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Abstract

The aim of this paper is to give two uniqueness results for the
Dirichlet problem associated to the constant mean curvature equa-
tion. We study constant mean curvature graphs over strips of R2. The
proofs are based on height estimates and the study of the asymptotic
behaviour of solutions to the Dirichlet problem.
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Introduction

The surfaces with constant mean curvature are the mathematical modelling
of soap films. These surfaces appear as the interfaces in isoperimetric prob-
lems. There exist different points of view on constant mean curvature sur-
faces, one is to consider them as graphs.

Let Ω be a domain of R
2. The graph of a function u over Ω has con-

stant mean curvature H > 0 if it satisfies the following partial differential
equation:

div

(
∇u√

1 + |∇u|2

)
= 2H (CMC)

The graph of such a solution is called a H-graph and has a upward pointing
mean curvature vector.

Thanks to the work of J. Serrin [Se1, Se2] and J. Spruck [Sp], we can build
a lot of H-graphs over bounded domains of R

2. Over unbounded domains,
the Dirichlet problem associated to (CMC) is more complicated. Existence
results are known and due to P. Collin [Co] and R. López [Lo1, Lo2]. The
question we ask in this paper is the uniqueness of solutions for the boundary
data that these authors study.
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In [Lo1, Lo2], R. López proves existence results for vanishing boundary
data. In the case of bounded boundary data, the uniqueness is known.
In [Co] and [Lo1], the authors build solutions of (CMC) over strips with
boundary data that can be unbounded. In this paper, we prove that, for
these boundary data, we have uniqueness (see Theorems 10 and 12).

There are two major steps to prove these results. First, if there are two
solutions for a same boundary data, the difference between these solutions
can not stay bounded. Thus, this gives us an information on the asymptotic
behaviour of the boundary data. The second step consists in seeing the
consequences of this asymptotic behaviour on the asymptotic behaviour of
a solution. In this second step, we use the notion of line of divergence that
the author has defined in [Ma1].

The paper is devided as follows. In the first section, we give the two
existence results of P. Collin and R. López that we are interested in. We
also precise some definitions and notations. In the second part, we give a set
of upper and under-bounds for the H-graph that we study. These results
are important to prepare the proofs of our uniqueness results. Section 3 is
devoted to the proof of the uniqueness of Collin’s solutions. In Section 4, we
prove the uniqueness of López’s solutions. The two proofs are very similar.

1 Two existence results

In this first section, we recall two existence results for Dirichlet problem;
these results were proved by P. Collin in [Co] and R. López in [Lo1].

In both cases, the author studies the Dirichlet problem associated to the
constant mean curvature equation (CMC) on a strip Ω = R×(−l, l) of width
2l. It was proven in [Lo2], that the width 2l needs to be less than 1/H for
having a solution.

1.1 The existence results

Let f : R → R be a continuous real function. We define ϕf on ∂Ω by
ϕf (x,±l) = f(x). P. Collin and R. López have looked for a solution u of
the constant mean curvature equation

div

(
∇u√

1 + |∇u|2

)
= 2H (CMC)

such that u|∂Ω = ϕf .
The result of P. Collin concerns the limiting case 2l = 1/H.
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Theorem (P. Collin, [Co]). Let f : R → R be a convex continuous func-
tion. There exists a solution u of (CMC) on Ω = R × (−1/(2H), 1/(2H))
which takes ϕf as boundary value.

This result was independently proved by A. N. Wang for the convex
function x 7→ x2 (see [Wa]).

Let Ω be a domain in R
2, we say that Ω satisfies a uniform exterior

R-circle condition if at each point p ∈ ∂Ω there exists a disk D with radius
R such that D ∩ Ω = {p}. This tells us that a circle of radius R can ”roll”
outside Ω along ∂Ω touching each point of ∂Ω along its deplacement.

Let f : R → R be a countinuous function. f satisfies a uniform R-circle
under condition if the domain {(x, y) ∈ R

2 | y ≥ f(x)} satisfies a uniform
exterior R-circle condition. It says that a circle of radius R can ”roll” under
the graph of f touching each point of the graph along its deplacement.

The result of R. López deals with the case where 2l < 1/H. We give it
now using some notations that we shall introduce in the following subsection.

Theorem (R. López, [Lo1]). Let f : R → R be a continuous function
and t ∈ R

∗
+. We assume that f satisfies a uniform ρt(H)-circle under

condition. Then, there exists a solution u of (CMC) on the strip Ω =
R × (−ht(H), ht(H)) which takes ϕf as boundary value.

The technique used by P. Collin and R. Lopez is the Perron technique.
They build their solutions as the supremum of under-solutions. The diffi-
culty is to have good barrier functions to ensure the boundary value.

The aim of this paper is to prove that the solutions build by P. Collin
and R. López are unique for the boundary data ϕf .

