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Abstract. We study random walks on relatively hyperbolic groups whose
law is convergent, in the sense that the derivative of its Green function is
finite at the spectral radius. When parabolic subgroups are virtually abelian,
we prove that such a random walk satisfies a local limit theorem of the form
pn(e, e) ∼ CR−nn−d/2, where pn(e, e) is the probability of going back to the
origin at time n, R is the inverse of the spectral radius of the random walk
and d is the minimal rank of a parabolic subgroup along which the random
walk is spectrally degenerate.

1. Introduction

1.1. General setting. Consider a finitely generated group Γ and a probability
measure µ on Γ. The µ-random walk on Γ starting at x ∈ Γ is defined as

Xx
n = xg1...gn,

where (gk) are independent random variables in Γ distributed as µ. The law of Xx
n

is denoted by pn(x, ·). For x = e, it is given by the convolution powers µ∗n of the
measure µ. The Local Limit problem consists in finding the asymptotic behavior of
pn(x, y) when n goes to infinity.

The action by isometries of a discrete group on a Gromov-hyperbolic space (X, d)
is said to be geometrically finite if for any o ∈ X, the accumulation points of Γo on
the Gromov boundary ∂X are either conical limit points or bounded parabolic limit
points. We refer to Section 2.1 below for a definition of these notions. A finitely
generated group Γ is relatively hyperbolic with respect to a collection of subgroups
Ω = {H1, ...,Hp} if it acts via a geometrically finite action on a proper geodesic
Gromov hyperbolic space X, such that, up to conjugacy, Ω is exactly the set of
stabilizers of parabolic limit points for this action. The conjugates of the elements
of Ω are called (maximal) parabolic subgroups. We will often assume that parabolic
subgroups are virtually abelian.

In this paper, we prove a local limit theorem for a special class of random walks on
relatively hyperbolic groups. We always assume in the sequel that µ is admissible,
i.e. its support generates Γ as a semigroup, symmetric, i.e. µ(g) = µ(g−1) for every
g, and aperiodic i.e. pn(e, e) > 0 for large enough n.

On the one hand, it is known that aperiodic random walks with exponential mo-
ments on virtually abelian groups of rank d satisfy the following local limit theorem,
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see [46, Theorem 13.12] and references therein :

(1.1) pn(e, e) ∼ CR−nn−d/2,
where C is a positive constant and R ≥ 1 is the inverse of the spectral radius of
the random walk.

On the other hand, Gouëzel [22] proved that for finitely supported, aperiodic
and symmetric random walks on non-elementary hyperbolic groups, the local limit
theorem always has the following form :

(1.2) pn(e, e) ∼ CR−nn−3/2,

where, again, C is a positive constant and R the inverse of the spectral radius of
the random walk. Notice that R > 1 since non-elementary hyperbolic groups are
non-amenable, see [28].

On relatively hyperbolic groups, the first author proved in [16] that the local limit
theorem (1.2) still holds provided the random walk is spectrally nondegenerate. This
notion is precisely introduced in Definition 3.1 below, see also [17, Definition 2.3].
Roughly speaking, the random walk is spectrally degenerate along a parabolic sub-
group H if a suited induced random walk on H (defined in Section 3) reaches its
spectral radius when the initial random walk on Γ reaches its own spectral radius.

In such case, the singularities of the Green function, hence the asymptotics
of the convolution powers of µ, are impacted by the singularities of the induced
Green functions on this parabolic subgroup. We make further devoted comments
in Section 3.2.

On the contrary, a random walk is said to be spectrally nondegenerate when
it is not spectrally degenerate along any parabolic subgroups in Ω. The spirit of
the result in [16] is that a spectrally nondegenerate random walk mainly sees the
underlying hyperbolic structure of the group. In contrast, for spectrally degenerate
random walks, one would expect to see in the local limit theorem the appearance
of a competition between the exponents d/2 and 3/2, related to the competition
between parabolic subgroups and the underlying hyperbolic structure.

The simplest examples of relatively hyperbolic groups are free products. Can-
dellero and Gilch [8] gave an almost complete classification of local limit theorems
that can occur for nearest neighbor random walks on free products of finitely many
abelian groups. In this context, the free factors play the role of parabolic subgroups.
They indeed proved that whenever the random walk gives enough weight to the free
factors, the local limit theorem is given by (1.1) as in the abelian case, whereas it
is of the form (1.2) in most remaining cases, see in particular the many examples
given in [8, Section 7].

Our paper is devoted to the general study of local limit theorems for the so
called convergent random walks on a relatively hyperbolic group. In this case, the
parabolic subgroups have the maximal possible influence on the random walk and
the singularities of the Green function on Γ are actually governed by the singularities
of the induced Green functions on parabolic subgroups. We give more details in
Section 3.2.

Our main results are proved when parabolic subgroups are abelian. Nevertheless,
let us emphasize that several intermediary results remain valid for any convergent
random walk and we expect that our work can be extended to more general classes
of parabolic subgroups. We discuss this problem in Section 8.
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1.2. Main results. Let µ be an admissible probability measure on a relatively
hyperbolic group Γ. Denote by Rµ the inverse of its spectral radius, which is the
radius of convergence of the Green function G(x, y|r), defined as

G(x, y|r) =
∑
n≥0

pn(x, y)rn.

This radius of convergence is independent of x and y.

Definition 1.1. Let Γ be a relatively hyperbolic group and let µ be a probability
measure on Γ. We say that µ, or equivalently the random walk driven by µ, is
convergent if

d

dr |r=Rµ
G(e, e|r) < +∞.

Otherwise, µ is said to be divergent.

All non-elementary cases presented above which show a local limit theorem of
abelian type (1.1) come from a convergent random walk.

This terminology was introduced in [15]. It comes from the strong analogy
between random walks on relatively hyperbolic groups on the one hand and the
geodesic flow on geometrically finite negatively curved manifolds on the other hand.
We discuss this analogy in Section 1.4. Spectrally nondegenerate random walks on
relatively hyperbolic groups are always divergent as shown in [15, Proposition 5.8].

In particular, if µ is convergent, then it is necessarily spectrally degenerate along
some parabolic subgroup. Moreover, whenever parabolic subgroups are virtually
abelian, each of them has a well-defined rank.

Definition 1.2. Let Γ be a relatively hyperbolic group with respect to virtually
abelian subgroups and let µ be a convergent probability measure on Γ. The rank of
spectral degeneracy of µ is the minimal rank of a parabolic subgroup along which µ
is spectrally degenerate.

By the results of Candellero and Gilch [8, Section 7], convergent measures do
exist. We do not attempt in this paper to systematically construct such a measure
on any relatively hyperbolic group with virtually abelian parabolic subgroups, but
we give more details on Candellero and Gilch’s constructions in Section 3.2. The
central result of our paper is the following local limit theorem.

Theorem 1.3. Let Γ be a finitely generated relatively hyperbolic group with respect
to virtually abelian subgroups. Let µ be a finitely supported, admissible, symmetric
and convergent probability measure on Γ. Assume that the corresponding random
walk is aperiodic. Let d be the rank of spectral degeneracy of µ. Then for every
x, y ∈ Γ there exists Cx,y > 0 such that

pn(x, y) ∼ Cx,yR−nµ n−d/2.

If the µ-random walk is not aperiodic, similar asymptotics hold for p2n(x, y) if the
distance between x and x′ is even and for p2n+1(x, y) if this distance is odd.

