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Abstract. In this paper, we prove that a Riemannian n-manifold M
with sectional curvature bounded above by 1 that contains a minimal
2-sphere of area 4π which has index at least n−2 has constant sectional
curvature 1. The proof uses the construction of ancient mean curvature
flows that flow out of a minimal submanifold. As a consequence we also
prove a rigidity result for the Simon-Smith minimal spheres.

1. Introduction

Let g be a complete Riemannian metric on the 2-sphere S2. If its sectional
curvature is between 0 and 1, it is known that any closed geodesic on (S2, g)
has length at least 2π [20]. Moreover if such a closed geodesic has length
2π, (S2, g) is isometric to the unit 2-sphere S2

1 = {p ∈ R3 | ‖p‖ = 1} with
the induced metric. The proof of this result is given in [2] where the authors
attribute the theorem to E. Calabi.

So a question is what happens in higher dimension. In dimension 3, one
can replace geodesics by minimal 2-sphere. Actually, using Gauss equation
and Gauss-Bonnet theorem, one can prove that, if the sectional curvature
is bounded above by 1, any minimal 2-sphere has area at least 4π (see
computations in Theorem 6 proof). In [15], H. Rosenberg and the author
study the equality case. If (M, g) is a Riemannian 3-manifold with sectional
curvature 0 ≤ K ≤ 1 that contains a minimal 2-sphere of area 4π, they
prove that the universal cover of M is isometric to the unit 3-sphere S3

1 or
the product S2

1 × R.
One purpose of this paper is to investigate generalizations of this result

to higher dimensions. Actually if (M, g) is a Riemannian n-manifold with
sectional curvature K ≤ 1, we still have that the area of a minimal 2-sphere
is at least 4π. So what can be said in the equality case ?

A model of this situation is an equatorial 2-sphere in the unit n-sphere
Sn1 . So one could expect that under some extra hypotheses this is the only
example.

If Σ is a minimal m-submanifold in M , Σ is critical for the volume func-
tional. The stability of this critical point is given by the Jacobi operator
which is a self-adjoint second order elliptic operator that acts on sections of
the normal bundle to Σ. As a critical point, the index of Σ is given by the
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number of negative eigenvalues of this operator. In the case of an equatorial
2-sphere S in Sn1 , the index of S is n− 2.

The first main result of the paper is a rigidity result under such an insta-
bility hypothesis.

Theorem. Let M be a Riemannian n ≥ 3-manifold whose sectional curva-
ture is bounded above by 1. Let us assume that M contains an immersed
minimal 2-sphere of area 4π which has index at least n − 2. Then the uni-
versal cover of M is isometric to the unit sphere Sn1 .

Let us notice that the instability hypothesis can be replaced by an other
version.

Definition 1. Let Σ be a minimal submanifold in (M, g). We say that Σ
is unstable in any parallel directions if the restriction of the Jacobi operator
to any parallel sub-bundle of the normal bundle to Σ has index at least 1.

The above theorem gives an answer to a question that arises from a re-
sult in [2]. In [2, Corollary 5.11], L. Andersson and R. Howard prove that
a Riemannian n-manifold M (n ≤ 3) with sectional curvature below 1 con-
taining isometrically a neighborhood of the equator Sn−1

1 in Sn1 is isometric
to Sn1 . The hypothesis that a whole neighborhood of the equator belongs to
M seems strong and the question is to find a weaker hypothesis. Actually
our main result gives an infinitesimal version of Andersson-Howard result. If
M , with K ≤ 1, contains a totally geodesic hypersurface isometric to Sn−1

1
that is unstable as a minimal hypersurface, then M is isometric to Sn1 . The

idea is that the totally geodesic Sn−1
1 contains a minimal 2-sphere of area 4π

and index at least n− 2. Actually in the same spirit as Andersson-Howard
theorem, there is a result by D. Panov and A. Petrunin [19, Theorem 1.4]
with a weaker hypothesis: if S is an equatorial 2-sphere in Sn1 and S+ de-
notes an hemisphere of S, Panov and Petrunin need just that M contains
isometrically a neighborhood of S+ in Sn1 .

The proof of the main theorem uses ideas that already appear in [15]: if
S is an immersed 2-sphere we define the F functional by F (S) = A(S) +∫
S ‖ ~H‖

2−4π where A(S) is the area of S and ~H is the mean curvature vector
of S. Under the curvature assumption K ≤ 1, F is non-negative. Besides
if F (S) vanishes, S is totally umbilical and we obtain some information on
the sectional curvature of M along S. So if S0 is the minimal 2-sphere given
by the statement of the theorem F (S0) = 0. The idea is to explore the
geometry of M by computing F (St) along a deformation {St}t of S0. One
of the novelties is the construction of the family {St}t. Actually we produce
{St} as a mean curvature flow that flows out of S0. More precisely, we
construct non trivial ancient solutions {St}t∈(−∞,b) of the mean curvature
flow such that, as t→ −∞, St converges to S0.

The idea is that the eigen-sections of the Jacobi operator associated to
the first eigenvalue give directions in which such an ancient mean curvature
flow can be initiated. A similar idea appear in the work of K. Choi and
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C. Mantoulidis [7] where they construct ancient mean curvature flows ”tan-
gent” to the eigenspaces with negative eigenvalues. Then they prove several
uniqueness results for ancient mean curvature flow in Sn1 . An other example
is [17] where A. Mramor and A. Payne produce an eternal solution of the
mean curvature flow that flows out of the catenoid. Let us notice that good
introductions to the study of high codimension mean curvature flow can be
found in the paper of K. Smoczyk [23] and the PhD thesis of C. Baker [3].

In the case of lower bound on the scalar curvature, rigidity theorems
were obtained under the existence of area minimizing surfaces. The first
result in this direction is due to Cai and Galloway [6] for nonnegative scalar
curvature then we have the results by Bray, Brendle, Eichmair and Neves
[4, 5] for positive lower bounds and Nunes [18] for negative lower bounds.

Here the index hypothesis in the above theorem can appear very partic-
ular. Actually there are situations where it is quite natural. As critical
points of the area functional, minimal hypersurfaces can be produced by a
minimization process. However one have to consider a non-trivial class of
hypersurfaces to produce a non-trivial critical point. So in order to solve
this difficulty, a Morse theoretical approach has been developed. In [22],
F. Smith is able to construct minimal 2-spheres in any Riemannian (S3, g).
Its proof is based on the following ideas. Let Λ be the set of paths {σt}t∈[−1,1]

in the space of 2-spheres in S3 that sweeps out S3 (see precise definitions
and statements in Section 5). Then he considers the quantity

W (S3, g) = inf
{σt}∈Λ

max
t∈[−1,1]

A(σt)

called the Simon-Smith width of (S3, g).
First this quantity is positive and Smith proves that it is realized by the

area of a finite collection of minimal spheres. Besides it is reasonable to think
that the index of these collection of minimal spheres is 1. F. C. Marques
and A. Neves [13] proved the upper-bound by 1. So the second main result
of this paper is

Theorem. Let (S3, g) be a Riemannian 3-sphere whose sectional curvature
is bounded above by 1. Then W (S3, g) ≥ 4π and, if W (S3, g) = 4π, then
(S3, g) is isometric to S3

1.

If one knows that W (S3, g) is realized by an index 1 minimal 2-sphere
the above theorem is a direct consequence of our first rigidity result. So the
difficulty is to deal with the case where W (S3, g) is realized by a 2-sphere of
index 0. Actually one can think about the following example: the cylinder

S2
1 × [−1, 1] capped by two hemispheres S3

1
+

(see Figure 1). This defines a
C1,1 Riemannian metric ḡ on S3 whose sectional curvature is bounded above
by 1 in any reasonable weak sense. Its Simon-Smith width is 4π so this
implies that the above result is false for a weak sense of sectional curvature.
Actually the above example is exactly the type of situation we have to
consider in the proof of the above theorem: we prove that the Simon-Smith
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S3
1
+ S2

1 × [0, 1] S3
1
+

Figure 1. a C1,1 Riemannian metric with width 4π

width is realized by a minimal 2-sphere which is not almost stable. Moreover
ḡ can be smoothed to produce sequences (gn) of smooth Riemannian metrics
with sectional curvature bounded above by 1, W (S3, gn)→ 4π and gn → ḡ.
So the gn are far of the round metric of S3

1. This implies that the above
rigidity result is not stable.

The upper bound on the sectional curvature seems to be a strong hypoth-
esis in the above result. However it is not clear if one can expect a similar
result with a weaker upper bound on the curvature tensor.

Let us also notice that studying the Simon-Smith width for reversed cur-
vature inequalities has been done by F. C. Marques and A. Neves. This time
just a control on the Ricci and scalar curvature is assumed.

Theorem (Marques, Neves [12]). Let (S3, g) be a Riemannian 3-sphere with
positive Ricci curvature and scalar curvature R ≥ 6. Then W (S3, g) ≤ 4π
and, if W (S3, g) = 4π, then (S3, g) is isometric to S3

1.

The paper is organized as follows. In Section 2, we recall some basic
formulas and definitions of submanifold geometry. Section 3 is devoted to the
construction of ancient solutions of the mean curvature flow (Theorem 1).
In Section 4, we prove our first rigidity result (Theorem 6) and its Corollary
concerning manifolds containing an equator of Sn1 . Section 5 is devoted to
the study of the Simon-Smith width and the proof of the second rigidity
result (Theorem 8). In Appendix A, we prove a Schauder type estimate
used in the proof of Theorem 1.

The author would like to thank C. Mantoulidis for discussions about his
result and A. Petrunin for pointing him out reference [19]. The author
would like also to thank the anonymous referees for their careful reading of
the paper.

2. Geometry of submanifolds

In this section we recall some classical notations and formulas concerning
the geometry of submanifolds.
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Let (M, g) be a Riemannian manifold of dimension n and Σ a manifold of
dimension m. If F0 : Σ→M is an immersion, we can consider the induced
Riemannian metric g0 = F ∗0 g on Σ making F0 a local isometry. In the paper,
we often identify Σ with its image Σ0 = F0(Σ) at least locally where F0 is an
embedding: for example, we often identify TpΣ with (F0)∗(TpΣ) ⊂ TF0(p)M .

If ∇ and ∇0 are respectively the Levi-Civita connections on M and Σ,
we can define the second fundamental form on Σ by

Bp(v, w) = ∇vw −∇0
vw ∈ NpΣ

where v, w ∈ TpΣ and NpΣ is the normal subspace to Σ at p.
The mean curvature vector of Σ is then

~H(p) =
1

m
trTpΣBp ∈ NpΣ

where trP denotes the trace operator on the subspace P . We define
◦
Bp =

Bp − ~H(p)g0 the traceless part of the second fundamental form. We recall

that the normal bundle NΣ inherits from g and ∇ a normal connection ∇⊥.
Let (Ft)t be a smooth family of immersion of Σ and define the vectorfield

X = d
dtFt|t=0 along F0 and let Σt = Ft(Σ). We have a family of metrics gt =

F ∗t g defined on Σ with associated volume measure dσt. If, X is orthogonal
to Σ, it is well known that, for any function f on Σ:

d

dt |t=0

∫
Σ
fdσgt = −

∫
Σ

(X,m ~H)fdσ0

So if Σ is critical with respect to the m-volume functional A, we have ~H = 0
along Σ: Σ is minimal.

We are interested in understanding how the mean curvature vector ~H is

deformed along the family Ft. So let us denote by ~Ht(p) the mean curvature
vector of Σt at Ft(p).