Theorem (Theorems 10 and 12). Let f : R → R be a continuous func-
tion. We consider one of the two cases below:

1. Ω = R × (− 1
2H , 1

2H ) and f is convex.

2. Ω = R×(−ht(H), ht(H)) and f satisfies a uniform ρt(H)-circle under
condition.

Let u and v be two solutions of (CMC) on Ω with ϕf as boundary value.
Then u = v.

1.2 The 1-parameter family of nodoids

In this subsection, we recall many classical results on nodoids, the reader
can refer to [De, Ee, Lo1] for more explanations.

3



The constant mean curvature surfaces of revolution are the Delaunay
surfaces. This set of surfaces splits into two 1-parameter families. One
is composed of embedded surfaces which are called unduloids. When the
parameter moves, the family of the unduloids deforms the cylinder of radius
1/(2H) into a stack of tangent sphere of radius 1/H.

The second 1-parameter family is composed of non-embedded surfaces:
these are the nodoids. The interest in considering the nodoids is that,
since they have self-intersections, each one contains a piece that looks like a
catenoidal neck with mean curvature vector pointing outward.

Let us recall the construction of nodoids and fix notations. Let r(u) be
a positive smooth function defined on an open interval I and consider the
surface of revolution parametrized by:

X(u, θ) = (r(u) cos(θ), r(u) sin(θ), u)

We fix the normal to the surface to be

N(u, θ) =
1√

1 + r′2

(
cos(θ), sin(θ),−r′

)

The surface has constant mean curvature H if r satisfies:

2H = − 1

r
√

1 + r′2
+

r′′

(1 + r′2)3/2

After a first integration, this equation implies that there exists c ∈ R such
that:

Hr2 = − r√
1 + r′2

+ c (1)

Since Hr2 is positive, c needs to be positive. When c > 0, there exist h,
ρ and r : [−h, h] → [0, ρ] a solution to (1) such that r is even and the initial
value r(0) = t > 0 is the minimum of r. Besides r(h) = ρ and r′(h) = +∞,
then Hρ2 = c. The associated surface X is a nodoid.

For u = 0, we have Ht2 + t = c then:

t =
−1 +

√
1 + 4Hc

2H

t is an increasing function of c with t = 0 for c = 0 and limc→+∞ t = +∞.
In the following, t is then used as parameter for the family of nodoids. We
have:

ρ = ρt(H) =

√
Ht2 + t

H
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2ht(H)ρt(H)

Figure 1:

Moreover, we have:

h = ht(H) =

∫ ρ

t

H(ρ2 − x2)√
x2 − H2(ρ2 − x2)2

dx

We can summarize the properties in the following propostion and in Figure
1.

Proposition 1. There exists a 1-parameter family of nodoids {Nt, t > 0}
with constant mean curvature H given by the rotation of a curve γt around
the z-axis and with the following properties:

1. The curve γt is a graph on [ht(H), ht(H)] of an even function.

2. The curve γt has horizontal tangents at ±ht(H). Then Nt is included
in the slab St : |z| ≤ ht(H) and is tangent to it.

3. The mean curvature vector points outside the bounded domain deter-
mined by Nt in the slab St.

4. The circle Ct of Nt with smallest radius is given by x2+y2 = t2, z = 0.

5. The function ht(H) is strictly increasing on t and

lim
t→0

ht(H) = 0 lim
t→+∞

ht(H) =
1

2H
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6. The function ρt(H) is strictly increasing and

lim
t→0

ρt(H) = 0 lim
t→+∞

ρt(H) = +∞ lim
t→+∞

ρt(H) − t =
1

2H

The two limits of ht(H) and ρt(H) as t → +∞ allow us to consider
P. Collin result as a limiting case of R. López theorem. Actually, when
R goes to +∞, the uniform R-circle under condition for f becomes the
convexity since the circle becomes a straight-line.

2 Preliminaries

2.1 The maximal and minimal solutions

To prove the uniqueness of the solutions built by P. Collin and R. López, we
need some control on solutions of these Dirichlet problem. We have a first
result.

Lemma 2. Let f : R → R be a continuous function. On Ω = R × (−l, l),
there exists a solution w of the minimal surface equation

div

(
∇w√

1 + |∇w|2

)
= 0 (MSE)

with w = ϕf on the boundary of Ω. Besides, we have w ≥ u for every
solution u of (CMC) on Ω with u = ϕf on ∂Ω.

Proof. Let us consider n ∈ N
∗. Because of a result by H. Jenkins and

J. Serrin [JS], if n is big enough, there exists two solutions w+
n and w−

n of
(MSE) on (−n, n)×(−l, l) with w±

n = ϕf on (−n, n)×{−l, l} and w±
n = ±∞

on {−n, n} × (−l, l).
By maximum principle, for every n and m, we have w+

n ≥ w−
m and (w+

n )
is a decreasing sequence. This implies that (w+

n ) converges to a solution w
of (MSE) on Ω with ϕf as boundary value.

