
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 0 (2020), article no. 0, 1–22.
ISSN: 1083-6489 https://doi.org/10.1214/YY-TN

Exotic local limit theorems at the phase transition in
free products

Matthieu Dussaule* Marc Peigné† Samuel Tapie‡

Abstract

We construct random walks on free products of the form Z3 ∗ Zd, with d = 5 or 6

which are divergent and not spectrally positive recurrent. We then derive a local
limit theorem for these random walks, proving that µ∗n(e) ∼ CR−nn−5/3 if d = 5 and
µ∗n(e) ∼ CR−nn−3/2 log(n)−1/2 if d = 6, where µ∗n is the nth convolution power of µ
and R is the inverse of the spectral radius of µ. This disproves a result of Candellero
and Gilch [7] and a result of the authors of this paper that was stated in a first version
of [12]. This also shows that the classification of local limit theorems on free products
of the form Zd1 ∗Zd2 or more generally on relatively hyperbolic groups with respect
to virtually abelian subgroups is incomplete.
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1 Introduction

Let Γ be a finitely generated group and let µ be a probability measure on Γ. In the
sequel, we will always assume that µ is finitely supported and symmetric. Denote by µ∗n

the nth convolution power of µ, defined by

µ∗n(x) =
∑

y1,...,yn−1∈Γ

µ(y1)µ(y
−1
1 y2)...µ(y

−1
n−1x).

Let us consider the random walk (Xn)n driven by µ, or for short, the µ-random walk,
starting at the identity element of Γ which we write e. It is defined by Xn = g1...gn where
gk are independent random variables whose distribution is given by µ. Then, µ∗n is the
nth step distribution of the random walk, so for all x ∈ Γ, µ∗n(x) is the probability that
Xn = x.

*Cogitamus E-mail: matthieu.dussaule@hotmail.fr
†Université de Tours. E-mail: peigne@lmpt.univ-tours.fr
‡Université de Lorraine. E-mail: samuel.tapie@univ-lorraine.fr

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/YY-TN
https://ams.org/mathscinet/msc/msc2020.html
mailto:matthieu.dussaule@hotmail.fr
mailto:peigne@lmpt.univ-tours.fr
mailto:samuel.tapie@univ-lorraine.fr


Exotic LLT at the phase transition in free products

We will also always assume that the random walk is admissible i.e. for every x ∈ Γ,
there exists n such that µ∗n(x) is positive. In other words, every element of the group
can be visited with positive probability, i.e. the support of µ generates Γ as a semi-group
(hence as a group, since µ is symmetric). Such random walks are also called irreducible
in literature. We also say that the measure µ is admissible.

We denote by ρ the spectral radius of the random walk defined by

ρ = lim supµ∗n(x)1/n.

The spectral radius ρ belongs to [0, 1] and is independent of x, provided that µ is admissi-
ble, see [25, (1.8)].

The local limit problem consists in finding the asymptotic behavior of µ∗n(x) as n

goes to infinity. We assume for simplicity that µ is aperiodic, i.e. there exists n0 such
that for every n ≥ n0, µ∗n(e) > 0. In many cases, the asymptotics arising in local limit
theorems are of the form

µ∗n(x) ∼ CxR
−nn−α, (1.1)

where R = ρ−1 is the inverse of the spectral radius. This is for example the case in all
abelian groups of rank d, with α = d/2, see [25, Theorem 13.12] and references therein,
and more generally in all nilpotent groups of homogeneous dimension D, with α = D/2,
see [2, Corollary 1.17]. This is also the case in all hyperbolic groups with α = 3/2, see
[14], [19] for the case of trees and [15] for the general case. Finally, to our knowledge,
this was also the case so far in all known examples of relatively hyperbolic groups.

In the context of free products of the form Γ = Zd1 ∗ Zd2 , Candellero and Gilch [7]
gave an almost complete classification of every possible local limit theorem. In particular,
they proved that they always are of the form (1.1), with α = 3/2 or α = di/2 and the
latter case can only happen if di ≥ 5. Although in this paper we will not work in the
general setting of relatively hyperbolic groups, let us mention that free products are the
simplest examples of such groups and results of [7] are being generalized to this setting
in recent works by the authors, see [9], [10], [12].

Our main goal in this note is to disprove [7, Lemma 4.5] and a similar statement that
appeared in a first version of [12]. In particular, we prove that the classification obtained
in [7] is incomplete: we derive a local limit theorem on Z3 ∗Z5 of the form (1.1) but with
unexpected exponent α = 5/3, and a local limit theorem on Z3 ∗Z6 which is not of the
form (1.1). Before stating our main results, let us introduce some terminology.

We consider the Green function G(x, y|r) defined by

G(x, y|r) =
∑
n≥0

µ∗n(x−1y)rn.

If x = y = e, we will often write G(e, e|r) = G(r). Its radius of convergence R is
independent of x and y, provided µ is admissible and it is the inverse of the spectral
radius of µ. All the groups under consideration in this paper will be non-amenable.
Consequently,

• by a landmark result of Kesten [18], R > 1 (see also [25, Corollary 12.5]),

• by a result of Guivarc’h [17], G(R) is finite (see also [25, Theorem 7.8]).

Following the notations of [9], we define I(k)(r) by

I(k)(r) =
∑

x1,...,xk∈Γ

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, e|r). (1.2)
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Exotic LLT at the phase transition in free products

The sums I(k) are related to the kth derivatives of the Green function. Precisely, by [16,
Proposition 1.9], I(1)(r) = rG′(r) +G(r) and similar formulae hold for higher derivatives,
see [9, Lemma 3.2]. Following [9], we say that the random walk driven by µ is divergent
if I(1)(R), or equivalently G′(R), is infinite. We say that it is convergent otherwise.

Assume from now on that Γ = Γ1 ∗ Γ2. We define for i = 1, 2

I
(k)
i (r) =

∑
x1,...,xk∈Γi

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, e|r) (1.3)

and we set

J (k)(r) = I
(k)
1 (r) + I

(k)
2 (r). (1.4)

Still following [9], we say that the random walk driven by µ is spectrally positive recurrent
if it is divergent and if J (2)(R) is finite.

For i = 1, 2, we also consider the first return kernel pΓi,r to Γi associated with rµ

(see (2.2) for a proper definition). Then, pΓi,r defines a transition kernel on Γi and we
denote by Ri(r) the inverse of its spectral radius. We say that the random walk driven by
µ is spectrally degenerate along Γi if Ri(R) = 1. When both R1(R) and R2(R) are bigger
than 1, we say that the random walk is spectrally non-degenerate.

Roughly speaking, when the random walk is spectrally degenerate along Γi, the
free factor Γi has strong influence on its asymptotic behavior; we refer to [10] and
[11] for further details. This notion should be compared with what is called "typical
case" in [25], where another way of measuring influence of a free factor is given. By
[10, Proposition 2.9], these two notions coincide, in the sense that the "typical case"
corresponds to the case of a spectrally non-degenerate random walk. We refer to
Section 2 for more details.

All these quantities and definitions can be generalized to the context of relatively hy-
perbolic groups, replacing free factors with the appropriate notion of maximal parabolic
subgroups. The current classification of local limit theorems on relatively hyperbolic
groups is as follows. When the random walk is spectrally non-degenerate, the local limit
has the form (1.1), with α = 3/2 [10]. This was first proved by Woess [24] for random
walks on free products in the "typical case" situation. When the random walk is spectrally
positive recurrent, we can only prove the rough estimate µ∗n(e) ≍ R−nn−3/2, which
means that the ratio of the quantities on the left and right hand-side is bounded away
from 0 and infinity [9]. When the random walk is convergent and parabolic subgroups
are virtually abelian, the local limit theorem has the form (1.1), with α = d/2, where d

is the minimal rank of a parabolic subgroup along which the random walk is spectrally
degenerate [12]. Moreover, in this situation, one can only have d ≥ 5.

