nWn �dx+ pnqnWn dy (6)d� = pnqnWn dx+�1 + 1 + q2nWm �dy (7)We know that �n in
reases distan
e so it is bije
tive on its image. Thisimage 
ontains the disk of 
enter (0; 0) and radius r. Besides, we knowthat (�; �) are 
onformal parameters for the graph of un. On the �� diskD(0; r) we then have the Gauss map gn(� + i�) whi
h 
orresponds to thestereographi
 proje
tion of Nn; gn is holomorphi
. We note zn = gn(0),by hypothesis we have zn �! 1. We note z = � + i�; by our 
hoi
e of15



normal gn : D(0; r) �! D(0; 1), then there exists hn : D(0; r) �! D(0; 1)holomorphi
 with hn(0) = 0 su
h that:gn(z) = hn(z) + zn1 + znhn(z) (8)Sin
e zn �! 1, the sequen
e of holomorphi
 fun
tions z 7�! z + zn1 + znz
onverges simply to 1 onD(0; 1) and uniformly on the diskD(0; �) for all � <1. But by S
hwarz Lemma, we have, for all n 2 N, hn�D(0; �r)� � D(0; �),we then have uniform 
onvergen
e of gn to 1 on D(0; �r). In using (5), thisproves that for every ", if n is big enough, we 
an say that: pnWn � 1 � "and jqnjWn � " in ��1n (D(0; �r)). So to 
on
lude, we need to understand theshape of ��1n (D(0; �r)); we shall see that these sets are 
on
entrating alongthe segment f0g � [��r; �r℄.For all n 2 N, we 
onsider, in the �� disk, the path 
n :℄�r; r[�! D(0; r)de�ned by 
n(0) = 0 and 
0n = rynjjrynjj where yn is the se
ond 
oordinate of��1n . We have (see [11℄):ryn = �� pnqnJnWn ; Wn + 1 + p2nJnWn � (9)where Jn = det(d�n) =Wn+2+ 1Wn .Be
ause (5), ryn 
onverges uniformlyto (0; 1) on the disk D(0; �r) for all � < 1.Let � 2℄0; 1[, we note A� and B� the points in the xy-disk D(0; r) ofrespe
tive 
oordinates (0;��r) and (0; �r). In the following, we prove thatZ[A�;B�℄ d	un �! 2�r.Let e� > �, then for n big enough, we have jjrynjj > �e� in D(0; e�r).Be
ause, for t 2 [�e�r; e�r℄, 
n(t) 2 D(0; e�r), there exists e�r � tn0 < tn1 � e�rsu
h that yn(
n(tn0 )) = ��r and yn(
n(tn1 )) = �r. Along [tn0 ; tn1 ℄, yn Æ 
nin
reases stri
tly from ��r to �r, then the path �n = ��1n Æ 
n on [tn0 ; tn1 ℄
an be parametrized by y 2 [��r; �r℄: we have a fun
tion fn on [��r; �r℄
16



su
h that for t 2 [tn0 ; tn1 ℄ xn(
n(t)) = fn�yn(
n(t))�. We have:jxn Æ 
n(t)j � ����Z t0 j(xn Æ 
n)0(u)jdu����� ����Z t0 jjrxnjj(
n(u))du���� = �����Z t0 � 1 + q2n(1 +Wn)2� 12 (�n(u))du�����(10)(for the last equality see [11℄), then for n big enough jxn Æ 
nj on [tn0 ; tn1 ℄
an be bounded by a 
onstant uniformly small; this is due to the fa
t thatjqnjWn � " for big n. We then have proved that the path �n is 
lose by thesegment [A�; B�℄ for big n.Let us now 
al
ulate Z�n d	un. We have:Z�n pnWndy � qnWndx = Z �r��r � pnWn (fn(y); y)� qnWn (fn(y); y)f 0n(y)� dy (11)We have jf 0n�yn(
n(t))�j � jjrxnjjjjrynjj (
n(t)) �! 0, the 
onvergen
e is uniformso f 0n tends uniformly to 0 on [��r; �r℄. This proves that Z�n d	un �! 2�rLet us 
onsider the path f�n whi
h 
onsists on the segment [A�; B�℄, thenthe segment [B�;�(tn1 )℄, then ��n, then, �nally, the segment [�n(tn0 ); A�℄.Let " > 0, for n big enough, we 
an suppose that Z�n d	un � 2�r � " and� 1 + q2n(1 +Wn)2� 12 � " on ��1n �D(0; e�r)�. As d	un is 
losed Zf�n d	un = 0; wethen have:2�r � Z[A�;B�℄ d	un = �Z[B�;�(tn1 )℄ d	un � Z��n d	un � Z[�n(tn0 );A�℄ d	un� Z�n d	un � jxn�
(tn1 )�j � jxn�
(tn0 )�j� 2�r � "� "jtn1 j � "jtn0 j� 2�r � "(1 + 2e�r) (12)This proves that Z[A�;B�℄ d	un �! 2�r. We have Z[A�;B�℄ d	un =17