Let us consider now a solution u of (CMC) on Ω with ϕf as boundary
value. By maximum principle, for every n, we have w+

n ≥ u ; then in the
limit, w ≥ u.

This lemma gives an upper-bound to a solution of (CMC) without any
hypothesis on the function f . To get an under-bound, we need such hy-
potheses.
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Let us consider the function c which is defined on Ω = R×(−1/(2H), 1/(2H))
by:

c(x, y) = − 1

cos θ

√
1

4H2
− y2 + (x − x0) tan θ + z0

c is a solution of (CMC): its graph is in fact the half-cylinder with the two
straight-lines of equation z = (x − x0) tan θ + z0 over ∂Ω as boundary.

Lemma 3. Let f : R → R be a convex function and u a solution of (CMC)
on Ω = R × (−1/(2H), 1/(2H)) with ϕf as boundary value. Let x0 be in R

and z = (x−x0) tan θ0 + f(x0) be a straight-line which is below the graph of
f (such a line exists because of the convexity). Let c denote the half-cylinder
associated to this line. Then we have u ≥ c on Ω.

Proof. Let h denote the function defined on Ω by h(x, y) = (x−x0) tan θ0 +
f(x0). On the boundary u ≥ h.

If the function f is affine, i.e. f(x) = (x−x0) tan θ0 + f(x0), it is known
that c is the only constant mean curvature extension for ϕf (see Theorem 8
in [Ma2]), then u = c.

If the function f is non-affine, the set of θ such that there exists x1 ∈ R

with z = (x− x1) tan θ + f(x1) is below the graph of f is an interval I ⊂ R.
We assume that θ0 is in the interior of this interval. If θ0 is an end-point of
this interval, the property is proved by continuity.

Since θ0 is in the interior of I, there exist x1 < x0 < x2 and θ1 < θ0 < θ2

such that (x − x1) tan θ1 + f(x1) ≤ f and (x − x2) tan θ2 + f(x2) ≤ f . By
Proposition 3 in [Ma2], there exists K ∈ R+ such that:

u(x, y) ≥ (x − x1) tan θ1 + f(x1) − K

u(x, y) ≥ (x − x2) tan θ2 + f(x2) − K

Since θ1 < θ0 < θ2, these two equations imply that u(x, y) ≥ h(x, y) if |x|
is big enough. We have h ≥ c on Ω (we recall that c is the half-cylinder
associated to z = (x − x0) tan θ0 + f(x0)); then u ≥ c on ∂Ω and outside a
compact of Ω. Finally, by maximum principle, u ≥ c in Ω.

In the case of López solutions, we get the following under-bound.

Lemma 4. Let f : R → R a continuous function that satisfies a uni-
form ρt(H)-circle under condition. Let x be in R and C a circle of radius
ρt(H) that established the uniform ρt(H)-circle under condition at the point
(x, f(x)). Let u be a solution of (CMC) on Ω = R×(−ht(H), ht(H)) with ϕf

as boundary value. Then, the graph of u is above the nodoid Nt which have

7



horizontal axis and is bounded by the two parallel circles C in the vertical
plane y = −ht(H) and y = ht(H).

Proof. Let ez denote the vertical unit vector (0, 0, 1). For s in R, let us
translate by sez the nodoid Nt bounded by the two parallel circles C. For
enough negative s, Nt + sez is below the graph of u. Let s grow until the
first contact. The mean curvature of the graph is upward pointing and the
mean curvature of Nt points outside. So by maximum principle, the first
contact can not be an interior point. Then, because of the hypothesis on f ,
the first contact is at s = 0 and the lemma is proved.

These estimates have a lot of important consequences in our study of
the uniqueness. First, it gives us a technical lemma.

Lemma 5. Let f : R → R be a continuous function. We consider one of
the two cases below:

1. Ω = R × (− 1
2H , 1

2H ) and f is convex.

2. Ω = R×(−ht(H), ht(H)) and f satisfies a uniform ρt(H)-circle under
condition.

Let D denote the set of all solutions u of (CMC) on Ω with ϕf as boundary
value. Let u1 and u2 be in D then there exist v+ and v− in D such that:

v+ ≥ max(u1, u2) v− ≤ min(u1, u2)

Proof. Let n be in N; we define Ωn = {(x, y) ∈ Ω | − n −
√

1/(2H)2 − y2 ≤
x ≤ n +

√
1/(2H)2 − y2}. The boundary of Ω is composed of two segments

and two circle-arcs of curvature 2H.
Using Perron process (see [CH, GT]), we can build

• the solution v+
n of (CMC) on Ωn with max(u1, u2) on the boundary

and

• the solution v−n of (CMC) on Ωn with min(u1, u2) on the boundary.

