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Abstract. If M is a finite volume complete hyperbolic 3-manifold, the
quantity A1(M) is defined as the infimum of the areas of closed mini-
mal surfaces in M . In this paper we study the continuity property of
the functional A1 with respect to the geometric convergence of hyper-
bolic manifolds. We prove that it is lower semi-continuous and even
continuous if A1(M) is realized by a minimal surface satisfying some
hypotheses. Understanding the interaction between minimal surfaces
and short geodesics in M is the main theme of this paper

1. Introduction

The area of a closed minimal surface Σ in a complete hyperbolic 3-
manifold is bounded above by −2πχ(Σ); this follows from the Gauss equa-
tion. Finding an optimal lower bound for the area is a more subtle question.
Notice that in dimension 2, there is no lower bound for the length of a
closed geodesic in a hyperbolic surface. However the Margulis lemma and
the monotonicity formula does give a lower bound of 2π(cosh(ε̄) − 1), for
the area of a properly immersed minimal surface in a complete hyperbolic
3-manifold; ε̄ is the Margulis constant. According to explicit estimates of ε̄,
this number is at least 0.104 [12].

In a previous paper [11], the authors proved the area is at least 2π when Σ
is a closed embedded minimal surface in a complete finite volume hyperbolic
3-manifold of Heegaard genus at least 6. If Σ is non-orientable the lower
area bound is π. Perhaps the main goal of the present paper it to introduce
techniques to resolve the remaining cases: 2 ≤ Heegaard genus ≤ 5.

In our paper [11], we introduce the quantityA1(M), whereM is a compact
orientable 3-manifold. If O denotes the collection of all smooth orientable
embedded closed minimal surfaces in M and U the collection of all smooth
non-orientable ones, A1(M) is defined by

A1(M) = inf({|Σ|,Σ ∈ O} ∪ {2|Σ|,Σ ∈ U})
so A1(M) gives a lower bound for the area of any minimal surface in M .

The main result in [11] says that A1(M) is the area (or twice the area)
of some minimal surface in M . Moreover it gives some characterization of
this minimal surface in terms of its index and its genus.

Let (gi)i be a sequence of smooth Riemannian metrics onM which smoothly
converge to ḡ. Because of the characterization of the minimal surface that
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realizes A1(M, gi) and thanks to a compactness result by Sharp [16], it
can be proved that lim inf A1(M, gi) ≥ A1(M, ḡ). Moreover, if A1(M, ḡ) is
realized by a non degenerate minimal surface, limA1(M, gi) = A1(M, ḡ).
However one can produce examples where A1 is not upper semi-continuous
(F. Morgan suggested examples of a 2-sphere looking like a pear).

Concerning hyperbolic manifolds, our study proves that, if M is hyper-
bolic and its Heegaard genus is at least 6, then A1(M) ≥ 2π which gives
a universal lower bound for the area of a minimal surface in M . This rea-
soning can be adapted to the case M is a finite volume hyperbolic manifold
(not necessarily compact).

In order to remove the hypothesis about the Heegaard genus, we ask the
question of the continuity of A1 when the space of hyperbolic manifolds
is endowed with the geometric convergence topology. Here the situation is
not as above where we have a sequence of Riemannian metrics on a fixed
manifold, here we have a sequence of manifolds Mi with changing topolo-
gies. Moreover, if (Mi)i is a non trivial converging sequence of hyperbolic
manifolds then Mi contains a geodesic γi whose length goes to 0. As a conse-
quence, an important question for our study is to understand the behaviour
of a minimal surface intersecting a neighborhood of a short geodesic.

This question has been already studied by several authors. For example,
Hass [8] and Huang and Wang [9] study the geometry of minimal surfaces
near a short geodesic in order to construct hyperbolic manifolds that fiber
over the circle but such that the fibers can not be made minimal.

Our study of minimal surfaces near short geodesics starts with a result of
Meyerhoff [12]. Basically it says that a short geodesic in M of length ` has
a embedded tubular neighborhood NR` of radius R` and lim`→0R` = +∞.

We obtain two results concerning minimal surfaces in NR` . The first
one deals with stable minimal surfaces in tubular neighborhood of short
geodesics (Corollary 7). Basically it says that such a stable minimal surface
either stays far from the short geodesic or it intersects transversely the short
geodesic. Moreover in the second case, the surface must have a very large
area in the R` tubular neighborhood of the geodesic.

Our second result deals with general minimal surfaces (not assumed to be
stable) (Proposition 9). It says that a minimal surface in the neighborhood
of a short geodesic either stays very far from the core geodesic or comes very
close to it (the estimate depending on the index of the minimal surface). As
above in the second case, we obtain a lower bound for the area of a minimal
surface coming close to the short geodesic.

Actually these two results are very similar to results we obtained with
Collin and Hauswirth in [4] concerning the geometry of minimal surfaces
in hyperbolic cusps. In both cases, the argument is based on the fact that
the tubular neighborhoods are foliated by equidistant tori whose diameter
are small. As a consequence, an embedded minimal surface with bounded
curvature can not be tangent to these equidistant surfaces.
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Once the behaviour of minimal surfaces close to short geodesics is un-
derstood, we study the continuity of A1. A version of our result can be
stated as follows. It is similar to the result that can be obtained for a fixed
manifold with a converging sequence of metrics.

Theorem. Let Mi →M be a converging sequence of hyperbolic cusp mani-
folds. Then

A1(M) ≤ lim inf A1(Mi).

If A1(M) is not realized by the area of a stable-unstable separating minimal
surface, then

A1(M) = limA1(Mi).

Let us recall that ”stable-unstable” means that the first eigenvalue of
the stability operator is 0. Of course one can expect that the surface that
realizes A1(M) is never stable-unstable but we do not know how to prove
this. Actually it is possible to expect that no minimal surface in a hyperbolic
manifold is stable-unstable. In fact the above result is a combination of two
propositions: Propositions 22 and 25

The main difficulty in the proof of Proposition 25 is to be able to control
where is located a minimal surface Σi that realizes A1(Mi). Actually, our
study of minimal surfaces near short geodesics implies that Σi can not enter
into a tubular neighborhood of a short geodesic. So it stays in a part of Mi

where the convergence Mi →M is just the smooth convergence of the metric
tensor. Thus a compactness result by Sharp [16] gives the lower semiconti-
nuity of A1. Concerning Proposition 22, we first prove that lim supA1(Mi)
is bounded. Thus if A1(M) is not realized by a stable-unstable separating
minimal surface Σ then Σ can be deformed into a minimal surface in Mi.
This implies the second inequality.

Of course one can also think about hyperbolic manifolds with infinite
volume and ask the following question. For which class of complete hyper-
bolic 3-manifolds of infinite volume can one hope for an area lower bound
2π? There may not exist a closed minimal surface in M , but if A1(M) is
realized, can one expect it to be at least 2π?

The paper is organized as follows. In Section 2.1, we recall some basic facts
about the description of cusp and tubular ends of complete finite volume
hyperbolic 3-manifolds. Section 3 studies the geometry of minimal surfaces
with bounded curvature in tubular ends. In Section 4, we study the general
behaviour of minimal surfaces in tubular ends. In Section 5 we recall some
facts about the min-max theory for minimal surfaces that we will use in the
next sections. Section 6 is devoted to recall the work we made in [11] and
how it should be adapted to work with non compact hyperbolic manifolds.
Sections 7 and 8 are devoted to the study of the lower and upper semi-
continuity of the A1 functional. Finally in Appendix A, we prove some
technical results and formulas.
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Preliminary remarks. Let S be a smooth Riemannian surface, we will
denote by |S| its area.

Let (T, dσ2) be a flat torus. Its universal cover is a flat R2 so we have
coordinates (x1, x2) such that the flat metric can be written dx2

1 + dx2
2.

Then T is the quotient of R2 by some lattice Γ. We say that (x1, x2) is an
orthonormal coordinate system on T .

Moreover, we can choose (x1, x2) such that Γ is generated by v1, v2 where
v1 = (a1, 0) and v2 = (a2, b2). We then say that (x1, x2) is a well oriented
orthonormal coordinate system.

We notice that if (T, dσ2) has diameter δ then the lattice can be generated
by vectors of length less than 2δ.

2. Hyperbolic manifolds

In this first section we recall some facts concerning the geometry of hy-
perbolic 3-manifolds with finite volume also called cusp manifolds. We refer
to [2] for part of this description.

2.1. The cusp and tubular ends. Let M be a complete hyperbolic 3-
manifold of finite volume. For any ε less than the Margulis constant, the
manifold M can be split into two parts: the ε-thick part M[ε,∞) which is
connected, not empty (recall that p ∈ M[ε,∞) if any non null homotopic
closed loop at p has length at least ε) and the ε-thin part which may have a
finite number of connected components. The connected components of the
thin part are of two types: cusp ends and tubular neighborhoods of closed
geodesics also called tubular ends.

Cusp ends are isometric to E0 = T × R+ endowed with a metric

g = e−2tdσ2 + dt2

where dσ2 is a flat metric on the 2-torus T . We define Et = T × [t,+∞). We
notice that if E0 is a component of the ε-thin part then Et is a component
of the the δε-thin part with e−2t ≤ δ ≤ e−t/2.

For tubular ends, let γ be a short geodesic in M and consider c a lift of
γ to H3. If R is small the R-tubular neighborhood NR of γ in M is the
quotient of the R tubular neighborhood VR of c in H3 by some loxodromic
transformation τ of axis c (see Figure 1).

In order to introduce some coordinate system, let z denote arclength along
c and let ~ν(z), ~τ(z) be parallel orthogonal unit normal vectorfields along γ,
we introduce cylindrical coordinates in VR by

F (z, θ, r) = expc(z)(r(cos θ~ν(z) + sin θ~τ(z)))

In these coordinates, the hyperbolic metric is

(1) g = (cosh2 r)dz2 + (sinh2 r)dθ2 + dr2.

NR can be viewed as the quotient of MR = {(z, θ, r) ∈ R2 × [0, R]} by the
relations (z, θ, 0) ∼ (z, θ′, 0), (z, θ, r) ∼ (z, θ+2π, r) and (z, θ, r) ∼ (z+`, θ+
α, r) for some parameters ` > 0 and α. ` is the length of the geodesic loop
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γ and α is called the twist parameter of γ (it is the angle of the loxodromic
transformation). As above, if NR is a component of the ε-thin part, then

Nr is a component of the δε-thin part some some δ ∈ [e2(r−R), e(r−R)/2] if R
and r are larger than some universal constant. In the following, we denote
by Sr̄ = ∂Nr̄ the torus {r = r̄}.

c

2π sinh r

r

` c
os

h r

`

Figure 1. The r-tubular neighborhood Vr of a lift c of the
geodesic γ of length `

The above coordinates are called tubular coordinates. In order to be
coherent with the coordinates we use on cusp ends, we will also use the
coordinate system (x1, x2, t) = (θ, z, R − r) such that the metric can be
written

g = sinh2(R− t)dx2
1 + cosh2(R− t)dx2

2 + dt2 = dσ2
t + dt2

on T × [0, R] where T is the quotient of R2 by the translations by (2π, 0)
and (α, `) (notice that g is singular on T × {R}).

The interest of these coordinates is that any part of a cusp or tubular end
can be described as T × [a, b] with some metric dσ2

t + dt2 where dσ2
t is a flat

metric on the torus T . We denote by Tt = T ×{t}. So the family (Tt)t gives
a foliation of the ends by tori.

If C is the torus in such an end that corresponds to T ×{t̄}, the graph of
a function u : Ω ⊂ C → R is just the surface parametrized by {(p, t) ∈ T ×
R|t = t̄+ u(p)} (notice that we will often identify C ⊂M with Tt̄ ∈ T ×R).

One question is to know what is the maximal radius R that can be consid-
ered in the above discussion (NR being embedded). This has been estimated
by Meyerhoff in [12] where the following result is proved.

Theorem 1. Let γ be a geodesic loop in a complete hyperbolic 3-manifold.

If the length ` of γ is less than
√

3
4π ln2(

√
2+1), then there exists an embedded

tubular neighborhood around γ whose radius R satisfies

sinh2R =
1

2

(√
1− 2k

k
− 1

)
where k = cosh

√
4π`√

3
− 1.



