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Introduction

I Supersymmetry, since its invention, has been
considered as a “discretionary” property of physical
systems.

I While it is assumed to be broken, how it can be,
indeed, broken is, still, an open issue.

I Indeed, how it can be realized, in physical systems,
is, also.

I Why should it be realized at all, is another question.
I “In order to address a “why” question, you have to

be in some framework, where you allow something
to be true.” (R. Feynman, “Magnets”, interview to
the BBC, ca. 1983)
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Introduction

I Is it possible to find such a framework for
supersymmetry ? Yes ! (Cf. Parisi & Sourlas (1982))
Supersymmetry isn’t an optional–but an
inevitable–property of all consistently closed
physical systems.
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Introduction

Key steps in understanding the description of a physical
system, in equilibrium with its fluctuations :
I The partition function of a physical system,

describes a system, in equilibrium with its
fluctuations.

I There exist, however, more than one partition
functions–how are they related ?

I How can supersymmetry be, effectively,
“hidden”–how can it, then, be revealed ? What are
the appropriate probes ?
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The system and the bath in equilibrium

One way to describe the dynamics of a physical system,
in equilibrium with its fluctuations, is by writing down
the map, between the “dynamical” degrees of freedom, φ
and the fluctuations, η (the Langevin equation at
equilibrium) :

η = −∂U(φ)

∂φ

This defines “additive” noise, that’s assumed to be
Gaussian :

〈η〉 = 0
〈ηη〉 = νδ

It’s, also, possible to describe “multiplicative” noise,
that’s relevant for curved target spaces (relevant, in
particular, for gauge theories).
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Many sorts of noise

ν =


kBT thermal
~ quantum
σ2 annealed disorder
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The three partition functions–that are four

I The partition function of the noise

Zη =

∫
[Dη] e−

η2
2ν = 1

I The partition function from the Langevin map

Zη = ZL =

∫
[Dφ] |U ′′(φ)| e−

U′(φ)2
2ν = 1

I The canonical partition function

Z =

∫
[Dφ] e−

U′(φ)2
2ν

?
= 1
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The fourth partition function

ZL can be written as follows

ZL =
∫
[Dφ] |U ′′(φ)| e−

U′(φ)2
2ν =∫

[Dφ] sign(U ′′(φ))U ′′(φ) e−
U′(φ)2

2ν =
〈sign(U ′′(φ))〉SUSY ZSUSY

where

ZSUSY ≡
∫
[Dφ]U ′′(φ) e−

U′(φ)2
2ν =∫

[Dφ][Dψ][Dχ] e−
U′(φ)2

2ν +ψU′′(φ)χ

(Choice of units : ν ≡ 1 henceforth).
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Emergent SUSY : the case of the
one–dimenensional worldvolume

A concrete example : one–dimensional worldvolume,
when

η(τ) =
dφ

dτ
+
∂W

∂φ
≡ ∂U

∂φ

(This relation between η and φ is known as the “Nicolai
map”. It’s not useful as a differential equation–rather, it
describes a change of variables in the path integral !)
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Emergent SUSY : the case of the
one–dimenensional worldvolume

Then

S [φ, ψ, χ] =∫
dτ
{

1
2 φ̇

2 + 1
2W

′(φ)2−
1
2

(
ψχ̇− ψ̇χ

)
−W ′′(φ)1

2 (ψχ− χψ)
}
=∫

dτ

{
1
2
φ̇2 − F 2

2
+ FW ′(φ)−

1
2

(
ψχ̇− ψ̇χ

)
− 1

2W
′′(φ) [ψ, χ]

}
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Emergent SUSY

The action is invariant (up to total derivatives) under
the transformations

Q1φ = −χ Q2φ = ψ

Q1χ = 0 Q2χ = φ̇− F

Q1ψ = −φ̇− F Q2ψ = 0
Q1F = χ̇ Q2F = ψ̇

that close on the translations :

{Q1,Q2} = −2
d

dτ
⇔ [ζ1Q1, ζ2Q2] = 2ζ1ζ2

d

dτ
= −ζαεαβζβ

d

dτ
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Emergent SUSY

This example can be generalized to the case

∂U

∂φ
≡ s

∂φ

∂u
+
∂W

∂φ

then the anticommutator of two such transformations
does close on the generators of the translations (provided
the s either commute, or generate a Clifford algebra).
The former case describes worldvolume supersymmetry ;
the latter allows for target space supersymmetry. Cf.
arXiv :1712.07045 for the N = 2,D = 2 WZ model.
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Some subtleties
We remark that