Z[A�;B�℄ pnWndy. Be
ause pnWn � 1, the pre
eding equalities prove that pnWn
onverges to 1 in L1([A�; B�℄). Then there exists an extra
tion � su
h thatp�(n)W�(n) 
onverges simply to 1 at almost every point in [A�; B�℄; thus theproposition is proved.This proposition gives us a lo
al result and we have the following globalresultTheorem 4. Let (
; ') be a multi-domain. Let (un) be a sequen
e of solu-tions of (MSE) on 
. Let P 2 
 and N a unit tangent ve
tor at P , we 
allD the geodesi
 of 
 passing at P and normal to N . If the sequen
e (Nn(P ))
onverges to N , then Nn(Q) 
onverges to N at every point of D.As 
 is lo
ally isometri
 to R2 , we have allowed us to 
all N the paralleltransport of N along D.Proof. We �rst get a parametrization of D by ar
-length with P as origin-point; then D is parametrized by ℄a; b[, ℄�1; b[; ℄a;+1[ or ℄�1;+1[, weshall suppose that we are in the 
ase ℄a;+1[ (the other 
ases are similar).We then 
onsider the set F of t 2 R�+ su
h, if �1 is an extra
tion, thereexists a sub-extra
tion �2 su
h that N�2(n)(Q) 
onverge to N at almostevery Q of the part of D parametrized by ℄a + jajt+ 1 ; t[ (a < 0). Let usprove that F = R�+ . First, we observe that, if t1 2 F and t2 < t1, t2 2 F .From Proposition 1, there exists t > 0 su
h that t 2 F . Let t0 = supF andsuppose that t0 < +1. We 
onsider P1 and P2 the points onD parametrizedby a+ jaj1 + t0 and t0. We 
hoose R > 0 su
h that D(Pi; R) � 
 for i = 1; 2.Let �1 be an extra
tion. Sin
e t0 = supF , there exist Q1 2 D(P1; R3 ) \D,Q2 2 D(P2; R3 ) \ D and a sub-extra
tion �2 su
h that N�2(n) 
onverges toN at Q1 and Q2. We have D(Qi; 2R3 ) � 
, we then apply Proposition 1 topoints Q1 and Q2 with � = 34 . We then have a sub-extra
tion �3 su
h thatN�3 
onverges to N at almost every point of D(Qi; R2 ) \D for i = 1; 2; thisproves that t0 is not supF , be
ause N�3 
onverges to N at almost everypoint of the part of D parametrized by an open interval that 
ontains thesegment [a+ jajt0 + 1 ; t0℄.By a standard diagonal pro
ess, we 
an then 
onstru
t an extra
tion� su
h that N�(n) 
onverges to N at almost every point of D. Let Q bein D and we 
onsider N 0 a 
luster point of the sequen
e N�(n)(Q), if the18



