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1 Introduction

The topic of minimal surfaces in flat 3-manifolds, with finite genus but infinite
total curvature, has recently attracted some attention [1, 2]. In the complete
flat 3-manifold R

2 × S
1, the only known examples of properly embedded

minimal surfaces with infinite total curvature come from doubly or triply
periodic minimal surfaces in R

3. In particular, they are all periodic in R
2×S

1.
In this paper, we point out an application of the theorem of Jenkins and
Serrin [3] to construct properly embedded minimal surfaces in R

2 × S
1 with

genus zero and infinite total curvature. We prove:

Theorem 1 There exists a properly embedded singly periodic minimal sur-
face in R

3, whose quotient by all its periods has genus zero, infinitely many
ends and exactly one limit end.

Recall that Scherk’s singly periodic surface can be constructed as follows:
consider the unit square, and mark its two horizontal edges with +∞ and its
two vertical edges with −∞. By the theorem of Jenkins and Serrin [3], there
exists a function u which solves the Jenkins-Serrin problem on the square,
namely, whose graph is minimal in the interior of the square, and which goes
to ±∞ on the edges, as indicated by the marking. The graph of u is bounded
by four vertical lines above the vertices of the square and is a fundamental
piece for Scherk’s doubly periodic surface. The conjugate minimal surface

1



of the graph of u is bounded by four horizontal symmetry curves, lying in
two horizontal planes at distance 1 from each other. By reflecting about one
of the two symmetry planes, we obtain a fundamental domain for Scherk’s
singly periodic surface, which has period T = (0, 0, 2), and four ends in the
quotient.

H. Karcher [4] has generalized this construction by replacing the unit
square by any convex polygonal domain Ω with 2k edges of length one, k ≥ 2.
To satisfy the hypothesis of the theorem of Jenkins and Serrin, the domain
Ω must be assumed to be non-special, see definition 1 below (this known
fact does not seem to have been written yet, so we provide a proof in the
appendix). Solving the Jenkins-Serrin problem on Ω, taking the conjugate
and reflecting, one obtains a properly embedded singly periodic minimal
surface with period T = (0, 0, 2), 2k Scherk-type ends and genus zero in
the quotient. These surfaces are now called Karcher’s Saddle Towers, and
have recently been classified as the only properly embedded singly periodic
minimal surfaces in R

3 with genus zero and finitely many Scherk-type ends
in the quotient [10].

Definition 1 We say a convex polygonal domain with 2k unitary edges is
special if k ≥ 3 and its boundary is a parallelogram with two sides of length
one and two sides of length k − 1.

In this paper we follow the same strategy except that we start with an
unbounded convex domain Ω with infinitely many edges, so we end up with
a minimal surface with infinitely many ends, as desired. More precisely, we
consider an unbounded convex domain Ω ⊂ R

2 such that:

1. The boundary ∂Ω of Ω is a polygonal curve with an infinite number of
edges, all of length one.

2. Ω is not the plane, nor a half plane, nor a strip, nor an infinite special
domain, see definition 2 below.

Definition 2 An unbounded convex polygonal domain is said to be special
when its boundary is made of two parallel half lines and one edge of length
one (such a domain may be seen as a limit of special domains with 2k edges,
when k → ∞).
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Given a domain Ω as above, mark the edges on its boundary alternately
by +∞ and −∞. In section 3, we solve the Jenkins-Serrin problem for
Ω. In order to do this, we consider an exhaustion of Ω by bounded convex
domains Ωn and solve the Jenkins-Serrin problem on each Ωn, obtaining
a solution un in Ωn. Then we prove that the sequence {un} has a limit
u. Such a function u, which is defined on Ω, has the required behavior on
the boundary and its graph M is minimal. Taking the conjugate minimal
surface of M and extending by symmetry, we obtain the desired minimal
surface. Such a surface can be seen as a limit, when k → ∞, of a sequence of
Karcher’s Saddle Towers with 2k ends. In section 4, we study the asymptotic
behavior of this surface.