Note that by [15, Proposition 6.1], the rank of any virtually abelian parabolic
subgroup along which µ is spectrally degenerate is at least 5. Therefore this local
limit theorem cannot coincide with the one given by (1.2) when µ is spectrally
nondegenerate. We also get the following corollary.
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Corollary 1.4. Let Γ be a finitely generated relatively hyperbolic group with respect
to virtually abelian subgroups. Let µ be a finitely supported, admissible, symmetric
and convergent probability measure on Γ such that the corresponding random walk
is aperiodic. Let d be the rank of spectral degeneracy of µ. Denote by qn(x, y) the
probability that the first visit to y in positive time starting at x is at time n. Then
for every x, y ∈ Γ there exists C ′x,y > 0 such that

qn(x, y) ∼ C ′x,yR−nµ n−d/2.

Basically, the proof of Theorem 1.3 relies on two main steps. First, we give a
precise expansion of the Green functions of induced transition kernels on parabolic
subgroups. Second, we compare the singularities of these induced Green functions
with the singularities of the Green function associated with the initial random
walk. It follows from the proof that the main result of this second step, namely
Theorem 5.4, can be shown without assuming that parabolic subgroups are virtually
abelian, but as soon as (Γ, µ) satisfy two conditions :

• The Martin boundary of (Γ, µ) is stable in the sense of Definition 2.6;
• The Martin boundary of the first return kernel to any dominant parabolic

subgroup is reduced to a point at the spectral radius.
An important part in our work, which is of independent interest, is thus the follow-
ing fact.

Theorem 1.5 (Theorem 4.1). Let Γ be a finitely generated relatively hyperbolic
group with respect to virtually abelian subgroups. Let µ be a finitely supported,
admissible and symmetric probability measure on Γ. Then the Martin boundary of
(Γ, µ) is stable.

This complements the results of [17]. Along Section 4, we prove precise results on
the asymptotics of the Green function at the spectral radius in a finite extension of
a virtually abelian finitely generated group, which show this stability. See precisely
Proposition 4.2.

1.3. Current classification of local limit theorems. We discuss here some
partial results that we get for non-convergent random walks.

For all k ∈ N, we write

I(k)(r) =
∑

x1,...,xk∈Γ

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, e|r).

It follows from Lemma 2.7 that (Γ, µ) is convergent if and only if I(1)(Rµ) < +∞.
For all parabolic subgroup H < Γ, we write

I
(k)
H (r) =

∑
x1,...,xk∈H

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, e|r).

The following terminology was introduced in [15].

Definition 1.6. A symmetric admissible and finitely supported random walk µ on
a relatively hyperbolic group Γ is said to be spectrally positive recurrent if

(1) µ is divergent, i.e. I(1)(Rµ) = +∞;
(2) for all parabolic subgroup H < Γ,

I
(2)
H (Rµ) < +∞.
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Any random walk which is spectrally nondegenerate is spectrally positive recur-
rent, see [15, Proposition 3.7]. Once again, in our setting, this terminology was
inspired by the close analogy with the study of the geodesic flow on negatively
curved manifolds (see Section 1.4 below and [15, Section 3.3] for more details).
In fact, the terminology positive recurrent is classical for the study of countable
Markov shift, see for instance to [43], [27] and [37]. Note that the analogous notion
of spectral nondegeneracy is given for countable Markov shifts by the notion of
strong positive recurrence, also called stable positive recurrence, see [27] or [38].

We discuss in Section 7 the relationship between divergence and spectral positive
recurrence of the random walk. As a matter of fact, when parabolic subgroups are
virtually abelian, both notions are equivalent unless the random walk is spectrally
degenerate along some parabolic subgroup of rank 5 or 6, see Proposition 7.1.
This allows us to classify almost all possible behaviors for pn(e, e) on a relatively
hyperbolic group whose parabolic subgroups are virtually abelian, as illustrated by
the following corollary, see also the table in Section 1.4.

Notation. For two functions f and g, we write f . g if there exists a constant C
such that f ≤ Cg. Also, we write f � g if both f . g and g . f . If the implicit
constants depend on a parameter and the dependency is not clear from the context,
we avoid this notation.

Corollary 1.7. Let Γ be a relatively hyperbolic group whose parabolic subgroups
are virtually abelian. Let µ be a finitely supported admissible symmetric probability
on Γ. Assume that µ is not spectrally degenerate along any parabolic subgroup of
rank 5 or 6. Then one of the following possibilities occurs.

[15], Theorem 1.4: If µ is spectrally positive recurrent, then as n→ +∞,

pn(e, e) � CR−nn−3/2.

[16], Theorem 1.1: Furthermore, if µ is spectrally nondegenerate, then as
n→ +∞,

pn(e, e) ∼ CR−nn−3/2.

Theorem 1.3: If µ is convergent, then as n→ +∞,

pn(e, e) ∼ CR−nn−d/2,
where d is the rank of spectral degeneracy of µ.

We conjecture that for any spectrally positive recurrent walk (even spectrally
degenerate), there should be a local limit theorem pn(e, e) ∼ CR−nn−3/2. If Γ
has parabolic subgroups which are virtually abelian of rank 5 or 6, it is possible to
construct examples of random walks which are divergent but not spectrally positive
recurrent, whose local limit theorems are not classified in this corollary. Examples of
such groups with their corresponding local limit theorems are studied in a separate
paper [19], see also Remark 7.1 at the end of Section 7.

1.4. Geodesic flow on negatively curved manifolds and random walks. For
convenience of the reader, we present now some results on the ergodic properties of
the geodesic flow on geometrically finite manifolds with negative curvature, which
greatly influenced this work.

Let (M, g) = (M̃, g)/Γ be a complete Riemannian manifold, where Γ = π1(M)

acts discretely by isometries on the universal cover (M̃, g). Assume that M has
pinched negative curvature, i.e. its sectional curvatures κg satisfy the inequalities
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−b2 ≤ κg ≤ −a2 < 0 for some constants b > a > 0. Also assume that the action of
Γ on (M̃, dg) is geometrically finite (see Section 2.1 below).

By definition Γ is then relatively hyperbolic with respect to a finite family of par-
abolic subgroups H1, ...,Hp. Moreover, the pinched curvature hypothesis implies
that the Hk are virtually nilpotent. The interested reader can find in [6] several
other equivalent definitions of geometrical finiteness in the context of smooth neg-
atively curved manifolds.

In this context, the Poincaré series associated with the group action is defined
for x, y ∈ M̃ as PΓ(x, y|s) =

∑
γ∈Γ e−sdg(x,γy). More generally, for each subgroup

H of Γ, the Poincaré series of H at s is

PH(x, y|s) =
∑
γ∈H

e−sdg(x,γy) ∈ (0,+∞].

There exists δH ≥ 0 independent of x, y such that this series converges if s > δH
and diverges if s < δH . This quantity is called the critical exponent of H. The
action of H on (M̃, g) is called convergent if PH(x, y|δH) < +∞, and divergent
otherwise.

Let µ be a random walk on Γ. We define for x, y ∈ Γ the symmetrized r-Green
distance by

(1.3) dr(x, y) = log

(
Gµ(x, y|r)
Gµ(e, e|r)

)
+ log

(
Gµ(y, x|r)
Gµ(e, e|r)

)
.

This (signed) distance was introduced in [15] and it is an elaborated version of the
classical Green distance defined by Blachère and Brofferio [5].

By Lemma 2.7 below, for all x, y ∈ Γ,

Pµ(x, y|r) =
∑
γ∈Γ

edr(x,γy) =
1

G(e, e|r)2

∑
z∈Γ

G(x, z|r)G(z, y|r) � d

dr |r=Rµ
G(x, y|r).

As emphasized by our notation, the classical Poincaré series PΓ(x, y|s) of Γ is
analogous in the context of group action on a metric space to the series Pµ(x, y|r)
associated with the random walk on Γ, which is of same order as the r-derivative
of the Green function.