To build v+
n , we use subsolutions (let us observe that max(u1, u2) is a subso-

lution). By maximum principle, every subsolution is less than w the solution
of (MSE) given by Lemma 2. Then, we can define v+

n as the supremum over
all subsolutions. v+

n takes the good boundary values on the two segments
because max(u1, u2) = w on it. For the two circle-arcs, we use the bar-
rier functions built by J. Serrin in [Se1]. For v−n , we use supersolutions
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(min(u1, u2) is one). By maximum principle, every supersolution satisfies
to the under-bound of Lemmas 3 or 4. Then we define v−n as the infimum
of all supersolutions. The half-circles and nodoids of Lemmas 3 and 4 are
used as barrier functions and give us the boundary value of v−n on the two
segments. For the two circle arcs, we use J. Serrin arguments.

On Ωn, we have max(u1, u2) ≤ v+
n ≤ w then a subsequence converges

to v+ on Ω and v+ ∈ D. Clearly max(u1, u2) ≤ v+. The sequence v−n is
upper-bounded by min(u1, u2) and satisfies the under-bounds of Lemmas 3
or 4. Then a subsequence converges to v− a solution of (CMC) with ϕf as
boundary value. Besides, min(u1, u2) ≥ v−

With this Lemma, we can prove:

Proposition 6. Let f : R → R be a continuous function. We consider one
of the two cases below:

1. Ω = R × (− 1
2H , 1

2H ) and f is convex.

2. Ω = R×(−ht(H), ht(H)) and f satisfies a uniform ρt(H)-circle under
condition.

There exist umax and umin two solutions of (CMC) on Ω with ϕf as bound-
ary value such that, for every solution u of (CMC) on Ω with ϕf as boundary
value, we have:

umin ≤ u ≤ umax

Proof. Let us denote D the set of all solutions u of (CMC) on Ω with ϕf as
boundary value; thanks to P. Collin and R. López, D is non-empty. So we
define umax and umin at p ∈ Ω by:

umax(p) = sup
u∈D

u(p)

umin(p) = inf
u∈D

u(p)

By Lemma 2, umax is well defined ; Lemmas 3 and 4 ensure that umin > −∞.
As in the classiccal Perron process, it can be proved that umax and umin

are two solutions of (CMC) on Ω: in fact the argument we need is that for
every u1 and u2 in D there exist u3 ∈ D that upper-bounds max(u1, u2) and
u4 ∈ D that under-bounds min(u1, u2) (this is Lemma 5).

Using the solution w of (MSE) built in Lemma 2, the half-cylinders of
Lemma 3 or the nodoids of Lemma 4 as barrier functions, we finally prove
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that umax and umin have ϕf as boundary value. Besides the construction
gives , for every u ∈ D:

umin ≤ u ≤ umax

We have an important remark on these two solutions. For every (x, y) ∈
Ω, they satisfy :

umax(x, y) = umax(x,−y) (2)

umin(x, y) = umin(x,−y) (3)

This is due to the fact that both functions (x, y) 7→ umax(x,−y) and (x, y) 7→
umin(x,−y) are in D.

2.2 Upper-bounds

In this subsection, we look for explicit upper-bounds for solutions of (CMC).
First, we have the following upper-bound:

Proposition 7. Let f : R → R be a contiuous function and x0 ∈ R. We
assume that f is monotonous on [x0,+∞). Let u be a solution of (CMC)
on Ω = R× (−a, a) with ϕf as boundary value. Then for x ≥ x0 + 1/H, we
have:

u(x, y) ≤ f(x) +
1

2H

Proof. We only consider the case where f is increasing on [x0,+∞). We
consider a ≥ x0 + 1/H and denote by C((a − 1/(2H), s), 1/(2H)) the hori-
zontal cylinder of axis {x = a − 1/(2H)} ∩ {z = s} and radius 1/(2H). For
big s the cylinder C((a − 1/(2H), s), 1/(2H)) is above the graph of u. Let
s decrease until s0 where the first contact happens. By maximum princi-
ple, this first contact point is on the boundary at a point of first coordinate
a′ ∈ [a − 1/(2H), a]. We have f(a′) ≥ s0 − 1/(2H).

Since for every s ≥ s0, C((a− 1/(2H), s), 1/(2H)) is above the graph of
u, we have u(a, y) ≤ s. Then u(a, y) ≤ s0 ≤ f(a′) + 1/(2H). Since a′ < a
and f is increasing, u(a, y) ≤ f(a) + 1/(2H).

Let us introduce a definition. Let f : R → R be a continous function.
f satifies a R-circle upper condition at a ∈ R if there exists in {(x, y) ∈
R

2| y ≥ f(x)} a disk D with radius R such that (a, f(a)) ∈ ∂D.

10



Remark. Let D((a, s), R) denote the disk with center (a, s) and radius R.
For big s, D((a, s), R) is included in {(x, y) ∈ R

2| y ≥ f(x)}. Let s decrases
until the first contact with the graph of f , f then satifies a R-circle upper
condition at the first coordinates of the contact points. In changing a, we
get all the abscissas where f satifies a R-circle upper condition. This implies
that for every a ∈ R there is a′ ∈ [a − R, a + R] where f satisfies a R-circle
upper condition.