2 Preliminaries

Let u = u(x1, x2) be a solution of the minimal graph equation:

(1 + u2

2)u11 − 2u1u2u12 + (1 + u2

1)u22 = 0, (1)

defined on a simply-connected domain D ⊂ R
2. By an elementary computa-

tion,

dψu :=
u1√

1 + |∇u|2
dx2 −

u2√
1 + |∇u|2

dx1 (2)

is an exact form in D. Hence there exists a function ψu = ψu(x1, x2), called
conjugate function of u, whose differential is given by (2). Note that ψu is
well defined up to an additive constant. In fact, if we write X(x1, x2) =
(x1, x2, u(x1, x2)) and call X∗ = X∗(x1, x2) its conjugate minimal immersion,
then the third coordinate function of X∗ can be written as X∗

3 (x1, x2) =
ψu(x1, x2) (although the conjugate surface is not the graph of ψu).

Since |∇ψu| = |∇u|√
1+|∇u|2

< 1, ψu is a Lipschitz function, so it can be

extended continuously to ∂D.
Next we expose some results related to the convergence of a sequence

{un}n of minimal graphs defined on D. They are based on the theory devel-
oped by L. Mazet [5, 6], following the ideas of Jenkins and Serrin (the main
improvement over the work of Jenkins and Serrin is that we do not require
monotonicity of the sequence {un}n).
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Given a sequence {un}n of solutions for the minimal graph equation in D,
define the convergence domain of the sequence {un}n as

B(un) = {p ∈ D | {|∇un|(p)}n is bounded} .

For each component D′ of B(un), there is a subsequence of {un − un(Q)}n

converging uniformly on compact sets of D′ to a solution of (1), where Q is
some fixed point of D′. This fact justifies the name for B(un). Moreover,
D − B(un) consists of a union of straight lines:

D − B(un) = ∪i∈ILi,

where each Li ⊂ D is a component of the intersection of a straight line
with D, for each i ∈ I. The straight lines Li are called divergence lines.

Clearly, to ensure the convergence of a subsequence of {un}n on D, it
suffices to prove there are no divergence lines. The following lemmas 1 and 2
can be useful to conclude this.

Lemma 1 ([6]) If T ⊂ ∂D is an open straight segment such that each un

diverges to +∞ when we approach T , then a divergence line cannot end in T .

Lemma 2 ([5]) Given a segment T contained in a divergence line, it holds∫
T
dψn → ±|T |.

Once we have ensured the convergence of the sequence {un}n to a solution
u of the minimal graph equation, the next natural step is to understand the
behavior of u on the boundary of D.

Lemma 3 ([3, 6]) Let u be a solution of (1) on D, and T ⊂ ∂D be an open
straight segment oriented as ∂D. Then

∫
T
dψu = |T | if and only if u diverges

to +∞ on T .

Finally, we have the following uniqueness result for the limit u under some
constraints.

Lemma 4 ([7]) Let u1 and u2 be two solutions of (1) in a connected do-
main D, whose conjugate functions ψu1

, ψu2
are bounded in D, and such that

ψu1
= ψu2

on ∂D. Then u1 − u2 is constant in D.
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3 Solving the Jenkins-Serrin problem on Ω

Let Ω be an unbounded convex domain as in the introduction. We choose a
vertex p0 such that the inner angle at p0 is less than π. We label the vertices
pi, i ∈ Z, in the order that we meet them when traveling along the boundary
of Ω with its natural orientation. We mark the edge [pi, pi+1] with +∞ if i
is even and −∞ if i is odd.

Proposition 1 The Jenkins-Serrin problem on Ω has a solution u. More-
over, 0 ≤ ψu ≤ 1 on Ω.