The Riemannian metric g plays the role of the law µ and the critical exponent
δΓ of the Poincaré series plays the role of the logarithm of the radius of convergence
of the Green function.

The local limit theorem describes the asymptotic behavior as n → +∞ of the
quantity p(n)(x, y) for any x, y ∈ Γ; in the geometrical setting, it is replaced by the
orbital counting asymptotic, that is the asymptotic behavior as R → +∞ of the
orbital function NΓ(x, y,R) defined for all x, y ∈ M̃ by

NΓ(x, y,R) := # {γ ∈ Γ ; d(x, γy) ≤ R} .
The following definition, which is similar to Definition 1.6 above, comes from the

results of [10] even though the terminology has been fixed in [34] (in the full general
setting of negatively curved manifolds, not necessarily geometrically finite).

Definition 1.8. Let (M, g) = (M̃, g)/Γ be a geometrically finite Riemannian man-
ifold with pinched negative curvature, where Γ = π1(M). Let o ∈ M̃ be fixed. The
action of Γ on (M̃, g) is said to be positive recurrent if

(1) the action of Γ on (M̃, g) is divergent;
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(2) for all parabolic subgroup H ⊂ Γ,∑
h∈H

d(o, h.o)e−sd(o,po) < +∞.

We refer to [34, Definition 1.3] for a definition of positive recurrence beyond geo-
metrically finite manifolds. The action of Γ is said to be strongly positive recurrent -
in the literature, one also says that Γ has a critical gap - if for all parabolic subgroup
H ⊂ Γ, we have δH < δΓ. This is similar to the notion of spectral nondegeneracy
for random walks on relatively hyperbolic groups.

Theorem A of [10] shows that strongly positive recurrent actions are positive
recurrent (only the divergence is non-trivial). This has later been shown for more
general negatively curved manifolds in [40, Theorem 1.7] and the analogous result
for random walks is given by Proposition 3.7 of [15].

Moreover, Theorem B of [10] shows that the action is positive recurrent if and
only if the geodesic flow admits an invariant probability measure of maximal en-
tropy. This has been shown for general negatively curved manifolds in [34, Theo-
rem 1.4]. Combined with Theorem 4.1.1 of [36], it gives the following asymptotic
counting.

Theorem 1.9. Let (M, g) = (M̃, g)/Γ be a negatively curved manifold.
• If the action of Γ is positive recurrent, then for all x, y ∈ M̃ , there is
Cxy > 0 such that, as R→ +∞,

NΓ(x, y,R) ∼ CxyeδΓR.

• If the action of Γ is not positive recurrent, then for all x, y ∈ M̃ ,

NΓ(x, y) = o
(
eδΓR

)
.

Getting precise asymptotics of NΓ(x, y,R) when the action of Γ is not positive re-
current is in general difficult. To the authors’ knowledge, the only known examples
are abelian coverings (cf [35]), which are not geometrically finite, and geometrically
finite Schottky groups whose parabolic factors have counting functions satisfying
some particular tail condition and for which asymptotics have been obtained in
[11], [44] and [32]. Recall that Schottky groups are free products of elementary
groups whose limit sets are at a positive distance from each other, see for instance
Section 2.4 of [32] for a definition.

In view of our analogy with random walks on relatively hyperbolic groups, we
recall the following result from [31], which gathers in some particular cases results of
[44] and [32]. It can be thought as a Riemannian version of the work of Candellero
and Gilch [8] presented above.

Theorem 1.10. Let (M, gH) = H2/Γ be a hyperbolic surface where Γ is a Schottky
group with at least one parabolic free factor H = 〈h〉. We fix a parameter b ∈ (1, 2).
Then, there exists a family (ga,b)a∈(0,+∞) of negatively curved Riemannian metrics
on M obtained by perturbation of the hyperbolic metric gH in such a way that

- the metrics ga,b coincides with gH outside a small neighborhood (controlled by
the value a) of the cuspidal end associated with H;

- the distance da,b induced by ga,b satisfies the following condition: for any fixed
point x ∈ H2,

da,b(x, h
nx) = 2

(
ln |n|+ b ln | ln |n||

)
+O(1).

Then, there exists a “critical value” a∗ > 0 such that :
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• if a > a∗ then the action of Γ on (H2, ga) is strongly positive recurrent. In
particular for all x, y ∈ H2,

NΓ(x, y,R) ∼ CxyeδΓR;

• if a = a∗, then the action of Γ on (H2, ga) is divergent but non positive
recurrent. Moreover, for all x, y ∈ H2,

NΓ(x, y,R) ∼ Cxy
eδΓR

R2−b ;

• if a ∈ (0, a∗), then the action of Γ on (H2, ga) is convergent and for all
x, y ∈ H2,

NΓ(x, y,R) ∼ Cxy
eδΓR

Rb
.

We end this paragraph with a table that summarizes the different cases that
arise in the study of local limit theorems of relatively hyperbolic groups. We also
indicate the corresponding results obtained in the framework of geometrically finite
non-compact surfaces endowed with the metric ga defined in Theorem 1.10.

Local Limit Theorem Counting problem
µ spectrally nondegenerate critical gap property δΓ > δH

(so µ spectrally positive recurrent) (so Γ positive recurrent)

pn(x, y) ∼ Cx,yR−nµ n−3/2 NΓ(x, y,R) ∼ CxyeδΓR

see [16] see [36], [31]
µ spectrally degenerate Γ exotic i.e δΓ = δH

+ +
spectrally positive recurrent positive recurrent

Rough estimate: pn(x, y) � R−nµ n−3/2 NΓ(x, y,R) ∼ CxyeδΓR

see [15] see [36] [31]

Conjecture: pn(x, y) ∼ Cx,yR−nµ n−3/2

µ spectrally degenerate Γ exotic i.e δΓ = δH
+ divergent + + divergent +

not spectrally positive recurrent not positive recurrent

rank of spectral degeneracy 5 or 6 NΓ(x, y,R) ∼ Cxy e
δΓR

R2−b

possible exotic local limit theorem

see [19] see [44], [31]
µ convergent Γ convergent

(so µ spectrally degenerate) (so Γ exotic)

pn(x, y) ∼ Cx,yR−nµ n−dµ/2 NΓ(x, y,R) ∼ Cxy e
δΓR

Rb

see Theorem 1.3 see [32]
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On the left column, Γ is a relatively hyperbolic group with respect to virtually
abelian parabolic subgroups H1, . . . , Hp (up to conjugacy). We consider a prob-
ability measure µ on Γ which is finitely supported, admissible and symmetric and
such that the random walk is aperiodic. In the case where µ is convergent, we
denote by dµ its rank of spectral degeneracy.

On the right column, Γ is a geometrically finite Fuchsian group with parabolic
subgroups H1, . . . ,Hp (up to conjugacy). We assume that H2/Γ is endowed with
the metric ga,b and set δH = max(δH1 , . . . , δHp).

1.5. Organization of the paper. In Section 2, we give background on relatively
hyperbolic groups, transition kernels with their Green function and Martin bound-
ary and we recall relative Ancona inequalities which roughly state that the random
walk tracks relative geodesics with high probability in a relatively hyperbolic group.

In Section 3, we study the first return kernel pH,r(., .) to a parabolic subgroup H
of rank d. Assuming that the random walk is spectrally degenerate along H we give
asymptotics for the jth derivative of the Green function associated to pH,r where
j = dd/2e − 1 (see Proposition 3.16).

In Section 4, we assume that parabolic subgroups are virtually abelian and show
that the Martin boundary is stable in the sense of Definition 2.6 below (see Theo-
rem 4.1). This had already been shown in [17] when the random walk is spectrally
nondegenerate.