6 LAURENT MAZET AND HAROLD ROSENBERG

In the sequel we denote by R` the solution of sinh2R = 1
2

(√
1−2k
k − 1

)
.

When ` is small this implies that sinh2R` ∼ cosh2R` ∼
√

3
4π` . For example,

the area of SR` goes to
√

3
2 as `→ 0.

Let us notice that the mean curvature of the torus Sr0 with respect to
−∂r is (tanh r0 + coth r0)/2.

2.2. The geometric convergence. The space of cusp manifolds with vol-
ume less than V0 is compact for geometric convergence. This convergence
is defined as follows (see Sections E.1 and E.2 in [2]). Let Πi : H3 → Mi

and Π : H3 → M be the universal covers and o a point in H3. We say that
the pointed manifolds (Mi,Πi(o)) converge for the geometric convergence
topology to (M,Π(o)) if, for any r, there are fi : B(o, r) ⊂ H3 → H3 which
are equivariant (Π(z) = Π(z′)⇔ Πi(fi(z)) = Πi(fi(z

′))) such that (fi)i con-
verges to the identity in the C∞ topology (here B(o, r) denotes the geodesic
ball in H3). Actually defining ϕi by ϕi(Π(z)) = Πi(fi(z)), we will often use
the following consequence (see Lemma E.2.2 in [2]).

Lemma 2. Let (Mi)i be a sequence of finite volume hyperbolic manifolds
converging to M in the geometric topology. Let ε > 0 be fixed, after elimi-
nating some initial terms, there exists:

• (σi)i with σi > 0 and σi → 0,
• (ki)i with ki > 1 and ki → 1,
• for all i a ki-quasi-isometric embedding ϕi from a neighborhood of
M [ε,∞) into Mi.

with the following properties

• ϕi(M [ε,∞)) is contained in the interior of Mi[ε−σi,∞) and

• ϕi(∂M [ε,∞)) does not meet an open neighborhood of Mi[ε+σi,∞).

Here ki-quasi isometry must be understood as smooth maps ϕi such that

1

ki
d(p, q) ≤ d(ϕi(p), ϕi(q)) ≤ kid(p, q)

When we will use these properties, we will not forget that ϕi come from
maps fi that are C∞ close to id.

Actually, ε is always chosen small enough such that the ε-thin part of
M contains only cusp ends. Moreover if ε is small enough each connected
component of Mi[ε−σi,ε+σi] contains exactly one component of ϕi(∂M [ε,∞))

(see Theorem E.2.4 in [2]). The description of this component of ϕi(∂M [ε,∞))
is given by the following result.

Lemma 3. Let (Mi)i, M , ε > 0 and ϕi as above. Let C be a connected
component of ∂M [ε,∞). Then for i large, ϕi(C) is a graph of a function ui
over the corresponding component Ci of ∂Mi[ε,∞). Moreover ui → 0 and C
and Ci are κi-quasi-isometric with κi → 1.
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Proof. C is a surface with principal curvatures 1. Thus ϕi(C) has principal
curvatures close to 1 and between 1/2 and 3/2.

Since ϕi(C) ⊂ Ai where Ai is a component of Mi[ε−σi,ε+σi], ϕi(C) is
contained either in a cusp end of Mi or a neighborhood of a short geodesic
of γi. In the second case, there is a smallest δi ≤ σi such that ϕi(C) ⊂
Mi[ε−σi,ε+δi] so ϕi(C) is tangent to a boundary torus of ∂Mi[εi+δi,∞). The
comparison of the mean curvature at this tangency point gives the mean
curvature of ∂Mi[εi+δi,∞) is close to 1. Thus the distance from γi to ϕi(C)
is very large and goes to +∞.

In both cases, Ai is described as Ti × [−αi, βi] with a metric dσ2
i,t + dt2

with αi, βi → 0 and Ci = Ti × {0} is the boundary of Mi[ε,∞) in Ai.
Let γ be a geodesic in ϕi(C). Since ϕi(C) has curvature uniformly

bounded, there is k0 such that |∂s(γ′(s), ∂t)| ≤ k0 so |(γ′(s), ∂t)| ≥ |(γ′(0), ∂t)|/2
for 0 < s < s0 = |(γ′(0), ∂t)|/(2k0). Looking at the t coordinate along γ, we

then have βi +αi ≥ |t(γ(s0))− t(γ(0))| ≥ |(γ
′(0),∂t)|2

4k0
. Since αi +βi → 0, this

implies that the angle between ϕi(C) and ∂t goes to π/2 uniformly. Since
ϕi(C) is embedded this implies that ϕi(C) is a graph over Ci: there is a
function ui : Ci → R such that ϕi(C) = {(p, t) ∈ T × R|t = ui(p)}. Since
the angle between ϕi(C) and ∂t goes to π/2, the gradient of ui goes to 0.
Besides ϕi(C) ⊂ Ai so |ui| is close to 0.

This implies that (p, ui(p)) ∈ ϕi(C) 7→ (p, 0) ∈ Ci is a κi-quasi-isometry
(κi → 1) which can be composed with ϕi : C → ϕi(C) to obtain a κiki-
quasi-isometry. �

As consequence, we have the following result.

Corollary 4. Let V0 be positive then there are `0, δ0, s0 such the following
is true. Let M be a cusp manifold with volume less than V0 and γ be a
geodesic loop of length ` ≤ `0. Then SR` = ∂NR` has diameter less than δ0

and systole larger than s0.

The set of flat tori with diameter less than δ0 and systole larger than s0

is a compact subset of the set of flat tori.

Proof. If it not true there is a sequence of cusp manifolds Mi that converge
to M and in Mi there is a geodesic loop γi of length `i → 0 such that either
the diameter of SR`i goes to ∞ or its systole goes to 0.

After taking a subsequence, we can assume that the tubular ends around
γi converges to one cusp end in M . Let ε > 0 be small and consider C the
component of ∂M [ε,∞) inside this cusp end. Let Ci be the component of
∂Mi[ε,∞) inside the tubular end around γi. By the above lemma, C and Ci
are 2 quasi-isometric. So the area Ci is close to that of C. Since the area of
SR`i in Mi is close to

√
3/2 this implies that the distance between Ci and

SR`i is uniformly bounded. Since the diameter and the systole of SR`i differ
from those of Ci by at most a uniform factor. This contradicts that either
the diameter goes to ∞ or the systole goes to 0. �
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Remark 1. Let us consider a particular one sided neighborhood of ϕi(C) in
Mi. Actually, let A be the part of the 2-tubular neighborhood of C inside
M [ε,∞). Thus ϕi(A) is a one sided neighborhood of ϕi(C).

A can be parametrized by T × [−2, 0] with the metric g = e−2tdσ̄2 + dt2.
Let X : T×[−2, 0]→M be this parametrization and (x1, x2) be orthonormal
coordinates such that g = e−2x3(dx2

1 + dx2
2) + dx2

3. Let us now estimate the

metric ϕ∗i gi. We notice that X lifts to an equivariant map X̃ : R2×[−2, 0]→
H3 i.e. X = ΠX̃. If g̃i = g̃i,kldxkdxl we have

g̃i,kl = 〈dϕiXxk , dϕiXxl〉Mi

= 〈dϕidΠX̃xk , dϕidΠX̃xl〉Mi

= 〈dΠidfiX̃xk , dΠidfiX̃xl〉Mi

= 〈dfiX̃xk , dfiX̃xl〉H3

since Πi is a local isometry. Since fi converges to the identity map in the
C∞ topology this implies that g̃i → g in the C∞ topology.

Remark 2. By Mostow rigidity theorem, the topology of a complete finite
volume hyperbolic 3-manifold determines its hyperbolic structure. Thus if
a converging sequence Mi → M is not constant, there is a subsequence
whose topologies are distinct from that of M : there are short geodesics γi
in Mi whose lengths converge to zero and whose maximal embedded tubular
neighborhoods are converging to cusp ends of M (see Figure 2).

Mi+k

γi+k

Mi

M
A cusp end of M

Mi[ε,∞)

γi

Figure 2. A schematic converging sequence Mi →M
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3. Transversallity in tubular ends

The aim of this section is to understand the behaviour of a minimal surface
in a tubular end when we know a priori an upper bound on its curvature.
A similar study was made for cusp ends in [4].

In this section, we use the tubular coordinates (z, θ, r).

3.1. An intersection property. We recall that, if c is a geodesic in H3,
Vr denotes its tubular neighborhood of radius r. Moreover, for r > 0, we
denote Br = ∂Vr.

Lemma 5. Let k0 and ε0 be positive, then there are r0 and η0 such that
the following is true. Let c be a geodesic in H3. Let r ∈ [0, r0] and pi =
(zi, θi, r) (i = 1, 2) be two points in Vr0 such that θ2 ∈ [θ1 + π

3 , θ1 + 2π
3 ] and

z2 ∈ [z1 − η0, z1 + η0]. Let Σi (i = 1, 2) be surfaces in Vr0 whose curvatures
are bounded by k0, pi ∈ Σi and dΣi(pi, ∂Σi) > ε0. If both Σi are tangent to
Br at pi (if r = 0 we assume moreover that a unit normal vector to Σi at pi
is ∂r(zi, θi, 0)) then Σ1 and Σ2 has non empty transversal intersection.

Proof. We look for r0 ≤ 2. In V2 the hyperbolic metric is cosh2 rdz2 +
sinh2 rdθ2 + dr2. Let us change the metric in V2 to the Euclidean metric
ge = dz2 + r2dθ2 + dr2. So there are constants k̃0 and ε̃0 depending only on
k0 and ε0 such that, with ge, Σ1 and Σ2 have curvature bounded by k̃0 and
dΣi(pi, ∂Σi) > ε̃0.

Thus there is η1 > 0 such that Σi can be described as a graph over
the Euclidean disk of radius η1 tangent to Σi at pi (see Proposition 2.3 in
[14]). Moreover if η1 is chosen small enough, the gradient of the function
parametrizing Σi is less than 1/10.

Let r0 = η0 = η1/10. With these choices, the tangent disks of radius η1

tangent to Σi at pi must intersect at an angle between π/3 and 2π/3 (see the
schematic figure 3). Moreover since each Σi is at a distance less than η1/10
from its tangent disk, Σ1 and Σ2 must intersect and, as the gradient is less
than 1/10 and the angle between the disks is in [π/3, 2π/3], the intersection
is transverse. �

3.2. The transversality result. The main result of the section is then the
following. We recall that Sr = ∂Nr.

Proposition 6. Let δ0, k0 and ε0 be positive, then there is `0 > 0 and R
such that the following is true. Let ` ≤ `0 and NR` be the hyperbolic tubular
neighborhood of a geodesic loop γ of length ` and such that the diameter of
SR` is less than δ0. Let Σ be an embedded minimal surface in NR` whose

curvature is bounded by k0. Let r̄ < R` −R and p be a point in Σ∩ Sr̄ such
that dΣ(p, ∂Σ) > ε0. Then Σ is not tangent to Sr̄ at p.

We notice that for r̄ = 0, Sr̄ is just the central geodesic γ so the proposi-
tion states that Σ can not be tangent to γ.
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p1

p2

Br̄

Figure 3.

Proof. We start with some `0 such that R` > 10. Let r0 ≤ 1 and η0 be
given by Lemma 5 for k0 and ε0 (we assume ε0 ≤ 1). We first prove that
the result is true if r̄ ≤ r0.

Let Σ be a minimal surface as in the statement of the proposition and

assume that Σ is tangent at p to Sr for some r. We consider the lift Σ̃ of Σ

to H3. Σ̃ is then contained in a solid cylinder VR` .

The surface Σ̃ is then an embedded minimal surface (may be non con-
nected) which is invariant by the action of the loxodromic transformation
τ : (z, θ, r) 7→ (z + `, θ + α, r). Let p1 be a lift of p. We can assume that
p1 = (0, 0, r̄); if r̄ = 0, we assume that ∂r(0, 0, 0) is the unit normal vector

to Σ̃.
SR` has a diameter less than δ0. So, for any q in BR` , the intrinsic disk

of radius δ0 in BR` and center q must contain an image of (0, 0, R`) by some
τn.