Proof. Given n ≥ 1, the chord [p−n, pn] divides Ω into two components.
Call Un the bounded one. Let Ωn be the union of Un and its symmetric image
about the midpoint of [p−n, pn]. We also extend by symmetry the marking
on the edges. Since Ω is an unbounded convex domain, the sum of the inner
angles of Ωn at p−n and pn is at most π. This implies that Ωn is a (bounded)
convex domain.

Let us prove that Ωn is non-special. If n = 1 then this is true by definition
(a special domain has at least six edges). Assume that n ≥ 2. If Ωn were
special, then p0 would be a corner of the parallelogram Ωn because of the way
we chose it. Then either p−2p−1p0p1 or p−1p0p1p2 would be a rhombus. Since
Ω is an unbounded convex domain, it follows that Ω would be an infinite
special domain, a contradiction.

Hence Ωn is non-special, so by proposition 3 that will be proven in the
appendix, it satisfies the hypotheses of Jenkins and Serrin. Let un be the
solution to the Jenkins-Serrin problem on Ωn normalized by un(Q) = 0,
where Q is some fixed point in Ω1. Denote by ψn the conjugate function
associated to un, normalized so that ψn(p0) = 0. From lemma 3 we have∫ pi+1

pi

dψn = (−1)i, which implies that ψn(pi) is equal to 0 if i is even, and
equal to 1 if i is odd. Moreover, ψn is an affine function on each edge, so
0 ≤ ψn ≤ 1 on ∂Ωn. Since the domain Ωn is bounded, the maximum principle
implies that 0 ≤ ψn ≤ 1 in Ωn.

Next we are going to prove that {un}n converges uniformly on compact
sets of Ω. Let D be a bounded subdomain of Ω. For n large enough, we
have D ⊂ Ωn so we can restrict un to D and apply the results exposed in
Section 2.

In our case, this means that every divergence line has to end at vertices.
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Firstly, we are going to prove there are no divergence lines. Suppose that
there is a divergence line L. Since 0 ≤ ψn ≤ 1, we deduce from lemma 2
that L must have length no bigger than one. Thus taking a larger domain
D if necessary and using lemma 1, we obtain L has to be a segment [pi, pj ].
If i and j have the same parity, then ψn(pi) = ψn(pj) so L has length zero
(again using lemma 2), which is absurd. If i and j have different parity,
then |ψn(pi) − ψn(pj)| = 1, so L is a chord of length one between pi and pj .
However, this is impossible on a non-special domain (see proposition 3).

Hence there exists a subsequence of {un}n which converges on compact
subsets of D. Taking an exhaustion of Ω by bounded subdomains and using
a diagonal process, we obtain a subsequence of {un}n converging on compact
subsets of Ω to a solution u of the minimal graph equation. By lemma 3, u
takes the marked values ±∞ on ∂Ω. Its conjugate function ψu is the limit
of {ψn}n, hence 0 ≤ ψu ≤ 1. By lemma 4, we know that u is the unique
solution to the Jenkins-Serrin problem with bounded conjugate function. In
particular, we deduce that the whole sequence {un}n converges to u.

Remark 1 In general, if u is a solution to the Jenkins-Serrin problem on
Ω, then its conjugate function ψu satisfies 0 ≤ ψu ≤ 1 on the boundary of Ω.
However, if Ω is not contained in a strip, ψu might very well be unbounded,
in which case we could not use the maximum principle to guarantee that
0 ≤ ψu ≤ 1 in Ω. This is why we took special care to construct Ωn and un in
such a way that ψn is bounded.

Let M be the graph of u on Ω. It is a minimal surface bounded by infinitely
many vertical straight lines above the vertices of Ω. Let ni be the normal
to the edge [pi, pi+1], pointing outwards of Ω. Along the edge ]pi, pi+1[, the
downward pointing normal to M converges to (−1)ini. Let M∗ be the con-
jugate minimal surface of M . Since 0 ≤ ψu ≤ 1, M∗ is included in the slab
{0 ≤ x3 ≤ 1}. Moreover, ψu = 0 (resp. 1) at pi when i is even (resp. odd),
so the vertical line above pi on M corresponds in the conjugate surface M∗

to an infinite horizontal symmetry curve lying on the plane {x3 = 0} (resp.
{x3 = 1}). The normal along this curve rotates from (−1)i−1ni−1 to (−1)ini.
Finally, M is a graph on a convex domain, thus M∗ is also a graph on a (non
convex) domain by the theorem of R. Krust.