third 
oordinate of N 0 is negative then there exists a sub-extra
tion �0 su
hthat W�0(n)(Q) is bounded but this is impossible sin
e, by Lemma 3, W�0(n)would be bounded in a neighborhood of Q and W�(n) diverges at almostevery point of D. Thus the third 
oordinate of N 0 is 0; if N 0 6= N , applyingwhat we have already proved, it appears a se
ond geodesi
 D0 passing byQ normal to N 0 and an extra
tion �0 su
h that N�0(n) 
onverges to N 0 atalmost every point of D0. We parametrized D and D0 by ar
-length in usingthe orientation given by the dire
t normal to N and N 0, we 
hoose Q asorigin point. Let " > 0; we note A the point on D of 
oordinate �" and Bthe point on D0 of 
oordinate ". For " small enough, the triangle AQB isin 
 and then ZAQB d	u�0(n) = 0. We let n tends to +1 and then obtainjACj+ jBCj � jABj whi
h 
ontradi
ts the triangle inequality. We then haveproved that N�(n) 
onverges to N at every point of D. We then have provedthat for every extra
tion � we 
an 
onstru
t a sub-extra
tion �0 su
h thatN�0(n) 
onverges to N at every point of DTo �nish the proof, we take a point Q in D and suppose that N�(n)(Q)
onverge to N 0 with � an extra
tion. Sin
e N�(n)(P ) �! N , there exists asub-extra
tion �0 su
h that N�0(n) 
onverges to N at every point of D, inparti
ular at Q, then N = N 0.Remark 3. We then understand the stru
ture of the 
omplementary ofB(un), it is a set of geodesi
s of 
; one of these geodesi
s will be 
alled aline of divergen
e. Then when we have a sequen
e of solutions of (MSE), theproblem of the 
onvergen
e of the sequen
e is linked to the understandingof: whi
h lines of divergen
e are possible? The answer is, in general, givenby the behaviour at the boundary. The existen
e of su
h lines will permitus to use arguments that are similar to the ones used by H. Jenkins andJ. Serrin in [7℄.The behaviour of the normal along a line of divergen
e says us that thelimit of ZT d	un , where T is a segment of a line of divergen
e with theorientation given by the limit normal, is jT j. In the following, we shall drawthis limit normal on the �gures to explain our arguments.4 The Plateau problem at in�nityIn this se
tion, we explain the problem studied by C. Cos��n and A. Ros in[2℄ and give the main results of their paper with some elements of proofs.19



Let M be a 
omplete minimal surfa
e with �nite total 
urvature in R3 ;we know that M is isometri
 to a 
ompa
t Riemann surfa
e minus a �nitenumber of points (we 
an refer to [11℄). M then has a �nite number ofannular ends; when these ends are embedded they are asymptoti
 either toa half-
atenoid or to a plane. A properly immersed minimal surfa
e withr embedded ends will be 
alled a r-noid. We 
an asso
iate to ea
h enda ve
tor whi
h 
ara
terizes the dire
tion and the growth of the asymptoti
half-
atenoid (when the end is asymptoti
 to a plane this ve
tor is zero); thisve
tor is 
alled the 
ux of the end (for a pre
ise de�nition of the 
ux see[6℄). If v1; : : : ; vr are the 
uxes at ea
h end, we have the following balan
ing
ondition: v1 + � � �+ vr = 0 (13)This 
ondition tells us that the total 
ux of the system vanishes. If v1; : : : ; vrare ve
tors in R3 su
h that (13) is veri�ed and g is a non-negative integer,the Plateau problem at in�nity for these data is to �nd an r-noid of genusg whi
h has v1; : : : ; vr as 
uxes at its ends.Let  : M �! R3 be an r-noid. M is 
onformally equivalent to a 
om-pa
t surfa
e M minus a �nite number of points p1; : : : ; pr. We will say thatM is Alexandrov-embedded ifM bounds a 
ompa
t 3-manifold 
 and the im-mersion  extends to a proper lo
al di�eomorphism f : 
nfp1; : : : ; prg �!R3 . An Alexandrov-embedded surfa
e has a 
anoni
al orientation; we 
hoosethe Gauss map to be the outward pointing normal. An Alexandrov-embeddedr-noid 
an not have a planar end (see [2℄). We 
all Mr the spa
e ofAlexandrov-embedded r-noids of genus 0 and r horizontal 
atenoidal ends.We identify two elements inMr whi
h di�er by a translation. In [2℄, C. Cos��nand A. Ros give a ni
e des
ription of the spa
e Mr.Let  : M �! R3 be a non
at immersion of a 
onne
ted orientablesurfa
e M and � be a plane in R3 , normalized to be fx3 = 0g. We note byS the Eu
lidiean symmetry with respe
t to � and 
onsider the subsets:M+ = fp 2M jx3(p) > 0gM� = fp 2M jx3(p) < 0gM0 = fp 2M jx3(p) = 0gWith these notation we have:De�nition 3. We shall say that M is strongly symmetri
 with respe
t to �if 20