Thus, we recover so far the classification given in [7] and presented above. Fur-
thermore, up to the present paper, for free products of the form Zd1 ∗ Zd2 the case of
a divergent and not spectrally positive recurrent random walk was considered as not
being able to occur, see [7, Lemma 4.5]. As announced, we disprove here this result
and we actually construct such a random walk on Γ = Z3 ∗ Zd, with d = 5 or 6. As a
consequence, the classification of possible behaviors of µ∗n needs to be completed. We
also derive a local limit theorem for the random walk we construct. This is the first step
into this program.

Theorem 1.1. Let Γ = Γ1 ∗ Γ2, with Γ1 = Z3, Γ2 = Zd and d ∈ {5, 6}. For i = 1, 2, let
νi be a finitely supported, admissible and symmetric probability measure on Γi. For
α ∈ [0, 1], let µα be the probability measure µα = αν1 + (1 − α)ν2 on Γ. Then, there
exists α∗ ∈ (0, 1) such that the µα∗ -random walk is divergent and not spectrally positive
recurrent.
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When either ν1 or ν2 is aperiodic, the same property holds for µα. From now on, in
order to simplify the argument, we assume that both measures ν1 and ν2 are aperiodic;
this allows us to avoid considering several sub-cases for the estimation of the Green
functions associated with the corresponding random walks on Γ1 and Γ2, see (4.2)
and (4.10) below.

Theorem 1.2. Assume that the measures ν1 and ν2 are aperiodic. Then, the µα∗ -random
walk given by Theorem 1.1 satisfies the following local limit theorem: If d = 5, we have

µ∗n
α∗
(e) ∼ CR−nn−5/3

and if d = 6, we have
µ∗n
α∗
(e) ∼ CR−nn−3/2 log(n)−1/2,

where R is the inverse of the spectral radius of µα∗ .

Without assuming aperiodicity, the same asymptotics hold for µ∗2n, since µ is sym-
metric, so its period must be 1 or 2.

Let us state that to our knowledge, the asymptotic for d = 6 in Theorem 1.2 gives
the first example of a local limit theorem on a non-amenable group which is not of the
form (1.1). For amenable groups, the situation is quite different and there exist many
examples where µ∗n(e) behaves like exp(−nc).

Up to a sub-exponential error term, this is the case for all polycyclic groups of
exponential growth [22], [1, Theorem 1] and for amenable Baumslag-Solitar groups [21,
Theorem 5.2 (5.2)], with c = 1/3. This is also the case for lamplighter groups of the form
A ≀Zd, where A is a finite non-trivial group [21, Theorem 5.2 (5.6)], with c = d/(d+ 2).
Note that amenable Baumslag-Solitar groups and lamplighter groups are examples of
solvable non-polycyclic groups.

For d = 1, a precise local limit theorem for the lamplighter group of the form
µ∗n(e) ∼ Cn1/6exp(−n1/3) was proven by Revelle [20]. This was further extended to
Diestel-Leader graphs DL(q, r) by Bartholdi, Neuhauser and Woess, see [4, Theorem 5.4]
and [3, Corollary 5.26]. Diestel-Leader graphs are not amenable when q ̸= r, since
the spectral radius of the simple random walk is smaller than 1, see [4, (1.3)]. Thus,
the examples of [4] and [3] already provide local limit theorems which are not of the
form (1.1) but of the form µ∗n(e) ∼ CR−nexp(−nc)nα for non-amenable graphs. However,
according to [13, Theorem 1.4] when q ̸= r, DL(q, r) is not quasi-isometric to the Cayley
graph of a finitely generated group.

We also refer to [6] where many other examples are given, beyond the class of
amenable groups. Asymptotics are only given there for − logµ∗n(e) though. Thus, for
non-amenable groups, these examples only recover the fact that R > 1.

We now briefly outline the content of our paper. In Section 2, we give various
characterizations of spectral degeneracy in terms of quantities that are suited to the
study of random walks on free products. Along the way, we introduce functions and
quantities defined in [25]. The conclusion of this section is a useful characterization
of spectral degeneracy and divergence in terms of the sign of a single quantity, see
precisely Corollary 2.5.

In Section 3, we use Corollary 2.5 to prove Theorem 1.1, that is, we construct a
probability measure µ on Z3∗Zd, d = 5 or 6, which is divergent but not spectrally positive
recurrent. We will actually construct a family of probability measure µα and exhibit a
phase transition at some α∗. The measure µα∗ will have the required properties.

Finally, Section 4 is devoted to derive a local limit theorem for µα∗ , thus proving
Theorem 1.2. This is done by first finding precise asymptotics of the derivative of the
Green function Gr(e, e) as r → R and then using Karamata’s Tauberian theorem. Most of

EJP 0 (2020), paper 0.
Page 4/22

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Exotic LLT at the phase transition in free products

the intermediate results in this section are of geometric nature and we believe it should
be possible to extend them to relatively hyperbolic groups, with (possibly challenging)
new arguments replacing those that rely on the combinatorial structure of free products.

2 Characterizations of spectral degeneracy in free products

Let Γ1 and Γ2 be two countable groups whose identity elements are respectively
written e1 and e2. A word with letters in Γ1 or Γ2 is either the empty word, or a
finite sequence w = α1...αk with k ∈ N such that for all i ∈ {1, ..., k}, αi ∈ Γ1\{e1} or
αi ∈ Γ2\{e2}. It is called a reduced word if for all i ∈ {1, ..., k − 1}, the letters αi and
αi+1 do not belong to the same group.

The set of reduced words, written Γ1 ∗ Γ2, can be endowed with a group structure,
called the free product of Γ1 and Γ2 defined as follows. The identity element of Γ1 ∗ Γ2 is
the empty word and the group law is given by the concatenation of two words followed
by reduction of the word thus obtained. For instance, if Γ1 =< s > and Γ2 =< t >,
the ENLEVER word stt−2s−1 is not reduced since it can be simplified using the group
structures of Γ1 and Γ2. Its reduction is st−1s−1. The product in Γ1∗Γ2 of w1 = st2s−1 and
w2 = s2t3 is w1w2 = st2st3, which is the reduction of the concatenated word st2s−1s2t3.
ENLEVER Note that the reduction of st2s−1st−3 is st−1, since in the reduction process
the letter e1 is replaced by the empty word.

If for i = 1, 2, the group Γi is generated by the set Si, then Γ1 ∗ Γ2 is obviously
generated by S1 ∪ S2.

Let Γ = Γ1 ∗ Γ2 be a free product of two finitely generated groups. Consider finitely
supported, symmetric and admissible probability measures ν1 and ν2 on Γ1 and Γ2

respectively. For α ∈ [0, 1], set

µα = αν1 + (1− α)ν2.

In the sequel, we write µ for µα and we set α1 = α and α2 = (1 − α). If αi > 0, the
probability measure µ is finitely supported, symmetric and admissible on Γ. Such a
probability measure is called adapted to the free product structure. We denote by R the
inverse of the spectral radius of µ and by Ri the inverse of the spectral radius of νi.