In Section 5, we assume that the Martin boundary of the full random walk
is stable and the Martin boundary of the walk restricted to influential parabolic
subgroups is reduced to a point at the spectral radius. Under these conditions,
we prove that asymptotics for the jth derivative of the Green function of the full
random walk are given by the analogous asymptotics for the transition kernels
of the first return to the parabolic subgroups along which the walk is spectrally
degenerate (see Theorem 5.4).

In Section 6, we gather the ingredients of the three previous section which give
asymptotics for the jth derivative of the full Green function, where j = dd/2e − 1
and d is the rank of spectral degeneracy of the walk. Theorem 1.3 follows, applying
a Tauberian type theorem proved in [23].

Finally, in the two last sections, we present possible extensions of our main
results. In Section 7, we show that whenever the parabolic subgroups are virtually
abelian and the random walk is divergent and not spectrally degenerate along a
parabolic subgroup of rank 5 or 6, the random walk is automatically spectrally
positive recurrent. In Section 8, we explain exactly where we use that parabolic
subgroups are virtually abelian and how our work might be generalized. We also
show limitation in our overall strategy.

2. Random walks on relatively hyperbolic groups

2.1. Relatively hyperbolic groups and relative automaticity. Relatively hy-
perbolic groups have been studied by many authors with several equivalent view-
points, see for instance [7], [13], [20], [30] just to name a few. We briefly recall here
their definition, following the terminology of Bowditch.

2.1.1. Limit set. Consider a discrete group Γ acting by isometries on a Gromov-
hyperbolic space X. Let o ∈ X be fixed. Define the limit set ΛΓ as the closure of
Γo in the Gromov boundary ∂X of X. This set does not depend on o.
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A point ξ ∈ ΛΓ is called conical if there is a sequence (γn)n in Γ and distinct
points ξ1, ξ2 in ΛΓ such that, for all ξ 6= ζ in ΛΓ, the sequences (γnξ)n and (γnζ)n
converge to ξ1 and ξ2 respectively. A point ξ ∈ ΛΓ is called parabolic if its stabilizer
Γξ in Γ is infinite and the elements of Γξ fix only ξ in ΛΓ. A parabolic limit point
ξ in ΛΓ is said to be bounded if Γξ acts cocompactly on ΛΓ \ {ξ}. The action of Γ
on X is said to be geometrically finite if ΛΓ only contains conical limit points and
bounded parabolic limit points.

2.1.2. Relatively hyperbolic groups. Let Γ be a finitely generated groups and S be a
fixed generating set. Let Ω0 be a finite collection of subgroups, none of them being
conjugate. Let Ω be the closure of Ω0 under conjugacy.

The relative graph Γ̂ = Γ̂(S,Ω0) is the Cayley graph of Γ with respect to S and
the union of all H ∈ Ω0 [30]. It is quasi-isometric to the coned-off graph introduced
by Farb in [20]. The distance d̂ in Γ̂ is called the relative distance. We also denote
by Ŝn the sphere of radius n centered at e in Γ̂. Also, we call relative geodesic a
geodesic in Γ̂.

Theorem 2.1 ([7]). Using the previous notations, the following conditions are
equivalent.

(1) The group Γ has a geometrically finite action on a Gromov hyperbolic space
X such that the parabolic limit points are exactly the fixed points of elements
in Ω.

(2) The relative graph Γ̂(S,Ω0) is Gromov hyperbolic for the relative distance
d̂, and for all L > 0 and all x ∈ Γ̂, there exist finitely many closed loops of
length L > 0 which contains x.

When these conditions are satisfied, the group Γ is said to be relatively hyperbolic
with respect to Ω0.

Assume now that Γ is relatively hyperbolic with respect to Ω, and let X be
a Gromov hyperbolic space on which Γ has a geometrically finite action whose
parabolic subgroups are the element of Ω. The limit set ΛΓ ⊂ ∂X is called the
Bowditch boundary of Γ. It is unique up to equivariant homeomorphism.

Archetypal examples of relatively hyperbolic groups with respect to virtually
abelian subgroups are given by finite co-volume Kleinian groups. In this case, the
group acts via a geometrically finite action on the hyperbolic space Hn and the
Bowditch boundary is the full sphere at infinity Sn−1.

2.1.3. Automatic structure. The notion of relative automaticity was introduced by
the first author in [15].

Definition 2.2. A relative automatic structure - or shortly an automaton - for
Γ with respect to the collection of subgroups Ω0 and with respect to some finite
generating set S is a directed graph G = (V,EV , v∗) where the set of vertices V is
finite, with a distinguished vertex v∗ called the starting vertex and with a labeling
map φ : EV → S ∪

⋃
H∈Ω0

H such that the following holds. If ω = (e1, . . . , en) is a
path of adjacent edges in G, define φ(e1, ..., en) = φ(e1) . . . φ(en) ∈ Γ. Then,

• no edge ends at v∗, except the trivial edge starting and ending at v∗,
• every vertex v ∈ V can be reached from v∗ in G,
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• for every path ω = (e1, ..., en) of adjacent edges in G, the path e, φ(e1),
φ(e1, e2), . . . , φ(e1, . . . , en) is a relative geodesic from e to φ(e1, . . . , en),
i.e. the image of e, φ(e1), φ(e1,2 ), ..., φ(e1, . . . , en) in Γ̂ is a geodesic for the
metric d̂,

• the extended map φ is a bijection between paths in G starting at v∗ and
elements of Γ.

Theorem 2.3. [15, Theorem 4.2] If Γ is relatively hyperbolic with respect to Ω,
then for any finite generating set S and for any choice of a full family Ω0 of rep-
resentatives of conjugacy classes of elements of Ω, Γ is relatively automatic with
respect to S and Ω0.

This statement is proved by adapting Cannon’s standard method [9]. We first
construct an automaton that encodes relative geodesics and then show that there
exist finitely many relative cone-types, see [15, Definition 4.7, Proposition 4.9] for
more details. To obtain a bijection between paths in the automaton and elements
of Γ, one fixes an order on the union of S and all the H ∈ Ω0, which allows to choose
the smallest possible relative geodesics for the associated lexicographical order.

Relative automaticity is a key point in [16] to establish a local limit theorem in
the spectrally nondegenerate case. We will use again this notion in Section 5.

2.2. Transition kernels and Martin boundaries. Let us give a general presen-
tation of the notion of Martin boundaries. In what follows, E is a countable space
endowed with the discrete topology and o is a fixed base point in E.

Definition 2.4. A transition kernel p on E is a non-negative map p : E×E → R≥0

with finite total mass, i.e. such that

∀x ∈ E,
∑
y∈E

p(x, y) < +∞.

When for every x, the total mass is 1 (which we do not require), we call it a
probability transition kernel. It then defines a Markov chain on E, i.e. a random
process (Xn)n≥0 such that P (Xn+1 = b|Xn = a) = p(a, b). In general, we say that
p defines a chain on E.

If µ is a probability measure on a finitely generated group Γ, then the kernel
pµ(g, h) = µ(g−1h) is a probability transition kernel and the corresponding Markov
chain is the µ-random walk.

Definition 2.5. Let p : E × E → R+ be a transition kernel on E.
• The Green function associated to p is defined by

Gp(x, y) =
∑
n≥0

p(n)(x, y) ∈ [0,+∞],

where p(n) is the nth convolution power of p, i.e.

p(n)(x, y) =
∑

z1,...,zn−1∈E
p(x, z1)p(z1, z2) · · · p(zn−1, y).