Lemma 1. If X is normal to Σ, we have

D

dt
m ~Ht|t=0 = ∆⊥X+(R(ei, X)ei)

⊥+(X,B(ei, ej))B(ei, ej)−(m~H0,∇eiX)ei

with the convention that summations are made over repeated indices, (e1, . . . , em)
is an orthonormal frame of Σ0, R is the Riemann curvature tensor associated
to g with the convention R(X,Y )Z = ∇Y∇XZ−∇X∇Y Z+∇[X,Y ]Z and ∆⊥

denotes the Laplacian operator acting on normal sections: ∆⊥X = tr∇⊥2
X.

Proof. Let E1, . . . , Em be an orthonormal frame on (Σ, g0) and consider at
Ft(p) the tangent frame ei = (Ft)∗(Ei) to TΣt. We assume that ∇0

Ei
Ej = 0

for any i, j at p̄ where the computation is made. Let us denote gij = (ei, ej)
and (gij) the inverse matrix. We have

mHt = gij(∇eiej)⊥

where Y ⊥ denotes the orthogonal projection to NΣt. At t = 0, we have
D
dtei = ∇eiX.
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Notice that gij |t=0 = δji , so at t = 0:

d

dt
gij = − d

dt
gij = −(

D

dt
ei, ej)− (ei,

D

dt
ej)

= −(∇eiX, ej)− (ei,∇ejX) = 2(X,B(ei, ej))

Let Y be a vector field along t 7→ Ft(p). We have Y ⊥ = Y − gij(Y, ej)ei,
so at t = 0:

D

dt
Y ⊥ =

(
D

dt
Y

)⊥
+ ((∇eiX, ej) + (ei,∇ejX))(Y, ej)ei

− (Y,
D

dt
ei)ei − (Y, ei)

D

dt
ei

=

(
D

dt
Y

)⊥
+ (∇eiX,Y >)ei + (Y, ej)(∇ejX)>

− (Y,∇eiX)ei − (Y, ei)∇eiX

=

(
D

dt
Y

)⊥
−
∑
i

(Y ⊥,∇eiX)ei − (Y, ei)(∇eiX)⊥

where Z> denotes the tangential part of Z.
We also have

D

dt
∇eiei = R(ei, X)ei +∇ei

D

dt
ei

= R(ei, X)ei +∇ei∇eiX

So combining all the above computations at p̄, we obtain

D

dt
mHt = 2(X,B(ei, ej))B(ei, ej)+(R(ei, X)ei)

⊥+(∇ei∇eiX)⊥−(mH0,∇eiX)ei

Since (∇ei∇eiX)⊥ = ∇⊥ei∇
⊥
eiX − (X,B(ei, ej))B(ei, ej) we finally have

D

dt
mHt = ∆⊥X + (X,B(ei, ej))B(ei, ej) + (R(ei, X)ei)

⊥ − (mH0,∇eiX)ei

�

As a consequence, if Σ0 is minimal, the second derivative of the m-volume
of Σt = Ft(Σ) is given by

d2

dt2
A(Σt)|t=0 = −

∫
Σ

(X,∆⊥X + (X,B(ei, ej))B(ei, ej) + (R(ei, X)ei))dσ0

=

∫
Σ
‖∇⊥X‖2 − (R(ei, X)ei, X)− (X,B(ei, ej))

2dσ2
0

= QΣ(X,X)
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So QΣ is a quadratic form acting on sections of the normal bundle NΣ. It
is attached to the Jacobi operator acting on normal sections:

LX = ∆⊥X + (R(ei, X)ei)
⊥ + (X,B(ei, ej))B(ei, ej)

This operator is elliptic and self-adjoint. It has a spectrum λ0 ≤ λ1 ≤ · · · .
If λ0 < 0, Σ is called unstable. The index of L (the number of negative
eigenvalues) is called the index of Σ.

3. Ancient solutions of the mean curvature flow

3.1. The mean curvature flow. First let us recall some basics of the mean
curvature flow and state our main result. For a good introduction to the
high co-dimension case, one can have a look to Smoczyk’s paper [23].

Let (M, g) be a Riemannian manifold and Σ a m-manifold. Let F :
Σ × I → M (I an interval) be a smooth map such that Ft = F (·, t) is an
immersion for any t. We say that Ft(Σ) evolves by mean curvature flow if
for any p ∈ Σ and t ∈ I

(MCF)
dF

dt
(p, t) = m~H(p, t)

where ~H ∈ TFt(p)M is the mean curvature vector of Ft(Σ) at Ft(p).
For example, if F0(Σ) is a minimal submanifold, then Ft = F0 for t ∈ I

is a solution of the mean curvature flow: minimal submanifolds are fixed
points of the mean curvature flow.

Our aim is to produce solutions that flow out of a minimal surface. More
precisely, we construct non constant ancient solutions of the mean curvature
flow (i.e. defined on a time interval (−∞, b)) such that, as t→ −∞, Ft(Σ)
converges to a minimal surface.

It is well known that one difficulty in the solvability of (MCF) is the in-
variance under the diffeomorphism group which causes a lack of parabolicity
of the system. One solution to this difficulty consists in adding a tangential
component to the time derivative of F which has no impact on the geometric
evolution.

Let us explain such a solution. Let Σ be an immersed closed submanifold
in M . Let NΣ denote the normal bundle to Σ. Then we can consider the
map

Φ :
NΣ −→ M

(p, v) 7−→ expp(v)

For ε > 0, let us denote NΣε = {(p, v) ∈ NΣ | ‖v‖ < ε}. If ε is small
enough, the restriction of Φ to NΣε is an immersion so the metric g can be
lifted to h = Φ∗g on NΣε. Now studying immersed submanifolds close to Σ
consists in looking at sections of NΣε close to 0. Actually one can extend
the Riemannian metric h to the whole NΣ and just look at sections close to
0.

So the general setting we have to consider is the following. Let E be a
vector bundle over a closed manifold Σ and consider g a Riemannian metric
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on the manifold E. We say that E is a normal bundle if the fibers are
orthogonal to Σ0 the image of the 0 section. If E is a normal bundle there
is a natural identification between E and the normal bundle to Σ0. So as a
normal bundle, E inherits a bundle metric g⊥ and a connection ∇⊥.

If U is a section of E, U(Σ) is a submanifold in E. Then sections are
a particular way to parametrize submanifolds in E. Let U be a section
of E and p ∈ Σ. Since U is a section, the tangent space TU(p)E splits as
TpU⊕TU(p)Ep where Ep is the fiber of E over p. Moreover there is a natural

identification of TU(p)Ep with Ep. So for any Y ∈ TU(p)E, one can define Y ]

the projection of Y to Ep parallel to TpU .
With this type of notation, we can define the bundle mean curvature flow

in the following way: let U : Σ×I → E a smooth map such that Ut = U(·, t)
is a section of E, we say that (Ut)t∈I evolves by bundle mean curvature flow
if for any p ∈ Σ and t ∈ I

(1)
dU

dt
(p, t) = (m~H(Ut, p))

]

where ~H ∈ TUt(p)E is the mean curvature vector of the graph of Ut at Ut(p).

( ~H(Ut, p))
] is equal to ~H(Ut, p) plus a tangent vector to Ut(Σ). So solu-

tions to (1) give rise to solutions to the mean curvature flow (MCF) after a
reparametrization.

Let us define the operator H : Γ(E)→ Γ(E) by H(U)(p) = (m~H(Ut, p))
].

H is a smooth quasilinear elliptic differential operator of order 2.
Let us assume E is a normal bundle and Σ0 is minimal, i.e. H(0) = 0.

We can compute the differential of H with respect to U at 0, Lemma 1 gives

DH(0)(V ) = L(V ) = ∆⊥V + (R(ei, V )ei)
⊥ + (V,B(ei, ej))B(ei, ej)

which is an elliptic self-adjoint operator on Γ(E). So L has a discrete spec-
trum λ0 ≤ λ1 ≤ · · · . Let us notice that Σ0 is unstable if λ0 < 0. So the
main theorem of the section is the following

Theorem 1. Let E → Σ be as above. Assume that the first eigenvalue
λ0 of L is negative. Then for any section V in the first eigenspace, i.e.
LV = −λ0V , there is U an ancient solution of (1) defined on (−∞, b) such
that

lim
t→−∞

eλ0tUt = V

One can compare this result with [7, Theorem 1.6 and Theorem 3.3] by
Choi and Mantoulidis. The main difference is that here the ancient solution
is parametrized by its asymptotic as t → −∞ while Choi and Mantoulidis
parametrized it by its value at time t = 0. Moreover this allows them to
obtain a family of flows tangent to the space of negative eigensections.

3.2. The functional spaces. In order to prove the above result we need to
introduce some functional spaces. Following Solonnikov [24], we recall the
definition of the Hölder spaces.
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Let Ω ⊂ Rm be a smooth domain and P = Ω×[a, b]. Then for u : P → RN
and β ∈ (0, 1), we define the Hölder semi-norms

[u]β,P,x = sup
(x,t)6=(y,t)∈P

|u(x, t)− u(y, t)|
|x− y|β

[u]β,P,t = sup
(x,t)6=(x,s)∈P

|u(x, t)− u(x, s)|
|t− s|β

and the uniform norm

‖u‖0,P = sup
X∈P
|u(X)|

For α ∈ (0, 1) we define the combined Hölder semi-norms

[u]2,α,P,x = [∂2
xu]α,P,x + [∂tu]α,P,x

[u]2,α,P,t = [∂xu](1+α)/2,P,t + [∂2
xu]α/2,P,t + [∂tu]α/2,P,t

Finally we have the Hölder norms

‖u‖0,α,P = ‖u‖0,P + [u]α,P,x + [u]α/2,P,t

‖u‖2,α,P =
2∑
i=0

‖∂ixu‖0,P + ‖∂tu‖0,P + [u]2,α,P,x + [u]2,α,P,t

When u is defined on Ω, u does not depend on t so all the terms corre-
sponding to the t variable disappear and we have the specific notations:

|u|0,α,Ω = ‖u‖0,Ω + [u]α,Ω,x

|u|2,α,Ω =

2∑
i=0

‖∂ixu‖0,Ω + [u]2,α,Ω,x

We then have the associated Hölder spaces C0,α(P ), C2,α(P ), C0,α(Ω),
C2,α(Ω) made of applications u such that the above norms are well defined
and finite.

This Hölder spaces can be analogously defined on a closed Riemannian
manifold (Σ, g) and for sections of a vector bundle E over Σ where E is
equipped with a bundle metric h and a metric connection ∇. If I ⊂ R is an
interval, the vector bundle E can be extended as a vector bundle denoted
by EI over Σ × I. So if P = Σ × [a, b] and U : P → E[a,b] is a section, we
can define the Hölder semi-norms

[U ]β,E[a,b],x = sup
(x,t)6=(y,t)∈P
dg(x,y)<ig

|U(x, t)− Py,xU(y, t)|
|x− y|β

[U ]β,E[a,b],t = sup
(x,t)6=(x,s)∈P

|U(x, t)− U(x, s)|
|t− s|β

where ig denotes the injectivity radius of Σ and Py,x is the parallel transport
operator from y to x. Once this is defined we can construct the Hölder norms
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similarly to the Euclidean case. The uniform norm:

‖U‖0,E[a,b]
= sup

X∈P
|U(X)|

For α ∈ (0, 1) we define the combined Hölder semi-norms

[U ]2,α,E[a,b],x = [∇2
xU ]α,E[a,b],x + [∂tU ]α,E[a,b],x

[U ]2,α,E[a,b],t = [∇xU ](1+α)/2,E[a,b],t + [∇2
xU ]α/2,E[a,b],t + [∂tU ]α/2,E[a,b],t

Finally we have the Hölder norms

‖U‖0,α,E[a,b]
= ‖U‖0,E[a,b]

+ [U ]α,E[a,b],x + [U ]α/2,E[a,b],t

‖U‖2,α,E[a,b]
=

2∑
i=0

‖∇ixU‖0,E[a,b]
+ ‖∂tU‖0,E[a,b]

+ [U ]2,α,E[a,b],x + [U ]2,α,E[a,b],t

When U is defined on Σ, we have the specific notations:

|U |0,α,E = ‖U‖0,E + [U ]α,E,x

|U |2,α,E =

2∑
i=0

‖∂ixU‖0,E + [U ]2,α,E,x

We then have the associated Hölder spaces C0,α(E[a,b]), C
2,α(E[a,b]), C

0,α(E),

C2,α(E). In the sequel we will also use the L2 norms ‖·‖L2(E[a,b])
and |·|L2(E).

