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Introduction–Motivations

I Construct a natural lattice formulation for the
AdS/CFT correspondence

I Study the dynamics of probes of bulk and boundary
I Focus on some salient properties of the quantum

dynamics : scrambling and thermalization.
I These properties are of interest beyond the subject

of black holes as such and can be probed in many
other physical systems.

Work done in collaboration with Minos Axenides and
Emmanuel Floratos
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A lattice approach to holographic systems
This is based on arXiv : 1306.5670 [hep-th] (cf. arXiv :
1504.00483 [hep-th] for a summary) The idea is to set
up a lattice on the phase space of the system of
interest–but in a way that preserves the isometries of the
space and to use group elements to represent the
dynamics. The scaling limit is a much more delicate issue
than for lattices on a fixed spacetime geometry and
topology.
In previous work we studied compact phase spaces,
namely tori ; now we have extended the approach to
non–compact phase spaces. We’ve focused on the
single–sheet hyperboloid, that describes the AdS2
manifold, because it describes the radial and temporal
part of the near horizon geometry of extremal black
holes, that factorizes from the charge manifold.
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A modular lattice : the points

x20 + x21 − x22 ≡ 1modN (1)

Figure – The rational points on AdS2[N]–side view and top
view, for N = 47.
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A modular lattice : the links
The way for going from one point to another is by the
Weyl map–mod N :

Xn+1 = AXnA−1 = AnX0A−n modN

with A ∈ SL(2,ZN)/SO(1, 1,ZN).
The elementary transformations are translations along
the two light cone generators, L and R

L =

(
1 0
1 1

)
R =

(
1 −1
0 1

)
These, also, generate the braid group. Their products
describe more complicated motion. The product LR−1 is
the Arnol’d cat map. And any A of interest can be
written as a product of the L’s and the R’s and their
inverses.
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The Arnol’d cat map

A =

(
1 1
1 2

)
It generates the Fibonacci numbers ! And mod N it has a
period, N

AT (N) ≡ I modN
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Fast quantum maps on the torus and the
hyperboloid
This is based on math-ph/9805012 and arXiv :
1608.07845 [hep-th]
The matrix A ∈ SL(2,ZN)/SO(1, 1,ZN) is the classical
evolution operator, for point–like probes of the AdS2
geometry.
It is possible to construct explicitly and effectively the
corresponding quantum evolution operator, U(A) for
wavepackets :

A =

(
a b
c d

)
mod p ⇔

U(A)k,l =
(−2c |p)
√
p

×
{

1
−i

}
ω
− ak2−2kl+dl2

2c
p

The fundamental property of U(A) is

U(AB) = U(A)U(B)⇒ U(Ak) = [U(A)]k
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Random products of matrices

When the classical evolution operator, A depends
explicitly on time, then An, in fact, means

n∏
k=0

Ak

The quantum evolution operator, still factorizes

U

(
n∏

k=0

Ak

)
=

n∏
k=1

U(Ak)

but if A is a random matrix, the average over the product
can lead to subtle effects, that have been extensively
studied in the context of deterministic chaotic systems.
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When N = pr11 · · · p
rk
k

When the number of points isn’t a prime, the
representation factorizes over the prime factors, since the
group factorizes, also :

SL(2,ZN) = SL(2,Zp
r1
1
)× · · · × SL(2,Zp

rk
k
)

A prime example of a tensor network, since which of the
N states go into which grouping is not globally defined
and does lead to entanglement.
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Fast scrambling
What’s fast scrambling ?

I The scrambling time, tscrambling : The time
required for a wavepacket to attain uniform
spreading.

I This time is bounded from above by (half) the
period of the map :

tscrambling = tmixing ≤
T (N)

2

We find, numerically, that this bound is saturated.
I If N = f2k , then T (N) = 2k (Falk and Dyson).

Short periods mean non–trivial conservation laws.
This highlights the sensitive dependence of the
dynamics on the arithmetic properties of the
discretization–that, for the dynamics of probes of
black holes, can be of physical import.
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The period of the Arnol’d cat map

Figure – The period of the Arnol’d cat map as a function of
the order, k , of the prime pk , for the first 400 primes.
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The random walk along the space–like
direction

Figure – x
(n)
2 mod 683 as a function of n. The period is

found to be equal to 684 = N + 1.
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The quantum cat on extremal black hole
horizons

This is based on arXiv : 1608.07845 [hep-th]

Figure – The bin values for the squared amplitude and of the
phases of the ground state, for p = 461.
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Evolution of a Gaussian wavepacket of
short period (T (N) = 23)

Figure – Evolution of a Gaussian wavepacket, for
t = 1, 2, 3, 4. For t = 3 we remark the appearence of
oscillations, precursors to chaotic behavior. For 11 > t ≥ 4,
we observe complete delocalization, but remark that patterns
still persist.
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Conclusions–Perspectives
I We have constructed consistent lattice formulations

for the dynamics of the single-particle probes of
extremal black hole spacetimes and provided a
concrete example of the AdS2/CFT1

correspondence. The corresponding lattice models
are generalized Eguchi–Kawai models.

I Tensor networks appear naturally, in the context of
the dynamics of point–like probes, of extremal black
hole spacetimes.

I We have shown that the dynamics realizes fast
scrambling, consistent with deterministic chaos.

I We have found evidence for the validity of the
eigenstate thermalization hypothesis, by studying
the quantum cat map, that describes the
deterministic, but random, way a wavepacket
spreads in the AdS2 bulk.
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Conclusions–Perspectives

I When the number of degrees of freedom is a an odd
integer, N = pr11 p

r2
2 · · · p

rk
k , the evolution operator

factorizes over the prime factors ; entanglement
appears, when focusing on how a pr size block
factorizes into separate factors ; or, when trying into
sum over a block, whose size isn’t equal to any
particular prime power factor.
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