• The chain defined by p is finitely supported if for every x ∈ E, the set of
y ∈ E such that p(x, y) > 0 is finite.

• The chain is admissible (or irreducible) if for every x, y ∈ E, there exists
n such that p(n)(x, y) > 0.
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• The chain is aperiodic (or strongly irreducible) if for every x, y ∈ E, there
exists n0 such that ∀n ≥ n0, p(n)(x, y) > 0.

• The chain is transient if the Green function is everywhere finite.

Consider a transition kernel p defining an irreducible transient chain. For y ∈ E,
define the Martin kernel based at y as

Kp(x, y) =
Gp(x, y)

Gp(o, y)
.

The Martin compactification of E with respect to p and o is a compact space
containing E as an open and dense space, whose topology is described as follows.
A sequence (yn)n in E converges to a point ξ in the Martin compactification if and
only if the sequence (K(·, yn))n converges pointwise to a function which we write
K(·, ξ). Up to isomorphism, it does not depend on the base point o and we denote
it by Ep. We also define the p-Martin boundary (or Martin boundary, when there
is no ambiguity) as ∂pE = Ep \ E. We refer for instance to [39] for a complete
construction of the Martin compactification.

The Martin boundary contains a lot of information. It was first introduced to
study non-negative harmonic functions. We use it here to prove our local limit
theorem.

Let us now define the notion of stability for the Martin boundary, following
Picardello and Woess [33]. Assuming that p is irreducible, the radius of convergence
of the Green function Gp(x, y) is independent of x and y. Denote it by Rp and for
all 0 ≤ r ≤ Rµ let us set Gp(x, y|r) = Grp(x, y), i.e.

Gp(x, y|r) =
∑
n≥0

rnp(n)(x, y).

Also set K(x, y|r) = Krp(x, y). The Martin compactification, respectively the
Martin boundary associated with K(·, ·|r), is called the r-Martin compactification,
respectively the r-Martin boundary, and is denoted by Erp, respectively by ∂rpE.

Definition 2.6. The Martin boundary of E with respect to p is stable if the fol-
lowing conditions are satisfied.

(1) For every x, y ∈ E, we have Gp(x, y|Rp) < +∞ where Rp is the radius of
convergence of the Green function.

(2) For every 0 < r1, r2 < Rp, the sequence (K(·, yn|r1))n converges pointwise
if and only if (K(·, yn|r2))n converges pointwise, i.e. the r1 and r2-Martin
compactifications are homeomorphic. For simplicity we then write ∂pΓ for
the r-Martin boundary whenever 0 < r < Rp.

(3) The identity on Γ extends to a continuous and equivariant surjective map
φp from E∪∂pE to E∪∂RppE. We then write K(x, ξ|Rp) = K(x, φp(ξ)|Rp)
for ξ ∈ ∂pE.

(4) The map (x, ξ, r) ∈ E×∂pE×(0, Rp] 7→ K(x, ξ|r) is continuous with respect
to (x, ξ, r).

We say that the Martin boundary is strongly stable if it is stable and the second
condition holds for every 0 < r1, r2 ≤ Rp; in this case, the map φp induces a
homeomorphism from the r-Martin boundary to the Rp-Martin boundary.

If p is the transition kernel of an admissible random walk on a finitely generated
group which is non-amenable, it was shown by Guivarc’h in [26, p. 20, remark b] that
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the condition (1) is always satisfied. Note that non-elementary relatively hyperbolic
groups are always non-amenable.

The Martin boundary of any finitely supported symmetric admissible random
walk on a hyperbolic group is strongly stable. More generally, the Martin boundary
of a finitely supported symmetric and admissible random walk on a relatively hy-
perbolic group is studied in [21], [18] and [17]. In particular, whenever the parabolic
subgroups are virtually abelian, the homeomorphism type of the r-Martin bound-
ary is described in [17]. It is proved there that the Martin boundary is strongly
stable if and only if the random walk is spectrally non nondegenerate. We prove
in Section 4 that when the parabolic subgroups are virtually abelian, the Martin
boundary of a spectrally degenerate random walk is still stable (but not strongly
stable).

Let us also mention a central computation which we use many times.

Lemma 2.7. Let p : E × E → R+ be a transition kernel and for all r ∈ [0, Rp],
write again Gp(x, y|r) =

∑
n≥0 r

np(n)(x, y). Then

d

dr
(rGp(x, y|r)) =

∑
z∈E

G(x, z|r)G(z, y|r).

This result was first observed by Gouëzel and Lalley [23, Proposition 1.9], al-
though it had been implicitly used before, see for instance [46, (27.6)]. The proof is
a standard manipulation of power series. The generalization to higher derivatives
is given by Lemma 5.1 below.

Standing assumptions. From now, and until the end of this paper, we fix a
finitely generated group Γ relatively hyperbolic with respect to a finite collection
of parabolic subgroups Ω0 = {H1, ...,HN}. We fix a finitely supported symmetric
probability measure µ on Γ whose associated random walk is admissible and irre-
ducible. In particular, we assume that the support S of µ is a finite generating set,
which is fixed from now on; the distance on Γ is the word distance induced by S.
This implies in particular that for all x, y ∈ Γ, if x and y are on the same geodesic
in Γ, then there exists n > 0 such that p(n)(x, y) > 0.

In the sequel, we denote by Γ̂ the relative graph Γ̂(S,Ω0), by Rµ the inverse of
the spectral radius of µ and by G(x, y|r) the Green function, where 0 ≤ r ≤ Rµ
and x, y ∈ Γ. As already mentioned, since Γ is not amenable and µ is admissible,
it follows from [26] that G(x, y|Rµ) < +∞ for all x, y ∈ Γ.

2.3. Relative Ancona inequalities. For any set A ⊂ Γ, we set

(2.1) G(x, y;A|r) =
∑
n≥1

∑
g1,...,gn−1∈A

rnµ(x−1g1)µ(g−1
1 g2)...µ(g−1

n−2gn−1)µ(g−1
n−1y).

This quantity is called the relative Green function of paths staying in A except
maybe at their beginning and end. Writing Ac = Γ\A, the relative Green function
pA,r(., .) := G(., .;Ac|r) is called the first return kernel to A.

For all y ∈ Γ and η > 0, we denote by Bη(y) the ball of center y and radius η in
Γ, i.e. Bη(y) = {z ∈ Γ | d(y, z) ≤ η}. We will use repeatedly the following results.

Proposition 2.8. [17, Corollary 3.7] For every ε > 0 and every D ≥ 0, there exists
η such that the following holds. For every x, y, z such that y is within D of a point
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on a relative geodesic from x to z and for every r ≤ Rµ,
G(x, z;Bη(y)c|r) ≤ εG(x, z|r).

This proposition can be interpreted as follows : with high probability, a random
path from x to z has to pass through a neighborhood of y, whenever y is on a
relative geodesic from x to z. As a consequence, we have the following.

Proposition 2.9. (Weak relative Ancona inequalities) For every D ≥ 0, there
exists C such that the following holds. For every x, y, z such that y is within D of
a point on a relative geodesic from x to z and for every r ≤ Rµ,

1

C
G(x, y|r)G(y, z|r) ≤ G(x, z|r) ≤ CG(x, y|r)G(y, z|r).

This is proved by decomposing a trajectory from x to z according to its potential
first visit to Bη(y), where η is chosen such that G(x, z;Bη(y)c|r) ≤ 1/2G(x, z|r)
from Proposition 2.8, see precisely [21, Theorem 5.1, Theorem 5.2].