For a section U defined over Σ× R, we denote Ut(·) = U(·, t).

3.3. Linear operators. If the fiber of E has dimension k, sections of E
can locally be written has maps: u = (ua)1≤a≤k : Ω → Rk. In the sequel,
we consider families (Lt)t of linear differential operators of order 2 acting on
sections of E which in coordinates takes the form

(2) (Ltu)a =
∑

|I|≤2,b≤k

AaIb (x, t)∂Iu
b

where I denote a multi-index and ∂I is the partial derivative associated to
I. Lt will be elliptic in the following sense: there is a constant λ > 0 such
that for any ξ = (ξ1, . . . , ξn) and v = (v1, . . . , vk) we have

n∑
i,j=1

k∑
a,b=1

Aaijb ξiξjvbva ≥ λ|ξ|2|v|2

Moreover we say that Lt has Cα coefficients if the functions AaIb are in
C0,α. We denote by Λ the maximum of the C0,α norms of these coefficients.

An important result for us is the following Schauder estimate for solutions
of parabolic systems associated to such operators Lt

Theorem 2 ([24, Theorem 4.11]). Let Ω′ ⊂ Ω ⊂ Rn be smooth bounded
domains with Ω′ ⊂ Ω. Let P = Ω × [0, T ] and P ′ = Ω′ × [0, T ]. Let Lt be
elliptic differential operators of order 2 as in (2) with Cα coefficients in Ω.
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Then there is a constant C depending on Ω, Ω′, λ, Λ, α and T such that for
any u ∈ C2,α(Ω,Rk) and f ∈ C0,α(P ,Rk) satisfying ∂tu− Ltu = f we have

‖u‖2,α,P ′ ≤ C(‖f‖0,α,P + |u0|2,α,Ω + ‖u‖L2(P ))

where u0(·) = u(·, 0).

Similar estimates can also be found in Friedman’s paper [9].
Using finitely many local charts for a vector bundle E → Σ (Σ is closed),

we can obtain an equivalent version for operators acting on sections of E.

Theorem 3 ([24, Theorem 4.11]). Let E be a vector bundle over a closed
manifold Σ. Let Lt be elliptic differential operators of order 2 as in (2) in
any local charts with Cα coefficients. Then there is a constant C such that,
for any U ∈ C2,α(E[0,T ]) and F ∈ C0,α(E[0,T ]) satisfying ∂tU − LtU = F ,
we have

‖U‖2,α,E[0,T ]
≤ C(‖F‖0,α,E[0,T ]

+ |U0|2,α,E + ‖U‖L2(E[0,T ])
)

A consequence is the following solution to the Cauchy problem

Theorem 4. Let E be a vector bundle over a closed manifold Σ. Let Lt be
elliptic differential operators of order 2 as in (2) in any local charts with Cα

coefficients. Then, for any U0 ∈ C2,α(E) and F ∈ C0,α(E[0,T ]), there is a

unique U ∈ C2,α(E[0,T ]) such that{
∂tU − LtU(·, t) = F (·, t)
U(·, 0) = U0

For a proof see [11, Theorem 2.4].
In Theorem 3, the constant C depends on the length T of the time interval:

actually it is uniformly bounded as T → 0 but not as T → ∞. However
the proof can be adapted in order to obtain the following result where the
constant is time independent. This is important for our arguments.

Proposition 1. Let E be a vector bundle over a closed manifold Σ. Let L
be a time independent elliptic differential operator of order 2 as in (2) in any
local charts with Cα coefficients . Then there is a constant C (independent
of T ) such that for any U ∈ C2,α(E[0,T ]) and F ∈ C0,α(E[0,T ]) satisfying
∂tU − LU = F we have

‖U‖2,α,E[0,T ]
≤ C(‖F‖0,α,E[0,T ]

+ |U0|2,α,E + ‖U‖L2(E[0,T ])
)

See the proof in Appendix A

3.4. The ancient flow. In this section we prove Theorem 1. So E → Σ is
a vector bundle as in Theorem 1 and we use the notations introduced in the
preceding sections. We start by giving a result that ensures the existence of
solutions to (1).
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Theorem 5. Let E → Σ be as above. There is δ0 such that for any δ < δ0

there is ε > 0 such that, for any W ∈ C2,α(E) with |W |2,α,E ≤ ε, there is a
unique solution U ∈ C2,α(E[0,1]) of{

∂tU = H(U)

U(·, 0) = W

with ‖U‖2,α,E[0,1]
< δ.

Proof. Let us consider the map

F :
C2,α(E)× C2,α(E[0,1]) → C2,α(E)× C0,α(E[0,1])

(W,U) 7→ (U(·, 0)−W,∂tU −H(U))

F is a C1 map and F (0, 0) = (0, 0) since Σ0 is minimal. If we compute the
differential of F with respect to U at (0, 0) we have

DUF (0, 0) :
C2,α(E[0,1]) → C2,α(E)× C0,α(E[0,1])

Z 7→ (Z(·, 0), ∂tZ − LZ)

So the invertibility of this differential is given by the solution to the Cauchy
problem (Theorem 4). Hence the implicit function theorem solves F (W,U) =
(0, 0) for any W with |W |2,α,E small. �

The above theorem produces solutions to the bundle MCF (1). Let ε(δ)
be given by Theorem 5 for δ < δ0. Actually it allows you to extend a solution
U as long as |Ut|2,α,E < ε(δ).

Proposition 2. Let δ < δ0. Let U be a solution of the bundle MCF defined
on Σ × [a, b] with ‖U‖2,α,E[a,b]

≤ δ. Let t̄ ∈ (b − 1, b) and assume that

|Ut̄|2,α,E ≤ ε(δ) then U can be extended as a solution of the bundle MCF
defined on Σ× [a, t̄+ 1]

Proof. Let Z be the solution of (1) defined on Σ × [t̄, t̄ + 1] with Z(·, t̄) =
U(·, t̄) given by Theorem 5. It suffices to prove that Z = U on Σ× [t̄, b] to
conclude. This uniqueness is given by the following remark: we have

∂t(Z − U) = H(Zt)−H(Ut) =

∫ 1

0

d

ds
H(sZt + (1− s)Ut)ds

=

∫ 1

0
DH(sZt + (1− s)Ut)(Zt − Ut)ds

= Lt(Zt − Ut)

where Lt are elliptic linear differential operators of order 2 acting on sections
of E with coefficient in Cα. Then by the uniqueness part of Theorem 4 and
since (Z − U)t̄ = 0 we have Z − U = 0 on Σ× [t̄, b]. �

To prove Theorem 1, we consider V an eigen-section associated to λ0 < 0.
We chose δ > 0 as in Theorem 5. Let aδ be such that e−λ0aδ |V |2,α,E = ε =
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ε(δ). Then for any a < aδ, e
−λ0a|V |2,α,E < ε so we can consider the section

U (a) solution to the problem{
∂tU = H(U)

U(·, a) = e−λ0aV

on Σ× [a, b] where b is chosen the largest possible such that ‖U (a)‖2,α,E[a,b]
≤

δ, |U (a)
t |2,α,Σ ≤ ε and ‖e−λ0tV ‖2,α,E[a,b]

≤ δ . So the proof consists in

estimating the norm of U (a) in order to control b and prove that, as a→ −∞,
U (a) converges to the desired solutions of (1).

Let us introduce Z(a) = U (a)−e−λ0tV for t ∈ [a, b]. We have the following
result.

Lemma 2. There is δ > 0 and b0 ∈ R such that for any a < min(aδ, b0),

U (a) is defined on [a, b0]. Moreover for any a ≤ b ≤ b0
‖Z(a)‖L2(E[a,b])

≤ e−3λ0b/2

Proof. Let us choose δ ∈ (0, δ0) as in Theorem 5 that will be fixed below.
The operator H is a smooth operator on C2,α(E) so we can write H =
L+G where G satisfies |G(U)|0,α,E ≤ C|U |22,α,E for any section U of E with

|U |2,α,E ≤ δ0. Actually G satisfies ‖G(U)‖0,α,E[a,b]
≤ C‖U‖22,α,E[a,b]

for any

section U of E[a,b] with ‖U‖2,α,E[a,b]
≤ δ0 and C independent of a, b. In the

computation below, the constant C will change line to line but independently
of a.

Let bδ be such that ‖e−λ0tV ‖2,α,E(−∞,bδ ]
≤ δ. Then for a < min(aδ, bδ),

we consider the solution U (a) defined on [a, b], then Z(a) satisfies
(3)

∂tZ
(a) = ∂tU

(a)+λ0e
−λ0tV = L(Z(a))+G(U (a)) = L(Z(a))+G(Z(a)+e−λ0tV )

Since ‖Z(a)‖2,α,E[a,b]
≤ 2δ, for c ∈ [a, b], Solonnikov’s estimate (Proposi-

tion 1) gives:

‖Z(a)‖2,α,E[a,c]
≤ C(‖Z(a)‖L2(E[a,c])

+ ‖G(Z(a) + e−λ0tV )‖0,α,E[a,c]
)

≤ C(‖Z(a)‖L2(E[a,c])
+ C(‖Z(a)‖22,α,E[a,c]

+ e−2λ0c))

≤ C(‖Z(a)‖L2(E[a,c])
+ C(δ‖Z(a)‖2,α,E[a,c]

+ e−2λ0c))

So we can choose and fix δ small enough such that Cδ < 1 to obtain:

(4) ‖Z(a)‖2,α,E[a,c]
≤ C(‖Z(a)‖L2(E[a,c])

+ e−2λ0c)

So if ‖Z(a)‖L2(E[a,c])
≤ e−3λ0c/2, we obtain ‖Z(a)‖2,α,E[a,c]

≤ Ce−3λ0c/2 and

‖U (a)‖2,α,E[a,c]
≤ Ce−λ0c ≤ min(δ, ε) if c is less than some c̄ (we restrict the

definition of U (a) to (−∞, c̄]). So as long as the estimate ‖Z(a)‖L2(E[a,c])
≤

e−3λ0c/2 is true the solution U (a) is well defined. Let us now prove the
estimate.
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Since Z(a)(·, a) = 0 the estimate is true at c = a. So let c1 denote the
first time where the estimate fails. Because of (3), we have the expression

Z
(a)
t =

∫ t

a
e(t−s)LG(Z(a)

s + e−λ0sV )ds

Since λ0 is the first eigenvalue of L we have

|Z(a)
t |L2(E) ≤

∫ t

a
e−λ0(t−s)|G(Z(a)

s + e−λ0sV )|L2(E)ds

≤
∫ t

a
e−λ0(t−s)C|G(Z(a)

s + e−λ0sV )|0,Eds

≤
∫ t

a
e−λ0(t−s)C(|Z(a)

s |22,α,E + e−2λ0s)ds

≤
∫ t

a
e−λ0(t−s)C(‖Z(a)‖2L2(E[a,s])

+ e−2λ0s)ds

≤
∫ t

a
e−λ0(t−s)C(e−3λ0s + e−2λ0s)ds

≤ Ce−λ0t
∫ t

a
e−λ0sds ≤ Ce−2λ0t

Then ‖Z(a)‖L2(E[a,c1]
) ≤ Ce−2λc1 . So we see that c1 must satisfies Ce−λ0c1/2 ≥

1; i.e. c1 is bounded below by some universal constant c0. So the Lemma is
proved with b0 = min(c0, c̄, bδ). �

Let b0 be given by Lemma 2. By (4), we have ‖Z(a)‖2,α,E[a,b0]
≤ Ce−3λ0b0/2.