Proposition 8. Let f : R → R be a continuous function. Let u be a solution
of (CMC) on Ω = R × (−l, l) with ϕf as boundary value. We assume the
f satisfies a 1/(2H)-circle upper condition at x0 ∈ R. Then, for every
y ∈ [−l, l], u(x0, y) ≤ f(x0).

Proof. Let Γ(a, b) denote the circle of center (a, b) and radius 1/(2H) which
belongs to {z ≥ f(x)} and such that (x0, f(x0)) ∈ Γ(a, b). Let us denote by
C((a, b+s), 1/(2H)) the horizontal cylinder of axis {x = a}∩{z = b+s} and
radius 1/(2H). For big s the cylinder C((a − 1/(2H), s), 1/(2H)) is above
the graph of u. Let s decrease until the first contact happens. Because of
maximum principle and the existence of Γ(a, b), this first contact happens
for s = 0. Then, on the segment Ix0

= {x0}× [−l, l], u is upper-bounded by
f(x0).

Let f : R → R be a continuous function that satisfies a uniform R-circle
under condition. Let a ∈ R denote a point where f satifies a R′-circle upper
condition. Since at a, there is a circle below and over the graph of f , the
graph of f has a tangent. Then either f ′(a) exists or f ′(a) = ±∞. In all the
cases, we can deal with the sign of the derivative of f at a. We then have a
kind of Rolle’s Theorem.

Lemma 9. Let f : R → R be a continuous function that satisfies a uniform
R-circle under condition. Let a < b be two points where f satifies a R′-circle
upper condition. We assume that f ′(a) > 0 and f ′(b) < 0. Then there exists
c ∈ [a, b] such that:

1. f satifies a R′-circle upper condition at c.

2. f ′(c) = 0.

Proof. Let g denote the function defined by g(x) = R′ −
√

R′2 − x2 on
[−R′, R′]; its graph is a half-circle of radius R′. Since f satifies a R′-circle
upper condition at a and f ′(a) > 0, f is upper bounded by f(a) + g(x − a)
on [a − R′, a]. In the same way, f is upper-bounded by f(b) + g(x − b) on
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[b, b + R′]. Let c ∈ [a, b] denote a point where f(c) = max[a,b] f . Then f(x)
is upper-bounded by m(x) on [a − R′, b + R′] where m(x) is defined by:

m(x) =





f(c) + g(x − a) for x ∈ [a − R′, a]

f(c) for x ∈ [a, b]

f(c) + g(x − b) for x ∈ [b, b + R′]

This implies that f satisfies a R′-circle upper condition at c and then
f ′(c) = 0.

3 The uniqueness of Collin’s solutions

The aim of this section is to prove the uniqueness of the solutions for the
Dirichlet problem studied by P. Collin in [Co]. More precisely, we have the
following result.

Theorem 10. Let f : R → R be a convex function. Let u and v be two
solutions of (CMC) on Ω = R × (−1/(2H), 1/(2H)) with ϕf as boundary
value. Then u = v.

The proof of Theorem 10 is long, so the rest of the section is devoted to
it. In this proof, we shall use the differential 1-form ωu. If u is a function
on a domaine of R

2, ωu is defined by :

ωu =
ux√

1 + |∇u|2
dy − uy√

1 + |∇u|2
dx

with ux and uy the two first derivatives of u. When u is a solution of (CMC),
ωu satisfies dωu = 2Hdx ∧ dy (see [Sp]).

3.1 Preliminaries

By Proposition 6, there are two solutions umin and umax of (CMC) on Ω with
ϕf as boundary value such that, for every solution u of the same Dirichlet
problem, umin ≤ u ≤ umax. Then to prove the uniqueness, it is sufficient to
prove : umin = umax.

So let us assume that umin 6= umax; it is then known that umax − umin

is unbounded on Ω [CK]. By exchanging x with −x, we can assume that:

lim
x→+∞

max
Ix

(umax − umin) = +∞ (4)
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where Ix = {x}×[−1/(2H), 1/(2H)]. Let c denote maxI0 umax−umin. Then
there exists D a connected component of {umax ≥ umin+2c} that is included
in R+ × [−1/(2H), 1/(2H)]. D is unbounded.

Since f is convex, f has a left derivative f ′
l and a right derivative f ′

r

at every point. These two functions increase and have the same limit at
+∞. If lim+∞ f ′

l = lim+∞ f ′
r < +∞, f is lipschitz continuous on R+. Then

Theorem 5 in [Ma2] contradicts (4).
Then f must satisfy

lim
+∞

f ′
l = lim

+∞
f ′

r = +∞ (5)

3.2 Asymptotic behaviour of umin

Let (xn) be a real sequence with lim xn = +∞. Let us define un on Ω by
un(x, y) = umin(x + xn, y). For a ∈ R, let us denote by C+(a) the circle arc
{x ≥ a}∩ {(x− a))2 + y2 = 1/(4H2)}. This circle-arc has (a,−1/(2H)) and
(a, 1/(2H)) as end-points. Besides C+(a) contains the point (a+1/(2H), 0).
We then have the following result.