These inequalities were first proved by Ancona [2] in the context of hyperbolic
groups for r = 1. The uniform inequalities up to the spectral radius were proved by
Gouëzel and Lalley [23] for co-compact Fuchsian groups and then by Gouëzel [22]
in general. For relatively hyperbolic groups, Gekhtman, Gerasimov, Potyagailo and
Yang [21] proved them for r = 1. The uniform inequalities up to the spectral radius
were then proved by the first author and Gekhtman [17]. They play a key role in
the identification of the Martin boundary, see [21] for several other applications.

Let us mention that there exist strong relative Ancona inequalities (cf [16, Defi-
nition 2.14]), that are a key ingredients in [16] to prove a local limit theorem in the
spectrally nondegenerate case. However, we do not need them in the present paper.
We thus call relative Ancona inequalities the weak relative Ancona inequalities.

3. Asymptotics of the first return to parabolic Green functions

Throughout this section, we fix a parabolic subgroup H ∈ Ω0. For η ≥ 0, the
η-neighborhood of H is denoted by Nη(H) .

We introduce below the first return transition kernel to Nη(H). The main goal
of this section is to establish asymptotics for the derivatives of the Green function
associated to this first return kernel.

3.1. First return transition kernel and spectral degeneracy. For r ≤ Rµ,
let pH,η,r(h, h′) = G(h, h′;Nη(H)c|r) be the first return kernel to Nη(H), i.e.

pH,η,r(h, h
′) =

∑
n≥1

∑
g1,...,gn−1
/∈Nη(H)

rnµ(h−1g1)µ(g−1
1 g2)...µ(g−1

n−2gn−1)µ(g−1
n−1h

′).

For simplicity, when η = 0, we write pH,r = pH,0,r.
The nth convolution power of pH,η,r is denoted by p

(n)
H,η,r and the associated

Green function, evaluated at t, is

GH,η,r(h, h
′|t) :=

∑
n≥1

p
(n)
H,η,r(h, h

′)tn.

The radius of convergence RH,η(r) of this power series is the inverse of the spectral
radius of the associated chain.

For simplicity, we write RH,η = RH,η(Rµ) and RH = RH,0(Rµ). Recall the
following definition from [17].



LOCAL LIMIT THEOREM FOR CONVERGENT REL. HYPERBOLIC GROUPS 15

Definition 3.1. The measure µ, or equivalently the random walk, is said to be
spectrally degenerate along H if RH = 1.

Remark 3.1. For suited random walks on a free product, there are several equivalent
formulations of spectral degeneracy, some of them already pointed out in the work
of Woess [46]: we refer to [19] for a proof of these equivalences. For general relatively
hyperbolic groups, no simpler characterisation of spectral degeneracy is known.

Since H is fixed for the remainder of the section, we drop the index H in the
notations. We now enumerate a list of properties satisfied by pη,r and Gη,r.

• Since the µ-random walk on Γ is invariant under the action of Γ, the transi-
tion kernel pη,r is H-invariant, i.e. pη,r(hx, hy) = pη,r(x, y) for every h ∈ H
and every x, y ∈ Nη(H).

• By definition, pη,r(x, y) > 0 if and only if there is a first return path in
Nη(H) from x to y, i.e. if there exist n ≥ 0 and a path x, g1, ..., gn, y in Γ
with positive probability such that gi /∈ Nη(H) for i = 1, ..., n.

• Therefore, pη,r is admissible, i.e. for every x, y ∈ Γ, there exists n such that
p

(n)
η,r (x, y) > 0, see [18, Lemma 5.9] for a complete proof.

The following lemma shows that when x and y are in Nη(H), the Green function
of pη,r at 1 equals the full Green function at r. The proof is straightforward, see
[17, Lemma 4.4]. This property will be frequently used.

Lemma 3.2. With the above notations, for every η ≥ 0, every x, y ∈ Nη(H) and
every r ≤ Rµ,

Gη,r(x, y|1) = G(x, y|r),

For x, y ∈ Γ, we write dH(x, y) the distance between the projections πH(x) and
πH(y) of x and y respectively onto H. Since projections on parabolic subgroups are
well-defined up to a uniformly bounded error term, see [42, Lemma 1.15], dH(x, y)
is also defined up to a uniformly bounded error term. Letting M ≥ 0, we say that
pη,r has exponential moments up to M if for any x ∈ Nη(H), we have∑

y∈Nη(H)

pη,r(x, y)eMdH(x,y) < +∞.

The following lemma is the main reason for introducing pH,η,r with η > 0.

Lemma 3.3. [17, Lemma 4.6] For every M ≥ 0, then exists ηM such that for every
η ≥ ηM and for every r ≤ Rµ, pη,r has exponential moments up to M .

Note that ηM does not depend on r, hence, choosing the neighborhood of H large
enough, all transition kernels pη,r have exponential moments up to M , uniformly
in r.

3.2. Spectrally degenerate and convergent random walks. We give here
more details on convergent random walks and the relation between this notion and
spectral degeneracy. As aforementioned, the following result was proved in [15].

Proposition 3.4. [15, Proposition 5.8] Let Γ be a relatively hyperbolic group and
let µ be a finitely supported admissible and symmetric probability measure on Γ.
Assume that µ is spectrally nondegenerate. Then, µ is divergent.
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This is in fact the non-trivial part of the proof that spectral nondegeneracy
implies spectral positive recurrence, see also [15, Proposition 3.6, Proposition 3.7].
We deduce that if µ is convergent, then it is spectrally degenerate along some
parabolic subgroup.

One of the main results of [15] states that

G(2)(e, e|r) �
(
G(1)(e, e|r)

)3
( ∑
H∈Ω0

G
(2)
H,r(e, e|1)

)
.

Assuming that µ is spectrally degenerate along some H, we have RH(Rµ) = 1,
so it might happen that G(2)

H,r(e, e|1) is infinite at r = Rµ. As a consequence,

the factor G(2)
H,r(e, e|1) would influence the asymptotics of G(2)(e, e|r), as r → Rµ.

Furthermore, if the random walk is convergent, then the factor
(
G(1)(e, e|r)

)3
is

uniformly bounded and so

G(2)(e, e|r) �

( ∑
H∈Ω0

G
(2)
H,r(e, e|1)

)
.

Thus, in this case, the asymptotics of G(2)(e, e|r) as r → Rµ are roughly the same
as the asymptotics of

∑
H∈Ω0

G
(2)
H,r(e, e|1).

More generally, we prove below that in the convergent case, letting k be the
smallest integer such thatG(k)(e, e|Rµ) is infinite, the asymptotics ofG(k)(e, e|r) are
governed by the asymptotics of

∑
H∈Ω0

G
(k)
H,r(e, e|1), see precisely Proposition 5.3

and Theorem 5.4.

Next, we explain how convergent probability measures are constructed on free
products, following the work of Candellero and Gilch [8]. Let Γ0,Γ1 be two finitely
generated groups endowed respectively with finitely supported, admissible and sym-
metric probability measure µ0 and µ1. Assume that µ0 is convergent on Γ0. Con-
sider the free product Γ = Γ0 ∗ Γ1 and set

µα = αµ1 + (1− α)µ0.

Such a probability measure is called adapted to the free product structure and the
random walk can only move towards one of the free factors at each step.

Proposition 3.5. For α small enough, µα is convergent and spectrally degenerate
along Γ0, but not along Γ1.