So by Arzela-Ascoli theorem, there is Z ∈ C2,α(E(−∞,b0]), such that Z(a)

subconverge in C2 to Z. Moreover, Z satisfies ∂tZ = LZ +G(Z + e−λ0tV ),

i.e. U = Z + e−λ0tV is a solution of (1). Since ‖Z(a)‖2,α,E[a,t]
≤ Ce−3λ0t/2

for t ≤ b0, we have ‖Z‖2,α,E(−∞,t] ≤ Ce−3λ0t/2 and then limt→−∞ e
λ0tUt = V

in C2,α.

4. The rigidity result

In this section we prove a rigidity result concerning Sn1 = {p ∈ Rn+1 |
‖p‖ = 1} endowed with the induced metric gSn1 . For 0 ≤ k ≤ n − 1, let us
consider the map:

Ψ :
Sk1 × R× Sn−k−1

1 −→ Sn1
(p, s, q) 7−→ ((cos s)p, (sin s)q)

We notice that Ψ(Sk1 × [0, π2 ]× Sn−k−1
1 ) = Sn1 , Ψ is injective on Sk1 × (0, π2 )×

Sn−k−1
1 , Ψ(p, 0, q) = (p, 0) and Ψ(p, π2 , q) = (0, q). So Sn1 can be seen as the

joint of Sk1 and Sn−k−1
1 . Moreover Ψ∗(gSn1 ) = cos2 sgSk1

+ ds2 + sin2 sgSn−k−1
1

.

The curves s 7→ Ψ(p, s, q) are geodesics of Sn1 .
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For k = 2, we see that Ψ(S2
1, 0, q) is an immersed minimal sphere in Sn1

which is isometric to S2
1. Actually it is a totally geodesic equatorial 2-sphere

in Sn1 . As a minimal surface its index is n − 2. Our rigidity result looks at
such an immersed sphere in a Riemannian manifold.

Theorem 6. Let M be a Riemannian n ≥ 3-manifold whose sectional cur-
vature is bounded above by 1. Then any immersed minimal 2-sphere has area
at least 4π. Besides, let us assume that M contains an immersed minimal
2-sphere of area 4π which is

• either of index at least n− 2
• or unstable in any parallel directions.

Then the universal cover of M is isometric to the sphere Sn1 .

Moreover, it will come from the proof a minimal 2-sphere of area 4π is
totally geodesic.

Proof. Let S be an immersed 2-sphere in M , using Gauss and Gauss-Bonnet
formulas we have

4π =

∫
S
KS =

∫
S
KTS + (B(e1, e1), B(e2, e2))− ‖B(e1, e2)‖2

=

∫
S
KTS + ‖ ~H‖2 − ‖

◦
B(e1, e1)‖2 − ‖B(e1, e2)‖2

≤ A(S) +

∫
S
‖ ~H‖2 − 1

2
‖
◦
B‖2

where (e1, e2) is an orthonormal basis of TS, KS denotes the sectional cur-

vature of S, KTS the sectional curvature of M on the 2-plane TS and
◦
B is

the traceless part of B. As a consequence

(5) F (S) = A(S) +

∫
S
‖ ~H‖2 − 4π ≥

∫
S

1

2
‖
◦
B‖2 ≥ 0

Hence F (S) = 0 implies that S is totally umbilic, KTS = 1 and KS =

1 + ‖ ~H‖2. If S is minimal, F (S) ≥ 0 implies that A(S) ≥ 4π.
An immersed minimal 2-sphere in M lifts to its universal cover with the

same instability property. So we assume that M is simply connected and
X : S2 → M an immersed minimal 2-sphere as in the statement of the
theorem. Let us notice that since Σ = X(S2) is a minimal surface of area
4π, F (Σ) = 0 and Σ is totally geodesic and KΣ = 1 so Σ is isometric to S2

1:
we can choose X such that X is an isometry between S2

1 and Σ = X(S2). Let
us denote by NX the normal vector bundle {(p, v) ∈ X∗TM | v ∈ TpX⊥}
and consider the map

Φ :
NX → M
(p, v) 7→ expX(p)(v)

We want to study the pull-back metric h = Φ∗g on NX in order to control
when Φ is an immersion.

The first step of the proof is
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Lemma 3. The normal bundle NX is parallelizable. Moreover for any
p ∈ S2

1 and unit vectors e ∈ TpX and v ∈ TpX⊥, (R(e, v)e, v) = 1.

Proof of Lemma 3. By hypothesis Σ is unstable so the Jacobi operator L has
eigen-sections with negative eigenvalue (notice that if Σ is unstable in any
parallel directions, Σ is unstable since the whole normal bundle is a parallel
sub-bundle). Let V be such an eigen-section with negative eigenvalue λ. Let
us prove that λ = −2 and V is a parallel section of NX.

We have LV = −λV . For small t, we consider the immersed sphere
Σt = {Φ(p, tV (p)); p ∈ S2}. We then have F (Σt) ≥ 0 for any t. F (Σ0) = 0,
so the first derivative of t 7→ F (Σt) must vanish at t = 0: it is confirmed by
the computation

d

dt
F (Σt)|t=0 =

∫
Σ

(−2 ~H, V ) +

∫
Σ
‖ ~H‖2(−2 ~H, V ) +

∫
Σ

(LV, ~H) = 0

Now the second derivative has to be non-negative and we have by Lemma 1

d2

dt2
F (Σt)|t=0 =

∫
Σ
−(LV, V ) +

∫
Σ

1

2
(LV,LV )

=

∫
Σ

(λ+
1

2
λ2)‖V ‖2

So λ2 + 2λ ≥ 0: λ ≤ −2. Since Σ is totally geodesic, we also have

λ

∫
Σ
‖V ‖2 =

∫
Σ

(−LV, V )

=

∫
Σ
‖∇⊥V ‖2 − (R(ei, V )ei, V )− (V,B(ei, ej))

2

=

∫
Σ
‖∇⊥V ‖2 − (R(ei, V )ei, V ) ≥

∫
Σ
−2‖V ‖2

where we used K ≤ 1 and Σ has dimension 2 in the last inequality. So
λ ≥ −2. This gives λ = −2.

The above computation shows also that V is a parallel normal vector field
to Σ and (R(e, V )e, V ) = ‖V ‖2 for any vector e ∈ TΣ.

Let V1, . . . , Vd be a basis of the eigenspace associated to the eigen-value
−2. Let B be the sub-bundle of NX generated by V1, . . . , Vd: B = {(p, v) ∈
NX | v ∈ span(V1(p), . . . , Vd(p))}. B is parallelizable and, on B, the stability
operator is L = −∆⊥ − 2. So the index of L restricted to B is precisely d.
If d < n − 2, both hypotheses on Σ implies that the restriction of L to B⊥
must have a negative eigenvalue. Thus there is an eigensection of eigenvalue
−2 in B⊥ contradicting the definition of B. So d = n−2 and B = NX which
ends the proof. �

The sequel of the proof is a generalization of the above argument.
Let us fix V an eigen-section of L associated to the eigenvalue −2. By

Theorem 1, let (Σt)t∈(−∞,b) be the ancient solution of the mean curvature
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flow flowing out of Σ in the direction V . (−∞, b) is a maximal time interval
of existence.

We look at the evolution of F (Σt). We know that limt→−∞ F (Σt) = 0.
Computing its derivative, we obtain

d

dt
F (Σt) =

∫
Σt

−4‖ ~H‖2 +

∫
Σt

−4‖ ~H‖4 +

∫
Σt

−2‖∇⊥ ~H‖2(6)

2(R(ei, ~H)ei, ~H) + 2( ~H,B(ei, ej))
2(7)

≤
∫

Σt

2[(R(ei, ~H)ei, ~H)− 2‖ ~H‖2)] +

∫
Σt

2( ~H,
◦
B(ei, ej))

2(8)

≤
∫

Σt

2‖ ~H‖2‖
◦
B‖2 ≤ 4 sup

Σt

‖ ~H‖2F (Σt)(9)

where we use (5) in the last inequality.

By construction of Σt, we know that close to −∞, supΣt ‖ ~H‖
2 ≤ Ce4t.

So by Gronwall lemma we have for s ≤ t

F (Σt) ≤ F (Σs) exp(C(e4t − e4s))

Using lims→−∞ F (Σs) = 0 and letting s → −∞, this gives F (Σt) ≤ 0 for

any t and then F (Σt) = 0 for any t. So
◦
B = 0 on Σt, KTΣt = 1 (see below

Equation (5)).
This also implies that the derivative of F (Σt) vanishes so equality in

(8) and (9) gives: ~H is a parallel section of the normal bundle to Σt and

(R(e, ~H)e, ~H) = ‖ ~H‖2 for any unit vector e ∈ TΣt. Since ~H is a parallel

section, we have ‖H‖ is constant along Σt (notice that ‖ ~H‖ 6= 0 by construc-

tion). So we can write ~H = Htν (Ht = ‖ ~H‖(t)) where ν is a unit normal
vector field to Σt. Moreover ν is a parallel section of the normal bundle to
Σt.

Let us define a new time parameter s = s(t) =
∫ t
−∞Hudu, so that ds

dt =
Ht. Hence the derivative of Σs with respect to s is given by ν.

If q ∈ Σs, the map (a, b) 7→ (R(a, b)a, b) defined for unit vectors a, b ∈
TqM is bounded above by 1 (since the sectional curvature is bounded above
by 1) and is equal to 1 at (a, b) = (f, ν) where f ∈ TqΣs. So computing the

derivatives with respect to a and b,we have (R(f, ν)f, v) = 0 for any v ∈ ν⊥
and (R(f, ν)v, ν) = 0 for any v ∈ f⊥.

We can compute D
ds2

~Hs in two ways:

D

ds
2 ~Hs = 2

d

ds
Hsν + 2Hs

D

ds
ν and

D

ds
2 ~Hs = ∆⊥ν + (R(ei, ν)ei)

⊥ + (ν,B(ei, ej))B(ei, ej)− ( ~H,∇eiν)ei

= 2ν + 2H2
s ν
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Since D
dsν is orthogonal to ν, the comparison of the above computations gives

D
dsν = 0: the evolution follows geodesics and Σs = {Φ(p, sV (p)); p ∈ Σ}.
Besides d

dsHs = 1 +H2
s , so Hs = tan s.

Let γp be the geodesic s 7→ Φ(p, sV (p)). We are going to study some
Jacobi fields along γp. Let f1, . . . , fn−1 be parallel orthonormal fields along
γp such that f1, . . . , fn−1, ν is orthonormal and, at s = 0, f1, f2 is a basis
of TpX. For i ∈ {1, 2}, we define ∂i the Jacobi field along γp such that

∂i(0) = fi and D
ds∂i(0) = 0. Actually if ei ∈ TpS2 is such that X∗(ei) = fi,

we have ∂i = Dei(Φ(·, sV (·)) so ∂i(s) is tangent to Σs as long as Σs is well
defined. ∂i is a Jacobi field so because of the above computations of the
Riemann tensor

0 =
D

2

ds2
∂i +R(ν, ∂i)ν =

D
2

ds2
∂i + ∂i

Decomposing this equation in (f1, · · · , fn−1), we obtain that ∂i = cos sfi.
Hence (∂1, ∂2) is an orthogonal basis of TΣs: Σs is an immersion for s ∈
[0, π/2).