Lemma 11. There exists (xn) a real increasing sequence with lim xn = +∞
such that (un) has C+(0) as line of divergence.

Before the proof, let us recall what is a line of divergence. We refer to
[Ma1] for the details. Let (vn) be a sequence of solutions of (CMC) and
Nn denote the upward pointing normal to the graph of vn. Let us assume
that Nn(P ) tends to a horizontal unit vector (ν, 0) (ν ∈ S

1). Let C denote
the circle-arc in the xy-plane with radius 1/(2H) such that P ∈ C and
2Hν is the curvature vector of C at P . C is then a line of divergence of
the sequence (vn). Let us extend the definition of ν along C by 2Hν(Q) is
the curvature vector of C at Q ∈ C (ν(Q) ∈ S

1). Then, for every Q ∈ C,
Nn(Q) → (ν(Q), 0). This implies that for every C ′ a subarc of C:

lim
n→+∞

∫

C′

ωu = ℓ(C ′)

with ℓ(C ′) the length of C ′. C ′ is oriented such that ν is left-hand side
pointing along C ′.

Proof of Lemma 11. Let vn be defined on Ω by vn(x, y) = umin(x + n, y).
The boundary value of vn is ϕfn

with fn(x) = f(x + n). Because of (5), fn

is increasing on [−1/H,+∞) for big n. Then, by Proposition 7, vn(0, 0) ≤
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fn(0) + 1/(2H). Now, let θn ∈ [0, π/2) such that fn
′
l(0) ≤ tan θn ≤ fn

′
r(0).

By Lemma 3:

vn(
1

H
, 0) ≥ − 1

cos θn

√
1

4H2
+

1

H
tan θn + fn(0)

Because of (5), θn → π/2. Then:

vn(
1

H
, 0) − vn(0, 0) ≥ 1

H cos θn
(sin θn − 1

2
) − 1

2H

−−−−−→
n→+∞

+∞

Then the sequence of derivatives
∂vn

∂x
can not stay upper-bounded on

[0, 1/H] × {0}. Then there exists a sequence (an) in [0, 1/H] such that:

lim
∂vn

∂x
(an, 0) = +∞ (6)

Let xn be defined by n + an − 1/(2H), we remak that lim xn = +∞. We
consider (un) the sequence of solution of (CMC) associated to (xn). (6)
becomes:

lim
∂un

∂x
(

1

2H
, 0) = +∞

Since
∂un

∂y
(1/(2H), 0) = 0 by (3), the limit normal to the sequence of graphs

over (1/(2H), 0) is (−1, 0, 0). Then C+(0) is a line of divergence for (un).
In considering a subsequence of (xn), we can assume that it is increasing;
this ends the proof.

3.3 End of Theorem 10 proof

Let (xn) be a sequence given by Lemma 11. Let Dn denote the following
intersection:

Dn = D
⋂
{

(x, y) ∈ Ω |x ≤ xn +

√
1

4H2
− y2

}

The boundary of Dn is composed of ∂D ∩ Dn and Γn which is the part
included in the circle-arc C+(xn) (see Figure 2). Let ω̃ denote ωumax

−ωumin
;

we then have:

0 =

∫

∂Dn

ω̃ =

∫

∂D∩Dn

ω̃ +

∫

Γn

ω̃

14



Dn

xn

1

H

Figure 2:

Thanks to Lemma 2 in [CK], the integral on ∂D ∩ Dn is negative; besides,
since (xn) is increasing, it decreases when n is increasing. Besides we have:

0 < −
∫

∂D∩Dn

ω̃ =

∫

Γn

ω̃ ≤ 2ℓ(Γn)

where ℓ(Γn) denote the length of Γn. Then ℓ(Γn) is far from 0 uniformaly
under-bounded. Because of Lemma 11 and since Γn ⊂ C+(xn), there exists
(αn) a sequence in [0, 1] such that lim αn = 1 and

∫

Γn

ωumin
≥ αnℓ(Γn)

Finally, for n ≥ n0 > 0, we have:

0 < −
∫

∂D∩Dn0

ω̃ ≤ −
∫

∂D∩Dn

ω̃ =

∫

Γn

ωumax
−
∫

Γn

ωumin

≤ ℓ(Γn) − αnℓ(Γn)

≤ (1 − αn)ℓ(Γn) −−−−−→
n→+∞

0

Then we have a contradiction and Theorem 10 is proved.

4 The uniqueness of López’s solutions

In this section, we prove the uniqueness of the solutions for the Dirichlet
problem studied by R. López in [Lo1]. More precisely, we have the following
theorem.