The Green functions G, G1 and G2 of µ, ν1 and ν2 respectively are related as follows.
For i = 1, 2, for every x, y ∈ Γi, for every r ≤ R,

G(x, y|r)
G(e, e|r)

=
Gi(x, y|ζi(r))
Gi(e, e|ζi(r))

, (2.1)

where ζi is a continuous function of r, see [25, Proposition 9.18] for an explicit formula.
We always have ζi(R) ≤ Ri and for r < R, ζi(r) < Ri.

We denote by pΓi,r the first return transition kernel to Γi associated with rµ, which is
defined as

pΓi,r(x, y) =
∑
n≥1

∑
z1,...,zn /∈Γi

rnµ(x−1z1)µ(z
−1
1 z2)...µ(z

−1
n y). (2.2)

We denote by GΓi,r the Green function associated with pΓi,r, defined for all x, y ∈ Γi and
all t ≥ 0 by

GΓi,r(x, y|t) =
∑
n≥0

(pΓi,r)
∗n(x, y)tn

=
∑
n≥0

tn
∑

x1,...,xn∈Γi

pΓi,r(x, x1)pΓi,r(x1, x2) · · · pΓi,r(xn, y).
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This can be written as

GΓi,r(x, y|t) =
∑
n≥0

tn
∑

x1,...,xn∈Γi

∑
k1≥1

∑
z1,...,zk1

/∈Γi

rkµ(x−1z1)µ(z
−1
1 z2)...µ(z

−1
k1

x1)


∑

k2≥1

∑
z1,...,zk2

/∈Γi

rkµ(x−1
1 z1)µ(z

−1
1 z2)µ(z

−1
k2

x2)


· · ·

∑
kn≥1

∑
z1,...,zkn /∈Γi

rkµ(x−1
n z1)µ(z

−1
1 z2)...µ(z

−1
kn

y)

 .

Each trajectory of the random walk from x to y can be decomposed in a unique way
in distinct successive excursions outside Γi, which yields, for all r ≥ 0,

GΓi,r(x, y|1) = G(x, y|r), (2.3)

see also [11, Lemma 4.4]. This is actually the main reason for introducing pΓi,r.
The fact that µ is adapted to the free product structure readily implies that, if the

random walk ever leaves the factor Γi at some point x, then its first return in Γi will
necessarily be at the same point x. Consequently, the first return kernel pΓi,r can be
written in our context as

pΓi,r(e, x) = αirνi(x) + wiδe,x,

where wi = wi(r) is the weight of the first return to e associated to rµ, starting with a
step driven by αjνj , j ̸= i. Thus, [25, Lemma 9.2] shows that for any x, y ∈ Γi and any
t > 0,

GΓi,r(x, y|t) =
1

1− wit
Gi

(
x, y

∣∣∣∣ αirt

1− wit

)
. (2.4)

In particular, for t = 1,

GΓi,r(x, y|1) =
1

1− wi
Gi

(
x, y

∣∣∣∣ αir

1− wi

)
Since GΓi,r(x, y|1) = G(x, y|r), we recover (2.1) with

ζi(r) =
αir

1− wi
.

Recall that following [11], we say that the random walk is spectrally degenerate
along Γi if the spectral radius of the first return kernel pΓi,R is 1. In this section, we give
several characterizations of spectral degeneracy, using the more standard terminology
for free products introduced in [25, Chapter 9]. First of all, the following result is proved
in [10, Proposition 2.9]. We detail the proof here for convenience.

Lemma 2.1. The random walk is spectrally degenerate along Γi if and only if ζi(R) = Ri.

Proof. By applying (2.4) with t = 1 + ϵ and r = R, we get

GΓi,R(x, y|1 + ϵ) =
1

1− wi(1 + ϵ)
Gi

(
x, y

∣∣∣∣ αiR(1 + ϵ)

1− wi(1 + ϵ)

)
.

The condition ϵ > 0 yields αiR(1+ϵ)
1−wi(1+ϵ) > αiR

1−wi
= ζi(R). Thus, there exists t > 1 such that

GΓi,R(x, y|t) is finite if and only if there exists z > ζi(R) such that Gi(x, y|z) is finite,
which concludes the proof.
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In [25], the situation where ζi(R) < Ri for i = 1, 2 is called the "typical case". Thus,
Lemma 2.1 shows that this typical case corresponds to being spectrally non-degenerate.

Lemma 2.2. For all r ≤ R, we have ζi(r)Gi(ζi(r)) = αirG(r).

Proof. Let us introduce the quantities U and Ui, i = 1, 2, defined by

U(r) = U(e, e|r) =
∑
n≥0

P((first return time of the µ-random walk to e) = n)rn

and

Ui(r) = Ui(e, e|r) =
∑
n≥0

P((first return time of the νi-random walk to e) = n)rn.

By [25, Lemma 1.13 (a)], G(r)(1− U(r)) = Gi(r)(1− Ui(r)) = 1. Following [25, Proposi-
tion 9.18 (b)], the weight wi may be written as wi = U(r)−Hi(r), where Hi satisfies the
equation

G(r)Hi(r)

1 +G(r)Hi(r)
= Ui(ζi(r)),

i.e. G(r)Hi(r)(1− Ui(ζi(r))) = Ui(ζi(r)). The equality Gi(1− Ui) = 1 yields

G(r)Hi(r)

Gi(ζi(r))
=

Gi(ζi(r))− 1

Gi(ζi(r))
,

i.e.
1 +G(r)Hi(r) = Gi(ζi(r)). (2.5)

Consequently, since G(r)(1− U(r)) = 1,

ζi(r) =
αir

1− wi
=

αir

1− U(r) +Hi(r)
=

αirG(r)

1 +G(r)Hi(r)
,

so by (2.5),

ζi(r) =
αirG(r)

Gi(ζi(r))
.

Let us now introduce the notations θ = RG(R), θi = RiG(Ri) and θ = min{θi/αi},
i = 1, 2. These parameters play a crucial role in the study of the Green function on free
products in [25, Chapter 9]. In particular, by [25, Theorem 9.19], it holds that θ ≤ θi/αi,
i = 1, 2, so θ ≤ θ.

The following statement gives a characterization of spectral degeneracy in terms of θ
and θ.

Lemma 2.3. The random walk is spectrally degenerate along Γi if and only if we have
θ = θ = θi/αi.

Proof. Assume that θ = θ = θi/αi, i.e. RG(R) = RiGi(Ri)/αi. By Lemma 2.2, we thus
have

ζi(R) = Ri
Gi(Ri)

Gi(ζi(R))
.

Since ζi(R) ≤ Ri, we deduce that Gi(Ri) ≥ Gi(ζi(R)) and so ζi(R) ≥ Ri. Finally,
ζi(R) = Ri and so the random walk is spectrally degenerate along Γi by Lemma 2.1.

Conversely, if the random walk is spectrally degenerate along Γi, then ζi(R) = Ri by
Lemma 2.1. This implies Gi(ζi(R)) = Gi(Ri). Consequently,

Ri = ζi(R) =
αiRG(R)

Gi(ζi(R))
=

αiRG(R)

Gi(Ri)
.

Therefore, RiGi(Ri)/αi = RG(R), i.e. θ = θi/αi. Combining this with the inequality
θ ≤ θ, we finally obtain θ = θ.
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Following [25, Chapter 9], let us introduce two functions Φ and Ψ which are very
useful in the context of free products.