As a consequence the orthogonal of TΣs is generated by (ν, f3, · · · , fn−1).

Let ∂j (j ≥ 3) be the Jacobi fields along γp with ∂j(0) = 0 and D
ds∂j(0) = fj .

We have (R(ν, ∂j)ν, fi) = (∂j , fi) for i ∈ {1, 2} and s ∈ [0, π2 ]. So (∂j , fi) is
solution of the ODE y′′ + y = 0 with vanishing initial value and derivative.
Thus (∂j , fi) = 0 and ∂j belongs to span(f3, · · · , fn−1). Moreover Rauch
comparison theorem implies that ∂j , j ∈ {3, . . . , n − 1}, are non vanishing
on (0, π).

We know that NX is parallelizable so we can fix an isometric parametriza-
tion by NX ' S2

1 × Rn−2 and we have a map

Φ : S2
1 × Rn−2 →M

Using a polar decomposition of Rn−2 as R+×Sn−3 and coordinates (p, s, q) ∈
S2 × R+ × Sn−3, this gives a map Ψ : S2 × R+ × Sn−3 → M defined by
Ψ(p, s, q) = Φ(p, sq). The above study of the Jacobi fields along the geodesic
gives that the lift of the metric is given by

Ψ∗g = cos2 sgS21 + ds2 + gp,s

for s ∈ [0, π/2] and gp,s is a smooth family of metrics on Sn−3 depending on
(p, s) ∈ S2 × (0, π/2). Let us notice that gp,s = s2gSn−3

1
+ o0(s2) and gp,π

2
is

a well defined metric on Sn−3.
As a consequence Ψ(p, π2 , q) is a point Q ∈ M that does not depend on

p. If p̄ is fixed Σ′ = Ψ(p̄, π2 , S
n−3) is then an immersed submanifold of M

given by the immersion X ′(·) = Ψ(p̄, π2 , ·). Let us study the geometry near
Σ′. The geodesics s 7→ Ψ(p, s, q) arrive orthogonally to Σ′ when s = π

2 . Let

us fix q̄ ∈ Sn−3 and define a map

G :
S2 → Uq̄X

′⊥

p 7→ d
dsΨ(p, s, q̄)|s=π

2
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where Uq̄X
′⊥ is the unit sphere in the normal bundle TX ′⊥ at q̄.

For r ∈ [0, π/2] let us define Fr : S2 → M ; p 7→ expQ(−rG(p)). We have

Fr(p) = Ψ(p, π2 − r, q̄) so Fr
∗g = sin2 rgS21 . So G∗gQ = limr→0

1
r2
Fr
∗g =

gS21 . So G is a linear isometry between S2 and Uq̄X
′⊥. As a consequence

G(−p) = −G(p). Thus Ψ(p, s + π
2 , q̄) = expQ(sG(p)) = expQ(−sG(−p)) =

Ψ(−p, π2 − s, q̄) for s ∈ [0, π2 ]. So Ψ(p, π, q) = Ψ(−p, 0, q) = X(−p). This
implies that π is a conjugate time for the Jacobi fields ∂j (3 ≤ j ≤ n − 1),
i.e. ∂j vanishes at time 0 and π as in the constant curvature 1 case. So
we are in the equality case of Rauch comparison theorem, |∂j(s)| = | sin s|
and (R(∂j , ν)∂j , ν) = sin2 s. This implies that (R(∂j , ν)f, ν) = 0 for any
f orthogonal to ∂j . So ∂j = sin(s)fj and R(fj , ν)fj , ν) = 1 for any j.
So Ψ∗g = cos2 sgS21 + ds2 + sin2 sgSn−3

1
. As a consequence, Ψ generates a

local isometry Ψ′ from the joint of S2 with Sn−3 endowed with the metric
cos2 sgS21 + ds2 + sin2 sgSn−3

1
to M . So Ψ′ is a local isometry and thus a

covering map from Sn1 to M . Since M is simply connected Ψ′ is a global
isometry. �

The above result has a corollary concerning manifold containing an ”equa-
tor”. This is an infinitesimal version of [2, Corollary 5.11].

Corollary 1. Let M be a Riemannian n ≥ 3-manifold whose sectional
curvature is bounded above by 1. Let us assume that there is a totally geodesic
isometric immersion f : Sn−1

1 → M . Moreover, assume that f is unstable
as a minimal hypersurface. Then the universal cover of M is isometric to
Sn1 .

Proof. Let G(2, n− 1) be the set of totally geodesic 2 spheres in Sn−1
1 : the

intersections of Sn−1
1 with any 3-dimensional subspace of Rn. For any S in

G(2, n− 1), f(S) is totally geodesic in M . Moreover f(S) has index at least
n− 3. So it is enough to prove that one of these S has index at least n− 2
to conclude by Theorem 6. For any S ∈ G(2, n−1), let QS be the quadratic
form associated to the Jacobi operator on f(S).

Let ν be the unit normal to f(Sn−1
1 ). For S ∈ G(2, n − 1), span(ν) is

a parallel normal bundle along f(S). Let λ0 < 0 be the first eigenvalue of
the Jacobi operator on f(Sn−1

1 ) and u a first eigenfunction. On Sn−1
1 , we

can define a quadratic form q = du ⊗ du − (R(ν, ·)ν, ·). Since f is totally
geodesic, the quadratic form QSn−1

1
associated to the Jacobi operator on

f(Sn−1
1 ) satisfies to

QSn−1
1

(u, u) =

∫
Sn−1
1

trTSn−1
1

q = λ0

∫
Sn−1
1

u2 < 0
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Now there is a dimensional constant cn such that

cn

∫
Sn−1
1

trTSn−1
1

q =

∫
G(2,n−1)

dS

∫
S

trTS q

=

∫
G(2,n−1)

QS(uν, uν)dS

where trP denotes the trace operator on the subspace P and dS is the Haar
measure on G(2, n−1) coming from the Haar measure on the Grassmannian
of 3-planes in Rn+1. Thus there is S such that QS(uν, uν) < 0. So the
restriction to span(ν) of the stability operator for S is unstable: S has index
at least n− 2. �

5. Rigidity of Simon-Smith width

Here we state Smith theorem concerning the existence of a minimal sphere
in any Riemannian 3-sphere (S3, g) and our second rigidity result.

We start with the standard sweep-out of the sphere S3 given by horizontal
spheres

St = {(x1, x2, x3, x4) ∈ S3 | x4 = t} for t ∈ [−1, 1]

If Ft : S3 → S3 (t ∈ [−1, 1]) is a smooth family of diffeomorphisms isotopic to
the identity map, we can defined a general sweep-out of S3 by spheres as the
family σt = Ft(St) (t ∈ [−1, 1]). Let Λ denote the set of all general sweep-
outs of S3 by spheres. The Simon-Smith width of a Riemannian 3-sphere
(S3, g) is then defined by

W (S3, g) = inf
{σt}∈Λ

( max
t∈[−1,1]

A(σt))

For σ ∈ Λ, we denote L(σ) = maxt∈[−1,1]A(σt). So a minimizing sequence
for the Simon-Smith width W is a sequence (σn) in Λ such that limL(σn) =
W . For such a minimizing sequence, one can consider a sequence (tn) ∈
[−1, 1] such that limA(σntn) = W . Such a sequence is called a min-max
sequence. The main result in [22] is

Theorem 7 (Smith). There is a min-max sequence that converges in the
sense of varifolds to a disjoint union of embedded minimal spheres (possibly
with multiplicity) whose area is W (S3, g).

Moreover the quantity W (S3, g) is positive so the collection of minimal
2-spheres is not empty.

If the sectional curvature of (S3, g) is bounded above by 1 the area of
each sphere in the collection is at least 4π so W (S3, g) ≥ 4π. We notice that
for the Euclidean sphere S3

1 we have W (S3
1) = 4π. The main result of this

section is a rigidity result for the equality case.

Theorem 8. Let (S3, g) be a Riemannian 3-sphere whose sectional curvature
is bounded above by 1. Then W (S3, g) ≥ 4π and, if W (S3, g) = 4π, then
(S3, g) is isometric to S3

1.
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In order to give the proof of this result we need to understand the index
property of the minimal spheres that realize W (S3, g). Actually we need to
prove that the minimal spheres given by Theorem 7 are not local minima of
the area functional. In order to do that, we first prove that the convergence
in Theorem 7 is also true in the space of flat cycles (see Section 5.1). In
Section 5.2, we introduce de notion of almost stable minimal hypersurfaces
which concerns minimal hypersurfaces with vanishing first Jacobi eigenvalue.
In Section 5.3, we prove that almost stable implies that we are a local
minimum. We then use this to prove Theorem 8 in Section 5.4. We will use
concepts from geometric measure theory, for the notations we refer to [8]
and [13].

5.1. The Simon-Smith min-max surface. In this section we recall some
aspect of the min-max construction by Smith in [22]. Actually we mainly
refer to the statements contained in the paper by Colding and De Lellis [8].
The aim of the section is to prove that the convergence in Theorem 7 works
also as current.

If the varifold V is a varifold limit of some min-max-sequence we say that
V is a min-max varifold. So the proof of Theorem 7 consists in finding a
min-max varifold which is smooth and has the right topological type.

The first step in this proof is that there is a minimizing sequence (σn) such
that any min-max varifold coming from (σn) is stationary (see [8, Propo-
sition 4.1]). The second step toward regularity use the notion of almost-
minimizing surface.

Definition 2. Given ε > 0, an open set U ∈ S3 and a surface Σ. Σ is
ε-almost minimizing in U if there is no isotopy ψ supported in U such that

A(ψt(Σ)) ≤ A(Σ) + ε/8 for all t

A(ψ1(Σ)) ≤ A(Σ)− ε

A sequence (Σn) is said to be almost minimizing in U if Σn is εn-almost
minimizing in U for some sequence εn → 0

For p and r > 0, we define the set of annuli centered at p of outer radius
less that r ANr(p) = {Bt(p) \ Bs(p), 0 < s < t < r}. Then one can select
a positive function p 7→ r(p) on S3 and a min-max sequence (σntn) which is
almost minimizing in any small annuli: i.e. in any A ∈ ANr(p)(p) for all

p ∈ S3 (see [8, Proposition 5.1]). Then the author proves that if σntn → V ∗

as varifold, V ∗ has the expected properties. Concerning smoothness, the
authors introduce the notion of replacement.

Definition 3. Let V be a stationary varifold and U is an open subset of S3.
A stationary varifold V ′ is said to be a replacement of V in U if

• V ′ = V on G(M \ U) and ‖V ′‖(M) = ‖V ‖(M)
• V ′xU is supported by a stable minimal surface Σ with Σ \ Σ ⊂ ∂U .



22 LAURENT MAZET

The proof of the smoothness V ∗ consist basically in proving that V ∗ has
replacements in any small annuli and that they coincide with V ∗ (see [8,
Theorem 7.1]).

Let (Σn) = (σntn), we know that Σn → V ∗ as varifold. Moreover, viewing
Σn as a flat cycle, we can assume that Σn → T ∈ Z2(M,Z2) as current
where Z2(M,Z2) denotes the space of 2-dimensional flat cycles in M with
coefficient in Z2 . So one can ask the relation between T and V ∗. Since V ∗ is
made of smooth surface with integer multiplicities, there is a corresponding
element [V ∗] ∈ Z2(M,Z2) by reducing each multiplicities mod 2. So one can
suspect that T = [V ∗]. This is confirmed by the result below (we are inspired
by a similar result for the Almgren-Pitts min-max theory by Marques and
Neves [14, Proposition 4.10]). Actually the support of T has to be contained
in sptV ∗. So if {Si}1≤i≤N is the collection of connected components of
sptV ∗, the Constancy Theorem implies that T = n1S1 + · · · + nNSN for
some ni ∈ {0, 1}.

