Return Probabilities for the Reflected Random Walk on \mathbb{N}_0

ERRATUM

by Rim Essifi & Marc Peigné.

In the above mentionned paper, we fixed a constant K > 1 and consider the set $\mathcal{K}(K)$ of functions $K: \mathbb{Z} \to \mathbb{R}^+$ satisfying the following conditions

$$\forall x \in \mathbb{N}_0 \quad K(x) \ge 1, \quad \mathcal{R}K(x) \le 1 \quad \text{and} \quad K(x) \sim \mathbf{K}^x.$$
 (1)

Unfortunately, the two first conditions readily imply K=1 since the operator \mathcal{R} is markovian, so that the 3 above conditions cannot be satisfied simultaneously.

In fact, we will simply consider the function $K: s \mapsto \mathbf{K}^x$. The only one reason of the condition $\mathcal{R}K(x) \leq 1$ appeared in the proof of Fact 4.4.1, where the peripherical spectrum of the operators \mathcal{R}_s for |s|=1 and $s\neq 1$ is controlled. With this new choice of function K, one gets the

Fact 4.4.1- For |s| = 1 and $s \neq 1$ one gets $||\mathcal{R}_s||_K < 1$; in particular, the spectral radius of \mathcal{R}_s on $(\mathbb{C}_0^{\mathbb{N}}, \|\cdot\|_K)$ is < 1.

Proof. We could adapt the proof proposed in the paper and show that $\|\mathcal{R}_s^{2n}\|_K \leq C\rho_s^n$ for some $\rho_s < 1$ when $s \neq 1$. We propose here another simpler argument.

Recall that \mathcal{R}_s acts from $(\mathbb{C}^N, |\cdot|_K)$ into $(\mathbb{C}^N, |\cdot|_{\infty})$ and that the identity map is compact from $(\mathbb{C}^N, |\cdot|_{\infty})$ into $(\mathbb{C}^N, |\cdot|_K)$. Consequently, the operator \mathcal{R}_K is compact on $(\mathbb{C}^N, |\cdot|_K)$ with spectral radius ≤ 1 since it has bounded powers.

Let us fix $s \in \mathbb{C} \setminus \{1\}$ with modulus 1 and assume that \mathcal{R}_s has spectral radius 1 on $(\mathbb{C}^N, |\cdot|_K)$; since it is compact, there exists a sequence $\mathbf{a} = (a_x)_{x \in \mathbb{Z}} \neq 0$ and $\theta \in \mathbb{R}$ such that $\mathcal{R}_s \mathbf{a} = e^{i\theta} \mathbf{a}$, i.e.

$$\forall x \in \mathbb{Z} \qquad \sum_{y \in \mathbb{Z}} \mathcal{R}_s(x, y) a_y = e^{i\theta} a_x. \tag{2}$$

It follows that $|a_y|=|a_0|\neq 0$ for any $y\in\mathbb{Z}$ since $\sum_{y\in\mathbb{Z}}|\mathcal{R}_s(x,y)|\leq \sum_{y\in\mathbb{Z}}\mathcal{R}(x,y)=1$; without loss of generality, we may assume $|a_y|=1$, i.e. $a_y=e^{i\alpha_y}$ for some $\alpha_y\in\mathbb{R}$. The equality (2) may be thus

rewritten

$$\forall x \in \mathbb{Z}$$
 $\sum_{y \in \mathbb{Z}} \mathcal{R}_s(x, y) e^{i\alpha_y} = e^{i\theta} e^{i\alpha_x}.$

By convexity, using again the inequality $\sum_{y\in\mathbb{Z}} |\mathcal{R}_s(x,y)| \leq \sum_{y\in\mathbb{Z}} \mathcal{R}(x,y) = 1$, one readily gets $e^{i\alpha_y} = e^{i\theta}e^{i\alpha_x}$ for any $x,y\in\mathbb{Z}$; consequently $e^{i\theta}=1$, the sequence **a** is constant and $R_s(x,y)=\mathcal{R}(x,y)$

for any $x, y \in \mathbb{Z}$, which implies in particular s = 1. Contradiction.

Acknowledgments- We thank here S. Gouezel who pointed out to us the contradiction of the 3 conditions (1) and the fact that the \mathcal{R}_s are compact on $(\mathbb{C}, |\cdot|_K)$.