ZL =

∫
[Dφ] |U ′′(φ)| e−

U′(φ)2
2

is a manifestly non–negative quantity and, insofar as it
can be well–defined, is equal to 1.
If U ′′(φ) is of constant sign, then 〈sign(U ′′(φ))〉SUSY = 1
and ZSUSY = 1.
If U ′′(φ) isn’t of constant sign, then ZSUSY isn’t
well–defined, so neither is 〈sign(U ′′(φ))〉SUSY.
However, the product of 〈sign(U ′′(φ))〉SUSYZSUSY = ZL,
which can provide a consistent definition for it.
Can we check this, while avoiding having to deal with
each factor separately ? And what about the canonical
partition function ? ? ?
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A new look at the canonical partition
function

The canonical partition function

Z =

∫
[Dφ] e−

U′(φ)2
2

describes a physical system, in equilibrium with its
fluctuations. Therefore, one would expect that it be
equal to the other three partition functions, namely
equal to 1 ; and that it be invariant under
supersymmetry transformations.
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A new look at the canonical partition
function

A “slight” problem : it only takes into account the φ and
doesn’t seem to know anything about the ψ and the χ.
Nevertheless, since (δζφ)

n = 0, for all n > 1 and δζφ is a
constant shift in the φ, it’s straightforward to show that,
even though U ′(φ)2/2 = S [φ], isn’t invariant under
φ→ φ+ δζφ, Z is–provided that U ′′(φ) is of constant
sign.
This seems too good to be true ! What’s the catch ?
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The catch–and when it’s not
The catch is that, since

η = U ′(φ)

U ′(φ) is a free field.
Therefore, if ZL,ZSUSY and Z describe the same physics,
U ′(φ) must have the same correlation functions,
whatever the partition function used. The easiest
partition function to sample is Z .
What this means is that it is useful to check, whether
fluctuations are able to “reproduce” the presence of
|U ′′(φ)| in the path integral for Z . This isn’t at all trivial
to show-even if the sign of U ′′(φ) is fixed, in the
infinite–dimensional case, relevant for quantum
mechanics and quantum field theory. It is possible to
provide numerical evidence for subsets of the identities
that U ′(φ) should satisfy, if it’s a Gaussian field.
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Beyond the classical partition function

We wish to check that the correlation functions of
η = U ′(φ), sampled according to Z , describe a Gaussian
field, with ultralocal 2–point function. This isn’t trivial,
since Z doesn’t include |detU ′′|, so what’s at stake is,
whether the fluctuations, described by Z , can generate
|detU ′′|–or not.
However, Z , that contains only the action of the
commuting field(s), φ, can be sampled perfectly well.
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The lattice approach

S =
∫

dτ

{
1
2 φ̇

2 + 1
2

(
∂W
∂φ

)2
}
→∑N−1

n=0

{
−φn

φn+1−2φn+φn−1
2a + a

2

(
∂W
∂φn

)2
}

Example : The polynomial superpotential

W = cφ+
m2φ2

2
+
λ

K !
φK ⇐ ∂W

∂φ
= c+m2φ+

λ

(K − 1)!
φK−1

Define the lattice parameters

ϕn ≡ a−1/2φn, m2
latt ≡ m2a, λlatt ≡ λa

K
2 , clatt ≡ ca1/2
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Noise on the lattice

It is possible to write the action, on the lattice, as a sum
of perfect squares, that define the lattice version of the
noise field :

−ϕnϕn+1 + ϕ2
n +

1
2

(
clatt +m2

lattϕn +
λlatt

(K − 1)!
ϕK−1
n

)2

=

1
2

(
(ϕn+1 − ϕn)

2 +

(
clatt +m2

lattϕn +
λlatt

(K − 1)!
ϕK−1
n

)2
)

=

1
2

(
ϕn+1 − ϕn + clatt +m2

lattϕn +
λlatt

(K − 1)!
ϕK−1
n

)2

− (ϕn+1 − ϕn)W
′(ϕn; clatt,m

2
latt, λlatt)
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Some more tricks

g ≡ λ
|m|K = λlatt

|mlatt|K
clatt
|mlatt|

= c
|m| ≡ C

s ≡ |m2|
λ

= a
2−K

2
|mlatt|2
λlatt

ϕn ≡
(
|mlatt|2
λlatt

)α
ϕn
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The lattice action

Thus

Slatt =
1

g2/(K−2)|mlatt|2
∑N−1

n=0 [−ϕnϕn+1 +ϕ2
n+

|mlatt|4
2

(
clattg

1
K−2 + sign(m2

latt)ϕn +
ϕK−1

n

(K−1)!