Proposition 3. Let (Σn) be a min-max sequence which is almost-minimizing
in any small annuli and such that Σn → V as varifold and

V = m1S1 + · · ·+mNSN

where each Si is a smooth embedded minimal surface. Let us assume that
Σn → T ∈ Z2(M,Z2) as current and

T = n1S1 + · · ·+ nNSN

with ni ∈ {0, 1}. Then mi = ni mod 2.

In [27], White studies limits of sequence of integral varifolds as varifolds
and flat chains. He proves that they coincide as flat chains under some
regularity assumption. Here this assumption is replaced by the almost-
minimizing property. Before giving the proof of the above proposition, let
us give some preliminary results.

One tool in the proof of the smoothness of V ∗ is the following result of
Meeks, Simon and Yau.

Theorem 9 (Meeks-Simon-Yau [16]). Let Σ be a surface in M and U
an open subset of M . Let (Σk) be a minimizing sequence for the Prob-
lem (Σ, Is(U)), i.e. Σk = ψ(Σ) for some ψ ∈ Is(U) (Is(U) is the set of
isotopies supported in U) and

A(Σk)→ inf
ψ∈Is(U)

A(ψ(Σ)),

which converges to a varifold V . Then V xU is an integer rectifiable varifold
whose support is a stable minimal surface Γ with Γ \ Γ ⊂ ∂U . Moreover as
current ΣkxU → [V xU ] in I2(U,Z2).

The proof of the regularity of V xU is local so is contained in [16]. As above
this regularity implies the existence of flat chain mod 2, [V xU ] ∈ I2(U,Z2).
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The proof of the convergence as current is a byproduct of the regularity
proof as noticed by Almgren and Simon in [1, Remark 5.20].

As mentioned above the smoothness proof uses the fact that replacement
of V ∗ coincide with V ∗. This is a natural property of stationary varifold
with smooth support.

Lemma 4. Let V be a integer stationary varifold whose support is a smooth
minimal surface S and p ∈ S. Then there is ρ > 0 such the following is
true: if V ′ is a stationary varifold such that V ′xBρ(p)c = V xBρ(p)c, then
V ′ = V .

Proof. Let r > 0 be chosen such that ∆ = S ∩ Br is connected, stable and
with non-empty smooth boundary. Let u be a non negative eigenfunction
for the first eigenvalue of the Jacobi operator on ∆ with u = 0 on ∂∆. Let
∆t = {expp(tu(p)ν(p)), p ∈ ∆} where ν is the unit normal to ∆. There is
ε > 0 such that, for |t| ≤ ε, ∆t is a smooth surface with mean curvature
pointing to ∆ = ∆0. Let ρ such that Bρ(p) ⊂ ∪|t|<ε∆t.

Let V ′ be as in the Lemma, we notice that sptV ′ ⊂ S ∪ Bρ(p). Us-
ing the surfaces ∆t as barriers and the maximum principle [28], we have
that sptV ′ ⊂ S. Then the Constancy theorem and V ′xBρ(p)c = V xBρ(p)c

implies V ′ = V . �

We then have

Proof of Proposition 3. Let p ∈ S1 and ρ be given by Lemma 4. Let A ⊂
Bρ(p) be an annulus centered at p such that Σn is εn-almost minimizing in
A.

Let

Isn(A) = {ψ ∈ Is(A) | A(ψt(Σn)) ≤ A(Σn) + εn/8}
and ψk ∈ Isn(A) such that

A(ψk1 (Σn))→ inf
ψ∈Isn(A)

A(ψ1(Σn))

Let q ∈ S1 ∩A and ε > 0 such that Bε(q) ⊂ A. We first fix n and k. Let
ϕj ∈ Is(Bε(q)) be a sequence such that

A(ϕj1(Σk
n))→ inf

ϕ∈Is(Bε(q))
A(ϕ1(Σk

n))

Let W k
n be the varifold limit of ϕj1(Σk

n) and Rkn ∈ Z2(M,Z2) be the limit of

ϕj1(Σk
n) for the flat convergence. By Theorem 9, RknxBε(q) = [W k

nxBε(q)] ∈
I2(Bε(q),Z2). Besides we have RknxBε(q)

c = Σk
nxBε(q)

c.
Letting k → ∞ we consider Wn a varifold limit of W k

n and Rn a limit
of Rkn for the flat convergence. Since spt(W k

n ) ∩ Bε(q) is a stable minimal
surface, we have curvature estimates and the convergence of spt(W k

n )∩Bε(q)
to spt(Wn) is locally smoothly graphical. So taking multiplicities of these
graphical leaves into account, varifold and flat convergences give RnxBε(q) =
[WnxBε(q)].
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There is a subsequence (ϕ
j(k)
1 (Σk

n)) which converges to Wn as varifold

and Rn as current. By [8, Lemma 7.6] there is Φj(k) ∈ Is(Bε(q)) such that

Φ
j(k)
1 = ϕ

j(k)
1 and A(Φ

j(k)
t (Σk

n)) ≤ A(Σk
n)+εn/8. This implies that ϕ

j(k)
1 (Σk

n)

can be constructed from Σn by an isotopy in Isn(A). Then (ϕ
j(k)
1 (Σk

n)) is a
minimizing sequence in Isn(A). So spt(Wn)∩A is a stable minimal surface
[8, Lemma 7.4]. Moreover a varifold limit W of Wn is a replacement for V in
A [8, Proposition 7.5] and then V = W because of Lemma 4 and A ⊂ Bρ(p).
Let R be a current limit of Rn.

As above since spt(Wn) ∩A is a stable minimal surface, the varifold and
flat convergence give RxA = [WxA] = [V xA]. Actually sptR ⊂ sptW =

sptV and RxA
c

= TxA
c
. So by the Constancy Theorem, R = T . So

TxA = [V xA], this implies that the multiplicity of T on S1 is equal to
the one of V mod 2. Then T = [V ] by considering p on other connected
components. �

5.2. Almost stable minimal hypersurfaces. If Σ is a stable minimal
hypersurface in a Riemannian manifold M , then Σ is a local minimum for
the area functional (see [26]). In this section we introduce almost stable
minimal hypersurfaces as minimal hypersurfaces with vanishing first Jacobi
function with an extra property. In the next section we will prove that such
a minimal hypersurface has the local minimum property. We can give a
sense to stability of a minimal hypersurface Σ whose first Jacobi eigenvalue
vanishes, i.e. degenerate stable minimal hypersurface.

Because of the use of curvature estimates, in Sections 5.2 and 5.3, we
restrict ourselves to an ambient space M of dimension n at most 7.

In order to quickly explain our notion of almost stability, let us consider
the simple case of a function a : R→ R with a′(0) = 0 and a′′(0) = 0. Then
there is a maximal interval [s−, s+] ⊂ R containing 0 such that a(s) = a(0)
for s ∈ [s−, s+] (may be s− = 0 = s+). Then if a(s) ≥ a(0) for s close to s−

and s+, we say that 0 is almost stable. Let us remark that, even if 0 is almost
stable, there could be points s outside [s−, s+] close to the endpoints such
that a(s) = a(0), they are critical points of a. Let us go back to minimal
hypersurfaces.

Actually we focus only on 2-sided minimal hypersurfaces, the 1-sided
case can be considered similarly. So let Σ be a connected 2-sided minimal
hypersurface and parameterize the ε-neighborhood of Σ by Φ : Σ×(−ε, ε)→
M ; (p, t) = expp(tν(p)). This defines a vectorfield ∂t on the neighborhood. If
u is a smooth function on Σ, we define Φu : Σ → M by Φu(p) = Φ(p, u(p))
and Σu = Φu(Σ). If u is small, Σu is embedded and we define νu(p) the
unit normal to Σu at Φu(p) such that (νu, ∂t) ≥ 0 and Hu(p) ∈ R such
that the mean curvature vector of Σu is Hu(p)νu(p) at Φu(p). Let Wu be
the Jacobian of the map Φu. Then the area of Σu can be computed as
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A(Σu) = A(u) =
∫

ΣWu. For u and v two functions we then have

(10) DA(u)(v) =

∫
Σ
−nHu(νu, ∂t)vWu =

∫
Σ
huv

where hu = −nHu(νu, ∂t)Wu. The map u 7→ hu is a smooth operator of
order 2.

Lemma 5. Let Σ be a degenerate stable minimal 2-sided hypersurface Σ
with first Jacobi eigen-function u0. There is ε > 0 and a smooth map v :
(−ε, ε)× Σ→ R; (t, p) 7→ vt(p) with the following properties.

• v0 = 0, ∂tvt|t=0 = 0 and
∫

Σ u0vt = 0.
• for each t ∈ (−ε, ε), htu0+vt is a multiple of u0.

A similar result can be found in [5].

Proof. Let V be the L2 orthogonal of u0 and πV the orthogonal projection
on V . Let V k,α = V ∩ Ck,α(Σ). Let us define the map: G : R × V 2,α →
V 0,α; (t, v) 7→ πV (htu0+v). We notice that G(0, 0) = 0 and DvG(0, 0)(w) =
πV (Lw) where L is the Jacobi operator. Since L is invertible from V 2,α

to V 0,α, DvG(0, 0) is invertible and the implicit function theorem gives the
map v. �

Once the family {vt} is constructed we then define a foliation of a neigh-
borhood of Σ by St = Σtu0+vt , this foliation is called the canonical foliation
given by Σ. Let a(t) = A(St). We notice that by construction there is ct ∈ R
such that htu0+vt = ctu0 so by (10)

a′(t) =

∫
Σ
htu0+vt(u0 + ∂tvt) = ct

∫
Σ
u2

0

So a′(t) = 0 if and only if ct = 0 i.e. St is a minimal surface. Moreover, any
small u can be written u = tu0 + v with t small and v ∈ V small, so if Σu

is a minimal surface hu = 0 and then G(t, v) = 0. So the implicit function
theorem implies that, if Σu is minimal (u small), Σu = St for some small t.

It is possible that a(t) = A(Σ) for t ∈ (−ε, ε), t ∈ [0, ε) or t ∈ (−ε, 0] (if it
is not the case we can skip the discussion and we are in case 1 below). In the
first case, a whole neighborhood of Σ is foliated by minimal hypersurfaces,
we say that Σ is minimally foliating on both side. In both remaining cases,
only one side of the neighborhood is foliated by minimal hypersurfaces, we
say that Σ is minimally foliating only on one side (we refer to Song’s work
[25] for a similar discussion).

If {St}t is such a smooth family of minimal surfaces with Σ = S0, we
notice that the derivative at t of the family is given by a Jacobi field on St.
So up to a change of parametrization {Ss}s, we can assume that this Jacobi
field as unit L2-norm (we use this unit speed parametrization in order to
control the case where the family is defined on an unbounded interval).

One can try to extend such a family. Let {Ss}s∈(s−,s+) be such a family of

minimal hypersurfaces with S0 = Σ (possibly s− = 0 and s ∈ [0, s+)). First
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we notice that the hypersurfaces Ss are disjoint for s close to 0. So if Ss ∩
Ss′ 6= ∅ for some 0 ≤ s′ < s, there is a larger σ such that all the hypersurfaces
in {Ss}0≤s<σ are disjoint and Sσ intersect Σ. Then the maximum principle
implies that Σ = Sσ and then Ss = Ss+σ and the family is periodic and
defined on R (here we recall that we assume Σ to be connected).