First, the function Φ is defined implicitly by the formula

G(r) = Φ(rG(r))

for every r ≤ R. This function is defined in general on an open neighborhood (inside the
complex plane) of the interval [0, θ). Since G(R) is finite, it is also defined on [0, θ].

Second, writing Φ′(t) =
dΦ

dt
(t), U ′(r) = dU

dr (r) and G′(r) = dG
dr (r) we set

Ψ(t) = Φ(t)− tΦ′(t).

By [25, (9.14)], letting t = rG(r), we have

Ψ(t) =
1

rU ′(r) + 1− U(r)

=
1

1 +
∑

n≥0(n− 1)P((first return time of the µ-random walk to e) = n)rn
.

In particular Ψ is strictly decreasing on the interval [0, θ] and satisfies Ψ(t) < 1 for t > 0

and Ψ(0) = 1. The equality G(r)(1− U(r)) = 1 readily implies that

Ψ(t) =
G(r)2

rG′(r) +G(r)
. (2.6)

Thus, Ψ(θ) = 0 if and only if G′(R) = ∞, since G(R) is finite.
In our context of free products Γ = Γ1 ∗ Γ2, we have by [25, Theorem 9.19]

Φ(t) = Φ1(α1t) + Φ2(α2t)− 1 (2.7)

and

Ψ(t) = Ψ1(α1t) + Ψ2(α2t)− 1. (2.8)

Thus, both functions Φ and Ψ can be extended on [0, θ] and Ψ is still continuous and
strictly decreasing on [0, θ].

Lemma 2.4. The random walk is spectrally degenerate if and only if Ψ(θ) ≥ 0. Moreover,
G′(R) is infinite if and only if Ψ(θ) ≤ 0.

Proof. This statement is a consequence of [25, Theorem 9.22].
Assume first that Ψ(θ) < 0, hence by [25, Theorem 9.22], it holds θ < θ and by

Lemma 2.3, this implies that the random walk is not spectrally degenerate. Moreover, in
this case θ is the unique solution of Ψ(t) = 0 in (0, θ). In particular Ψ(θ) = 0, hence G′(R)

is infinite.
Assume now Ψ(θ) ≥ 0. Then, [25, Theorem 9.22] implies θ = θ and so the random

walk is spectrally degenerate. On the one hand, if Ψ(θ) > 0, then Ψ(θ) > 0 and so G′(R)

is finite. On the other hand, if Ψ(θ) = 0, then Ψ(θ) = 0 and so G′(R) is infinite.

Let us conclude this section by summarizing the situation as follows.

Corollary 2.5. We have the following trichotomy.

• If Ψ(θ) < 0, the random walk is spectrally non-degenerate and divergent.

• If Ψ(θ) = 0, the random walk is spectrally degenerate and divergent.

• If Ψ(θ) > 0, the random walk is spectrally degenerate and convergent.
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3 A divergent not spectrally positive recurrent random walk

In this section, we construct an adapted random walk on Γ = Z3 ∗ Zd, d = 5 or
6, which is divergent but not spectrally positive recurrent. Such a random walk is
necessarily spectrally degenerate and corresponds to the second case in Corollary 2.5.

3.1 Several incorrect lemmas

We first restate [7, Lemma 4.5] (switching the indices 1 and 2) and then explains how
it leads to a contradiction. This contradiction is what alerted us in the first place. The
flaw in the argument is quite subtle and we will come back to it in Section 3.3.

Incorrect Lemma 1. [7, Lemma 4.5] Assume that θ = θ = θ2/α2 and that G′
1(ζ1(R)) and

G′
2(R2) are finite, then if Ψ(θ) = 0, Φ′′(θ) is finite.

Let us first explain how θ = θ = θ2/α2 implies that both quantities G′
i(ξi(R)), i = 1, 2,

are finite.
By [16, Proposition 1.9], the sum I(1) defined by (1.2) satisfies I(1)(r) = rG′(r) +G(r)

and more generally, for all x, y ∈ Γ, we have

d

dr
(rG(x, y|r)) =

∑
z∈Γ

G(x, z|r)G(z, y|r). (3.1)

Similarly, for i = 1, 2, we set

I
(1)
Gi

(t) =
∑
x∈Γi

Gi(e, x|t)Gi(x, e|t). (3.2)

Then, I(1)Gi
(t) = tG′

i(t) +Gi(t), i = 1, 2 and more generally, we have for every x, y ∈ Γi,

d

dt
(tGi(x, y|t)) =

∑
z∈Γi

Gi(x, z|t)Gi(z, y|t). (3.3)

We will mainly use (3.3) for t = ζi(r). By induction, similar formulae hold for higher
derivatives, see [9, Lemma 3.2]. In the sequel, we will use in particular the one concern-
ing the second derivatives :

2rI(2)(r) = 2rG(r) + 4r2G′(r) + r3G′′(r). (3.4)

First, by [11, Proposition 6.3], the quantity

I
(1)
i =

∑
x∈Γi

G(e, x|R)G(x, e|R)

is finite. Using (2.1), we deduce that I(1)Gi
(ζi(r)) is finite. Consequently, for i = 1, 2, we

have by (3.3)
G′

i(ζi(R)) < ∞. (3.5)

Now, by Lemmas 2.1 and 2.3, the equality θ = θ2/α2 implies that the random walk is
spectrally degenerate along Γ2 and so ζ2(R) = R2. Finally, G′

1(ζ1(R)) and G′
2(R2) are

both finite.

Second, we need an explicit form of Φ′′. The equality

G(r) = Φ(rG(r))

readily implies

G′(r) = (rG(r))′Φ′(rG(r)) = (rG′(r) +G(r))Φ′(rG(r))
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and

G′′(r) = (rG(r))′′Φ′(rG(r)) + ((rG(r))′)2Φ′′(rG(r))

=
rG′(r)G′′(r) + 2G′(r)2

rG′(r) +G(r)
+ (rG′(r) +G(r))2Φ′′(rG(r)).

Consequently,

Φ′′(rG(r)) =
G(r)G′′(r)− 2G′(r)2

(rG′(r) +G(r))3
. (3.6)

In particular, for r = R, we obtain

Φ′′(θ) =
G(R)G′′(R)− 2G′(R)2

(RG′(R) +G(R))3
.

Therefore, if G′(R) is finite, then Φ′′(θ) is finite if and only if G′′(R) is finite.

Now, differentiating twice Equation (2.7), we get

Φ′′(t) = α2
1Φ

′′(α1t) + α2
2Φ

′′(α2t), (3.7)

which implies that Φ′′(θ) is finite if and only if Φ′′
1(α1θ) and Φ′′

2(α2θ) are both finite.

Finally, by Corollary 2.5, the condition Ψ(θ) = 0 is equivalent to the fact that the
random walk driven by µ is spectraly degenerate and divergent. Thus, Incorrect Lemma 1
can be written as follows.

Incorrect Lemma 2 (Alternative version of Incorrect Lemma 1). Assume the random
walk driven by µ is spectrally degenerate along Γ2. If G′(R) is infinite, then G′′

2(R2) is
finite.

A more general statement also appeared in a first version of [12], which led the
authors to modify their statement. Define for i = 1, 2 and t ≥ 0

I
(2)
Gi

(t) =
∑

x,y∈Γi

Gi(e, x|t)Gi(x, y|t)Gi(y, e|t).