Let us consider the domain Ar = {(z, θ, r) ∈ Br|z ∈ [− δ0
coshR`

, δ0
coshR`

], θ ∈
[π2 −

δ0
sinhR`

, π2 + δ0
sinhR`

]}, AR` is a square in BR` whose edges have length

2δ0. So AR` contains an image of (0, R`, 0) by some τn. This implies that

τn is the composition of a vertical translation by some z′ ∈ [− δ0
coshR`

, δ0
coshR`

]

and a rotation by some θ′ ∈ [π2 −
δ0

sinhR`
, π2 + δ0

sinhR`
].
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The point p2 = τn(p1) = (z2, θ2, r̄) is another lift of p in Ar̄. Σ̃ is then
also tangent to Br̄ at p2. We have |θ2 − π/2| ≤ δ0/ sinhR` and |z2| ≤
δ0/ coshR`. So we can choose `0 such that, for ` ≤ `0, δ0/ sinhR` ≤ π/6
and δ0/ coshR` ≤ η0. Then we can apply Lemma 5 to the geodesic disks Σi

of radius ε0 in Σ̃ around pi. Lemma 5 applies since, when r̄ = 0, the unit
normal vector to Σ2 at p2 is ∂r(z2, θ2, 0) with |θ2 − π/2| ≤ δ0/ sinhR` (Σ2

is the image of Σ1 by τn). This gives that Σ̃ has transverse self-intersection
which is impossible. So the result is proved for r̄ ≤ r0.

Let us now prove that we can extend this result to the region r0 ≤ r̄ ≤
RL −R for some R > 0.

If the result is not true, for any n > 0, we can find a neighborhood
NR`n

of a closed geodesic γn of length `n ≤ 1
n and a minimal surface Σn in

NR`n
which is tangent to Srn at pn for some rn ≤ R`n − 1

4 lnn (notice that

R`n − 1
4 lnn > 0). Actually because of the first part we can assume rn > r0.

In the following we denote R`n by Rn.
Let η1 = min(r0/10, η0) and replace the sequence Σn by the sequence of

η1-geodesic disks in Σn centered at pn. So we can be sure that Σn never
touches the central geodesic γn and stays outside of Nr0−η1 .

We lift Σn to MRn endowed with the metric (1). This gives us a minimal

surface Σ̃n which is doubly periodic and may be non connected. Σ̃n is doubly
periodic by translation in the (z, θ) parameters by two vectors vn1 , v

n
2 . Since

TRn has diameter less than δ0 we can choose vn1 , v
n
2 of Euclidean length less

than δ0
sinhRn

.
The point pn lifts to some point p̃n whose coordinates can be assumed

to be (0, 0, rn) where rn ∈ (r0, Rn − 1
2 lnn). We can assume that either rn

converges to some r̄ or to ∞. In the first case the ambient space around
(0, 0, r̄) is M∞ = R2 × (0,+∞) with the metric (1). If rn → ∞, we make
the following change of coordinates a = ernz, b = ernθ and ρ = r − rn. So
the ambient space is now R2 × (r0 − η1 − rn, Rn − rn) with the metric

cosh2(ρ+ rn)e−2rnda2 + sinh2(ρ+ rn)e−2rndb2 + dρ2

As n goes to +∞, these metrics converge smoothly to e2ρ

4 (da2 +db2)+dρ2 on

R3. In this model, the vectors vn1 , v
n
2 become ernvn1 and ernvn2 whose lengths

are less that δ0ern

sinhRn
= O(ern−Rn) = O(e−

1
2

lnn)→ 0.
Actually, the cases rn → r̄ and rn → +∞ are very similar. Let us look

first at the case rn → r̄. We notice that the metric satisfies the hypotheses
of Lemma 26 (Appendix A.1) for some parameter A and for r ∈ [r̄−η1, Rn]:
we have x1 = z, x2 = θ, x3 = r and h = sinh. So there is a C and a function
un defined on the Euclidean disk {(z, θ) ∈ R2|z2 + θ2 ≤ 2C2/ sinh2 rn} such
that (z, θ) 7→ (z, un(z, θ), θ) is a parametrization of a neighborhood of p̃n in

Σ̃n. Moreover we have un(0, 0) = rn, ∇un(0, 0) = 0 and the estimates

‖un − rn‖ ≤ Aε0 ‖∇un‖ ≤ sinh rn ‖Hessun‖ ≤
1

C
sinh2 rn.
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Here ∇ denote the Euclidean gradient operator.
So the sequence un is uniformly controlled in the C2 topology and more-

over un solves the minimal surface equation (2). Thus, after considering a
subsequence, un converges to some u defined on Dr̄ = {(t, θ) ∈ R2|t2 + θ2 ≤

2C2

sinh2 r̄
} which solves the minimal surface equation.

If rn → +∞, we apply the change of variables a = ernt, b = ernθ and
ρ = r−rn. So we get a new function wn(a, b) = un(e−rna, e−rnb)−rn defined

on {(a, b) ∈ R2|a2 + b2 ≤ 2C2e2rn

sinh2 rn
}. As above wn satisfies the estimates

‖wn‖ ≤ Aε0 ‖∇wn‖ ≤ e−rn sinh rn ‖Hesswn‖ ≤
1

C
e−2rn sinh2 rn

and solves a minimal surface equation (2). So we can assume it converges
to some function w defined on ∆ = {(a, b) ∈ R2|a2 + b2 ≤ 4C2}.

Let us denote the surface {r = R} by PR. The surface Σ̃n is doubly
periodic so it is tangent to Prn at any point of the form (0, 0, rn) +kvn1 + lvn2
for (k, l) ∈ Z2. Moreover, around these points, it is parametrized locally on
Drn + kvn1 + lvn2 by (z, θ) 7→ (z, un,k,l(t, θ), θ) where un,k,l(z, θ) = un((z, θ)−
kvn1 − lvn2 ). The surface Σ̃n is embedded, this implies that un ≤ un,k,l or
un ≥ un,k,l on Dn ∩ (Dn + kvn1 + lvn2 ) if it is non empty (notice that we can
have un ≡ un,k,l on the intersection).

If rn → r̄, let v0 be a vector in Dr̄. Since vni → 0, there are sequences (kn)n
and (ln)n such that knv

n
1 + lnv

n
2 → v0. As n→∞, the sequence of functions

un,kn,ln then converges to uv0 on Dr̄ + v0 where uv0(·) = u(· − v0). Because
of un ≤ un,k,l or un ≥ un,k,l, we get u ≤ uv0 or u ≥ uv0 on Dr̄ ∩ (Dr̄ + v0).

If rn → ∞, we can do the same with the change of coordinates since
ernvni → 0. So for any v0 ∈ ∆, we have w ≤ wv0 or w ≥ wv0 on ∆∩ (∆ + v0)
where wv0(·) = w(·+ v0).

We now consider the case rn → r̄ (the second one is similar). Let G

be the totally geodesic surface in M∞ tangent to Pr̄ at (0, r̄, 0). As Σ̃, G
can be described as the graph of a function h over Dr̄. We have h(0) = r̄
and there is some α > 0 such that, over Dr̄, h(z, θ) ≥ r̄ + α(z2 + θ2). This
second property comes from the fact that the principal curvatures of Pr̄ with
respect to ∂r are − tanh r̄ < 0 and − coth r̄ < 0. The functions u and h are
two solutions of the minimal surface equation (2) with the same value and
the same gradient at the origin. So by Bers theorem, the function u − h
looks like a harmonic polynomial of degree at least 2.

If the degree of the polynomial is 2, on can find v0 ∈ Dr̄ \ {(0, 0)} such
that (u− h)(v0) > 0 and (u− h)(−v0) > 0. Then we have

u(v0) > h(v0) > h(0, 0) = u(0, 0) = uv0(v0)

uv0(0, 0)) = u(−v0) > h(−v0) > h(0, 0) = u(0, 0)

So this contradicts u ≤ uv0 or u ≥ uv0 on the whole Dr̄ ∩ (Dr̄ + v0)
If the degree is at least 3, the growth at the origin of h implies that u ≥ r̄

on a smaller disk D′ ⊂ Dr̄ and u > r̄ on D′ \{(0, 0)}. So if v0 ∈ D′ \{(0, 0)}
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we have

u(v0) > r̄ = uv0(v0) and uv0(0, 0) = u(−v0) > r̄ = f(0, 0)

Once again, this contradicts u ≤ uv0 or u ≥ uv0 on the whole Dr̄ ∩ (Dr̄ + v0)
If rn →∞, the same argument can be done with a totally geodesic surface

tangent to the horosphere. �

3.3. A first area estimate. The preceding result allows us to estimate the
area of a minimal surface with bounded curvature in a tubular end.

Corollary 7. Let δ0 and k0 be positive, then there is `0 and R such that the
following is true. Let ` ≤ `0 and NR` be the hyperbolic tubular neighborhood
of a geodesic loop γ of length ` and such that the diameter of SR` is less

than δ0. Let 0 < R ≤ R`−R and Σ be a compact embedded minimal surface
in NR+1 whose curvature is bounded by k0 and ∂Σ ⊂ SR+1. Then one of
the following possibilities occurs

(1) Σ ∩NR = ∅
(2) Σ ∩ NR is a finite union of minimal disks. Each of these disks has

boundary curve homotopic to a parallel of SR = ∂NR and |Σ∩NR| ≥
2π(coshR− 1).

A parallel of SR is a curve {z = const.} in the tubular coordinates.

Proof. Let `0 and R be given by Proposition 6 for δ0, k0 and ε0 = 1. Let
Σ be as in the statement of the corollary and assume Σ ∩ NR 6= ∅. By
Proposition 6, Σ is transverse to the foliation (Sr)r of NR. So any connected
component of Σ ∩ NR intersects the geodesic loop γ transversely. This
implies that in Nε for ε small each connected component of Σ∩Nε is a disk
whose boundary is homotopic to a parallel. Thus this description extends
by transversality to Σ∩NR. Let Π be the geodesic projection from NR to a
geodesic parallel disk ∆ (i.e. the map (z, θ, r) 7→ (z0, θ, r) for some z0). This
map is a contraction mapping and it is surjective on any disk component
of Σ ∩NR since the boundary of such a disk is homotopic to a parallel. As
a consequence the area of such a disk component is at least that of ∆, i.e.
2π(cosh(R)− 1). �

4. A maximum principle

One aim of this section is to study some aspect of the behavior of minimal
surfaces in a tubular end. Actually we need to study this in a more general
setting. So we consider the ambient space C = T × [a, b] endowed with some
reference metric g = h2(x3)dσ̄2 +dx2

3 where dσ̄2 is a flat metric on the torus
T . We consider orthonormal coordinates (x1, x2) on T associated to dσ̄2; so
ḡ = h2(x3)(dx2

1 + dx2
2) + dx2

3.
On C, we also consider a second metric g = akl(x1, x2, x3)dxkdxl. For

s ∈ [a, b], we denote Cs = T × [s, b] and Ts = T ×{s}. We are going to make
several hypotheses on the metrics ḡ and g. In order to formulate them, we
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need the following notation: for k1, k2, k3, k4, k5 ∈ {1, 2, 3} and p ≤ 5, we
define

np(k1, . . . , kp) = #{i ∈ {1, . . . , p}|ki ∈ {1, 2}}.
The hypotheses on ḡ and g are: there is A ≥ 1 such that

H1 1
A2 ḡ ≤ g ≤ A2ḡ

H2 |h′|
h ≤ A, |h

′′|
h ≤ A and |h

′′′|
h ≤ A.

H3 |akl| ≤ Ahn2(k,l)(x3), |∂iakl| ≤ Ahn3(k,l,i)(x3), |∂i∂jakl| ≤ Ahn4(k,l,i,j)(x3)

and |∂i∂j∂makl| ≤ Ahn5(k,l,i,j,m)(x3).
H4 h′ ≤ 0 and the mean curvature vector of Ts with respect to g points

in the ∂x3 direction (this is also true for the metric ḡ since h′ ≤ 0)

One consequence of H1 and H2 is that the sectional curvatures of ḡ are
uniformly bounded. Actually by H1 and H3 the sectional curvatures of g
are also uniformly bounded. We also notice that these hypotheses does not
depend on the choice of the orthonormal coordinates on (T, dσ̄2).

4.1. The maximum principle. We have the following maximum principle
for embedded minimal surfaces in C endowed with the metric g.