Assume now that the family is made of disjoint minimal hypersurfaces.
Each Ss is an index 0 minimal hypersurface of areaA(Σ). So by compactness
result (see [21]) , as s→ s+, a subsequence converges in the varifold sense to
a minimal hypersurface Σ+ : if Σ+ is two-sided the convergence is smooth,
if Σ+ is one sided the convergence is with mulitplicity 2 and smooth in
the double cover of the tubular neighborhood of Σ+. Actually this implies
that as s → s+ the whole family {Ss} converges to Σ+. The same can be
done as s→ s− to produce Σ−. If Σ+ is one sided, then the whole tubular
neighborhood of Σ+ is foliated by {Ss}s∈(s−,s+] where Ss+ = Σ+. If Σ+ is

two sided, the family extends for s = s+ and Ss+ = Σ+ is either minimally
foliating only on one side and the family {St}t∈(s−,s+] can’t be extended

across s+ or Σ+ is minimally foliating on both sides and the family extends
to t ∈ (s−, s′) with s+ < s′. As a consequence we are in one of the following
cases

(1) the family extends to {Ss}s∈[s−,s+] and Ss± are minimally foliating

only on one side or, in the case s− = 0 = s+, Σ is not minimally
foliating on any side

(2) the family is periodic and gives a global foliation of M
(3) the family extends to {Ss}s∈(s−,s+] such that Ss → Σ− a 1-sided

minimal hypersurface as s→ s− and Ss+ is minimally foliating only
on one side.

(4) the family extends to {Ss}s∈(s−,s+) such that Ss → Σ± two 1-sided

minimal hypersurfaces as s → s±. In that case {Ss}s∈[s−,s+] with

Ss± = Σ± gives a global foliation of M .

We notice that the family can’t be defined on an unbounded interval without
being periodic because of compactness result and the fact that the family is
parameterized at unit speed.

We then say that Σ is almost stable if we are in cases (2), (4) or in cases
(1) and (3) with the extra property: the area function a± associated to the
canonical foliation given by Ss± also satisfies locally a± ≥ A(Ss±) = A(Σ).
In the sequel we will focus on case (1) . For example in case (1), if s− = 0 =
s+ we just ask that the area function a associated to Σ has a local minimum
at 0. We notice that, in case (1) and (3), Ss± is minimally foliating only on
one side so there are value of t close to 0 such that a±(t) > A(Σ).

5.3. Almost stable minimal hypersurfaces are local minima. We are
going to apply the above classification to an ambient space M which is S3.
So we are interested in type 1 almost stable minimal hypersurface.
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So we have a family of minimal hypersurface {Ss}s∈[s−,s+] that we can
view as a subsetM of currents in Zn(M,Z2). We notice thatM is compact
for the flat topology. In {Ss}, there are two particular elements S− = Ss−
and S+ = Ss− that are minimally foliating only on one side; if s− = 0 = s+,
S− = Σ = S+ and Σ is not minimally foliating on any side. In the non
minimally foliated side, the leaves of the canonical foliation given by S±

have area at least A(Σ). However, it may contain minimal hypersurfaces of
area A(Σ), we add toM all these minimal hypersurfaces that are sufficiently
close to S± to define M′. M′ is still compact for the flat topology.

We have the following result which is a first version of the fact that a
type 1 almost stable minimal hypersurface is a local minimum for the area
functional.

Proposition 4. Let Σ be a type 1 almost stable minimal hypersurface and
M′ be the set of minimal hypersurface of area A(Σ) in the canonical foliation
as defined above. Then there is an open set U containing Σ such that A(Σ) ≤
M(T ) for any T ∈ Zn(M,Z2) homologous to Σ with support in U and, if
A(Σ) = M(T ), then T ∈M′.

Proof. The proof is similar to the one of [26, Theorem 2] for the stable case.
So we consider the neighborhoods Kr, 0 ≤ r ≤ ε of Σ given by [26, Theorem
1] (these Kr has the property that the mass among currents with support in
Kr will produce current satisfying a certain almost minimizing property in
M , see definitions in [26]). Let Tr minimize the mass M among all currents
homologous to Σ in Kr. As r → 0, the currents Tr must converge to Σ.

As explained by White [26], since the Tr are uniformly almost minimiz-
ing, the convergence Tr → Σ and regularity theory implies that Tr can be
described as the normal graph of a function ur on Σ with ur → 0 in C1,α. As
ur is close to 0, one can write ur = wtr + fr where wt = tu0 + vt is given by
Lemma 5 and fr ∈ V 1,α (indeed the map R× V 1,α → C1,α; (t, f) 7→ wt + f
is a local diffeomorphism at (0, 0) since ∂twt|t=0 = u0). So one can estimate
the mass of Tr by

M(Tr) = A(ur)

= A(wtr + fr)

= A(wtr) +

∫ 1

0
DA(wtr + tfr)(fr)dt

= A(wtr) +DA(wtr)(fr) +

∫ 1

0

∫ 1

0
tD2A(wtr + stfr)(fr, fr)dsdt

By Lemma 5 and (10), DA(wtr)(fr) =
∫

Σ hwtr fr = 0 since hwtr is a multiple
of u0 and fr ∈ V . Moreover, for r close to 0, there is c > 0 such that
D2A(wtr +stfr)(fr, fr) ≥ c‖fr‖22 since D2A(0) is given by the Jacobi opera-
tor. So M(Tr) ≥ A(wtr) + c

2‖fr‖
2
2 ≥ A(Σ) + c

2‖fr‖
2
2. Since Tr is minimizing
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M(Tr) ≤ A(Σ). So fr = 0 and A(wtr) = A(Σ) : Tr = Σwtr which is minimal.
So Tr ∈M′ for r close to 0 and Kr is the expected neighborhood. �

The following proposition states a second version of the local minimum
property.

Proposition 5. Let Σ, M and M′ be as above. There is ε > 0 so that
for every T ∈ Zn(M,Z2) with F(T,M) < ε, we have M(T ) > A(Σ) unless
T ∈M′ where M(T ) = A(Σ).

Proof. The proof follows the lines of the proof of [14, Proposition 6.2].
First let (Ti) ∈ Zn(M,Z2) be a sequence converging to some S in M in

the flat topology with M(Ti) ≤ A(Σ). From Proposition 4, we obtain a
neighborhood U of S such that elements in M′ are the only minimizers of
M among cycles contained in U homologous to S. Let us consider a smaller
neighborhood V with V ⊂ U . In [14], Marques and Neves then construct a
sequence of cycles Ri satisfying the following properties

• M(Ri) ≤M(Ti) ≤ A(Σ)
• Ri → S in the flat topology
• the support of Ri − Ti is contained in M \ V
• the support of Ri is in U for large i

Since Ri → S, Ri is homologous to S for large i. So because of Proposition 4,
Ri = Si for some Si ∈M′. Moreover, since Ri → Σ, Si ⊂ V for large i then
M(Ti) = M(Si +Tix(M \V )) = A(Si) + M(Tix(M \V )) so Tix(M \V ) = 0
and Ti = Ri = Si i.e. Ti ∈M′. �

So the consequence of this is the following result: a type 1 almost stable
minimal hypersurface is at the bottom of a basin of the area functional.

Proposition 6. Let Σ and M be as above. For any ε > 0, there is δ > 0
and a neighborhood N ⊂ Zn(M,Z2) of M, such that N ⊂ Nε(M) = {T ∈
Zn(M,Z2) | F(T,M) < ε} and, for any T ∈ ∂N , we have M(T ) ≥ A(Σ)+δ.

In the case of a stable minimal hypersurface Σ (positive first Jacobi eigen-
value), the same result is true with M = {Σ} by [14, Proposition 6.2].

Proof. First we assume that ε is such that Proposition 5 applies. Let S±
denote both extremal hypersurfaces of the family (possibly S+ = Σ = S−).
Let {w±t } = {tu±0 + v±t } be the families of functions given by Lemma 5
associated to S±. Since Σ is almost minimizing and S± are minimally
foliating only on one side, there is t+ > 0 (resp. t− < 0) such that S±

w±s
∈

Nε(M) for 0 ≤ s ≤ t+ (resp. t− ≤ s ≤ 0) and A(w±
t±) > A(Σ).

Let M̃ = M ∪ {S±
w±s
, 0 ≤ ±s ≤ t±}. We can notice that any element

in M′ \ M̃ is at a positive F distance from M̃. Let η > 0 such that

Nη(M̃) ⊂ Nε(M) and Nη(M̃) ∩M′ = M̃ ∩ M′ . If Ti is a sequence in

∂Nη(M̃) such that M(Ti)→ inf{M(T ), T ∈ ∂Nη(M̃)}. By compactness we
can assume that Ti → T and, by lower-semicontinuity of the mass, M(T ) =
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inf{M(T ), T ∈ ∂Nη(M̃)}. Moreover F(T,M̃) = η and F(T,M) ≤ ε. So by
Proposition 5, M(T ) ≥ A(Σ) with equality iff T ∈M′ which would implies

T ∈ M̃ a contradiction. So M(T ) > A(Σ) and the result is proved. �

5.4. The rigidity result. In this section we finally prove Theorem 8. So
let us fix a Riemannian 3-sphere (S3, g) with sectional curvature bounded
above by 1. Its Simon-Smith width is realized by a collection of minimal
spheres whose areas are at least 4π so the width is at least 4π. If the width
is 4π, the width is then realized by a minimal 2-sphere Σ with multiplicity
1.

If Σ has index at least 1, the rigidity comes from Theorem 6. So we need
to prove that index 0 cannot occur.

If Σ has vanishing first Jacobi eigenvalue then Σ may belong to a family
of minimal spheres {Ss}. Since we are in S3, this family is of type 1. Let
M = {Ss, s ∈ [s−, s+]} be the associated compact subset in Z2(M,Z2)
(M = {Σ} if Σ is stable).

If Σ is almost-stable (or Σ stable), let ε be less that the F distance fromM
to the 0 cycle and let N be the neighborhood ofM given by Proposition 6.

Since Σ realize the width, there are sequences {σn} in Λ and (tn) in [−1, 1]
such that σntn → Σ in the varifold sense and (σntn) is a min-max sequence
which is almost minimizing in small annuli. Because of Proposition 3, we
have σntn → Σ ∈ Z2(M,Z2) for the F metric. So for n large enough, the
continuous path t 7→ σnt in Z2(M,Z2) enters into N . As this path starts
and ends at the 0 cycle, it must cross ∂N so

max
t∈[−1,1]

A(σnt ) ≥ 4π + δ

where δ is given by Proposition 6. So {σn} can not be a minimizing sequence.
Thus the width is realized by a type 1 minimal sphere Σ in M of area

4π with vanishing first Jacobi eigenvalue and which is not almost-stable. Σ
belongs to a local foliation by minimal surfaces (it may contain only one leaf)
which contains one minimal sphere S of area 4π whose canonical foliation
{St} contains leaves such that A(St) < A(Σ) for t > 0 arbitrarily close to 0.
Notice that S has also vanishing first Jacobi eigenvalue. Let a(t) = A(St)
be the associated area function. We notice that, if a′(t) = 0, St is a minimal
sphere and then a(t) ≥ 4π. This implies that

• either a(t) ≥ 4π for t ∈ [0, ε) (ε small),
• or a(t) is decreasing on [0, ε) (ε small).

Since S is not almost-stable, we are in the second situation. In order to
exploit this situation we need to introduce a slightly different local foliation
near S.

Lemma 6. Let Σ be a degenerate stable minimal 2-sided hypersurface with
first Jacobi eigen-function u0. There is ε > 0 and a smooth map ṽ : (−ε, ε)×
Σ→ R with the following properties.

