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Introduction

I Trying to understand the phase structure of gauge
theories, beyond perturbation theory–and for fields
that take values in the group, rather than in the
algebra. Therefore it’s natural to work with a lattice
regularization, that keeps gauge invariance manifest.
Relevant for “exotic” phases of matter, that have
attracted recent attention, in particular where
transport is realized over boundaries, not through
the bulk.

I Introducing anisotropic couplings in the continuum
sounds strange ; on the lattice it’s more natural.
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Introduction

I Anisotropic couplings for gauge theories haven’t
been studied as much. The problems seem to fall
into the fault lines between subdisciplines–good to
raise awareness !

I Analytic approximations can shed considerable light
into what issues are the best suited for extensive
numerical work–that can become non–trivial, when
working in more than four dimensions. Or when
insertions of non–trivial quantities (e.g. Wilson
lines, surface operators) are required.
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Lattice gauge theories : Review
Let us consider the Wilson action of a lattice gauge
theory

S =
∑

n

∑
µ<ν βµν (1− ReUµν(n))

Z =
∫

[
∏

dUµ(n)] e
S [U]

I If βµν = β for all plaquettes we have hypercubic
invariance→rotation invariance→Lorentz invariance.

I If βµν is different, depending on the orientation of
the plaquettes, can we have interesting scaling
limits ?

I In particular, what about scaling limits, in the
presence of anisotropy, when the size of all the
dimensions can become infinite ? Can the infinite
volume limit depend on the ratio between the
couplings ?
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Lattice gauge theories : Review

I In all cases gauge symmetry is manifest ; Poincaré
symmetry is broken. Not a problem in more than
four dimensions ; nor in less than four.

I In particular, it’s interesting to probe ways, in which
it can become “emergent” at some scale and
become “hidden” in another.
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From ansiotropic couplings to “extra”
dimensions

I We shall consider the case of d‖ + d⊥ dimensions ;
βµν is the identity matrix, with the first d‖ entries
equal to β and the rest equal to β′. So there are d⊥
“extra dimensions”. More general matrices describe
“twists”, through fluxes.
These can describe topological defects in elastic
media.
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Lattice gauge theories : The constraints

Fundamental reference : J.-M. Drouffe and J.-B. Zuber,
Phys. Repts. 102 (1983) 1.
The link variables are constrained–they parametrize the
group manifold :
I For U(1) they satisfy [Uµ(n)

R]2 + [Uµ(n)
I]2 = 1

(the unit circle S1)
I For SU(2) they satisfy

[Uµ(n)
0]2 + [Uµ(n)

1]2 + [Uµ(n)
2]2 + [Uµ(n)

3]2 = 1
(the unit 3-sphere S3)

N.B. By “deforming” these constraints, it’s possible to
introduce “defects” in potentially interesting ways (viz.
“squashed” 3-sphere as target space ; that was used, in
fact to describe negative curvature defects, disclinations,
in metallic glasses, using the Hopf fibration !).
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Solving the constraints
For the case of the U(1) gauge group

Z =
∫
[dUµ(n)] e

S[U]×
dV R

l dV I
l δ(V

R
l − Uµ(n)

R) δ(V I
l − Uµ(n)

I) =∫
[dUµ(n)] e

S[VR
l ,V

I
l ]×

dV R
l dV I

l dα
R
l dαI

l e
i[αR

l (−VR
l +Uµ(n)R)+αI

l (−V
I
l +Uµ(n)I)] =∫

dV R
l dV I

l dα
R
l dαI

l e
S[VR

l ,V
I
l ]−i[αR

l VR
l +αI

lV
I
l ]×∫

dUµ(n)
R dUµ(n)

I e i[αR
l Uµ(n)R+αI

lUµ(n)I]

The last line defines the “1–link integral”,
ew(αR

l ,α
I
l ) = ew([αR

l ]2+[αI
l ]
2), over the gauge group. It’s

useful to perform a “Wick rotation” and integrate the αl

along the imaginary axis.
This formulation highlights the “dual” variables, αl ; that
their action factorizes over the links means that these
are “confined”. Can be identified as the monopoles.
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Analytic calculations : The mean field
approximation
I Assume factorization over the links of the Wilson

action.
I Translationally invariant factorization :

V R
l = V , αR

l = α and V I
l = Ṽ , αI

l = α̃ across the
links.

I Anisotropic factorization : V R
l = V , αR

l = α,
V I
l = Ṽ , αI

l = α̃, for µ = 1, 2, . . . , d‖ and
V R
l = V ′, αR

l = α′, with V I
l = Ṽ ′, αI

l = α̃′ for
µ = d‖ + 1, . . . , d‖ + d⊥.