By (2.1), the quantity J (2) defined in (1.4) can be written as

J (2)(r)

G(r)3
=

I
(2)
G1

(ζ1(r))

G1(ζ1(r))3
+

I
(2)
G2

(ζ2(r))

G2(ζ2(r))3
. (3.8)

In particular, since G(R) is finite, J (2)(R) is finite if and only if I(2)G1
(ζ1(R)) and I

(2)
G2

(ζ2(R))

are both finite. Applying (3.4) to Gi, we have that

2ζi(r)I
(2)
Gi

(ζi(r)) = ζi(r)Gi(ζi(r)) + 4ζi(r)
2G′

i(ζi(r)) + ζi(r)
3G′′

i (ζi(r)). (3.9)

Since Gi(ζi(R)) and G′
i(ζi(R)) must be finite by (3.5), we deduce that

J (2)(R) < ∞ iff G′′
i (ζi(R)) < ∞, i = 1, 2. (3.10)

Thus, this lemma is a special case of the following wrong statement that appeared in a
first version of [12].

Incorrect Lemma 3 (Generalized version of Incorrect Lemma 1). In the context of
relatively hyperbolic groups with respect to virtually abelian subgroups, if G′(R) is
infinite, then J (2)(R) is finite, i.e. the random walk is spectrally positive recurrent.
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3.2 Constructing counterexamples

Let us disprove Incorrect Lemma 1. We still write α1 = α and α2 = 1− α. First, note
that there exists αc such that

• if α < αc, then θ = θ2/α2 < θ1/α1,

• if α = αc, then θ = θ1/α1 = θ2/α2,

• if α > αc, then θ = θ1/α1 < θ2/α2.

Therefore,

• if α < αc, then α
1−αθ2 < θ1 and Ψ(θ) = Ψ1

(
α

1−αθ2

)
+Ψ2(θ2)− 1.

• if α = αc, then Ψ(θ) = Ψ1(θ1) + Ψ2(θ2)− 1.

• if α > αc, then 1−α
α θ1 < θ2 and Ψ(θ) = Ψ1(θ1) + Ψ2

(
1−α
α θ1

)
− 1.

As a consequence, the function α 7→ Ψ(θ) is continuous, see also [7, Lemma 7.1].

We now set Γ = Zd1∗Zd2 and we consider symmetric admissible and finitely supported
probability measures νi on Γi = Z

di , i = 1, 2. It is well known that we have

ν∗2ni (e) ∼ CiR
−2n
1 n−di/2,

see for instance [25, Theorem 13.12]. Now we choose d1 and d2 in such a way that

• Gi(Ri) is finite, i = 1, 2,

• G′
1(R1) is infinite but G′

2(R2) is finite,

• G′′
2(R2) is infinite.

These three conditions, together with the fact that R1 = R2 = 1 impose that d1 = 3 or 4
and d2 = 5 or 6. From now on, we set d1 = 3 and we write d = d2 ∈ {5, 6}. In terms of
the functions Φi and Ψi, it holds Ψ1(θ1) = 0, Ψ2(θ2) > 0 and Φ′′

2(θ2) is infinite.
It follows that Ψ(θ) = 0 when α = 1, that Ψ(θ) = Ψ2(θ2) > 0 when α = 0 and that

Ψ(θ) = Ψ2(
1−α
α θ1)− 1 < 0 when α ∈ [αc, 1). Thus by continuity, there exists α∗ ∈ (0, αc)

such that Ψ(θ) = 0 when α = α∗. This yields for this value α∗ of the parameter α

θ = θ = θ2/α2 < θ1/α1, with α1 = α∗ and α2 = 1− α∗.

In other words, the µα∗ -random walk is spectrally degenerate along Γ2 = Zd but not
along Γ1 = Z3. As a consequence, ζ1(R) < R1 and so G′(ζ1(R)) is finite. The assumptions
of Incorrect Lemma 1 are hence satisfied, so it would imply that Φ′′(θ) is finite, so Φ′′

2(θ2)

is finite by (3.7). This is a contradiction, so we disproved Incorrect Lemma 1.
Notice that the probability measure µα∗ satisfies the following properties.

1. the random walk is spectrally degenerate along Γ2 = Zd,

2. the random walk is not spectrally degenerate along Γ1 = Z3,

3. Ψ(θ) = 0, hence the µα∗ -random walk is divergent,

4. Φ′′
2(θ2) is infinite, i.e. G′′

2(ζ2(R)) is infinite. Thus J (2) is infinite by (3.10) and the
µα∗ -random walk is not spectrally positive recurrent.

If we assume that ν1 or ν2 is aperiodic, i.e. ν∗n1 (e) or ν∗n2 (e) is positive for large enough
n, then µα is also aperiodic for every α. This can be obtained for instance assuming that
ν1(e) and ν2(e) are positive, i.e. by considering lazy random walks on the free factors.
This ends the proof of Theorem 1.1.

We thus exhibited a phase transition at α = α∗, where the sign of Ψ(θ) changes, so
does the behavior of the random walk by Corollary 2.5. Moreover, the following holds.
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• When Ψ(θ) < 0, the random walk is spectrally non-degenerate and by [10, Theo-
rem 1.1],

µ∗n(e) ∼ CR−nn−3/2.

• when Ψ(θ) > 0, the random walk is convergent, hence spectrally degenerate. By
[11, Proposition 6.1], it cannot be spectrally degenerate along Z3. In this case, it
holds by [12, Theorem 1.3]

µ∗n(e) ∼ CR−nn−d/2.

As claimed in the introduction, at the phase transition α = α∗, the local limit theorem
has an again different form. Showing this is the purpose of Section 4.

3.3 Identifying the mistakes in Incorrect Lemmas

The mistake in the former version of [12] when proving Incorrect Lemma 3 was to
assume that the spectral radius ρH,r of the first return transition kernel pH,r defined
in (2.2) were differentiable at r = R. However, this differentiability property is only
proved for convergent random walks.

The issue in [7] is more subtle. The authors write ζi(r) = ζi(R) +Xi(r) and first find
a linear system of the form

C
(i)
1 X1(r) + C

(i)
2 X2(r) + o

(
R− r

)
= LPi(r),

i = 1, 2, where LPi is a linear polynomial function. Then, they derive a contradiction from
this linear system, using the assumptions of Incorrect Lemma 1. On Page 19 of [7], they
expand (ζi(R) +Xi(r))

n and then switch two sums to identify the coefficients C
(i)
j , see

precisely [7, (4.8)]. However, switching sums is not legitimate, because the coefficients
in front of Xj(r)

kjXi(r)
ki involve successive derivatives of the Green function Gj at ζj(R)

and these successive derivatives can be infinite. This is typically the case when assuming
that Φ′′(θ) is infinite and θ = θ2/α2 = θ, in which case the second derivative of G2 at
ζ2(R) is infinite.

In any case, in both [7] and [12], the spotted invalid arguments are only related to
the proofs of Incorrect Lemma 1 and Incorrect Lemma 3 and do not affect the remainder
of the papers.

4 Local limit theorems

We consider from now on the adapted probability measure µα∗ on Z3 ∗ Zd, with
d = 5 or 6. The µα∗ -random walk is spectrally degenerate along Zd, divergent, but not
spectrally positive recurrent. Now that α is fixed, we write µ = µα∗ for simplicity.

We also assume that ν1 and ν2 are aperiodic, i.e. ν∗n1 (e) and ν∗n2 (e) are positive for
large enough n, so that µ is also aperiodic. Our goal is to prove Theorem 1.2.