Proof. We follow the strategy of Candellero and Gilch, which is based on the work
of Woess [45], see also [46, Chapter 9]. We denote by R(α) the inverse of the spectral
radius of µα and by Ri, i = 0, 1, the inverse of the spectral radius of µi. We also
set θ = R(α)G(e, e|R(α)) and θi = RiGi(e, e|Ri). Finally, we define implicitly the
functions Φ and Φi by the formulae

G(e, e|r) = Φ(rG(e, e|r))
for every r ≤ R(α), and

Gi(e, e|r) = Φi(rG(e, e|r))
for every r ≤ Ri. We then set Ψ(t) = Φ(t)− tΦ′(t) and Ψi(t) = Φi(t)− tΦ′i(t). The
functions Φ and Ψ are defined on an open neighborhood inside the complex plane
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of the interval [0, θ). Since G(e, e|R(α)) is finite, these functions are also defined
on [0, θ]. We have by [46, Theorem 9.19]

(3.1) Φ(t) = Φ0((1− α)t) + Φ1(αt)− 1

and

(3.2) Ψ(t) = Ψ0((1− α)t) + Ψ1(αt)− 1.

As a consequence, Φ and Ψ are defined on [0, θ̄), where θ̄ = min{θ0/(1−α), θ1/α}.
The key property of the functions Ψi is that assuming further that Gi(e, e|Ri) is
finite, then Ψi(θi) = 0 if and only if G′i((e, e|R) = ∞. Similarly, Ψ(θ) = 0 if and
only if G′(e, e|R(α)) =∞. This follows from the following expression given by [19,
(2.6)], see also [46, (9.14)]. For t = rG(e, e|r) < θ,

Ψ(t) =
G(e, e|r)2

rG(e, e|r)′ +G(e, e|r)
.

Similar expressions relate Ψi and Gi, G′i. Finally, by [19, Corollary 2.5], Ψ(θ̄) > 0
if and only if the random walk is convergent, see also [46, Theorem 9.22].

Consequently, if µ0 is convergent, then G0(e, e|R0) and G′0(e, e|R0) are finite, so
that Ψ0(θ0) > 0. Thus, θ0 is finite and θ̄ = θ0/(1− α) < θ1/α for α small enough.
In this case, the measure µα cannot be spectrally degenerate along Γ1. Finally,
Ψ1(αθ̄) converges to Ψ1(0) = 1 and Ψ0((1 − α)θ̄) to Ψ0(θ0) > 0 as α tends to 0.
Therefore, for small enough α, Ψ(θ̄) is positive and so µα is convergent. �

Remark 3.2. More generally, one may consider a relatively hyperbolic group Γ
which has a parabolic subgroups H carrying a finitely supported, admissible and
symmetric probability measure µH which is convergent. Consider an auxiliary
finitely supported, admissible and symmetric probability measure µ∗ on Γ and set

µα = (1− α)µH + αµ∗.

We conjecture that for small enough α, this measure µα is convergent and spectrally
degenerate along H.

This requires significant improvements of the proof of Proposition 3.5, which
crucially uses (3.1) and (3.2) which both rely on the combinatorial structure of free
products. Bypassing these two equations would require some kind of continuity
of the Green function and its derivative in terms of the underlying probability
measure, which in turn would require new material.

3.3. Vertical displacement transition matrix. Until the end of Section 3, we
assume that H is virtually abelian of rank d and that µ is spectrally degenerate
along H. According to [17, Lemma 4.16], this implies that Rη = 1 for every η ≥ 0,
i.e. µ is spectrally degenerate along Nη(H). In the remainder of this section, we
aim to obtain asymptotics as r tends to Rµ of the

(
dd/2e − 1

)
th derivative of the

Green function Gη,r at 1, see Proposition 3.16 below.

We fix α ∈ (0, 1) and consider the transition kernel p̃η,r defined by

p̃η,r(x, y) = αδx,y + (1− α)pη,r(x, y).

Let G̃η,r be the corresponding Green function. Then, by [46, Lemma 9.2],

G̃η,r(e, e|t) =
1

1− αt
Gη,r

(
e, e

∣∣∣∣ (1− α)t

1− αt

)
.
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Thus, up to a constant that only depends on α and j, the jth derivative of G̃η,r
and Gη,r coincide at 1. Therefore, up to replacing pη,r by p̃η,r we can assume that,
pη,r(x, x) > 0 for every x so that the transition kernel pη,r is aperiodic. We keep
this assumption for all this section.

By definition, there exists a subgroup of H of finite index which is isomorphic to
Zd. Any section H/Zd → H allows us to identify H with Zd×F for some finite set
F . As in [17] and [18], the group Γ can be H-equivariantly identified with H× N.
Indeed, the parabolic subgroup H acts by left multiplication on Γ and the quotient
is countable. We order elements in the quotient according to their distance to H.
It follows that

(1) Nη(H) can be Zd-equivariantly identified with Zd × {1, ..., Nη},
(2) if η ≤ η′, then Nη ≤ Nη′ . In other words, the set Zd×{1, ..., Nη}, identified

with Nη(H), is a subset of Zd × {1, ..., Nη′}, identified with Nη′(H).
Each element of Nη(H) can be written as (x, j), where x ∈ Zd, j ∈ {1, ..., Nη}. We
also write pj,j′;r(x, x′) = pη,r((x, j), (x

′, j′)) for simplicity.

Definition 3.6. Let u ∈ Rd. The vertical displacement transition matrix Fr(u) is
defined as follows. for all j, j′ ∈ {1, ..., Nη}, the (j, j′) entry of Fr(u) equals

Fj,j′;r(u) :=
∑
x∈Zd

pj,j′;r(0, x)eu·x.

This transition matrix was introduced in [14] for r = 1. Many properties are
derived there from the fact that it is strongly irreducible, i.e. there exists n such
that every entry of Fr(u)n is positive. Since by [14, Lemma 3.2],

Fj,j′;r(u)n =
∑
x∈Zd

p
(n)
j,j′;r(0, x)eu·x,

where p(n)
j,j′;r(0, x) = p

(n)
η,r ((0, j), (x, j′)), strong irreducibility is deduced from the

fact that pη,r is aperiodic. Denote by Fr ⊂ Rd the interior of the set of u ∈ Rd
where Fr(u) has finite entries. By the Perron-Frobenius Theorem [41, Theorem 1.1],
the matrix Fr(u) has a positive dominant eigenvalue λr(u) on Fr. Also, by [14,
Proposition 3.5], the function λr is continuous and strictly convex on Fr and reaches
its minimum at some value ur.

By [46, Theorem 8.23], the spectral radius ρη(r) = Rη(r)−1 satisfies

(3.3) ρη(r) = inf
u
λr(u) = λr(ur).

Actually, [46, Theorem 8.23] only deals with finitely supported transition kernels
on Zd × {1, ..., N}, but the statement remains valid for the transition kernel pη,r
since this condition of finite support can be dropped, see [46, (8.24)].

Recall that our goal is to find asymptotics of the derivatives of the Green function
Gη,r. These involve the quantity ρη(r), so in view of (3.3), we need to study the
function λr(ur).

First of all, we prove that ur lies in some large ball, whose radius does not
depend on r. Precisely, denote by B(0,M) the closed ball of radius M and center
0 in Rd. It follows from [18, (5), Proposition 4.6] that for large enough η, there
exists a constant M such that, for every u ∈ B(0,M), the matrix Fr(u) has finite
entries and the minimum of the function λr is reached at some ur ∈ B(0,M). In
other words, ur ∈ B(0,M) ⊂ Fr with M independent of r. This is a consequence
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of the fact that the transition kernel pη,r has arbitrary large exponential moments,
up to taking η large enough. In what follows, we fix η large enough that satisfies
this property.

Before studying differentiability of r 7→ λr(ur), we recall how its continuity was
established in [17]. Since η is fixed, the size of the matrices Fr(u) is a fixed number,
say K. We endow MK(Rd) with a matrix norm. For fixed r, the function Fr is
continuous in u. We then endow the space of continuous functions from B(0,M)
to MK(Rd) with the norm ‖ · ‖∞. We also choose an arbitrary norm on R and
endow the space of continuous functions from B(0,M) to R with the norm ‖ · ‖∞.
According to [17, Lemma 5.4, Lemma 5.5], the functions r 7→ Fr and r 7→ λr are
continuous for these norms.