• ṽ0 = 0, ∂tṽt|t=0 = 0 and
∫

Σ u0ṽt = 0.
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• for each t ∈ (−ε, ε), Htu0+ṽt is a multiple of u0.

The proof is the same as Lemma 5 proof and gives the same consequence:
if Σw is a minimal hypersurface with w small then w = tu0 + ṽt for some t.

So let {S̃t} = {Stu0+ṽt} be the family given by applying the above lemma

to S. Let ã(t) = A(S̃t) be the associated area function. If ã′(t) = 0, S̃t is a
minimal sphere and then ã(t) ≥ 4π. So we also have the alternative

• either ã(t) ≥ 4π for t ∈ [0, ε),
• or ã(t) is decreasing on [0, ε).

Let us see that we are in the second case. If we are in the first one, there
is t0 > 0 such that ã′(t0) ≥ 0, this implies that the mean curvature vector

of S̃t0 points to S. For t > 0 small, St is between S̄ and S̃t0 , let t1 be the

first t such that St intersect S̃t0 , then the mean curvature vector of St1 must
points to S which contradict a′(t1) < 0. So we are in the second case.

If w̃t = tu0 + ṽt, we define on the neighborhood of S the vectorfield X by

X(Φw̃t(p)) = (∂tw̃t)∂t such that S̃t is the image of S by the flow given by X.

We also consider ν̃t the unit normal to S̃t (with the convention (ν̃t, ∂t) ≥ 0)

and Y = (X, ν̃t)ν̃t. This vectorfield is normal to S̃t and S̃t is the image
of S by the flow given by Y . Now we apply ideas similar to the proof of

Theorem 6. Looking at the F functional on S̃t we have:

d

dt
F (S̃t) = −

∫
S̃t

2H̃t(Y, ν̃t)dσ −
∫
S̃t

2H̃3
t (Y, ν̃t)dσ

+

∫
S̃t

(∆⊥Y, H̃tν̃t) + (Y,B(ei, ej))(B(ei, ej), H̃tν̃t)dσ

+

∫
S̃t

H̃tR(ei, Y )ei, ν̃t)dσ

=

∫
S̃t

H̃t(X, ν̃t)(Ric(ν̃t)− 2)dσ +

∫
S̃t

H̃t(X, ν̃t)‖
◦
B‖2dσ

−
∫
S̃t

(∇(X, ν̃t),∇H̃t)dσ

(11)

where ∆⊥ and ∇ are operators on S̃t and H̃t is the mean curvature of S̃t.

Let ũt be the positive function defined on S̃t by ũt(Φw̃t(p)) = u0(p). By

construction there is c̃t ∈ R such that H̃t = c̃tũt. Moreover since we are in
the second case, c̃t > 0 and H̃t > 0. This also implies H̃t(X, ν̃t) ≥ 0 and

(∇(X, ν̃t),∇H̃t) = ct(∇(X, ν̃t),∇ũt). At t = 0, (∇(X, ν̃t),∇ũt) = ‖∇u0‖2 ≥
0. So if u0 is not constant

∫
S̃t

(∇(X, ν̃t),∇H̃t)dσ ≥ 0 for small t and, if u0 is

constant, H̃t = c̃tũt is constant and
∫
S̃t

(∇(Y, ν̃t),∇H̃t)dσ vanishes. In both

cases, the last term in (11) is non positive and

d

dt
F (S̃t) ≤ CF (S̃t)
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for some constant C as in Theorem 6 proof. This implies that F (S̃t) = 0
for any t. So we are in the equality case: Ric(ν̃t) = 2 since c̃t > 0. So
Ric(ν̃0) = 2 and the Jacobi operator on S is ∆ + 2 which contradict that 0
is its first eigenvalue.

Appendix A. A Schauder estimate

In this appendix, we prove Proposition 1. To lighten notations, we denote
ET = E[0,T ] and PT = Rn × [0, T ]. First, we give some complementary

notations for Hölder norms. For a map u : D ⊂ Rn × R→ Rk, we define

[u]2,α,D = [u]2,α,D,x + [u]2,α,D,t

[u]1,α,D,x = [∂xu]0,α,D,x

[u]1,α,D,t = [u](1+α)/2,D,t + [∂xu]α/2,D,t

[u]1,α,D = [u]1,α,D,x + [u]1,α,P,t

‖u‖1,α,D = ‖u‖0,D + ‖∂xu‖0,D + [u]1,α,D

Associated to these norms, we have the C l,α Hölder space. We also define

the space C l,α0 (PT ) as maps u ∈ C l,α(PT ) satisfying ∂itu|t=0 = 0 for 0 ≤ i ≤
l/2.

We have some classical interpolation inequalities.

Lemma 7. Let l,m ∈ {0, 1, 2}, α, β ∈ [0, 1] such that l + α > m + β and
let T > 0. Then for any ε > 0 there is a constant C such that, for any
u : PT → Rk

‖u‖m,β,PT ≤ C‖u‖L2(PT ) + ε[u]l,α,PT

Proof. Let us explain the proof when l = m = 0 and β = 0 < α. Let
us notice that its sufficient to look only at one component ua of u. Let
X ∈ PT and consider δ > 0. For δ small, we can consider a box B which is
a translate of [0, δ]n× [0, δ2] such that B ⊂ PT and X ∈ B (δ can be chosen
independently of X). Then there is X ∈ B such that

∫
B u

a = δn+2ua(X̄).
So

|ua(X)| ≤ |ua(X)|+ |ua(X)− ua(X)|

≤ 1

δn+2

∫
B
|ua|+ 2δα[ua]0,α,B

≤ 1

δn/2+1
‖ua‖L2(B) + 2δα[ua]0,α,B

≤ 1

δn/2+1
‖ua‖L2(PT ) + 2δα[ua]0,α,PT

So choosing δ small enough we have the result.
Once this first estimate is established, the other ones can be obtained by

similar arguments (for example, see Section 6.8 in [10]). �
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The second result that we shall need is a Schauder type estimate for
solution of

(12) ∂tu− Lu = f

over Rn × [0, T ] where L is an operator as in (2) with constant coefficients
and only second order terms.

Lemma 8. Let L be an operator as in (2) with constant coefficients and
only second order terms. Then there is a constant C such that the following
statement is true. If u ∈ C2,α

0 (PT ) is a solution of (12) with f ∈ C0,α
0 (PT )

such that ut has compact support for any t then

(13) [u]2,α,PT ≤ C[f ]0,α,PT

This result is established in Section 15 of [24] (see Theorem 4.1 and Equa-
tion (4.43))

We now want a similar result when L depends on the variable x and have
terms of any order.

Lemma 9. Let L be an operator as in (2) with Cα coefficients independent
of t. Then there is a constant C such that the following statement is true.
If u ∈ C2,α

0 (PT ) is a solution of (12) with f ∈ C0,α
0 (PT ) such that ut has

compact support for any t then

[u]2,α,PT ≤ C(‖f‖0,α,PT + ‖u‖L2(PT )

‖u‖2,α,PT ≤ C(‖f‖0,α,PT + ‖u‖L2(PT ))

Proof. Let p be a point in Rn, we are going to prove the estimate near p. Let
δ > 0 and consider ϕδ be a non-negative C∞ function on Rn with support
on the ball B centered at p and radius 2δ, equal to 1 on the ball B′ of radius
δ and such that [ϕδ]i,E ≤ C

δi
. We are going to estimate ϕδu.

Let Lp denote the operator L(p) and Lp the part of Lp with only second
order terms. Since ∂tu− Lu = f we have

∂t(ϕδu)−Lp(ϕδu) = ϕδf+ϕδLu−L(ϕδu)+L(ϕδu)−Lp(ϕδu)+Lp(ϕδu)−Lp(ϕδu)

So the estimate (13) gives

[ϕδu]2,α,BT ≤C([ϕδf ]0,α,BT + [ϕδLu− L(ϕδu)]0,α,BT

+ [L(ϕδu)− Lp(ϕδu)]0,α,BT + [Lp(ϕδu)− Lp(ϕδu)]0,α,BT )

where BT denotes B × [0, T ].
In the right hand side of the above estimate, the first term can be esti-

mated by [ϕδf ]0,α,BT ≤ Cδ‖f‖0,α,BT (in the sequel Cδ will denote a constant
that depends on δ). In ϕδLu− L(ϕδu), the terms where the second deriva-
tives of u appears cancel, so [ϕδLu−L(ϕδu)]0,α,BT ≤ Cδ‖u‖1,α,BT . Similarly
for the last term, [Lp(ϕδu) − Lp(ϕδu)]0,α,BT ≤ Cδ‖u‖1,α,BT . For the third
term, if Λ bounds the C0,α norm of the coefficients of Lp, we have

[L(ϕδu)− Lp(ϕδu)]0,α,BT ≤ Λδα[ϕδu]2,α,BT + 2Λ‖ϕδu‖2,BT
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So fixing δ such that CΛδα < 1 we obtain

[ϕδu]2,α,BT ≤ Cδ(‖f‖0,α,BT + ‖u‖1,α,BT + ‖ϕδu‖2,BT )

Since ϕ = 1 on B′ we obtain

[u]2,α,B′T ≤ Cδ(‖f‖0,α,PT + ‖u‖1,α,PT + ‖u‖2,PT )

Since we can consider any point p in Rn, we have

[u]2,α,PT ≤ Cδ(‖f‖0,α,PT + ‖u‖1,α,PT + ‖u‖2,PT )

By interpolation inequalities, we have ‖u‖1,α,PT +‖u‖2,PT ≤ Cε‖u‖L2(PT )+
ε[u]2,α,PT . So choosing ε such that Cδε < 1, we obtain

[u]2,α,PT ≤ Cδ(‖f‖0,α,PT + ‖u‖L2(PT ))

Using interpolation inequality again we finally have

‖u‖2,α,PT ≤ Cδ(‖f‖0,α,PT + ‖u‖L2(PT ))

�

We can now give the proof of Proposition 1.

Proof of Proposition 1. Let U and F be as in the proposition. If T ≤ 1
the result is given by Theorem 3, so let us assume that T ≥ 1 and let
η : R+ → R+ such that η = 1 in a neighborhood of 0 and η = 0 on
[1/2,+∞). So we can write U = η(t)U + (1 − η(t))U . By Theorem 3, we
have ‖η(t)U‖2,α,ET ≤ C‖U‖2,α,E1 ≤ C(‖F‖0,α,ET + |U0|2,α,E + ‖U‖L2(ET )).

The section W = (1− η)U ∈ C2,α
0 (ET ) is then a solution of

∂tW − LW = (1− η)F − η′U

Let (ϕi)1≤i≤m be a partition of the unity such that the ϕi has support in
local charts Ωi of E. Then each Wi = ϕiW is a solution of ∂tWi−LWi = Gi.
In the chart, Wi can be written as a section wi over Rn with compact support
which is a solution of ∂twi − Lwi = gi. So, by Lemma 9

‖wi‖2,α,PT ≤ C(‖gi‖0,α,PT + ‖wi‖L2(PT ))

This gives

‖Wi‖2,α,ΩiT ≤ C(‖gi‖0,α,ΩiT + ‖wi‖L2(ΩiT ))

where Ωi
T denotes the bundle over Ωi × [0, T ]. Summing these estimates

and using that a finite number of Wi is sufficient we obtain

‖W‖2,α,1,ET ≤ C(‖F‖0,α,ET + ‖U‖0,α,E1 + ‖U‖L2(ET ))

≤ C(‖F‖0,α,ET + |U0|2,α,E + ‖U‖L2(ET ))

where we have used η′ = 0 outside [0, 1] and Solonnikov’s estimate on E1.
So adding both estimates for ηU and (1− η)U gives the desired result. �
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