4.1 Asymptotic differential equations

By (3.1) and (3.4), the two quantities I(1)(r) and I(2)(r) are related to the first and
second derivatives of the Green function G. Similarly, by (3.8) and (3.9), the quantity
J (2) is related to the second derivatives of the Green functions Gi, i = 1, 2. One of the
main results in [9] in the context of relatively hyperbolic groups is the following rough
formula involving the quantities I(2), I(1) and J (2) :

I(2)(r) ≍
(
I(1)(r)

)3
J (2)(r)

which means that the ratio of these two quantities is bounded from above and below.
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In the context of adapted measures on free products, the above rough estimates ≍
can be improved to the more accurate asymptotics ∼ as follows.

Proposition 4.1. Consider an adapted probability measure µα on Γ = Γ1 ∗ Γ2, with
0 < α < 1 and assume that G′(R) = ∞. Then, there exist constants C, c1, c2 and C ′ such
that the following holds. As r → R, we have

G′′(r) ∼ C (G′(r))
3
(
c1G

′′
1

(
ζ1(r)

)
+ c2G

′′
2

(
ζ2(r)

)
− C ′

)
.

In particular, if G′′
1(ζ1(R)) is finite and G′′

2(ζ2(R)) is infinite, there exists C such that

G′′(r) ∼ C (G′(r))
3
G′′

2(ζ2(r)).

Proof. On the one hand, by (3.6)

Φ′′(rG(r)) =
G(r)G′′(r)− 2G′(r)2

(rG′(r) +G(r))3
.

The term 2G′(r)2

(rG′(r)+G(r))3 converges to 0 as r tends to R and G(r) converges to G(R) which
is finite. Thus,

Φ′′(rG(r)) ∼ G(R)G′′(r)

R3G′(r)3
, r → R.

On the other hand, by (2.7) and Lemma 2.2

Φ′′(rG(r)) = α2
1Φ

′′
1(α1rG(r)) + α2

2Φ
′′
2(α2rG(r))

= α2
1Φ

′′
1(ζ1(r)G1(ζ1(r))) + α2

2Φ
′′
2(ζ2(r)G2(ζ2(r))).

Therefore, (3.6) applied this time to the Green functions Gi yields

Φ′′(rG(r)) ∼ c1G
′′
1(ζ1(r)) + c2G

′′
2(ζ2(r))− C ′,

with

ci = α2
i

Gi(ζi(R))

(ζi(R)G′
i(ζi(R)) +Gi(ζi(R)))3

, i = 1, 2

and

C ′ =
2α2

1G
′
1(ζ1(R))2(

ζ1(R)G′
1(ζ1(R)) +G1(ζ1(R))

)3 +
2α2

2G
′
2(ζ2(R))2(

ζ2(R)G′
2(ζ2(R)) +G2(ζ2(R))

)3 .

This concludes the proof.

We also prove the following result. Recall that the quantities I
(k)
i are defined in (1.3)

by

I
(k)
i (r) =

∑
x1,...,xk∈Γi

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, e|r).

Lemma 4.2. Consider an adapted probability measure µα on Γ = Γ1 ∗ Γ2, with 0 < α < 1

and assume that G′(R) = ∞. Then, there exists C such that for i = 1, 2

d

dr

(
r2I

(1)
i (r)

)
∼ CG′(r)I

(2)
i (r).
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Proof. We write
r2I

(1)
i (r) =

∑
x∈Γi

rG(e, x|r)rG(x, e|r).

Using (3.1) twice,

d

dr

(
r2I

(1)
i (r)

)
=
∑
x∈Γi

d

dr
(rG(e, x|r)) rG(x, e|r) + rG(e, x|r) d

dr
(rG(x, e|r))

= r
∑
x∈Γi

∑
y∈Γ

G(e, y|r)G(y, x|r)G(x, e|r)

+ r
∑
x∈Γi

∑
y∈Γ

G(e, x|r)G(x, y|r)G(y, e|r).

Fix i ∈ {1, 2} and y ∈ Γ. Denote by z the projection of y on Γi. In other words, y may be
written in its normal form as

y = zy1y2...yn,

where y1 ∈ Γ1 if z ∈ Γ2 and conversely. Since the random walk is adapted, it has to pass
through z before reaching y. In other words,

G(e, y|r)
G(e, e|r)

=
G(e, z|r)
G(e, e|r)

G(z, y|r)
G(e, e|r)

,

see also [23, (3.3)]. Therefore,

G(e, y|r) = 1

G(e, e|r)
G(e, z|r)G(z, y|r)

and similarly, for all x ∈ Γ,

G(y, x|r) = 1

G(e, e|r)
G(y, z|r)G(z, x|r).

Thus, setting Γz to be the set of y ∈ Γ which project on Γi at z, we get for all x ∈ Γ,∑
y∈Γ

G(e, y|r)G(y, x|r) = 1

G(e, e|r)2
∑
z∈Γi

∑
y∈Γz

G(e, z|r)G(z, y|r)G(y, z|r)G(z, x|r)

with ∑
y∈Γz

G(z, y|r)G(y, z|r) =
∑
y∈Γe

G(e, y|r)G(y, e|r)

by invariance by translation by z. In particular, for x = e,∑
y∈Γ

G(e, y|r)G(y, e|r) = 1

G(e, e|r)2
∑
z∈Γi

∑
y∈Γz

G(e, z|r)G(z, e|r)G(z, y|r)G(y, z|r)

=
1

G(e, e|r)2
∑
z∈Γi

∑
y∈Γe

G(e, z|r)G(z, e|r)G(e, y|r)G(e, z|r).

As a consequence,

I(1)(r) =
1

G(e, e|r)2
∑
y∈Γe

G(e, y|r)G(y, e|r)I(1)i (r)

and so for all z ∈ Γi,

I(1)(r)

I
(1)
i (r)

=
1

G(e, e|r)2
∑
y∈Γe

G(e, y|r)G(y, e|r)

=
1

G(e, e|r)2
∑
y∈Γz

G(z, y|r)G(y, z|r).
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Combining all this, we get

∑
y∈Γ

G(e, y|r)G(y, x|r) = I(1)(r)

I
(1)
i (r)

∑
z∈Γi

G(e, z|r)G(z, x|r).

Similarly, ∑
y∈Γ

G(x, y|r)G(y, e|r) = I(1)(r)

I
(1)
i (r)

∑
z∈Γi

G(x, z|r)G(z, e|r).

Consequently,

d

dr

(
r2I

(1)
i (r)

)
= r

I(1)(r)

I
(1)
i (r)

∑
x∈Γi

∑
z∈Γi

G(e, z|r)G(z, x|r)G(x, e|r)

+ r
I(1)(r)

I
(1)
i (r)

∑
x∈Γi

∑
z∈Γi

G(e, x|r)G(x, z|r)G(z, e|r),

which we rewrite
d

dr

(
r2I

(1)
i (r)

)
= 2r

I(1)(r)

I
(1)
i (r)

I
(2)
i (r).

Since G′(R) = ∞, (3.1) shows that I(1)(r) ∼ RG′(r) as r → R. Furthermore, by [11,

Proposition 6.3], the quantity I
(1)
i (R) is finite. Thus, we finally get

d

dr

(
r2I

(1)
i (r)

)
∼ 2R2

I
(1)
i (R)

I(1)(r)I
(2)
i (r)

as r → R. Since I(1)(r) = G(r) + rG′(r) by (3.1), this concludes the proof.

By combining Proposition 4.1 and Lemma 4.2, we get the following statement.