Theorem 12. Let f : R → R be a continuous function that satisfies a uni-
form ρt(H)-circle under condition. Let u and v be two solutions of (CMC)
on Ω = R × (−ht(H), ht(H)) with ϕf as boundary value. Then u = v.

15



The proof of this theorem is very similar to the one of Theorem 10. The
following of the section is devoted to it.

4.1 Preliminaries

By Proposition 6, there are two solutions umin and umax of (CMC) on Ω with
ϕf as boundary value such that, for every solution u of the same Dirichlet
problem, umin ≤ u ≤ umax. Then to prove the uniqueness, it is sufficient to
prove : umin = umax.

So let us assume that umin 6= umax; it is then known that umax − umin

is unbounded on Ω. By exchanging x with −x, we can assume that:

lim
x→+∞

max
Ix

(umax − umin) = +∞ (7)

where Ix = {x} × [−ht(H), ht(H)]. Let c denote maxI0 umax − umin. Then
there exists D a connected component of {umax ≥ umin+2c} that is included
in R+ × [−ht(H), ht(H)]. D is unbounded.

Equation (7) has consequences. First, the existence of two different
solutions implies:

Lemma 13. There exists x0 ∈ R+ such that f is monotonous on [x0,+∞).

Proof. Let us consider the set S of points where f satisfies a 1/(2H)-circle
upper condition. From a remark in Section 2.2, S is non-empty and is
unbounded. Let us recall that, for every point in S, we can deal with the
sign of the derivative of f . First, we prove that there exists x1 ∈ R

+ such
that, for every x ∈ S ∩ [x1,+∞), the sign of f ′(x) is constant. If it is not
true there exists two sequences (an) and (bn) in S such that:

• limn→+∞ an = +∞ and limn→+∞ bn = +∞

• a1 < b1 < a2 < b2 < · · · < an < bn < · · ·

• for every n, f ′(an) is positive and f ′(bn) is negative.

Because of Lemma 9, there exists a sequence (cn) in S such that an < cn < bn

and f ′(cn) = 0. Let u denote a solution of (CMC) on Ω with ϕf as boundary
value. By Proposition 8, maxIcn

u ≤ f(cn). Besides, since f ′(cn) = 0,
Lemma 4 implies that minIcn

u ≥ f(cn) − (ρt(H) − t).
So this implies that

max
Icn

(umax − umin) ≤ (ρt(H) − t)
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Since lim cn = +∞, this contradicts (7). Then there exists x1 ∈ R
+ such

that, for every x ∈ S ∩ [x1,+∞), the sign of f ′(x) is constant. We assume
in the following that these derivatives are positive.

If there is no x0 such that f increases on [x0,+∞), there is a sequence
an ∈ [x1,+∞) such that:

• (an) increases and lim an = +∞

• for every an, f(an) is a local maximum of f .

Since f satisfies a ρt(H)-circle under condition, we remark that f is dif-
ferentiable at every an. Let Γ((an − 1/(2H), s) denote the circle of center
(an − 1/(2H), s) and radius 1/(2H). For big s, Γ((an − 1/(2H), s) is above
the graph of f . Let s decrease until s0 where the first contact happens. We
get a point x where f satisfies a 1/(2H)-circle upper condition. By what we
proved above, f ′(x) > 0 then x belongs to [an−1/(2H), an]. Let bn ∈ [x, an]
denote a point where f(bn) = max[x,an] f . Since f ′(x) > 0, bn ∈ (x, an]
then f ′(bn) = 0. Using horizontal cylinders with Γ((an − 1/(2H), s) as ver-
tical section, we prove that maxIbn

u ≤ f(x) + 1/(2H) ≤ f(bn) + 1/(2H)
with u a solution of (CMC) on Ω with ϕf as boundary value. Besides since
f ′(bn) = 0, minIbn

u ≥ f(bn) − (ρt(H) − t). This implies that:

max
Ibn

(umax − umin) ≤ 1/(2H) + (ρt(H) − t)

As lim bn = +∞, the above inequation contradicts (7). The lemma is then
proved.

As in the above proof, we assume in the following of Theorem 12 proof
that f is increasing on some [x0,+∞). If f decreases the argument are
similar to the one we are going to give.

From Theorem 5 in [Ma2], we know that f(x+4/H)−f(x) can not stay
bounded when x goes to +∞. We even know that:

lim
x→+∞

f(x + 4/H) − f(x) = +∞ (8)

In this proof, this indentity plays the same role as (5) in the proof of
Theorem 10.
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4.2 The asymptotic behaviour of umin

Let (xn) be a real sequence with lim xn = +∞. Let us define un on Ω by
un(x, y) = umin(x+xn, y). For a ∈ R, let us denote by C+(a) the circle arc:





(
x −

(
a −

√
1

4H2
− ht(H)2

))2

+ y2 =
1

4H2




⋂

{x ≥ a}

This circle-arc has (a,−ht(H)) and (a,+ht(H)) as end-points. Besides

C+(a) contains the point (a + K, 0) with K =
1

2H
−
√

1

4H2
− ht(H)2.