Proposition 8. Let i0 ∈ N, then there is h0 such the following is true.
Assume that h(a) ≤ h0 and let Σ be an embedded minimal surface in (C, g)
whose non empty boundary is inside Ta and its index is less than i0. Then
Σ ∩ Ca+1/2 = ∅.

We notice that h0 will depend on i0, A and the metric dσ̄2. We also notice
that this control on h is actually a control on the size of the torus Ta.

Proof. If the proposition is not true there is a sequence of functions hn with
hn(a)→ 0 and minimal surfaces Sn ⊂ (C, gn) (gn = an,kl(x1, x2, x3)dxkdxl)
such that ∂Sn ⊂ Ta, its index is less than i0 and Σ ∩ Ca+1/2 6= ∅.

Let sn be the maximum of the x3 coordinate on Sn, x3 ≥ a + 1/2. Let
us define λn = (hn(sn))−1. Then we change the coordinates by y1 = x1,
y2 = x2 and y3 = λn(x3 − sn) and blow up the metric by a factor λn. This
gives us a minimal surface Σn in T × [λn(a−sn), 0] that touches T0 and with
boundary in Tλn(a−sn) (we notice that λn(a − sn) → −∞). The ambient
metric is then g̃n = bn,kl(y1, y2, y3)dykdyl where

bn,kl(y1, y2, y3) = an,kl(y1, y2, y3/λn + sn)λn2(k,l)
n

The reference metric becomes

h2
n(y3/λn + sn)

h2
n(sn)

(dy2
1 + dy2

2) + dy2
3

Because of the hypothesis H2, considering a subsequence, this metric con-
verges to the flat metric dσ̄2 + dy2

3 in C2,α topology. Because of H3, con-
sidering a new subsequence, the metrics g̃n converges to a flat metric h̄ =
b̄kldykdyl in C2,α topology. For example we have

∂ibn,kl = ∂ian,kl(y1, y2, y3/λn + sn)λ
nk,l,i−1
n
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So

|∂ibn,kl| ≤ A
h
n3(k,l,i)
n (y3/λn + sn)

h
n3(k,l,i)
n (sn)

hn(sn)→ 0

Once this is known, the arguments in order to conclude use the fact that
Σn converges to a minimal lamination in T 2 × R− endowed with the flat
metric h̄ : the precise argument can be found in the proof of Proposition 1
in [5]. �

Remark 3. We notice that h0 can be chosen uniformly if dσ̄2 lies in a compact
subset of flat metrics on T .

4.2. Some applications. In this section, we will see some consequences of
the above result.

The case of cusp ends E = T × R+ endowed with ḡ = e−2x3dσ̄2 + dx2
3 is

the simplest one. Indeed in this case the metric g is the reference metric ḡ
and h(x3) = e−x3 . Then hypotheses H1 to H4 are satisfied. So Proposition 8
yields: if ∂E has small diameter, then no compact embedded minimal surface
with boundary inside ∂E and index less than 1 can enter in E1/2. As a
consequence, in a cusp manifold M , there is ε > 0 such that any compact
embedded minimal surface in M with index less than 1 is contained in
M[ε,∞).

The second case of interest concerns the tubular ends.

Proposition 9. Let K be a compact set of flat tori T . Then there are `0
and R such the following is true. Let ` ≤ `0 and NR` be a hyperbolic tubular
neighborhood of a geodesic loop of length ` such that SR` belongs in K. Let

0 < R ≤ R`−R and Σ be a compact embedded minimal surface in NR+1 with
∂Σ ⊂ SR+1 with index less than 1. Then one of the following possibilities
occurs

(1) Σ ∩NR = ∅
(2) Σ ∩N1 6= ∅

Moreover there is a universal constant κ such that, in the second case and
for any 3 ≤ R ≤ R` − R, |Σ ∩ NR| ≥ κs0e

R−R` where s0 ≤ 1 is a lower
bound on the systole of TR`.

Proof. We first prove that Σ ∩ NR = ∅ or Σ ∩ N1 6= ∅. We have seen in
Section 2.1 that we can consider, onNR` , a coordinate system C = T×[0, R`)

endowed with the metric g = sinh2(R` − x3)dx2
1 + cosh2(R` − x3)dx2

2 + dx2
3

((x1, x2) are orthonormal coordinates on T ).
In order to fit with the notations of the preceding section we should

introduce the coordinates yi = sinh(R`)xi i = 1, 2 and y3 = x3. The first
two are orthonormal coordinates on (T, dσ̄2) = sinh(R`)

2(dx2
1 + dx2

2). So we
define ḡ = h2(x3)(dy2

1 + dy2
2) + dy2

3 with h(x) = sinh(R` − x)/ sinh(R`) and
in these coordinates the metric g can be written

1

sinh2(R`)
(sinh2(R` − y3)dy2

1 + cosh2(R` − y3)dy2
2) + dy2

3
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There is A > 0 (that does not depend on `) such that g and ḡ satisfy
hypotheses H1, H2, H3 and H4 on T × [0, R`− 1

2). Moreover we notice that,

since SR` belongs to K, (T, dσ̄2) belongs to a compact set of flat tori.

Let h0 be given by Proposition 8 and let R be such that sinh(R` −R) ≤
h0 sinh(R`). Consider 0 < R ≤ R` − R and let Σ be an embedded minimal
surface in NR+1 \N 1

2
with ∂Σ ⊂ SR+1 and index less than 1. If Σ∩N1 = ∅,

Σ can be seen as a minimal surface in (C, g) with boundary in Ts where
s = R` − (R + 1). Since h(s) ≤ h0, Proposition 8 gives Σ ∩ Cs+1/2 = ∅. So
in the tubular coordinates, we have Σ ∩NR = ∅.

In the second case we now prove the area estimate. For this we use
the tubular coordinates. We notice that Σ must meet all the tori Sr for
1 ≤ r ≤ R+ 1.

Since g ≤ cosh2 r(dz2 + dθ2) + dr2 and the systole of TR` is at least s0,

the disk {(z+ z0, θ+ θ0, R`)| z2 + θ2 ≤ s20
4 cosh2R`

} is embedded in SR` for any

t0, θ0. For any ρ ∈ [3/2, R`], let us define a = sinh ρ
coshR`

s0
4 ≤

1
4 . The cylinder

Yρ = {(z + z0, θ+ θ0, r)|r ∈ [ρ− 2a, ρ] and z2 + θ2 ≤ s20
4 cosh2R`

} is embedded

in Nρ. Yρ contains the geodesic ball of center (z0, θ0, ρ − a) and radius a
which is then embedded in Nρ. Indeed, in the cylinder, we have

g ≥ sinh2(ρ− 2a)(dz2 + dθ2) + dr2 ≥ 1

4
sinh2 ρ(dz2 + dθ2) + dr2

So the geodesic ball is contained in {(z+ z0, θ+ θ0, r+ ρ− a)|14 sinh2 ρ(z2 +

θ2) + r2 ≤ a2} which is a subset of Yρ.
Since Σ meets any Sr for r ≥ 1, for any ρ we can select z0, θ0 such that

(z0, θ0, ρ − a) ⊂ Σ. So by the monotonicity formula in H3, |Σ ∩ Yρ| ≥ πa2.
We are going to sum over all these contributions to estimate the area of Σ.

Let c(s) = (z(s), θ(s), R`) be a parametrization of a systole of SR` and
consider the surface S in NR` parametrized by X : (s, r) ∈ S1 × [1, R`] 7→
(z(s), θ(s), r). So, for ρ1 < ρ2, we can estimate

|S ∩ (Nρ2 \Nρ1)| ≤
∫ ρ2

ρ1

∫
S1

(cosh2(r)z′2(s) + sinh2(r)θ′2(s))1/2drds

≤
∫ ρ2

ρ1

∫
S1

cosh r

sinhR`
(cosh2(R`)z

′2(s) + sinh2(R`)θ
′(s))1/2drds

≤ s0

sinhR`
(sinh ρ2 − sinh ρ1)

≤ 2s0

sinhR`
cosh

ρ1 + ρ2

2
sinh

ρ2 − ρ1

2
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So in Nρ \Nρ−2a

|S ∩ (Nρ \Nρ−2a)| ≤
2s0

sinhR`
cosh(ρ− a) sinh a

≤ 2κs0

sinhR`
cosh(ρ)a

≤ 2κ′s0

coshR`
sinh(ρ)a

≤ 8κ′a2 ≤ 8κ′

π
|Σ ∩ Yρ| ≤

8κ′

π
|Σ ∩ (Nρ \Nρ−2a)|

for some universal constant κ and κ′.
So considering a disjoint union of Nρ \ Nρ−2a in NR \ N1 that covers

NR \N3/2, we obtain

|Σ ∩NR| ≥
π

8κ′
|S ∩ (NR \N3/2)|

≥ π

8κ′

∫ R

3/2

∫
S1

(cosh2(r)y′2(s) + sinh2(r)θ′2(s))1/2drds

≥ π

8κ′′
s0

coshR`
(coshR− cosh 3/2) ≥ κ′′′s0e

R−R`

for any R ≥ 3 and some universal constant κ′′′. �

5. The min-max theory

In this section we recall some definitions and results of the min-max theory
for minimal surfaces. There are basically two settings for this theory: the
discrete and the continuous one. We recall the main points that we will use
in the sequel.

5.1. The discrete setting. The discrete setting for the min-max theory
was developed by Almgren and Pitts (see [1, 13]).

LetM be a compact orientable 3-manifold with no boundary. The Almgren-
Pitts min-max theory deals with discrete families of elements in Z2(M) i.e.
integral rectifiable 2-currents in M with no boundary.

If I = [0, 1], we define some cell complex structure on I and I2.

Definition 10. Let j be an integer. I(1, j) is the cell complex on I whose
0-cells are points [ i

3j
] and 1-cells are intervals [ i

3j
, i+1

3j
].

The cell complex I(2, j) on I2 is I(2, j) = I(1, j)⊗ I(1, j).

For these cell complexes we can associate some notations

• I(m, j)0 denotes the set of 0-cells of I(m, j).
• I0(1, j) denotes the set of 0-cells [0], [1].
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• The distance between two elements of I(m, j)0 is

d : I(m, j)0 × I(m, j)0 → N ; (x, y) 7→ 3j
m∑
i=1

|xi − yi|

• The projection map n(i, j) : I(m, i)0 → I(m, j)0 is defined by n(i, j)(x)
is the unique element in I(m, j)0 such that

d(x, n(i, j)(x)) = inf{d(x, y), y ∈ I(1, j)0}.

Let ϕ : I(m, j)0 → Z2(M) be a map. The fineness of ϕ is defined by

f(ϕ) = sup

{
M(ϕ(x)− ϕ(y))

d(x, y)
, x, y ∈ I(m, j)0 and x 6= y

}
where M is the mass of a current.

We write ϕ : I(1, j)0 → (Z2(M), {0}) to mean ϕ(I(1, j)0) ⊂ Z2(M) and
ϕ(I0(1, j)) = {0}.

Definition 11. Let δ be positive and ϕi : I(1, ki)0 → (Z2(M), {0}) for
i = 1, 2. ϕ1 and ϕ2 are 1-homotopic in (Z2(M), {0}) with fineness δ if there
is k3 ∈ N, max(k1, k2) ≤ k3 and a map

ψ : I(2, k3)0 → Z2(M)

such that

• f(ψ) ≤ δ;
• ψ([i− 1], x) = ϕi(n(k3, ki)(x)) for x ∈ I(1, k3)0;
• ψ(I(1, k3)0 × {[0], [1]}) = 0.

The main objects in the discrete min-max theory are the (1,M)-homotopy
sequences.

Definition 12. A (1,M)-homotopy sequence of maps into (Z2(M), {0}) is
a sequence of maps {ϕi}i∈N,

ϕi : I(1, ki)0 → (Z2(M), {0}),

such that ϕi is 1-homotopic to ϕi+1 in (Z2(M), {0}) with fineness δi and

• limi→∞ δi = 0;
• supi{M(ϕi(x)), x ∈ I(1, ki)0} < +∞.