� There exists an isometri
 involution s : M �! M su
h that  Æ s =S Æ  .� fp 2M js(p) = pg =M0.� The third 
oordinate N3 of the Gauss map of M takes positive (resp.negative) values on M+ (resp. M�).In [2℄, C. Cos��n and A. Ros proveProposition 2. Let M be an r-noid with horizontal ends. Then M isstrongly symmetri
 with respe
t to an horizontal plane if and only if M isAlexandrov-embedded.We then use the notion of strong symmetry to studyMr; in the following,we always suppose that the plane of strong symmetry is the plane fx3 = 0g.If M 2 Mr, s extends to M = C , the involution s is z 7! 1z and the pointsp1; : : : ; pr are in fz 2 C j jzj = 1g. We then have an order on fp1; : : : ; prg,let us suppose that p1; : : : ; pr are put in this order. Let v1; : : : ; vr be ve
torsin R3 su
h that 2vi is the 
ux at the end pi. We have v1 + � � � + vr = 0, soif we draw the ve
tors 
onse
utively in the plane, we get a pie
e-wise linear
losed 
urve: a polygon. We note F (M) this polygon.We say that a polygon V bounds an immersed polygonal disk if thereexists a 
ompa
t multi-domain (P; ') su
h that �P is only 
omposed ofedges and '(�P) = V .Then the most important result in [2℄ isTheorem 5. Let v1; : : : ; vr be horizontal ve
tors su
h that v1+ � � �+ vr = 0and V the asso
iated polygon, then there exists M 2Mr su
h that F (M) =V if, and only if, V bounds an immersed polygonal diskBesides, we have as mu
h M 2 Mr su
h that F (M) = V as immersedpolygonal disks bounded by V . Let V be a polygon and (P; ') a 
ompa
tmulti-domain su
h that '(P) is an immersed polygonal disk bounded by V .Let P1; : : : ; Pr be the verti
es of P whi
h are identi�ed with the ones of V ;we put P1 = Pr+1. Let i 2 f1; : : : ; rg, we 
an glue to P along [Pi; Pi+1℄ ahalf-strip Si isometri
 to [Pi; Pi+1℄� R+ . We get a multi-domain whi
h we
all 
(P); the boundary of 
(P) is 
omposed of 2r half straight-lines, we
all L�i (resp. L+i ) the half line in the boundary whi
h has Pi as end pointand is in Si�1 (resp. Si).Let M be in Mr, we 
onsider (M+)� the 
onjugate surfa
e to M+ forthe outward pointing normal. In [2℄, the authors prove that it exists (P; ')21