We then have the following result.

Lemma 14. There exists (xn) a real increasing sequence with lim xn = +∞
such that (un) has C+(0) as line of divergence.

Proof. Let vn be defined on Ω by vn(x, y) = umin(x + n, y). The boundary
value of vn is ϕfn

with fn(x) = f(x + n). For n big enough, fn is increasing
on [1/H,+∞); so, using Proposition 7, vn(0, 0) ≤ fn(0) + 1/(2H). Now let
us apply Lemma 4, we get that vn(4/H +ρt(H), 0) ≥ fn(4/H)− (ρt(H)− t).
To get this under-bound, Lemma 4 is applied at 4/H; the graph of vn

is then above a nodoid Nt with horizontal axis in the vertical plane x =
4/H + A (0 ≤ A ≤ ρt(H) since f increases). Since Nt is below the graph
vn(4/H +A, 0) ≥ fn(4/H)− (ρt(H)− t) (see Figure 3). Now let us translate
Nt by the horizontal vector ex = (1, 0, 0); since fn is increasing, the nodoid
Nt + sex stays under the graph since it does not cross its boundary. Then
for s = ρt(H) − A we get vn(4/H + ρt(H), 0) ≥ fn(4/H) − (ρt(H) − t).

Then we have:

vn(4/H + ρt(H), 0) − vn(0, 0) ≥ fn(4/H) − fn(0) − 1

2H
− ρt(H) + t

By (8), lim vn(4/H + ρt(H), 0) − vn(0, 0) = +∞. Then the sequence

of derivatives
∂vn

∂x
can not stay upper-bounded on [0, 4/H + ρt(H)] × {0}.

Then there exists a sequence (an) in [0, 4/H + ρt(H)] such that:

lim
∂vn

∂x
(an, 0) = +∞ (9)

Let us recall that K denote
1

2H
−
√

1

4H2
− ht(H)2. Let xn be defined

by n+an −K, we remak that lim xn = +∞. We consider (un) the sequence
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ϕf

Nt

z

x

Figure 3:

of solution of (CMC) associated to (xn). (9) becomes:

lim
∂un

∂x
(K, 0) = +∞

Since
∂un

∂y
(K, 0) = 0 by (3), the limiting normal to the sequence of graphs

over (K, 0) is (−1, 0, 0). Then C+(0) is a line of divergence for (un). In
considering a subsequence of (xn), we can assume that it is increasing; this
ends the proof.

4.3 End of Theorem 12 proof

Let (xn) be the sequence given by Lemma 14. Let Dn denote the following
intersection:

Dn = D ∩
{

(x, y) ∈ Ω |x ≤ xn +

√
1

4H2
− y2 −

√
1

4H2
− ht(H)2

}

The boundary of Dn is composed of ∂D ∩ Dn and Γn which is the part
included in the circle-arc C+(xn). Let ω̃ denote ωumax

− ωumin
; we then
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have:

0 =

∫

∂Dn

ω̃ =

∫

∂D∩Dn

ω̃ +

∫

Γn

ω̃

On ∂D ∩ Dn, the integral is negative; besides, since (xn) is increasing, it
decreases when n is increasing (Lemma 2 in [CK]). Besides, we have:

0 < −
∫

∂D∩Dn

ω̃ =

∫

Γn

ω̃ ≤ 2ℓ(Γn)

where ℓ(Γn) denote the length of Γn. Then ℓ(Γn) is far from 0 uniformaly
under-bounded. Because of Lemma 14 and since Γn ⊂ C+(xn), there exists
(αn) a sequence in [0, 1] such that lim αn = 1 and

∫

Γn

ωumin
≥ αnℓ(Γn)

Finally, for n ≥ n0 > 0, we have:

0 < −
∫

∂D∩Dn0

ω̃ ≤ −
∫

∂D∩Dn

ω̃ =

∫

Γn

ωumax
−
∫

Γn

ωumin

≤ ℓ(Γn) − αnℓ(Γn)

≤ (1 − αn)ℓ(Γn) −−−−−→
n→+∞

0

Then we have a contradiction and Theorem 12 is proved.
Let us explain what are the differences if we assume that f is decreasing

and not increasing. In this case, we have to study the asymptotic behaviour
of umax. We prove that there exists a sequence (xn) with lim xn = +∞ such
that C−(0) is line of divergence of (un). Here un is defined by un(x, y) =
umax(x + xn, y) and C−(a) denotes the circle-arc:





(
x −

(
a +

√
1

4H2
− ht(H)2

))2

+ y2 =
1

4H2




⋂

{x ≤ a}

With this result, we can make the computations of the end of the proof.
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[Lo1] R. López, Constant mean curvature graphs in a strip of R
2, Pacific

J. Math. 206 (2002), 359–373.
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