Moreover we have a notion of discrete homotopy between (1,M)-homotopy
sequences

Definition 13. Let Sj = {ϕji}i∈N (j = 1, 2) be two (1,M)-homotopy se-
quences of maps into (Z2(M), {0}). S1 is homotopic to S2 if there is a
sequence {δi}i∈N such that

• lim δi = 0;
• ϕ1

i is 1-homotopic to ϕ2
i in (Z2(M), 0) with fineness δi.
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This notion defines an equivalence relation between (1,M)-homotopy se-

quences. The set of equivalence classes is denoted by π#
1 (Z2(M),M, {0}).

The Almgren-Pitts theory says that π#
1 (Z2(M),M, {0}) is naturally iso-

morphic to the homology group H3(M,Z) (see Theorem 4.6 in [13] and [1]).

We denote by ΠM the element of π#
1 (Z2(M),M, {0}) that corresponds to

the fundamental class in H3(M). If S ∈ ΠM we say that S is a discrete
sweep-out of M .

For S = {ϕi}i a (1,M)-homotopy sequence we define

L(S) = lim sup
i→∞

max{M(ϕi(x)), x ∈ I(1, ki)0}

If Π ∈ π#
1 (Z2(M),M, {0}) is an equivalence class, we define the width as-

sociated to Π by
W (Π) = inf{L(S), S ∈ Π}

For Π = ΠM , the numberWM = W (ΠM ) is call the width of the manifoldM .
The Almgren-Pitts theory says that this number is positive and is L(S) for
some particular S ∈ ΠM . If S = {ϕi}i we say that ϕij (xj)j (xj ∈ I(1, kij ))

is a min-max sequence if M(ϕij (xj))→WM .

Theorem 14 (Pitts [13]). Let M be a closed 3-manifold, then there is S =
{ϕi}i ∈ ΠM with L(S) = WM and a min-max sequence {ϕij (xj)}j that
converges (in the varifold sense) to an integral varifold whose support is a
finite collection of embedded connected disjoint minimal surfaces {Si}i of M .
So there are positive numbers {ni}i such that

WM =

p∑
i=1

ni|Si|

A consequence of this result is that there is always a minimal surface S
in M such that |S| ≤ WM . Actually, Zhou [19] proved that, if Si is a non
orientable minimal surface produced by the above theorem, then ni is even.

5.2. The continuous setting. The continuous setting was developed by
Colding and De Lellis [3]. Here we present it with the modifications made
by Song in [18].

Let M be Riemannian 3-manifold and consider N ⊂ M a bounded open
subset whose boundary ∂N , when non empty, is a rectifiable surface of
finite H2-measure. Moreover when ∂N 6= ∅, we assume that each connected
component C of ∂N separates M .

If a < b ∈ R, we then have the following definitions.

Definition 15. A family of H2-measurable closed subsets {Γt}t∈[a,b] in N ∪
∂N with finite H2-measure is called a generalized smooth family if

• for each t there is a finite set Pt ∈ N such that Γt ∩N is a smooth
surface in N \ Pt or the empty set;
• H2(Γt) depends continuously in t and t 7→ Γt is continuous in the

Hausdorff sense;
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• on any U ⊂⊂ N \ Pt0, Γt
t→t0−−−→ Γt0 smoothly in U .

We notice the smoothness hypothesis is only made on Γt∩N so this allows
∂N to be non smooth. We now define the notion of continuous sweep-out
in this setting.

Definition 16. If ∂N = ∅, a generalized smooth family {Γt}t∈[a,b] is called a
continuous sweep-out of N if there exists a family of open subsets {Ωt}t∈[a,b]

of N such that

(sw1) (Γt \ ∂Ωt) ⊂ Pt for any t;
(sw2) H3(Ωt4Ωs)→ 0 as t→ s (where4 denotes the symmetric difference

of subsets).
(sw3) Ωa = ∅ and Ωb = N ;

If ∂N 6= ∅, for a open subset Ω ⊂ N we denote ∂∗Ω = ∂Ω ∩ N . A
continuous sweep-out of N is then required to satisfy (sw1) and (sw2) above
except that ∂ is replaced by ∂∗ and t > a in (sw1). Moreover (sw3) is replaced
by

(sw3’) Ωa = ∅, Ωb = N , Σa = ∂N and Σt ⊂ N for t > a.

For a continous sweep-out as above {Γt}t∈[a,b], we define the quantity

L({Γt}) = maxt∈[a,b]H2(Γt). When ∂N is a smooth surface, constructing a
continuous sweep-out can be done in the following way. Let f : N → [0, 1]
be a Morse function such that {f−1(0)} = ∂N . Then if Γt = f−1(t) for
t ∈ [0, 1], {Γt}t∈[0,1] is a sweep-out of N .

Two continuous sweep-outs {Γ1
t }t∈[a,b] and {Γ2

t }t∈[a,b] are said to be ho-
motopic if, informally, they can be continuously deformed one to the other
(the precise definition is Definition 8 in [18]). Then a family Λ of sweep-outs
is called homotopically closed if it contains the homotopy class of each of its
elements. For such a family Λ, we can define the width associated to Λ as

W (N, ∂N,Λ) = inf
{Γt}∈Λ

L({Γt})

As in the discrete setting this number can be realized as the mass of some
varifold supported by smooth disjoint minimal surfaces (see Theorem 12
in [18]).

5.3. From continous to discrete. In order to construct discrete sweep-
outs of a closed orientable 3-manifold M , we will use a result obtained by
Zhou (see Theorem 5.1 in [20]). We denote by C(M) the space of subsets in
M with finite perimeter. Let F denote the flat metric on Z2(M).

Theorem 17. Let Φ : [0, 1]→ (Z2(M),F) be a continuous map such that

• Φ(0) = 0 = Φ(1);
• Φ(x) = ∂[[Ωx]], Ωx ∈ C(M) for all x ∈ [0, 1];
• Ω0 = ∅ and Ω1 = M
• supx M(Φ(x)) < +∞.
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Then there exists a discrete sweep-out S such that

L(S) ≤ sup
x∈[0,1]

M(Φ(x))

Here [[Ω]] denotes the element of Z3(M) corresponding to Ω.
Let us notice that if {Γt}t∈[0,1] is a continuous sweep-out of a compact

orientable Riemannian 3-manifold then Φ : t 7→ [[Γt]] ∈ Z2(M) satisfies
the hypotheses of the above theorem (as above [[Γt]] denotes the element of
Z2(M) corresponding to Γt).

6. The quantity A1(M)

In this section we recall some results the authors obtained in [11] (see also
[5]).

6.1. The quantity A1(M) for compact M . If M is a closed orientable
Riemannian 3-manifold, we denote by O the collection of all smooth ori-
entable embedded closed minimal surfaces in M and U the collection of all
smooth non-orientable ones. We then define

A1(M) = inf({|Σ|,Σ ∈ O} ∪ {2|Σ|,Σ ∈ U})

One result of [11] is the following theorem (Theorem B in [11])

Theorem 18. Let M be an oriented closed Riemannian 3-manifold. Then
A1(M) is equal to one of the following possibilities.

(1) |Σ| where Σ ∈ O is a min-max surface of M associated to the funda-
mental class of H3(M), Σ has index 1, is separating and A1(M) =
WM .

(2) |Σ| where Σ ∈ O is stable.
(3) 2|Σ| where Σ ∈ U is stable and its orientable 2-sheeted cover has

index 0.

Moreover, if Σ ∈ O satisfies |Σ| = A1(M), then Σ is of type 1 or 2 and
if Σ ∈ U satisfies 2|Σ| = A1(M), then Σ is of type 3.

Actually in [11], the case (3) mentions the possibility for the orientable
2-sheeted cover to have index 0 or 1. In fact, the index 1 case can be ruled
out thanks to the work of Ketover, Marques and Neves [10].

If S denotes the collection of all smooth embedded stable minimal sur-
faces, we define AS(M) = inf({|Σ|,Σ ∈ O∩S}∪{2|Σ|,Σ ∈ U∩S}). Actually
we proved in [11] that A1(M) = min(WM ,AS(M)). In order to simplify
some notations, we will denote a(Σ) = |Σ| if Σ ∈ O and a(Σ) = 2|Σ| is
Σ ∈ U .

WhenM is not compact, one can still defineO and U forM by considering
only compact embedded minimal surfaces in M . Of course these collections
could be empty but if it is not A1(M) is well defined. If M is a cusp manifold
this can be done as we show in section 6.3.
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6.2. The filler. We want to study A1(M) when M is a cusp manifold. In
order to do that the idea is to change M into a compact manifold D(M)
that contains all the compact minimal surfaces of M . To do this the main
tool are the fillers.

Definition 19. Let (T, dσ2) be a flat torus and L > 10 be a real number. A
filler F associated to T and L is a solid torus endowed with a Riemannian
metric g with the following properties.

(i) Let Tt be the set of points at distance t from ∂F . For t ∈ [0, L+ 1),
Tt is a smooth flat torus and TL+1 is a closed geodesic.

(ii) The diameter of Tt is a decreasing function and the mean curvature
vector points in the ∂t direction.

(iii) For t ∈ [0, 1], Tt has the metric e−2tdσ2.
(iv) Any minimal surface Σ that meets all the Tt for 0 ≤ t ≤ L − 1 has

area at least κL where κ is a constant depending on the systole of
(T, dσ2).

Proposition 20. Let (T, dσ2) be a flat torus and L > 10. There exists a
filler associated to T and L. Moreover, let δ and s be the diameter and the
systole of (T, dσ2) and K ≤ s/δ. Then there is δ0 > 0 that depends only on
K such that

(v) if δ is less than δ0, then any minimal surface Σ with ∂Σ ⊂ ∂F and
index at most 1 satisfies either Σ ∩ T1 = ∅ or Σ ∩ Tt 6= ∅ for any
t ≤ L− 1.

Proof. We construct F as T × [L + 1] with a Riemannian metric which is
singular on TL+1 = T × {L+ 1} in order for TL+1 to be a geodesic. We use
the notation Ft = T × [t, L+ 1].

Let f : [0, L+ 1]→ R be a function satisfying the following properties

• f(t) = t on [0, 1],
• f ′ > 0 on [0, L+ 2/3) and f ′ = 0 on [L+ 2/3, L+ 1].
• f ≤ 3.
• f ′ and f ′′ are bounded independently of L.

On F \ FL, we define the metric g = e−2f(t)dσ2 + dt2. Since f(t) = t on
[0, 1], (iii) is satisfied.

In order to define the metric on FL, we consider a well oriented orthonor-
mal coordinate system on (T, dσ2) such that T is the quotient of R2 by the
translations by (α, 0) and (β, `).

Let η : [0, 1]→ [0, 1] be a non increasing function such that η is decreasing

on [1/2, 1], η = 1 near 0, and η(x) = (1 − x)2π
α e

f(L+1) near 1. On FL we
extend the definition of the metric g by

g = e−2f(t)(η2(t− L)dx2
1 + dx2

2) + dt2

Since η(1) = 0, the metric is singular at t = L + 1. Let D be the unit
disk and consider the solid torus T constructed as the quotient of D × [0, `]
by the relation (p, 0) ∼ (Rβ(p), `) where Rβ is the rotation of angle β. If
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(ρ, θ) are the polar coordinates on D and h : T→ FL is the map (ρ, θ, z) 7→
( α2πθ, v, L+ 1− ρ) the metric h∗g is given by

h∗g = e−2f(L+1−ρ)(η2(1− ρ)
α2

4π2
θ2 + dz2) + dρ2

so, near ρ = 0 (i.e. t = L+1), it is equal to h∗g = ρ2dθ2 +e−2f(L+1)dz2 +dρ2

which is a smooth metric on T near the core circle {ρ = 0}. So F is a smooth
solid torus with a smooth metric and (i) is satisfied.

Because of the monotonicity of f and η, (ii) is satisfied. Moreover the
curvature of g is uniformly controlled on F \ FL. If ρ0 is the minimum of 1
and half the systole of (T, dσ2), then for any p ∈ F1 \FL−1 the geodesic ball
of center ρ and radius e−3ρ0 is embedded in F \ FL.