Extending M∗ by symmetry with respect to the horizontal planes at inte-
ger heights, we obtain a properly embedded singly periodic minimal surface
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Figure 1: The domain on which the conjugate surface M∗ is a graph

with period (0, 0, 2). It is easy to check that he quotient of M∗ by its period
has genus 0, infinitely many ends and one limit end. This concludes the proof
of theorem 1.

4 Asymptotic behavior

Assume that Ω is not contained in a strip. We will prove that the surface M
we constructed in the previous section is asymptotic to two Scherk’s doubly
periodic surfaces. When Ω is contained in a strip, it may be proven that the
surface is asymptotic to a KMR example [4, 8, 9], which is a doubly periodic
minimal surface with parallel Scherk type ends (they have been classified
in [9] as the only properly embedded doubly periodic minimal surfaces with
genus 1 and a finite number of ends in the quotient). The argument is
similar, although a little more involved. Thus we will only consider here the
case where Ω is not contained in a strip.

Let an = pn+1 − pn ∈ S
1. Since Ω is convex, the limits a∞ = limn→∞ an

and a−∞ = limn→−∞ an exist. Let Ω̃n = Ω − p2n, by which we mean the
domain Ω translated by −p2n. When n → ∞, Ω̃n converges (on compact

subsets of R
2) to a half plane Ω̃ bounded by the line Span(a∞), and a similar

statement holds for n→ −∞. Hence it is natural to study the Jenkins-Serrin
problem on this half plane.
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Figure 2: A sketch of the conjugate surface M∗

Without loss of generality we may assume that Ω̃ is the half plane x2 ≥ 0
with the boundary data +∞ on [p̃i, p̃i+1] if i is even and −∞ if i is odd,

where p̃i = (i, 0). The Jenkins-Serrin problem on Ω̃ has the following explicit
solution : Let U be the half band 0 ≤ x1 ≤ 1, x2 ≥ 0, with boundary data
+∞ on the horizontal segment and 0 on the vertical half lines. A piece of
Scherk’s singly periodic surface, rotated so that its period is (2, 0, 0), solves
the Jenkins-Serrin problem on U . Extending by symmetry, we obtain a solu-
tion to the Jenkins-Serrin problem on Ω̃. Let us call uS this solution and S its
graph. The conjugate minimal surface S∗ of S is a piece of Scherk’s doubly
periodic surface, rotated so that its periods are (0, 2, 0) and (0, 0, 2), lying in
the slab 0 ≤ x3 ≤ 1. Hence the conjugate function ψS of uS is bounded. By
lemma 4, uS is the unique solution to the Jenkins-Serrin problem on Ω̃ with
bounded conjugate function.

Proposition 2 Let ũn(p) = u(p − p2n). Then ũn − ũn(Q) converges, on

compact subsets of Ω̃, to uS, where Q = (0, 1).

Proof. The situation here is slightly more complicated than in the previous
section because the domain is moving. If D is a bounded subdomain of Ω̃,
we would like to say that D ⊂ Ω̃n for n large enough, in order to restrict
ũn to D and study its convergence. This is true when the closure of D is
included in Ω̃ but it could be false if D contains part of the boundary of Ω̃.
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This means that we cannot use directly the results in section 2 about the
boundary of the domain.