a multi-domain bounded by F (M) su
h that (M+)� is a graph over themulti-domain 
(P); the normal to the graph is the upward pointing normalby De�nition 3. If u is the fun
tion on 
(P) that gives (M+)�, they provethat u tends to +1 (resp. �1) on L+i (resp. L�i ). C. Cos��n and A. Rosuse these arguments to prove that if the Plateau problem at in�nity has asolution the 
ux polygon F (M) bounds an immersed polygonal disk. Forthe other impli
ation, they prove that the map F :M 7! F (M) is a 
overingmap to 
on
lude, they use a 
ompa
tness argument and prove that the spa
eMr has a smooth stru
ture.In the next se
tion, we shall solve on 
(P) the Diri
hlet problem for theboundary data +1 on L+i and �1 on L�i . We shall then take the 
onjugateof the graph of the solution for the downward pointing normal and so buildthe solution to the Plateau problem at in�nity. The 
hange of orientationmakes that we get the surfa
e we want.5 The 
onstru
tion of a solution of the Plateauproblem at in�nityThe �rst part of this se
tion will be devoted to the proof of our main result.Theorem 6. Let V be a polygon wi
h bounds an immersed polygonal disk(P; '), we de�ne 
(P) as in the pre
eding se
tion. Then there exists asolution u of (MSE) on 
(P) su
h that u tends to +1 on L+i and �1 onL�i . Besides, the solution is unique up to an additive 
onstant.Let us �rst 
onsider u a solution of (MSE) on the half-strip [0; a℄ � R+su
h that u tends to �1 on fag�R�+ and +1 on f0g�R�+ . This situationdes
ribes the behaviour in the r half-strips Si. Then by Lemma 1 in [7℄ wehave: jqjW (x; y) � 1� a2x2 (14)jpjW (x; y) � p2ax (15)when x � 4a. We 
onsider now the general problem.We begin in proving the uniqueness part of Theorem 6. Let u1 and u2 betwo di�erent solutions of the problem (i.e. u1 � u2 is non-
onstant). As inthe proof of Theorem 2, we 
an suppose that fu1 > u2g and fu1 < u2g arenon-empty. Let us 
all 
l the subset of 
(P) whi
h is the union of P and22



the set of points in ea
h Si that are at a distan
e less than l from [Pi; Pi+1℄;we de�ne 
+l = 
l \ fu1 > u2g. Let us 
onsider:I = Z�
+l d~	 (16)where d~	 = d	u1 � d	u2 . Sin
e d~	 is 
losed, we have I = 0. �
+l is
omposed of a part whi
h is in
luded on �[iL+i ℄�S�[iL�i � where d~	 = 0,a part in
luded in the interior of 
(P), noted �l, and a part in Ii;l whi
h isthe part in Si parametrized by [Pi; Pi+1℄� flg. On the part in
luded in Ii;lif l is big enough the integral of d~	 is less than 2p2 jPiPi+1j2l by (15). Wethen have: 0 = I � Z�l d~	+ rXi=1 2p2 jPiPi+1j2l (17)By Lemma 2 in [1℄, Z�l d~	 is negative and de
reases as l in
reases. Be-
ause rXi=1 p2 jPiPi+1j2l ����!l!+1 0, we get a 
ontradi
tion. This proves that,if u1 and u2 are two solutions of our Diri
hlet problem, there exists 
 2 Rsu
h that u1 = u2 + 
.We now prove the existen
e of the solution. We �x a point P0 in P. Letus 
onsider in Si the point Qki whi
h is the middle point of Ii;k, we thende�ne 
k to be the 
ompa
t subdomain of 
(P) bounded by the segments[Pi; Qki ℄ and [Qki ; Pi+1℄. Let Gki be the set of the points Q in 
k su
h thatd(Q;Qki ) < d(Pi; Qki ); if k is big enough the sets Gki are disjoint, this provesthat the 
onditions of Theorem 2 are ful�lled for big k. Then by Theorem 2,we 
an build a fun
tion uk on 
k su
h that uk tends to �1 (resp. +1) on[Qki ; Pi+1℄ (resp. on [Pi; Qki ℄) and uk(P0) = 0. Following Remark 3 in se
tion3, we shall prove that this sequen
e (uk) of solutions of (MSE) has no lineof divergen
e, then the limit u of (uk) will be our solution. We shall makedis
ussions that are similar to the ones made by H. Jenkins and J. Serrin.We note d	uk = d	k. We re
all that, if T is a segment in
luded in a line ofdivergen
e, ����ZT d	k���� 
onverge to the length of T for a subsequen
e.Suppose there exists a line of divergen
e L. We �rst prove that L 
annot have an end point in the interior of a L+i or a L�i . Suppose that L hasan end point D in L�i (the same argument works for L+i ). Let A be a pointin L \ Si�1, we orient L by ��!AD, we suppose that the limit normal along L23



points on the right-hand side of L. We 
hose a point B of L�i on the right-hand side of D. Be
ause of the triangle inequality, there exists a point C on[A;D℄ su
h that jACj+ jDBj > jCDj+ jBAj. for k big enough we have Aand C in 
k we then putDk = [A;D℄\[Pi; Qki�1℄ and Bk = [A;B℄\[Pi; Qki�1℄(see Figure 3).L�i
L