Let Σ be a minimal surface that meets all the Tt for t ∈ [0, L]. Consider
tn = 1+2e−3ρ0n and, for any n ∈ {0, . . . , n0} where tn0 ≤ L+2 ≤ tn0+1, let
pn be in Ttn with pn ∈ Ttn ∩Σ. Then by the monotonicity formula, the area
of Σ in the ball of radius e−3ρ0 and center pn is at least ce−6ρ2

0 for some
universal constant c. Since these balls are disjoint, the area of Σ in F \ FL
is at least

(n0 + 1)ce−6ρ2
0 ≥

L− 3

2
ce−3ρ0 ≥ κL

if L ≥ 10 and where κ only depends on the systole of (T, dσ2).
For item (v), we notice that (T, 1

δ2
dΣ2) belongs to a compact subset of

flat tori fixed by K. So Proposition 8 applies to (F \FL, δ2e−2f(t) dσ2

δ2
+ dt2)

to prove that if Σ has index at most 1 and Σ ⊂ T × [0, , L − 1] then Σ ⊂
T × [0, 1]. �

6.3. The quantity A1(M) for cusp manifolds. In this section we recall
the study of compact minimal surfaces inside orientable cusp manifolds we
made in [4, 11].

Let M be a cusp manifold. First we prove that M contains a compact
embedded minimal surface. Let ε be such that the ε-thin part is only made
of cusp ends. Since ∂M[ε,∞) is smooth there is a homotopically closed family
Λ of sweep-outs associated to a Morse function on M[ε,∞) (we recall that the
tori components of ∂M[ε,∞) are leaves of the sweep-outs). If ε′ < ε, M[ε′,ε]

is foliated by tori that can be used to extend any continuous sweep-out in
Λ into a sweep-out of M[ε′,∞) that belongs to a homotopically closed family
Λ′. Since W (M[ε,∞), ∂M[ε,∞),Λ) ≥ |∂M[ε,∞)| we obtain

W (M[ε,∞), ∂M[ε,∞),Λ) ≥W (M[ε′,∞), ∂M[ε′,∞),Λ
′)

So there is W0 > 0 such that W0 ≥W (M[ε,∞), ∂M[ε,∞),Λ) for any ε. Besides
a continuous sweep-out of M[ε,∞) must sweep out also a fixed geodesic ball
in M . So there is w0 such that W (M[ε,∞), ∂M[ε,∞),Λ) ≥ w0 for any ε.

Thus we can choose ε small such that any flat tori C in ∂M[ε,∞) has

small diameter and w0 > |∂M[ε,∞)|. For each C, we consider a filler FC

associated to the flat torus C and L that will be chosen later. ε is chosen
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small enough such that item (v) of Proposition 20 is satisfied. Since there
are a finite number of C, item (iv) of Definition 19 gives some constant
κ > 0 independent of C. Then L is chosen such that κL ≥W0 + 1.

We can glue each filler FC along C to obtain a compact manifold without
boundary denoted D(M) with some metric. The construction of D(M)
depends on two parameters ε and L, so sometimes we will write Dε,L(M)
(actually it also depends on the choice of some coordinates on F ). We will
use this construction in the following sections. D(M) contains isometrically
a 1-tubular neighborhood of M[ε,∞). Let {Γt}t∈[0,1] be a continuous sweep-
out of M[ε,∞) with L(Γt) ≤ W (M[ε,∞), ∂M[ε,∞),Λ) + 1/2. We can extend

{Γ}t∈[0,1] to a continuous sweep-out {Γ̃t}t∈[−L−1,1] of D(M) by considering

Γ̃t = ∪C∂FC−t for t ∈ [−L − 1, 0]. Since, for t < 0, |Γ̃t| ≤ |∂M[ε,∞)| we

have L(Γ̃t) ≤ L(Γt). By Theorem 17, the width WD(M) is then less than
W0 + 1/2. Thus by Theorem 18, there is a minimal surface Σ in D(M) with
index at most 1 such that a(Σ) ≤W0 + 1/2.

Because of our choice of ε and items (iv) and (v), if Σ enters in some FC1
then a(Σ) ≥ |Σ∩FC | ≥ κL ≥W0 + 1; this is impossible. So Σ stays outside
of FC1 for any C so Σ is embedded in the part isometric to the 1-tubular
neighborhood of M[ε,∞) ⊂M : Σ is a compact minimal surface in M .

Now we know that M contains compact embedded minimal surfaces and
we can define the numberA1(M). In order to prove thatA1(M) is realized as
in Theorem 18, we have the following argument. Let S be a compact minimal
surface in M . We construct D(M) as above with an extra hypothesis on ε
which is M[ε,∞) contains S and all compact embedded minimal surfaces in
M with index at most 1. The above construction gives A1(M) ≤W0 + 1/2.

Let Σ is a minimal surface that realizes A1(D(M)) (it has index at most
1), we have a(Σ) ≤ a(S). If Σ enters in into FC1 for some C, we have

a(Σ) ≥ |Σ ∩ FC | ≥ κL ≥W0 + 1 ≥ A1(M) + 1/2

So Σ does not enter into such a filler: Σ belongs to M . Thus A1(D(M)) =
A1(M) and A1(D(M)) is realized by a minimal surface as in Theorem 18.

The remainder of this paper is devoted to the study of the continuity of
the A1 functional over the collection of orientable cusp manifolds. We are
going to study the lower and the upper semi-continuity of A1.

7. The upper semi-continuity study

In this section, we consider (Mi)i a sequence of cusp manifolds that con-
verges to M for the geometric convergence. The first step and the main step
of the upper semi-continuity study is to prove that the sequence (A1(Mi))i
is bounded. The following proposition answers this question.

Proposition 21. Let Mi →M be a converging sequence of cusp manifolds.
Then for small ε and large L, lim supA1(Mi) ≤WD(M).
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Proof. The idea of the proof consist in constructing a Riemannian manifold
(Ni, g̃i) which is κi-quasi isometric to D(M) with κi → 1 and such that a
large part N1

i of Ni is isometric to a large part of Mi. Moreover Ni is such
that any minimal surface with index at most 1 that gets out of N1

i has area
at least WD(M) +1/2. As a consequence, a minimal surface Si in Ni realizing

A1(Ni) satisfies a(Si) ≤ κ2
iWD(M) < WD(M)+1/2 for large i and is contained

in N1
i . Thus lim supA1(Mi) ≤ lim sup a(Si) ≤ lim supκ2

iWD(M) = WD(M).

We choose ε small such that the ε-thin part of M is made only of cusp
ends. The convergence Mi → M gives us ϕi : M [ε,∞) → Mi as in Subsec-
tion 2.2. From Section 6.3, we know that there is W0 > 0 independent of ε
and L such that WDε,L(M) ≤W0 + 1/2.

Let C be one boundary component of M [ε,∞) and A the part of the 2-

tubular neighborhood of C inside M [ε,∞) (the rest of the proof is written as

if there is only one C in ∂M [ε,∞), actually we need to repeat the argument

for each C). A can be parametrized by T × [−2, 0] with the metric g =
e−2x3(dx2

1 + dx2
2) + dx2

3 where (x1, x2) ∈ T are orthonormal coordinates on
C.

By Subsection 2.2, ϕi(A) is a one sided neighborhood of ϕi(C) in ϕi(M) ⊂
Mi. On ϕi(A) we have the coordinates T × [−2, 0] with the metric gi =
ai,kldxkdxl that C∞ converges to ḡ.

Let N1
i be ϕi(M

1
[ε,∞)) with the metric gi where M

1
[ε,∞) is the set of points

in M [ε,∞) at distance at least 1 from ∂M [ε,∞). We notice that N1
i contains

the part of ϕi(A) parametrized by T × [−2,−1]. We are going to modify
the metric gi on T × [−1, 0] in order to define a new metric g̃i on ϕi(M [ε,∞))

which will be the Riemannian manifold N2
i .

Let χ : [−1, 0]→ R be C∞ such that 0 ≤ χ ≤ 1, χ = 1 near −1 and χ = 0
near 0. We then define g̃i = χ(x3)gi + (1− χ(x3))ḡ. Since gi and ḡ are C∞

close. g̃i is also C∞ close to ḡ. As explained above, g̃i turns ϕi(M [ε,∞)) into

a new Riemannian manifold (N2
i , g̃i). The map ϕi : M [ε,∞) → N2

i is still
well defined and since the metrics g̃i converge in the C∞ topology to ḡ. ϕi
is a κ′i quasi-isometry where κ′i → 1. Moreover ϕi is an isometry close to

∂M [ε,∞).

Let L be large and consider a filler F associated to T and L. Since N2
i and

M [ε,∞) are isometric close to their boundary we can glue to all of them the

filler F to produce (Dε,L(M), g̃) and (Ni, g̃i) and extend the definition of ϕi
to a map D(M)→ Ni which is the identity on the filler. As a consequence
ϕi : D(M)→ Ni is a κ′i quasi-isometry.

Let us estimate the area of a minimal surface S ⊂ Ni with index at most
1 that is not contained in N1

i . Thus S must enter in some part of Ni which
is isometric to T × [−2, L] endowed with the metric g̃i = ãi,kldxkdxl which is

C∞ close to g̃ = ḡ on T×[−2, 0] and is equal to g̃ = e−2f(x3)(dx2
1+dx2

2)+dx2
3

on T × [0, L] (f is introduced in Section 6.2). Because of our choice of f
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function, the metrics g̃i and g̃ satisfy the hypotheses H1 to H4 of Section 4
for a uniform constant A.

If S does not meet all the tori Ts for s ∈ [−2, L] then, by Proposition 8,
S must stay outside of T × [−3/2, L + 1], so S ⊂ N1

i . Since we assume
Si 6⊂ N1

i , it must meet all the tori Ts for s ∈ [0, L]. Then by Proposition 20,
|S| ≥ κL for some κ that only depends on the injectivity radius of T0. Now,
we choose L large enough such that κL > W0 + 1. We obtain |S| ≥ κL >
W0 + 1 ≥ WD(M) + 1/2. This finishes the construction of Ni and then

lim supA1(Mi) ≤WD(M). �

We know that for ε small and L large we have A1(M) = A1(D(M)) =
min(AS(M),WD(M)). So the above result gives us a first upper semi-

continuity property.

Proposition 22. Let Mi →M be a converging sequence of cusp manifolds.
If one of the following hypotheses is satisfied then lim supA1(Mi) ≤ A1(M).

• A1(M) = WD(M)

• A1(M) is realized by a stable non separating minimal surface Σ
• A1(M) is realized by a stable non degenerate minimal surface Σ

Proof. The first case comes directly from the above proposition.
Let Σ be a non separating minimal surface that realizes A1(M). Let ε be

small such that Σ is contained in the ε-thick part of M . Let ϕi : M [ε,∞) →
Mi be the κi quasi-isometry associated to the convergence Mi → M . Then
ϕi(Σ) is a surface in Mi with a(ϕi(Σ)) ≤ κ2

i a(Σ). Because of the topology of
the ε-thin part (cusps or solid tori), ϕi(Σ) is non separating in Mi. So taking
a small εi and a large Li we can see ϕi(Σ) as a non separating surface in
Dεi,Li(Mi). So minimizing the area in the non vanishing homology class of Σ
(see [6, 17]) there is a minimal surface Si in D(Mi) with a(Si) ≤ a(ϕi(Σ)) ≤
κ2
i a(Σ) = κ2

iA1(M). Thus

A1(Mi) = A1(D(Mi)) ≤ a(Si) ≤ κ2
iA1(M)

and this gives the result.
Concerning the last case, as above, let ε be small such that Σ is contained

in the ε-thick part of M and ϕi : M [ε,∞) → Mi. Let hi = ϕ∗i gi. Since

Mi → M , the metrics hi converge in the C∞ topology to g. Since Σ is a
non degenerate surface, for large i, Σ can be deformed to a minimal surface
Si in (M [ε,∞), hi). So ϕi(Si) is a minimal surface in Mi and

lim supA1(Mi) ≤ lim sup a(Si) = a(Σ) = A1(M)

�

Remark 4. We notice that the hypothesis A1(M) = WD(M) is satisfied if

A1(M) is realized by an index 1 minimal surface.
The second case is realized if A1(M) is realized by a non orientable min-

imal surface.
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8. The lower semi-continuity study

In this section we are going to prove that the A1 functional is lower semi-
continuous.