Let D be a bounded subdomain of Ω̃. Consider the restriction of ũn to
D (for n large enough). Suppose that this sequence has a line of divergence
L. By taking larger and larger domains D, we can extend L as far as we
want in at least one direction (because Ω̃ is a half plane). However, since

0 ≤ ψ̃n ≤ 1, lemma 2 says L has length at most one, a contradiction. Hence
a subsequence of ũn − ũn(Q) converges, on compact subsets of (the interior)

of Ω̃, to a function ũ solution of the minimal graph equation on Ω̃.
Let us prove that ũ has the expected boundary behavior, so it solves the

Jenkins-Serrin problem on Ω̃. Denote by ψ̃ the conjugate function of ũ. Let
p̃n

i = pi − p2n be the vertices of Ω̃n, so p̃n
i → p̃i = (i, 0) when n → ∞. Given

ε > 0, call qi = (i, ε). For even i and n large enough, we have qi ∈ Ω̃n and:

•
∫

epi+1

epi

dψ̃ =
∫ qi

epi

dψ̃ +
∫ qi+1

qi

dψ̃ +
∫

epi+1

qi+1
dψ̃ ≥

∫ qi+1

qi

dψ̃ − 2ε;

•
∫ qi+1

qi

dψ̃ ≥
∫ qi+1

qi

dψ̃n − ε;

•
∫ qi+1

qi

dψ̃n =
∫

epn

i

qi

dψ̃n +
∫ epn

i+1

epn

i

dψ̃n +
∫ qi+1

epn

i+1

dψ̃n ≥
∫ epn

i+1

epn

i

dψ̃n − 4ε;

•
∫ epn

i+1

epn

i

dψ̃n = 1.

In the first line, we have used that |dψ̃| ≤ 1 and d(p̃i, qi) = ε. In the second

line, we have used that dψ̃n → dψ̃ uniformly on compact subset of Ω̃. In
the third line, we have used that |dψ̃n| ≤ 1 and d(p̃n

i , qi) ≤ 2ε if n is large
enough. In the last line we have used lemma 3, since ũn diverges to ∞ when
we approach the segment [p̃n

i , p̃
n
i+1]. All this gives

1 ≥
∫

epi+1

epi

dψ̃ ≥ 1 − 7ε.

Since this holds for any ε > 0, we conclude that the integral is one, so
by lemma 3, ũ = +∞ on the edge [p̃i, p̃i+1] when i is even. In the same

way, ũ = −∞ on the edge [p̃i, p̃i+1] when i is odd. Since 0 ≤ ψ̃ ≤ 1, we

conclude that ũ is the unique solution to the Jenkins-Serrin problem on Ω̃
with bounded conjugate function, so ũ = uS.
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Let us return to the minimal surface M that we constructed in the last
section. Let Pn = (pn, 0) ∈ M be the point at height 0 on the vertical line
through pn, and P ∗

n be the corresponding point on the conjugate minimal
surface M∗. Then M − P2n converges when n → ∞ to S and consequently
M∗−P ∗

2n converges to S∗. The above convergence is only on compact subsets
of R

3. When n→ −∞, M∗ −P ∗
2n also converges to Scherk’s doubly periodic

surface.

5 Appendix

For completeness, we prove in this section that, among all the bounded con-
vex unitary polygonal domains, the ones that fail to satisfy the hypothesis
of the theorem of Jenkins and Serrin are the special domains.

Let Ω be a bounded convex polygonal domain, with sides marked alter-
nately +∞ and −∞, and P be any polygonal subdomain of Ω (this means
that its vertices are vertices of Ω). Denote by α (resp. β) the total length
of the edges of P which are edges of Ω with mark +∞ (resp. −∞), and call
γ the perimeter of P. The domain Ω satisfies the hypothesis of the theorem
of Jenkins and Serrin (and so one can solve the Jenkins-Serrin problem on
Ω) if and only if 2α < γ and 2β < γ for each strict subpolygon P of Ω, and
α = β when P = Ω.