Corollary 4.3. Assuming that G′(R) is infinite, G′′
1(ζ1(R)) is finite and G′′

2(ζ2(R)) is
infinite, there exists C such that

G′′(r)

(G′(r))
2 ∼ C

d

dr

(
r2I

(1)
2 (r)

)
.

Proof. By (3.5), the quantity G′
2(ζ2(R)) is finite. Applying (3.4) to G2, we get

G′′
2(ζ2(r)) ∼ CI

(2)
2 (r).

The result thus follows from Proposition 4.1 and Lemma 4.2.

We will also use the following result later on.

Lemma 4.4. We have

ζ2(R)− ζ2(r) ∼ C

(
G2(ζ2(R))−G2(ζ2(r))

)
.

Proof. By (3.5), the quantity G′
2(ζ2(R)) is finite. Differentiating the Green function G2 at

ζ2(R) yields

G2(t) = G2(ζ2(R)) +G′
2(ζ2(R))(ζ2(R)− t) + o (ζ2(R)− t) .

Applying this at t = ζ2(r) gives the result.
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4.2 Proof of Local limit theorems

The proofs of local limit theorems for adapted random walks on free products of
abelian groups vary according to the cases.

The case Ψ(θ̄) < 0, also called sometimes the “typical case", was investigated by
Woess [25, Theorem 17.3]. The author proved that in a neighborhood of R in C \ [R,+∞[,
it holds that

G(z) = f(z) + g(z)
√
R− z

where f, g are analytic functions.
When Ψ(θ̄) > 0, Cartwright [8], then Woess [25] and Candelloro and Gilch [7] obtained

a weaker local expansion. For instance, Woess proved that for z near R and |z| ≤ R,

G(z) = Polynomial(z) +R(z) +O((R− z)[(d2−2)/2]+1)

where

R(z) =

{
(c0 + c1(R− z))(R− z)(d2−2)/2 if d2 is odd

(c0 + c1(R− z))(R− z)(d2−2)/2 ln(R− z) if d2 is even

with c0 ̸= 0 (unless d = 6 in which case there is an additional term (see [25, Theo-
rem 17.13]).

This allows in both cases to apply the classical Darboux’s method and Riemann
Lebesgue’s lemma: one identifies all singularities on the circle of convergence and then
subtracts part of the expansion near them, so that the remaining part is sufficiently
differentiable on {|z| = R}.

In the present case, we obtain the local expansion of the Green function near R by
studying the behavior near R of the solution of some differentiable equations. Neverthe-
less, this expansion is only valid on the real line (more precisely on ]R− ϵ, R[, with ϵ > 0).
This forces us to follow the strategy developed by Gouezel and Lalley in [16], based on a
crucial observation they made, proving the following Tauberian theorems.

4.2.1 Tauberian theorems for random walks

Everything is now settled to prove Theorem 1.2. It will rely on the following Tauberian
Theorem, which is a generalization of a crucial observation by Gouëzel and Lalley.

Recall that for any a ≥ 0, a function ℓ : (a,+∞) → (a,+∞) is said to be slowly varying
if for all λ > 0, we have

lim
x→∞

ℓ(λx)

ℓ(x)
= 1.

For instance, for all β > 0, the map log(x)β is a such a slowly varying function. We refer
to [5, Chapter 1.2] for more details.

Theorem 4.5. First order Tauberian Theorem for Random Walks, [16, Theorem 9.1].
Consider a symmetric admissible aperiodic random walk with law µ on a countable
group Γ. Let R > 0 be the radius of convergence of the Green function G(x, y|r). Let
ℓ : (0,+∞) → (0,+∞) be a slowly varying function and let β > 0. Then the following
assertions are equivalent.

(i) For all x, y ∈ Γ, there exists Cx,y > 0 such that, as r → R,

dG(x, y|r)
dr

∼ Cxyℓ(R/(R− r))

(R− r)β
.

(ii) For all x, y ∈ Γ, there exists C ′
x,y > 0 such that, as n → ∞,

µ∗n(x, y) ∼ C ′
xyR

−nnβ−2ℓ(n).
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Eventhough Gouëzel and Lalley only wrote the direct implication in the case where
ℓ(t) ∼ 1, the same proof provides the general statement of Theorem 4.5. We provide the
proof of this general version for convenience of the reader. It relies on the following
Tauberian Theorem, where we use the letter G for the Euler Γ-function.

Theorem 4.6. Karamata’s Tauberian Theorem, [5, Corollary 1.7.3]. Let (an)n≥0 be a
sequence of non-negative numbers such that the radius of convergence of the power
series A(s) =

∑
n≥0 ans

n is 1. Then for all c, β > 0 and ℓ : (0,+∞) → (0,+∞) slowly
varying, the following assertions are equivalent.

a) As n → ∞, we have
n∑

k=0

ak ∼ cnβℓ(n)/G(1 + β).

b) As s → 1, we have

A(s) ∼ c
ℓ(1/(1− s))

(1− s)β
.

Moreover, if the sequence (an) is ultimately non-increasing, both are equivalent to

c) As n → ∞, we have
an ∼ cnβ−1ℓ(n)/G(1 + β).

Proof of Theorem 4.5. We prove Theorem 4.5 assuming that x = y = e, still writing
G(r) = G(e, e, |r). The proof for the general case is identical.

Let us introduce the power series

A(s) =
∑
n≥0

nµ∗n(e)Rnsn = (sR)G′(sR)

whose radius of convergence is 1, associated to the sequence an = nµ∗n(e)Rn. A priori,
this sequence is not ultimately monotonous and we cannot apply directly Theorem 4.6.
Nevertheless, by [16, Corollary 9.4], there exists κ > 0 such that

µ∗n(e)Rn = qn +O
(
e−κn

)
, (4.1)

where qn is a non-increasing sequence. Theorem 4.5 is thus a direct consequence of
equivalence of Assertions b) and c) in Karamata’s Tauberian Theorem.

Notice that the fact that β > 0 in the statement of Theorem 4.5 implies that G′(R) is
infinite. When G(R) and G′(R) are finite and G′′(R) is infinite, the proof of Theorem 4.5
can be immediately adapted to provide the following statement.

Theorem 4.7. Second order Tauberian Theorem for Random Walks. Consider a symmet-
ric admissible aperiodic random walk with law µ on a countable group Γ. Let R > 0 be
the radius of convergence of the Green function G(x, y|r). Let ℓ : (0,+∞) → (0,+∞) be
a slowly varying function and let β > 0. Then the following assertions are equivalent.

(i’) For all x, y ∈ Γ, there exists Cx,y > 0 such that, as r → R,

d2G(x, y|r)
dr2

∼ Cxyℓ(R/(R− r))

(R− r)β
.

(ii’) For all x, y ∈ Γ, there exists C ′
x,y > 0 such that, as n → ∞,

µ∗n(x, y) ∼ C ′
xyR

−nnβ−3ℓ(n).

Similar statements hold for higher derivatives of the Green function.

Let us now prove the local limit theorems given in Theorem 1.2.
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4.2.2 The odd case

We consider the adapted probability measure µα constructed in Section 3 and we set
α = α∗ and write µ = µα. Recall that the measures ν1 and ν2 are assumed to be
symmetric, admissible, aperiodic and finitely supported on Γ1 = Z3 and on Γ2 = Z5

respectively. In particular, R1 = R2 = 1 by [25, Corollary 8.15] and

• the random walk is not spectrally degenerate along Γ1, so G′′
1(ζ1(R)) is finite,

• it is spectrally degenerate along Γ2, so ζ2(R) = R2 = 1,

• G2(1) and G′
2(1) are finite but G′′

2(1) is infinite,

• G′(R) is infinite.