8.1. An exclusion property. Let S be a two-sided embedded surface. Let
ν be a choice of a unit normal vectorfield along S and f : S → R be a smooth
function. Then we can define

expS,f : S →M ; p 7→ expp(f(p)ν(p))

If f is sufficiently small, expS,f (S) is an embedded surface which inherits
from S a natural unit normal vector still denoted by ν. The lemma below
is inspired by Lemma 16 in [18]

Lemma 23. Let S be a two-sided embedded surface and U be a subset of S
such that the mean curvature of S vanishes on U . If S \ U has non empty
interior, there is a positive function f and τ > 0 such that expS,sf (S) has
positive mean curvature on expS,sf (U) with respect to the naturally induced
unit normal vector for 0 < s < τ .

Proof. Let S and U be as in the statement. Let q be a function on S such
that q = Ric(ν, ν)+‖A‖2 on U and L = −∆−q has negative first eigenvalue
on S. It is enough to assume q is large enough somewhere in Σ\U to ensure
that the first eigenvalue λ1 is negative. Let f > 0 be the first eigenfunction
of L. Consider St = expS,tf (S) and Ht(p) be the mean curvature of St
at expS,tf (p). It is known that 2∂tHt|t=0 = ∆f + (Ric(ν, ν) + ‖A‖2)f =

−λ1f + (Ric(ν, ν) + ‖A‖2 − q)f > 0 on U . Thus, there is τ > 0 such that
Ht(p) > 0 for any t ∈ (0, τ ] and p ∈ U . �

Using the above lemma we can prove the following result.

Proposition 24. Let A0, δ0 and s0 ≤ 1 be positive. Then there is `0 and R
such the following is true. Let ` ≤ `0 and M be a cusp manifold such that
A1(M) ≤ A0 and M contains a tubular end NR` of a geodesic loop of length
` and such that SR` has diameter less than δ0 and systole larger than s0. Let
Σ be an embedded minimal surface that realizes A1(M) then Σ ∩ NR`−R is
empty.

Proof. We first assume that Σ is stable. By Schoen curvature estimate [15],
this implies that there is k0 such that Σ has curvature bounded by k0. So
by Corollary 7, there is `0 and R such that, if ` ≤ `0, either Σ ∩ NR`−R is

empty or Σ ∩NR`−R has area at least 2π(cosh(R` −R)− 1). Actually, if `0

is chosen such that 2π(cosh(R`0 − R) − 1) ≥ A0, the second case can not
occur and Σ ∩NR`−R is empty.

So we can assume that Σ is separating and has index 1. By Proposition 9,
there is R, `0 and κ such that Σ∩NR`−R = ∅ or |Σ∩NR| ≥ κs0e

R−R` for any

R ∈ [3, R` − R]. Moreover `0 and R can be chosen such that the preceding
paragraph is still true.
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Let us assume that Σ ∩ NR`−R is not empty. Let us notice that |SR| =

π` sinh(2R) ≤
√

3 sinh(2R)
sinh(2R`)

≤
√

3e2(R−R`). So choosing R∗ ≥ R such that

e−R∗ ≤ κs0
4
√

3
we obtain

|Σ ∩NR| ≥ 4|SR|.
for any 3 ≤ R ≤ R` −R∗.

Let ε be small such that the ε-thin part of M contains only cusp ends. For
L large we consider Dε,L(M) = D(M) such that A1(M) = A1(D(M)). So
Σ is a separating index 1 minimal surface in D(M) that realizes A1(D(M)).
The idea is now to construct a discrete sweep-out S of D(M) such that
L(S) < |Σ| which contradicts Σ realizes A1(M). We notice that NR` is still
isometrically included in D(M).

Σ separates M into two connected components Ω1 and Ω2. Let R ∈
[R`−R∗−1, R`−R∗] such that SR is transverse to Σ. We define Γ = Σ∩SR.
The subset Ωi ∩ NR has mean convex boundary made of pieces of SR and
Σ. We can find a least area minimal surface Σi ⊂ Ωi ∩ NR with ∂Σi = Γ
and homologous to SR∩Ωi [6, 17]. Since SR∩Ωi is a surface with boundary
Γ, |Σi| ≤ |SR ∩ Ωi| ≤ |SR|. Besides Σi ∪ (SR ∩ Ωi) bounds a subset Di of
NR∩Ωi. By boundary regularity of solutions to the Plateau problem [7], Σi

is a smooth surface up to its boundary Γ and, by the maximum principle,
Σi is transverse to Σ along Γ. We notice that since Σi is smooth up to its
boundary we can slightly extend Σi across Γ to Σ′i. Σ′i is not assumed to be
minimal outside of Σi and ∂Σ′i is assumed to be outside Ωi.

Let us fix i ∈ {1, 2} and consider ν the unit normal along Σ pointing into
Ωi. Since Σ has index 1, there is τ > 0 and fi > 0 on Σ such that expΣ,sfi(Σ)
is an embedded surface with positive mean curvature for any s ∈ (0, τ ].
Moreover, we assume fi > 1. If νi denote the unit normal along Σ′i pointing
into Di along Σi, by Lemma 23, there is gi > 0 on Σ′i such that expΣ′i,sgi

(Σ′i)

is an embedded surface with positive mean curvature on expΣ′i,sgi
(Σi) for

any s ∈ (0, τ ]. Moreover, we assume gi < 1 and expΣ′i,sgi
(∂Σ′i) 6⊂ Ωi for any

s ∈ [0, τ ].
Let us define Ui,0 = Di ∪ (Ωi \NR). For s ≤ τ we define

Vi,s =
( ⋃

0≤s′≤s
expΣ,s′fi(Σ)) ∪

⋃
0≤s′≤s

expΣ′i,s
′gi(Σ

′
i)
)
∩ Ui,0,

Ui,s = Ui,0 \ Vi,s
We postpone the precise description of ∂Ui,s to the end of the proof.

Actually we are going to prove that there is a smaller τ such that, for
s ∈ [0, τ ], ∂Ui,s is expΣ,sfi(Ai,s) ∪ expΣ′i,sgi

(Bi,s) where Ai,s is a smooth

subdomain in Σ and Bi,s is a smooth subdomain of Σ′i. Moreover both
components of ∂Ui,s are transverse. We also have Bi,s ⊂ Σi and Ai,s ⊂
Σ \ NR−1. s 7→ ∂Ui,s is then a continuous map with values in Z2(M).
Moreover M(∂Ui,s) ≤M(∂Ui,0). We then have

M(∂Ui,s) ≤M(∂Ui,0) = |Σi|+ |Σ\NR| ≤ |SR|+ |Σ|− |Σ∩NR| ≤ |Σ|−3|SR|
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Besides we notice that, since Ai,s ⊂ Σ\NR−1 andBi,s ⊂ Σ′i, ∂Ui,s is piecewise
smooth mean convex in the sense of Definition 10 in [18].

Using the work of Song in [18], we can adapt the work of the authors in
[11] to the case ∂Ui,τ is not smooth and prove the following statement.

Claim 1. There is a continuous sweep-out {∂Ui,s}s∈[τ,1] of Ui,τ such that

L({∂Ui,s}s∈[τ,1]) ≤ |Σ| − 2|SR|.

Proof. Because of the Appendix in [18], we know that there exists a ho-
motopically closed family Λ of sweepouts in Ui,τ . Let us assume that
W (Ui,τ , ∂Ui,τ ,Λ) ≥ |Σ| − 5/2|SR| > |∂Ui,τ |.

Thus by Theorem 12 in [18], there is a closed minimal surface S in Ui,τ .
As in the proof of Lemma 20 in [18], N = Ui,τ \ S is then a mean convex
subset such that ∂Ui,τ has non vanishing homology class in N . Thus we can
minimize the area in this homology class [6, 17] in order to get S′ a stable
minimal surface such that |S′| ≤ |∂Ui,τ |. But this implies AS(D(M)) ≤
|∂Ui,τ | ≤ |Σ| − 3|TR| < A1(D(M)) ≤ AS(D(M)) which is contradictory. So
W (Ui,τ , ∂Ui,τ ,Λ) ≤ |Σ| − 5/2|SR| and there is {∂Ui,s}s∈[τ,1] with

L({∂Ui,s}s∈[τ,1]) ≤ |Σ| − 2|SR|.
�

Using these two sweep-outs, we can define a family Gs (see Figure 4) of
open subsets of M by

Gs =


U1,1−s if 0 ≤ s ≤ 1

U1,0 ∪Ns−1 if 1 ≤ s ≤ R+ 1

(Ω1 ∪NR) \ (D2 \N2R+1−s) if R+ 1 ≤ s ≤ 2R+ 1

M \ U2,s−2R−1 if 2R+ 1 ≤ s ≤ 2R+ 2

The family Gs satisfies H3(Gs4Gt) → 0 as s → t. Moreover, ∂Gs is
rectifiable so Φ : s 7→ ∂Gs is a continuous path in Z2(M) for the flat
topology. Moreover G0 = ∅ and G2R+2 = M . Let us now study M(Φ(s)).
For s ∈ [0, 1] we have M(Φ(s)) = M(∂U1,1−s) ≤ |Σ| − 2|SR|. For s ∈
[1, R+1], ∂Gs is contained in ∂U1,0∪Ss−1 so M(Φ(s)) ≤M(∂U1,0)+|Ss−1| ≤
|Σ| − 2|SR|. If s ∈ [R + 1, 2R + 1], ∂Us is contained in ∂U2,0 ∪ S2R+1−s so
M(Φ(s)) ≤ M(∂U2,0) + |S2R+1−s| ≤ |Σ| − 2|SR|. Finally for s ∈ [2R +
1, 2R+ 2], M(Φ(s)) = M(∂U2,s−2R−1) ≤ |Σ| − 2|SR|.

After a reparametrization, we have then constructed a continuous map
Φ : [0, 1] → Z2((D(M)),F) satisfying all the hypotheses of Theorem 17
with sup M(Φ) ≤ |Σ| − 2|TR| < |Σ|. So by Theorem 17, we have A1(M) =
A1(D(M)) ≤WD(M) ≤ sup M(Φ) ≤ |Σ| − 2|TR| < |Σ| = A1(M). This gives
a contradiction with Σ ∩NRL−R 6= ∅ and finishes the proof.

Let us come back to the study of ∂Ui,s for small s and check the properties
we announced. Clearly this boundary is contained in Σ′i,s = expΣ′i,sgi

(Σ′i)

and Σs = expΣ,sfi(Σ). We need to understand the intersection of these two
surfaces when s is small.
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Ω1

Ω2

Σ

Σ

Σ1

Σ2

TR

Gs

0 ≤ s ≤ 1

1 ≤ s ≤ R + 11 ≤ s ≤ R + 1

R + 1 ≤ s ≤ 2R + 1 2R + 1 ≤ s ≤ 2R + 2

Figure 4. A schematic view of Gs (the bottom and top line
are identified)

We define Fi : (p, s) ∈ Σ × (−τ, τ) 7→ expΣ,sfi(p) ∈ M and Gi : (p, s) ∈
Σ′i × (−τ, τ) 7→ expΣ′i,sgi

(p) ∈M for small τ . The map Fi defines a smooth

coordinate system in a neighborhood N of Σ. Let us write F−1
i = (P, T ) :

N → Σ × (−τ, τ). Let us remark that at a point p ∈ Σ, DF−1
i |p : X ∈

TpM 7→ (πp(X), (X, ν)/fi(p)) ∈ TpΣ× R where πp is the normal projection
TpM → TpΣ.