I We can check that, in both cases, the action
depends only on the U(1) invariant combinations
V 2 + Ṽ 2, V ′2 + Ṽ ′2, α2 + α̃2, α′2 + α̃′2 (the scalar
products between the V and α are invariant). We
can take Ṽ = 0 = α̃ and Ṽ ′ = 0 = α̃′.
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The action

If we consider the case of only two couplings, β and β′,
we have

S = β
d‖(d‖−1)

2 (V 4 − 1) + β′ d⊥(d⊥−1)
2 (V ′4 − 1)+

β′d‖d⊥ (V
2V ′2 − 1) + d‖(w(α)− Vα) + d⊥(w(α′)− α′V ′)

The equations of motion :

V = dw(α)/dα V ′ = dw(α′)/dα′

α = 2β(d‖ − 1)V 3 + 2β′d⊥VV ′2

α′ = 2β′(d⊥ − 1)V ′3 + 2β′d‖V 2V ′

They have solutions (V , α) = (0, 0) and
(V ′, α′) = (0, 0) ; (V , α) 6= (0, 0) and (V ′, α′) 6= (0, 0) ;
and (V , α) 6= (0, 0) but (V ′, α′) = (0, 0).
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Clearing up misunderstandings (1) : What
about Elitzur’s theorem ?
All these solutions are consistent with Elitzur’s
theorem. The reason is, that Elitzur’s theorem assumes
that it is possible to perform local transformations. In
the mean field approximation, only global
transformations are possible. It isn’t the local symmetry
that’s broken-which is impossible ; it’s the global
symmetry. But it’s “spontaneously” broken, which means
it’s “hidden”. So the Ward identities for the moments
〈VmV ′n〉 and so on, that describe the invariance under
SO(2) ' U(1) transformations still hold.
The solution with (V , α) 6= (0, 0) and (V ′, α′) 6= (0, 0)
simply describes the Coulomb phase, since a Wilson loop
of perimeter L is equal to V L or V L‖V ′L⊥ , with
L‖ + L⊥ = L.
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A new phase : The layered phase

The solution with (V , α) 6= (0, 0) but (V ′, α′) = (0, 0)
describes the “layered phase”, where the layers (or
branes !) are defined by the property that the Wilson
loops display perimeter law within the layer and area law
perpendicular to the layer.
Therefore, while the extent of the lattice along all
directions is, in fact, infinite, the theory gets
“dimensionally reduced” along any layer.
However the couplings β and β′ are related in a very
special way–that’s how the “extra dimensions” can be
probed.
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The phase diagram
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Figure – The phase diagram of the five–dimensional U(1)
theory in the β − β′ plane.
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Clearing up misunderstandings (2) : The
Coulomb phase of non-abelian gauge
theories
The exact expression for the action, in terms of the V
and α variables, that are, now, matrices, reads

S = SWilson[V ]− Tr[αT · V + V T · α] + w [Tr[αTα]

It is invariant under local SU(2) transformations, that
act as V → uVu† and α→ uαu†, with u ∈ SU(2). The
“mixed” term breaks the SU(2)× SU(2) group to SU(2).
In the mean field approximation, it is necessary and
sufficient to work within the Cartan subalgebra of SU(2),
in order to generate all extrema of the action. The
Cartan subalgebra of SU(2) is U(1). That’s why, in the
mean field approximation, SU(2) lattice gauge theory
has the same qualitative properties as the U(1) lattice
gauge theory. In particular, it has a Coulomb phase.
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The equivalence between U(1) and SU(2)
in the mean field approximation
More precisely : If V ≡ V0I2×2 + V3σ3 and
α = α0I2×2 + α3σ3, then

SSU(2)[V , α] = SWilson[V
2
0 + V 2

3 ]− (α0V0 + α3V3)+
wSU(2)(α

2
0 + α2

3)

which is invariant under SO(2) transformations that act
in the same way on (V0,V3) and (α0, α3). So, every
solution to the equations of motion of this action can be
mapped to a solution to the equations of motion of the
U(1) theory and vice versa. Only the value of the
couplings, β (and β′) will change. So the discovery of a
Coulomb phase isn’t surprising–it’s mandatory. It’s just
the Coulomb phase of the Cartan subalgebra. Only the
presence of matter, charged under the gauge group, that
isn’t confined, can probe beyond the Cartan.
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Non-abelian gauge theories, beyond the
mean–field approximation : Can they have
a layered phase ?