A
D BDk BkC

Pi

Figure 3:Let Tk be the triangle ADkBk with this orientation. We then have:0 = ZTk d	k � Z[A;C℄ d	k � jCDkj+ jDkBkj � jBkAj� Z[A;C℄ d	k � jCDj+ jDkBkj � jBAj (18)But jDkBkj �! jDBj and Z[A;C℄ d	k �! jACj for the subsequen
e thatmakes L appear; this gives us a 
ontradi
tion.We have now only a �nite number of possibilities for a line of diver-gen
e. If it has an end point, it must be one Pi. By 
onstru
tion, we haveZ[Pi;Pi+1℄ d	k = 0 (be
ause the integral of d	k along the triangle PiQki Pi+1is zero and we know d	k along [PiQki ℄ and [Qki Pi+1℄ by Lemma 1) so if � isa 
urve joining Pi to Pj we have Z� d	k = 0. Then, by passing to the limit,if � is a line of divergen
e, we obtain jPiPj j = 0 whi
h is not possible. Thisproves that a line of divergen
e has at most one end point. Suppose that aline of divergen
e L has no end point, we are in the situation of Figure 4.24



Let A and B be point on L as in Figure 4 su
h that jABj > jPiPi+1j. Wenote D (resp. C) the proje
tion of A (resp. B) on L�i+1. For k big enoughwe note Ck = [B;C℄ \ [Pi+1; Qki ℄ and Dk = [A;D℄ \ [Pi+1; Qki ℄. We thenhave:0 = ZABCkDk d	k � Z[A;B℄ d	k � jBCkj+ Z[Ck;Dk℄ d	k � jDkAj� Z[A;B℄ d	k � 2jPi; Pi+1j+ jCkDkj (19)We have jCkDkj �! jCDj = jABj and Z[A;B℄ d	k �! jABj for a sub-sequen
e, so we get a 
ontradi
tion and a line of divergen
e must have oneend point.
Pi

Pi+1
Pj+1
Pj L A

C
B

D

Figure 4:Let L be a line of divergen
e, we know that we are in the 
ase where Lhas Pi as end point and goes to in�nity in one Sj. By what we have donejust above, we have only one possiblity for the limit normal: we are in thesame situation as in the semi-strip Sj in Figure 4. Then, by 
hanging L ifne
essary, we 
an suppose that the part of L in Sj is parametrized by fAg�R+ with A 2℄Pj; Pj+1[ and the domain e
 parametrized by [A;Pj+1℄ � R+is in B(uk). Let � be an extra
tion that makes L appear, sin
e e
 � B(uk),there exists an extra
tion �0 su
h that u�0(k) is a subsequen
e of u�(k) andu�0(k) � u�0(k)(K) (where K 2 e
) 
onverges to v a solution of (MSE) on e
.25