Let V be a neighborhood of Γ inside Σ′i contained in N . There is τ ′ such
that Gi(V × (−τ ′, τ ′)) ⊂ N . Let ηi be the conormal to Γ in Σ′i pointing
to Σi. So neighboring points to Γ in Σ′i can be parametrized by (p, t) ∈
Γ × (−ε, ε) 7→ expip(tηi(p)) where expi is the exponential map in Σ′i. Thus
such a point has image by Gi(·, s) in the intersection Fi(Σ, s) ∩Gi(Σ′i, s) (s
small) if

Li(p, s, t) := T (Gi(expip(tηi(p)), s))− s = 0

Solving t as a function of (p, s) ∈ Γ × R can be done near Γ × {0} us-
ing the implicit function theorem since Li(p, 0, 0) = 0. Indeed we have
∂tLi(p, 0, 0) = (ν(p), ηi(p))/fi(p) > 0 since both ν and ηi point to Ωi. So
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ti(p, s) can be defined near Γ× {0}. At (p, 0) we also have

0 = ∂s(L(p, s, ti(p, s)) =
(ν, ηi)

fi
∂sti +

gi(ν, νi)

fi
− 1

Thus ∂sti = fi
(ν,ηi)

(1 − gi(ν,νi)
fi

) > 0 since gi/fi < 1. The curve γi,s(p) =

expip(ti(p, s)η(p)) is sent by Gi(·, s) on the intersection Fi(Σ, s) ∩Gi(Σ′i, s):
βi(·, s) = Gi(γi,s(·), s) is a parametrization of the intersection. Moreover γi,s
bounds a subdomain Bi,s in Σ′i whose image by Gi(·, s) is the piece of ∂Ui,s
contained in Gi(Σ

′
i, s). Since ∂sti > 0, we have Bi,s ⊂ Σi. At (p, 0), we also

have

∂sβi = giνi +
fi

(ν, η)
(1− gi(ν, νi)

fi
)ηi

The curve γs(·) = P (βi(·, s)) on Σ is such that Fi(γs(·), s) is also a
parametrization of the intersection. γs bounds a subdomain Ai,s in Σ such
that ∂Ui,s is Fi(Ai,s, s) ∪Gi(Bi,s, s). We notice that, at s = 0,

∂sγs(p) = πp(∂sβi) = πp(giνi +
fi

(ν, η)
(1− gi(ν, νi)

fi
)ηi)

We notice that since Bi,s ⊂ Σi, the mean curvature of Gi(Bi,s, s) is positive
(s > 0). The same is true for the mean curvature of Fi(Ai,s, s). More-
over both surfaces intersect at an angle less than π. Finally using the first
variation formula and Σ and Σi are minimal, we have at s = 0

∂s(|Fi(Ai,s, s)|+ |Gi(Bi,s, s)| = −
∫

Γ
(∂sγs(p), η) + (∂sγi,s(p), ηi)

= −
∫

Γ
(giνi +

fi
(ν, ηi)

(1− gi(ν, νi)

fi
)ηi, η)

+
fi

(ν, ηi)
(1− gi(ν, νi)

fi
)

= −
∫

Γ
(giνi +

fi
(ν, ηi)

(1− gi(ν, νi)

fi
)ηi, η + ηi)

= −
∫

Γ
(∂sβi, η + ηi)

where η is the unit conormal to Γ in Σ that points outside N(R). We notice
that for s > 0, βs is inside Ui,0 so ∂sβs points to Ui,0 and is orthogonal to the
tangent space to Γ. η + ηi is a vector that bisects the wedge corresponding
to Ui,0 and contained in the orthogonal to the tangent space to Γ. So
(∂sβi, η+ηi) > 0 along Γ and ∂s(|Fi(Ai,s, s)|+ |Gi(Bi,s, s)| < 0. This implies
that |∂Ui,s| < |∂Ui,0| for s > 0 small. So all the stated properties are
satisfied. �

8.2. The lower semi-continuity. We have the following result.

Proposition 25. Let Mi →M be a converging sequence of cusp manifolds.
Then lim inf A1(Mi) ≥ A1(M).
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Proof. Let us consider a minimal surface Σi in Mi such that a(Σi) = A(Mi).
By Proposition 21, we know that there is A0 such that |Σi| < A0. Moreover,
by Corollary 4, there is `0, δ0 and s0 such that if Mi contains a geodesic loop
of length ` ≤ `0 then its tubular neighborhood NR` satisfies SR` = ∂NR`

has diameter less than δ0 and systole larger than s0. Thus there is R such
that Σi ∩NR`−R is empty by Proposition 24.

This implies that there is ε > 0 such that Σi ⊂ Mi[ε,∞) for any i. Since

Mi → M there is ϕi : M [ε/2,∞) → Mi which is a κi quasi-isometry where

κi → 1. Moreover we have Mi[ε,∞) ⊂ ϕi(M [ε/2,∞)). Let g̃i = ϕ∗i gi and

Σ̃i = ϕ−1
i (Σi) ⊂ M [ε/2,∞) which is a minimal surface for the metric g̃i.

Since Mi →M we have g̃i → ḡ in the C∞ topology. Moreover ag̃i(Σ̃i) ≤ A0

and the index of Σi is 0 or 1.
Thus we can apply the compactness result of Sharp (Theorem A.6 in [16]).

It implies that there is a closed connected embedded minimal surface Σ

in (M, ḡ) such that (Σ̃i) converges in the varifold sense to Σ with some
multiplicity. Moreover, the convergence is smooth outside a finite number
of points. If Σ is orientable, then

A1(M) ≤ aḡ(Σ) = |Σ|ḡ ≤ lim |Σ̃i|g̃i ≤ lim inf A1(Mi)

If Σ is non-orientable, then either Σ̃i is non orientable or Σ̃i is orientable
and the convergence must be with multiplicity at least 2. In both cases, we
have

A1(M) ≤ aḡ(Σ) = 2|Σ|ḡ ≤ lim ag̃i(Σ̃i) = lim inf A1(Mi)

So the proposition is proved. �

Appendix A.

A.1. A uniform graph lemma. Let us consider R3 endowed with the
metric ḡ = h2(x3)(dx2

1 + dx2
2) + dx2

3. For k1, k2, k3, k4 ∈ {1, 2, 3} and p ≤ 4,
we recall that

np(k1, . . . , kp) = #{i ∈ {1, . . . , p}|ki ∈ {1, 2}}.

We consider a second metric g = akl(x1, x2, x3)dxkdxl. We assume that
there is some A such that the following hypotheses occurs

H1 1
A2 ḡ ≤ g ≤ A2ḡ

H2 |h′|
h ≤ A and |h

′′|
h ≤ A.

H3 |akl| ≤ Ahn2(k,l)(x3), |∂iakl| ≤ Ahn3(k,l,i)(x3) and |∂i∂jakl| ≤ Ahn4(k,l,i,j)(x3).

We notice that the metric ḡ satisfies also the hypotheses of the last item.

Lemma 26. Let ḡ and g as above and consider ε0, k0, then there is C > 0
such that the following is true. Let Σ be a surface in R2 × [a, b] endowed
with the metric g which is tangent to R2 × {t̄} at p̄ = (0, 0, t̄) such that
dΣ(p̄, ∂Σ) ≥ ε0 and |AΣ| ≤ k0.
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Then there is a function u defined on the disk {(x1, x2) ∈ R2|x2
1 + x2

2 ≤
2C2/h2(t̄)} such that (x1, x2) 7→ (x1, x2, t̄ + u(x1, x2)) is a parametrization
of a neighborhood of p̄ in Σ. Moreover u satisfies

|u| ≤ Aε0, ‖∇u‖ ≤ h(t̄) and ‖Hessu‖ ≤ 1

C
h2(t̄)

Proof. First we replace Σ by the geodesic disk of center p̄ and ε0. Since
a33 ≥ 1

A2 , the distance between {x3 = t̄} and {x3 = t̄ ± t} is at least

t/A. So Σ is contained in R2 × [t̄ − Aε0, t̄ + Aε0]. Let us also remark

that since |h
′|
h ≤ A we have e−A|x3−t̄|h(t̄) ≤ h(x3) ≤ eA|x3−t̄|h(t̄). Then

e−A
2ε0h(t̄) ≤ h(x3) ≤ eA2ε0h(t̄) on [t̄−Aε0, t̄+Aε0].

Let us consider Ψ : R2 × [t̄ − Aε0, t̄ + Aε0] → R2 × [t̄ − Aε0, t̄ + Aε0] :
(y1, y2, y3) 7→ ( 1

h(t̄)y1,
1
h(t̄)y2, y3). Then the metric g∗ = Ψ∗g can be written

bkl(y1, y2, y3)dykdyl where bkl = h(t̄)−n2(k,l)akl ◦Ψ. Thus

|bkl| = h(t̄)−n2(k,l)|akl| ◦Ψ ≤ Ah
n2(k,l)(y3)

hn2(k,l)(t̄)
≤ Aen2(k,l)A2ε0 ≤ Ae2A2ε0

So there is a constant B such that |bkl| ≤ B. A similar computation proves
that |∇bkl| ≤ B and |Hess bkl| ≤ B. Using Hypothesis H1, we also have
1
A2 Ψ∗ḡ ≤ g∗ ≤ A2Ψ∗ḡ where Ψ∗ḡ = h2(y3)

h2(t̄)
(dy2

1 + dy2
2) + dy2

3. This implies

that det g∗ is far from 0 and ∞. So the coefficients bkl of the inverse of g∗

satisfy |bkl| ≤ B and, for any k ∈ {1, 2, 3}, 1
B ≤ bkk ≤ B and 1

B ≤ b
kk ≤ B.

Let us define Σ∗ = Ψ−1(Σ), Σ∗ ⊂ (R3, g∗) is a geodesic disk of radius ε0

and curvature bounded by k0. Let us consider ge = dy2
1 + dy2

2 + dy2
3 the

Euclidean metric. Because of the the control we have on g∗, there is ε1 that
depends only on ε0, A and B and k1 that depends only on k0, A and B
such that (Σ∗, ge) has curvature bounded by k1 and dΣ∗,ge(p̄, ∂Σ∗) ≥ ε1 (the
proof of this result can be found in the Appendix of [14] more precisely see
the proof of Propositions 4.1 and 4.3).

So we have a surface in the Euclidean space R3 with curvature bounded by
k1, dΣ∗,ge(p̄, ∂Σ∗) ≥ ε1 and that is tangent to R2×{t̄} at p̄. Then a classical
uniform graph lemma (see Proposition 2.3 in [14]) implies that there is C
that depends only on k1 and ε1 such the following is true. There is a function
u defined on the Euclidean disk of radius

√
2C centered at the origin such

that (y1, y2) 7→ (y1, y2, t̄+ u(y1, y2)) is a parametrization of a neighborhood
of p̄ in Σ∗. Moreover

|u| ≤ 2C, |∇u| ≤ 1 and ‖Hessu‖ ≤ 1

C

In order to come back to the original coordinate system we define the
function v(x1, x2) = u(h(t̄)x1, h(t̄)x2) which is defined on {(x1, x2) ∈ R2|x2

1+
x2

2 ≤ 2δ2/h2(t̄)} and satisfies

|v| ≤ 2C, |∇v| ≤ h(t̄) and ‖Hess v‖ ≤ 1

C
h2(t̄)
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We notice that, since Σ ⊂ R2 × [t̄−Aε0, t̄+Aε0], we have |v| ≤ Aε0. �

A.2. The minimal surface equation. Several times we consider graphs
that are minimal surfaces; let us write the equation solved by these graphs.

On R3 we consider the metric g = a2
1(x3)dx2

1 +a2
2(x3)dx2

2 +dx2
3 which is a

model for the metric in cusp or tubular ends. Let u be a function in a domain
of R2 and consider the graph parametrized byX(x1, x2) = (x1, x2, u(x1, x2)).
The induced metric is

(a2
1(u) + u2

x1)dx2
1 + 2ux1ux2dx1dx2 + (a2

2(u) + u2
x2)dx2

2

So the area element is Wdx1dx2 = (a2
1(u)a2

2(u)+a2
2(u)u2

x1+a2
1(u)u2

x2)dx1dx2.
So if v is an other function with zero boundary values and A(t) is the area

of the graph of u+ tv, the derivative of A at t = 0 is

A′(0) =

∫
1

W

(
a1(u)a′1(u)a2

2(u)v + a2
1(u)a2(u)a′2(u)v + a2(u)a′2(u)u2

x1v

+ a2
2(u)ux1vx1 + a1(u)a′1(u)u2

x2v + a2
1(u)ux2vx2

)
=

∫
a1(u)a2(u)

W

(
a′1(u)a2(u) + a1(u)a′2(u) +

a′2(u)

a1(u)
u2
x1 +

a′1(u)

a2(u)
u2
x2

)
v

− v div
(a2

2(u)ux1 , a
2
1(u)ux2)

W

Thus the graph is minimal if u satisfies

(2) 0 = div
(a2

2(u)ux1 , a
2
1(u)ux2)

W

− a1(u)a2(u)

W

(
a′1(u)a2(u) + a1(u)a′2(u) +

a′2(u)

a1(u)
u2
x1 +

a′1(u)

a2(u)
u2
x2

)
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