The first answer seems to be, No, since the layered
phase was defined by plaquettes having a perimeter law
within the layer and area law outside it–that’s how the
layer is defined, in the first place ! The way out of this
difficulty is by noticing that
Yes–If they have vacua with non–zero flux, that can
confine chirality and can lead to current flow, only along
the boundaries !
This is an example of flux compactification.
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The order of the transitions

In the mean field approximation, the transition between
the confining phase and the Coulomb phase is first order.
The reason is that the minimum of the action is at the
origin and the absence of a quadratic term implies that
this minimum can never become a maximum ; the new
minimum is degenerate with the old.
In the presence of anisotropy this is, no longer, true.
There does exist a quadratic contribution, that can
destabilize the minimum at the origin : It’s due to the
term

β′d‖d⊥(V
2V ′2 − 1)

that can compete with the term d⊥(w(α′)− α′V ′).
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The order of the transitions

So let us expand the action about the point
(α 6= 0, α′ = 0) in powers of α′ only. We find

S [V ,V ′, α, α′] ≈ S [V , 0, α, 0]+
α′2w ′′(0)d⊥

(
1
2 − β

′d‖V
2w ′′(0)

)
which shows how the (local) maximum becomes a
(local) minimum along a line in the (β, β′) plane, since
V = dw(α)/dα and α = α(β).
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Fermions
There are two ways to couple fermions to the actions
just constructed and describe chiral fermions–even on
the lattice :
I Introduce domain walls along the “extra”

dimensions, that modify the mass term to

ψM(x⊥)ψ

so that M(x⊥) changes sign as a function of x⊥.
Then only one chirality can define normalizable
states along the manifolds where M(x⊥) vanishes.
The Nielsen–Ninomiya theorem is evaded by the
fact that the two chiralities are separated along the
“extra” dimensions. In the presence of dynamical
gauge fields, in the layered phase, the chiral
zeromode(s) are eliminated from the spectrum.
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Fermions

I By introducing fluxes in the bulk : VUV †U† = e iΦ.
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The phase diagram in the presence of
fermions
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Nothing goes through the bulk
Trying to cross the bulk at β = 1.2. In the layered phase
nothing crosses ; in the bulk Coulomb phase something
does. An example of anomaly flow.
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Scalars

Typical phase diagrams in the presence of scalars (5D
Abelian Higgs model) :



Introduction

Anisotropic
lattice gauge
theories :
symmetries and
phase diagram

Non–abelian
gauge groups :
the case of rank
1

The order of the
transitions

Introducing
matter

Conclusions and
outlook

Conclusions and outlook

I Anisotropic couplings for lattice gauge theories
describe spatially non-uniform phases.

I The anisotropy implies the existence of a new
phase–where strongly coupled theories can be
defined.

I The layered phase is the natural setting for
describing topological insulators : By construction it
prohibits transport through the bulk and allows only
chiral transport through the boundary. Only
topological information flows through the bulk, if
the anomalies aren’t cancelled on the boundaries.
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Conclusions and outlook
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Conclusions and outlook
I The transitions from the layered phase to the bulk

phases are continuous, so along the transition lines
live conformal theories. What their detailed
properties are remains to be elucidated.

I It is remarkable that the scaling properties of these
theories remain quite obscure–so it isn’t known,
how the anisotropy of the couplings becomes visible
in the scaling limit. One might think of dilaton
coupling, since that, typically, couples in the “right
way”, viz. eΦF 2 ↔ (1/g 2)F 2. However this seems
too na¨ıve, and more complicated–and
interesting !–couplings of the gauge field to
fluctuations of the medium may be relevant for
describing the anisotropy.
The conceptual issues remain to be worked out.
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Conclusions and outlook
I While the layers are sharp in the mean field

approximation, corrections will make the string
tension along the transition lines between the
layered and the bulk phases finite. This would imply
that the layers could acquire a finite thickness,
leading to non–local effects on the layer.
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Conclusions and outlook

I Plaquette terms that have links along extra
dimensions describe mixing between gauge fields on
the brane and “dark photons”.

I These considerations imply that fermions can be
described by the Chern-Simons term(s) ; or, vice
versa that the effects of the Chern–Simons terms
can be described by the fermions.

I Lattice gauge theories can describe, quantitatively,
transport of topological infomation about gauge
fields and fermions. Adapting the Monte Carlo code
to compute the relevant correlators is a natural next
step, in order to obtain the corresponding transport
coefficients (cf. work by M. A. Zubkov).
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Conclusions and outlook

A host of interesting problems, that are relevant for new
issues in condensed matter physics as well as for high
energy physics and that can be addressed with present
day technology and concepts–it’s just necessary to
realize that they’re there !
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Conclusions and outlook

“Now this is not the end. It is not even the beginning of
the end. But it is, perhaps, the end of the beginning.”
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