Moreover, it follows from classical local limit theorems that as n → ∞, we have

ν∗n2 (e) ∼ Cn−5/2,

see for instance [25, Theorem 13.12]. Therefore, Theorem 4.7 implies that the function
G′′

2(t) satisfies as t → 1 :

G′′
2(t) ∼ C1

1√
1− t

(4.2)

By applying Corollary 4.3, there exists C2 > 0 such that as r → R,

G′′(r)

(G′(r))
2 ∼ C2

d

dr

(
r2I

(1)
2 (r)

)
.

Integrating this asymptotic differential equation between r and R and using the fact that
G′(R) = ∞ yields

1

G′(r)
∼ C2R

2I
(1)
2 (R)− C2r

2I
(1)
2 (r)

= C2r
2
(
I
(1)
2 (R)− I

(1)
2 (r)

)
+ C2(R

2 − r2)I
(1)
2 (R).

(4.3)

Indeed,
1

G′(r)
= C2R

2I
(1)
2 (R)− C2r

2I
(1)
2 (r) +

∫ R

r

o

(
G′′(ρ)

(G′(ρ))
2

)
dρ.

For every ϵ > 0, there exists r0 such that if r ≥ r0, we have∣∣∣∣∣o
(

G′′(r)

(G′(r))
2

)∣∣∣∣∣ ≤ ϵ

(
G′′(r)

(G′(r))
2

)
and so ∣∣∣∣∣

∫ R

r

o

(
G′′(r)

(G′(r))
2

)
dρ

∣∣∣∣∣ ≤ ϵ
1

G′(r)
.

By using (3.1) for the Green function G2, we get

d

dt
(tG2(t)) = tG′

2(t) +G2(t) =
∑
x∈Γ2

G2(e, x|t)G2(x, e|t).

For t = ζ2(r), we get I(1)2 (r) = G(r)2

G2(ζ2(r))2

(
ζ2(r)G

′
2(ζ2(r)) +G2(ζ2(r))

)
. Thus,

G2(ζ2(R))2

G(R)2
I
(1)
2 (R)− G2(ζ2(r))

2

G(r)2
I
(1)
2 (r) =

(
1− ζ2(r)

)
G′

2(1) +
(
G2(1)−G2(ζ2(r))

)
+ ζ2(r) (G

′
2(1)−G′

2(ζ2(r))) ,

(4.4)
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with

G′
2(1)−G′

2(ζ2(r)) =

∫ 1

ζ2(r)

G′′
2(ρ)dρ.

Therefore, by (4.2),

G′
2(1)−G′

2(ζ2(r)) ∼ C3

√
1− ζ2(r). (4.5)

According to Lemma 4.4, the two first terms in the right-hand side of (4.4) are of order
of magnitude 1− ζ2(r), while the third one has order of magnitude

√
1− ζ2(r) by (4.5).

Consequently,

I
(1)
2 (R)− I

(1)
2 (r) ∼ C4

√
1− ζ2(r). (4.6)

By Lemma 2.2, ζ2(r)G2(ζ(r)) = α2rG(r), so

α2(G(R)−G(r)) =
ζ2(R)

R
G2(ζ2(R))− ζ2(r)

r
G2(ζ2(r))

=
ζ2(R)

R
(G2(ζ2(R))−G2(ζ2(r))) +G2(ζ2(r))

(
ζ2(R)

R
− ζ2(r)

r

)
=

ζ2(R)

R
(G2(ζ2(R))−G2(ζ2(r))) +G2(ζ2(r))

(
1

R
− ζ2(r)

r

)
.

This readily implies

G(R)−G(r) ∼ C5(1− ζ2(r)) + C6(R− r).

Since G′(R) is infinite, (R− r) = o(G(R)−G(r)), hence

G(R)−G(r) ∼ C5(1− ζ2(r)). (4.7)

In particular, G(R)−G(r) = o(1), so applying 4.6, we get

I
(1)
2 (R)− I

(1)
2 (r) ∼ C7

√
G(R)−G(r).

The equality (R− r) = o(G(R)−G(r)) also yields

R2 − r2 = o
(√

G(R)−G(r)
)
,

hence by (4.3),
1

G′(r)
∼ C8

√
G(R)−G(r). (4.8)

Integrating between r and R, we have

(G(R)−G(r))3/2 ∼ C9(R− r).

Re-injecting this in (4.8), we deduce that

G′(r) ∼ C10
1

(R− r)1/3
. (4.9)

Therefore, by Theorem 4.5, we have

µ∗n(e) ∼ C11R
−nn−5/3.

This concludes the proof of the case d = 5 in Theorem 1.2.
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4.2.3 The even case

The proof for d = 6 is very similar. We still have that R1 = R2 = ζ2(R) = 1, G′(R) = ∞,
G′′

1(ζ1(R)) < ∞ and G′′
2(R2) = ∞. We can thus apply Corollary 4.3, so that (4.3) and (4.4)

again holds in this situation. Moreover, the classical local limit theorem (see for instance
[25, Theorem 13.12]) gives now

ν∗n2 (e) ∼ Cn−3 as n → ∞.

Therefore, it follows from Theorem 4.7 that the asymptotic (4.2) is replaced with

G′′
2(t) ∼ −C1 log(1− t), as t → 1. (4.10)

As above, we integrate G′′
2 between ζ2(r) and ζ2(R) = 1 to obtain

G′
2(1)−G′

2(ζ2(r)) =

∫ 1

ζ2(r)

G′′
2(ρ)dρ.

This time, using (4.10) yields

G′
2(1)−G′

2(ζ2(r)) ∼ −C2(1− ζ2(r)) log(1− ζ2(r)).

We deduce from (4.4) that

I
(1)
2 (R)− I

(1)
2 (r) ∼ −C3(1− ζ2(r)) log(1− ζ2(r)).

Applying (4.7) and Lemma 4.4, we have

I
(1)
2 (R)− I

(1)
2 (r) ∼ −C4(G(R)−G(r)) log(G(R)−G(r)).

As above, the fact that G′(R) is infinite yields (R − r) = o(G(R)−G(r)). Moreover, we
have G(R)−G(r) = o(1), so

R2 − r2 = o

(
(G(R)−G(r)) log(G(R)−G(r))

)
,

hence by (4.3),
1

G′(r)
∼ −C5(G(R)−G(r)) log(G(R)−G(r)). (4.11)

Integrating between r and R, we have

−(G(R)−G(r))2 log(G(R)−G(r)) ∼ C6(R− r), (4.12)

which we rewrite as

−(G(R)−G(r)) log(G(R)−G(r)) ∼ C6
R− r

G(R)−G(r)
.

Re-injecting this in (4.11), we deduce that

1

G′(r)
∼ C7

R− r

G(R)−G(r)
. (4.13)

Thus, by integration between r and R,

log(G(R)−G(r)) ∼ C8 log(R− r). (4.14)
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By multiplying (4.11) and (4.13) and using (4.14), we get

1

G′(r)2
∼ −C9(R− r) log(R− r),

i.e.

G′(r) ∼ C10
1√

−(R− r) log(R− r)
. (4.15)

Therefore, by Theorem 4.5, we have

µ∗n(e) ∼ C12R
−nn−3/2 log(n)−1/2.

This concludes the proof of the case d = 6 in Theorem 1.2.
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