We shall now prove that v tends to �1 on L�j+1 and +1 on L. LetB 2 [A;Pj+1℄ and C and D be the points whi
h are respe
tively parametrizedby (B; 
) and (B; d) (
 < d). We note:E the proje
tion of D on L�j+1F the proje
tion of C on L�j+1G the proje
tion of D on LH the proje
tion of C on LWe note also, when k is big enough, Ek = [D;E℄ \ [Pj+1; Qkj ℄ and Fk =[C;F ℄ \ [Pj+1; Qkj ℄. Be
ause d	k is 
losed we have:�����Z[C;D℄ d	�0(k) � jF�0(k)E�0(k)j����� � 2jBPj+1j (20)�����Z[C;D℄ d	�0(k) � Z[H;G℄ d	�0(k)����� � 2jBAj (21)Thus, in letting k tends to in�nity, we obtain:�����Z[C;D℄ d	v � jCDj����� � 2jBPj+1j (22)�����Z[C;D℄ d	v � jCDj����� � 2jBAj (23)So we 
an 
al
ulate d	v on L and L�j+1, we remark that d	v has thesame behaviour as if v assumes the boundary values +1 on L and �1 onL�j+1. We prove that this is, in fa
t, the 
ase. We 
onsider now two pointsA1 and A2 on L \ e
 and two points A3 and A4 on L�j+1. There exists asolution v0 of (MSE) on the domain bounded by the polygon A1A2A3A4su
h that v0 = v on [A1; A4℄ and [A2; A3℄, v0 tends to +1 on [A1; A2℄ andtends to �1 on [A3; A4℄. Sin
e we know the value of d	v on [A1; A2℄ and[A3; A4℄, the uniqueness part of the proof of Theorem 2 proves that v = v0.We then have proved that v tends to +1 on L and �1 on L�j+1.We shall now get a 
ontradi
tion to the existen
e of the line of divergen
eL. We have Z[A;Pj+1℄ d	v = Ze
\Ij;l d	v, then, by (15) and letting l tends to26



in�nity, we get Z[A;Pj+1℄ d	v = 0. If we follow L between Pi and A and thesegment [A;Pj+1℄, we get a path joining Pi to Pj+1. Then we have:0 = Z[Pi;A℄ d	�0(k) + Z[A;Pj+1℄ d	�0(k) (24)Let k tend to in�nity, we get 0 = jPiAj + Z[A;Pj+1℄ d	v = jPiAj; butPi =2 [Pj ; Pj+1℄, this is our 
ontradi
tion.We then have prove that B(uk) = 
(P), as uk(P0) = 0 for all k thereexists a subsequen
e uk0 whi
h 
onverges to a solution u of (MSE). Thesame arguments that we used just above for v prove that u tends to +1(resp. �1) on L�i (resp. L+i ); we have then established Theorem 6.We are then able to build the solution to the Plateau problem at in�n-ity. Let V be a polygon and (P; ') a polygonal disk bounded by V . We
onsider the solution u of the Diri
hlet problen given by Theorem 6. Wenote P1; : : : ; Pr the verti
es of V , we 
onsider 	u normalized by 	u(P1) = 0,from the proof above, we have 	u(Pi) = 0 for all i. Then on L+i and L�i wehave 	u(Q) = jQPij; sin
e 	u is 1-Lips
hitz 
ontinuous, we have 	u(Q) � 0for all Q 2 Si. Suppose that fQ 2 
(P)j 	u(Q) � 0g is not redu
ed tofP1; : : : ; Prg then there exists a point in the interior of P su
h that 	u isminimal at this point. But 	u 
orresponds to x�3, the third 
oordinate onM� the 
onjugate surfa
e to the graph of u; sin
e x�3 is harmoni
 on M�, it
an not have a minimum in the interior of M�. We then have proved that	u > 0 in the interior of 
(P).By Theorem 3, the boundary of the graph of u is 
omposed of the rverti
al lines over the points '(Pi). Let M be the graph of u with these rverti
al lines. We 
onsider M� the 
onjugate surfa
e to M . The boundaryof M� is 
omposed of r horizontal planar geodesi
 
urves, sin
e 	u(Pi) = 0for all i the r 
urves are all in the plane fx3 = 0g. Finally, we 
onsider � theunion of M� and of its symmetry by fx3 = 0g. The surfa
e � is a regularminimal surfa
e, it is 
omplete and its 
ux polygon is V by 
onstru
tion.By 
onstru
tion, we know also that � is strongly symmetri
 with respe
t tofx3 = 0g.The last thing we have to prove about � for being sure that it is thesolution of the Plateau problem at in�nity is that it has �nite total 
urvature.We know (see [11℄) that there exists a 
onstant 
 su
h that if u is asolution of (MSE) on a domain D and A 2 D, M is the graph of u and d is27