Consider a convex polygonal domain Ω as above, and suppose all its edges
have length one. Label its vertices p1, · · · , p2n so that [p1, p2] is marked with
−∞ (so [pi, pi+1] is marked with +∞ if i is even and with −∞ if i is odd,
with the convention p2n+1 = p1). We say pi is an even vertex if i is even and
an odd vertex if i is odd. We will refer as a chord to a straight segment that
joints two different non consecutive vertices of Ω.

Proposition 3 The following statements are equivalent :

(i) Ω is not a special domain.

(ii) Every chord from an even vertex to an odd vertex has length greater
than 1.

(iii) Ω satisfies the hypotheses of the theorem of Jenkins and Serrin.

Before proving proposition 3, let us recall the following elementary result
proven in [10], lemma 5.2.
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Lemma 5 Let ABCD be a convex quadrilateral such that |BC| = |AD| and

Â+ B̂ ≤ π, where Â means the interior angle at A. Then |CD| ≤ |AB|, with
equality if and only if ABCD is a parallelogram.

Proof. Let us see that (i) ⇒ (ii). Arguing by contraposition, we
must prove that if Ω has a chord of length ≤ 1 from an even vertex to an
odd vertex, then Ω is special. Let C be such a chord. It divides Ω into
two convex domains, Ω1 and Ω2. For one of them, let us say Ω1, the sum
of the inner angles at the endpoints of C is ≤ π. We may rename the
vertices of Ω, without changing their parity, so that C is the segment [p1, p2r]
and the vertices on the boundary of Ω1 are p1 · · · , p2r. Lemma 5 assures
|p2p2r−1| ≤ |p1p2r| ≤ 1; and by induction, we obtain |pip2r+1−i| ≤ 1 for all
1 ≤ i ≤ r (here we use that the sum of the inner angles remains ≤ π because
Ω is convex). But [pr, pr+1] is an edge on the boundary of Ω, so |prpr+1| = 1.
Hence equality holds everywhere, and all quadrilaterals pipi+1p2r−ip2r+1−i are
parallelograms. Since Ω1 is convex, p1prpr+1p2r is a parallelogram (with two
sides of length 1 and two sides of length r − 1). Hence the sum of the inner
angles of Ω1 at the endpoints of C is π, so the sum of the inner angles of Ω2

at the same points is ≤ π. Applying the same argument to Ω2, we obtain
that Ω2 is also a parallelogram, so Ω is a special domain.

Let us see that (ii) ⇒ (iii). Let P be a strict subpolygon of Ω. Let
us orient ∂Ω and ∂P as boundaries of Ω and P. Note that for an edge in
∂P ∩ ∂Ω, both orientations are the same. Let us prove that 2α < γ. This
is clearly true if ∂P contains no edge marked +∞. Let [p2i, p2i+1] be an
edge on the boundary of P marked +∞. Let [p2j , p2j+1] be the next edge on
the boundary of P marked +∞, when traveling along the boundary in the
direction given by its orientation. Let C be the part of ∂P between p2i+1 and
p2j . If C contains an edge marked −∞ then |C| ≥ 1. Else C contains only
chords. Since C connects an odd vertex with an even vertex, at least one of
its chords goes from an odd vertex to an even vertex, so |C| > 1. Hence the
part of the boundary of P between two edges marked +∞ always has length
≥ 1, with strict inequality for at least one of them (else P = Ω). Hence
2α < γ. The proof of 2β < γ is exactly the same, exchanging the roles of
+∞ and −∞.

Finally, (iii) ⇒ (i) is obvious : a special domain Ω does not satisfy the
hypothesis of Jenkins and Serrin, because if P is a rhombus then 2α = γ (or
2β = γ).
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[9] J. Pérez, M. M. Rodŕıguez, and M. Traizet. The classification of doubly
periodic minimal tori with parallel ends. J. of Differential Geometry,
69(3):523–577, 2005.

[10] J. Pérez and M. Traizet. The classification of singly periodic minimal
surfaces with genus zero and Scherk type ends. To Appear in Trans.
Amer. Math. Society, 2005.

12