)2
]

This is the lattice action, that expresses the physics most
clearly.
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Target space supersymmetry in two
dimensions

S =

∫
d2x

{
1
2
(∂AφJ)

2 − F 2
I

2
+ FI

∂W

∂φI
+

σIJ
A ∂AφJ

∂W
∂φI
− ψσA∂Aχ− ψW ′′(φ)χ

}
For the case of the cubic superpotential,

∂W

∂φ1
= g

(
φ2

1 − φ2
2

)
∂W

∂φ2
= 2gφ1φ2

the crossterm is a total derivative. Using the tricks
presented above, we can deduce the lattice action and
the noise field on the lattice.
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Numerical results : One–dimensional
worlvolume
For the case of a one–dimensional worldvolume (i.e.
Euclidian quantum mechanics, if ν = ~) it’s possible to
find
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Figure – The connected 2–point functions for the noise field,
〈η|n−n′|η0〉 − 〈η〉2 and of the scalar field, 〈Φ|n−n′|Φ0〉 − 〈Φ〉2,
for N = 128, g = 0.9.The value of m2

latt = 0.0001.
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Numerical results : Two–dimensional
worlvolume ; Target space SUSY
For the case of a two–dimensional worldvolume (i.e.
Euclidian WZ model, if ν = ~) it’s possible to find

Figure – Typical results for the cubic superpotential :
〈ηInηJn+d〉 for I = J (left panel) and I 6= J (right panel) and
d = 0, 2, 4, 6, 8, on the 17× 17 square lattice. g2

latt = 0.7.
The diagonal noise term is a δ−function, while the
off-diagonal noise term vanishes, to numerical precision.
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Conclusions and outlook

I “Supersymmetric quantum mechanics” is a
repetition : Quantum mechanics, just like any field
theory, of one–dimensional worldvolume, in
equilibrium with its fluctuations, is, anyway,
supersymmetric.

I Quantum field theories, with two–dimensional
worldvolume, in equilibrium with their fluctuations,
also, are supersymmetric, since continuous
symmetries can’t be broken in (less than) two
dimensions.

I In both cases, the canonical partition function can
generate |detU ′′(φ)| ; therefore, it does describe all
possible fluctuations.
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Conclusions and outlook
I What is remarkable is that, even when

supersymmetry is “spontaneously broken” in these
cases, only the 1–point function of U ′(φ) is
modified ; U ′(φ) remains a Gaussian field, with
ultra–local 2–point function.

I There do exist cases, when the canonical partition
function does not describe all possible fluctuations,
in the sense that it can’t generate |detU ′′(φ)|.
That’s how it’s possible to “hide” supersymmetry.
This can be shown in zero–dimensional models,
where the “anomalies” of the stochastic identities
can be explicitly computed and the distribution of
the various fields can be determined. It may, also,
occur, in theories with worldvolume that’s
three–dimensional, or higher (or whose target space
is three–dimensional or higher).
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Conclusions and outlook
I In these cases new, boundary, degrees of freedom

become relevant for consistently closing the system.
Identifying them in three dimensions or higher is
non–trivial ; in particulat since a term that isn’t,
manifestly, a boundary term, has to be checked that
it doesn’t, in fact, contribute. But now one can
start imagining how to frame these questions–so it’s
possible to set up the calculations, that will provide
the answers.

I Gauge theories describe, in fact, target spaces that
aren’t flat ; therefore the noise, that’s relevant, isn’t
additive, but multiplicative. Attempts to describe
the degrees of freedom, that “close” the system in
such cases, can be tested in magnetic systems,
where the Landau–Lifshitz–Gilbert equation is
relevant.
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Conclusions and outlook

“Now this is not the end. It is not even the beginning of
the end. But it is, perhaps, the end of the beginning.”
(W. Churchill)
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