the distan
e along M of the point in M over A to the boundary of S thenthe 
urvature K of M at the point over A is bounded by 
d2W 2(A) .Let us 
onsider a half-strip S = [0; a℄ � R+ and u a solution of (MSE)on S su
h that u takes the value +1 (resp. �1) on f0g � R�+ (resp.fag�R�+). The boundary of the graph of u is over [0; a℄�f0g. We then haveK(x; y) � 
x2W 2(x; y) . We 
onsider the part S0 � S su
h that x � x0 > 0.For a domain D we note K(D) the total 
urvature of the graph over D. Wethen have: K(S0) = ZS0 K(x; y)W (x; y)dxdy� ZS0 
x2W (x; y)dxdy� Z +1x0 
ax2dx = 
ax0 < +1We now use arguments that are similar to the �rst part of the proof ofTheorem 3. We 
onsider, for � 2℄0; �2 [,S(�) = f(x; y) 2 Sj a� y � x tan�g. Let us take � su
h that tan� < 18 ,then Lemma 1 of [7℄ proves that for every (x; y) 2 S(�) q(x; y) < 0. Wenote L(�) the segment in S(�) su
h that a � y = x tan�. By Lemma 2,u is lower-bounded by m1 on L(�) and upper bounded by m2 on the partof L su
h that x < x0 < a. We then de�ne � : (x; y) 7! (x; u(x; y)). �is a di�eomorphism of S(�) into its image im�. We de�ne � = ��1 then�(2) is a solution of MSE on im�. We observe that � extends smoothly to�(L). We have �(2)(x; z) tends to a as x tends to 0 so we 
an extend �(2)by symmetry to im� [ f(x; z) 2 R2 j(�x; z) 2 im�g. To 
ompute the total
urvature of the graph of u over D(�)\fx < x0g, we use its parametrizationas a graph over im� \ f0 � x � x0g:
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K(D(�) \ fx < x0g) = K(im� \ f0 � x � x0g)= Zim�\f0�x�x0g\fz�m1�1gK(x; z)W (x; z)dxdz+ Zim�\f0�x�x0g\fz�m1�1gK(x; z)W (x; z)dxdz� Zim�\f0�x�x0g\fz�m1�1g 
(z �m1)2W (x; z)dxdz+ Zim�\f0�x�x0g\fz�m1�1gK(x; z)W (x; z)dxdz� Z +11 
x0z2 dz + Cbe
ause im� \ f0 � x � x0g \ fz � m1 � 1g is 
ompa
t< +1We 
an do the same work for f(x; y) 2 Sj y � x tan�g.We then 
ontrol the 
urvature on ea
h semi-strip Si. There is a last partin 
(P). This part is 
ompa
t and by Lemma 2, u is bounded on this part;besides the graph is regular at the boundary. So the graph above this lastpart is a 
ompa
t part of the whole graph then it has �nite total 
urvature.We then have proved that the graphM has �nite total 
urvature. Sin
eM�is isometri
 to M , it has �nite total 
urvature and then � has �nite total
urvature be
ause it is twi
e as many as the one of M�.A The Carath�eodory's TheoremIn this se
tion, we give some explanations on an argument of the proof ofTheorem 3. The problem is: when we have a biholomorphi
 map betweentwo open sets of C , 
an we extend it to the boundary?We 
onsider U an open set in
luded in C and P a point of �U . We saythat P has the property of S
h�on
ies if, for all radii R, there exists a radiusr = r(R) su
h that for all two points in U \D(P; r) there exists a path inU \D(P;R) joining these two points.We then have the following theorem that we use in our proof.Theorem 7 (Carath�eodory). Let U be a simply 
onne
ted open set in Cand V an open set of the boundary of U . We 
onsider f : U �! D = fz 229



C j jzj < 1g a biholomorphi
 map. We suppose that every point of V has theproperty of S
h�on
ies , then f extends to an homeomorphism from U [ Vinto D [ C where C � �D.A proof of this theorem 
an be found in [5℄. In our proof, we have toverify the property of S
h�on
ies at the points of a part of the boundary. Weknow that this part of the boundary is embedded in C so we 
an build neigh-borhoods of every point of the boundary in using "-tubular neighborhoodof the boundary. These neighborhoods prove that we have the property ofS
h�on
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