The function λr is strictly convex and reaches its minimum at ur. We can deduce
that r 7→ ur is continuous and thus r 7→ λr(ur) is also continuous.

3.4. Differentiability of the parabolic spectral radius. In order to establish
the differentiability of the function r 7→ ρη(r), we first prove that the first return
kernel is itself differentiable.

Lemma 3.7. For every x ∈ Nη(H), the function r 7→ pη,r(e, x) is continuously
differentiable on [0, Rµ].

Proof. Recall that pη,r(e, x) = G(e, x;Nη(H)c|r), so it can be expressed as a power
series in r with positive coefficients an. These coefficients are at most equal to
µ∗n(x). Since the random walk on Γ is convergent, it follows that∑

n≥0

nanr
n−1 ≤

∑
n≥0

nµ∗n(x)Rnµ < +∞.

By monotonous convergence, the function r 7→ pη,r(e, x) is thus continuously dif-
ferentiable. �

For simplicity, we write pr = pη,r and denote by p′r the derivative of pr at r; the
kernels pr and p′r are both Zd-invariant transition kernels on Zd × {1, ..., Nη}. By
Lemma 2.7, we have

d

dr
rpr(x, y) = pr(x, y) + rp′r(x, y)

=
∑

z/∈Nη(H)

G(x, z;Nη(H)c|r)G(z, y;Nη(H)c|r).
(3.4)

The following statement can be thought of an enhanced version of relative Ancona
inequalities for trajectories of the random walk avoiding horoballs.

Proposition 3.8. Let η ≥ 0 be fixed. There exists C = Cη such that the following
holds. Let x ∈ Nη(H) and let y /∈ Nη(H). Consider a geodesic in Γ from y to H
and denote by ỹ the point in Γ at distance η from H on this geodesic. Then,

G(x, y;Nη(H)c|r) ≤ CG(x, ỹ;Nη(H)c|r)G(ỹ, y;Nη(H)c|r).

Proof. Recall that for simplicity, we assume that the generating set S of Γ equals
the support of µ. Let us fix x, y in Γ, a geodesic from y to H and ỹ satisfying the
previous assumptions. If G(x, y;Nη(H)c|r) = 0, i.e. if there is no trajectory of the
random walk from x to y staying outside Nη(H), then there is nothing to prove.
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Otherwise there exists such a trajectory from x to y and we denote by x̃ the first
point on this trajectory outside Nη(H). The following notion was introduced in
[17, Definition 3.11].

Definition 3.9. Let k, c > 0, A ⊂ Γ and y ∈ A. The set A is (k, c)-starlike around
y if for all z ∈ A, there exists a path of length at most kd(y, z) + c staying in A.

We now use the following version of Ancona inequalities for trajectories assigned
to stay in starlike sets, which is given by [17, Proposition 3.12]. For every λ, c and
for every D ≥ 0 there exists C > 0 such that the following holds. For any v ∈ Γ
and any (λ, c)-starlike set A around v, if u,w ∈ A are such that v is within D of a
relative geodesic from u to w, then

C−1G(u,w;A|r) ≤ G(u, v;A|r)G(v, w;A|r) ≤ CG(u,w;A|r)

for every r ≤ Rµ. To apply this to our setting, we need to prove that the connected
component of x̃ in Nη(H)c is starlike.

First of all, denote by x0 the projection of x on H. If γ is a trajectory of the
random walk avoiding Nη(H) then x−1

0 γ also avoids Nη(H). Consequently, up to
translating x, y and ỹ by x−1

0 , we can assume that x0 = e. In particular, x̃ lies in
the ball B(e, η + 1).

Denote by H(x̃) the set of h ∈ H such that there is a trajectory outside Nη(H)
from x̃ to hx̃. Since the random walk is symmetric, H(x̃) is a subgroup of H.

Claim 3.10. There exists C ≥ 0 such that the following holds. Consider a tra-
jectory of the random walk starting at x̃ and staying outside Nη(H). Let z be its
endpoint and let z0 be the projection of z on H. Then there exists h ∈ H(x̃) such
that d(h, z0) ≤ C.

Proof. Note that there exists finitely many connected components c1, ..., cm in the
complement of Nη(H) that project on H at e. Indeed, for every point z in Nη(H)c

projecting at e, we consider a geodesic from e to z. We denote by w the point on
this geodesic at distance η + 1 of e. Then, w and z lie in the same component of
the complement of Nη(H). Since balls are finite and w ∈ B(e, η + 1), the number
of such components is also finite.

We denote by J (x̃) the subset of indices j such that there exists a trajectory
outside Nη(H) from x̃ to some hcj , h ∈ H. For every j ∈ J (x̃), we fix such a
particular trajectory γi and denote by wj its endpoint and by hj the corresponding
point in H. Therefore, h−1

j wj ∈ cj .
Consider now a trajectory γ starting at x̃ and staying outside Nη(H). Denote by

z its endpoint and by z0 the projection of z on H. We construct a trajectory for the
random walk from x̃ to z0h

−1
j x̃. First, z necessarily lies in one of the components

z0cj , hence in particular, j ∈ J (x̃). Consequently, z−1
0 z and h−1

j wj are both in
cj and so there exists a trajectory γ′ joining these points staying outside Nη(H).
The translated path z0γ

′ thus joins z and z0h
−1
j wj . Second, following backward

z0h
−1
j γi, we get a trajectory γ′i from z0h

−1
j wj to z0h

−1
j x̃. All these trajectories stay

outside Nη(H) and by concatenating γ, z0γ
′ and γ′i, we find the desired trajectory

from x̃ to z0h
−1
j x̃ staying outside Nη(H). We deduce that z0h

−1
j ∈ H(x̃). Finally,

d(z0, z0h
−1
j ) = d(e, h−1

j ) and hj only depends on x̃, which in turn is contained in
B(e, η + 1). Thus, this last quantity is uniformly bounded. �
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Denote by ỹ′ the point on the chosen geodesic from y to H which is at distance
η + 1 from H. We now prove the following.

Claim 3.11. There exist positive constants k, c only depending on η such that the
connected component of x̃ in Nη(H)c is (k, c)-starlike around ỹ′.

Proof. We have to prove that, for every z /∈ Nη(H) that can be reached by a
trajectory starting at x̃, there exists a path of length at most kd(z, ỹ′) + c which
stays outside Nη(H) and joins ỹ′ from z.

Let z be such a point and z̃ be a point on a geodesic from z to H at distance
η + 1 from H. Denote by z0 and y0, the respective projection of z and y on H. By
the above claim, we can find a trajectory of fixed length avoiding Nη(H), starting
at some point hx̃ and ending at z̃. Moreover the distance between h and z0 is
uniformly bounded. Similarly, we can find a trajectory avoiding Nη(H) of fixed
length, starting at ỹ′ and ending at some h′x̃, where the distance between h′ and
y0 is uniformly bounded.

Since H is virtually abelian, the subgroup H(x̃) is quasi-isometrically embedded
in Γ. Therefore, we can find a path (hj)j from h to h′ staying inside H(x̃) with
length at most k0d(h, h′) + c0 for some fixed constants k0, c0. By concatenating
successive trajectories from hj x̃ to hj+1x̃, we can thus find a trajectory from hx̃
to h′x̃ of length at most k1d(z0, y0) + c1 staying outside Nη(H), where k1, c1 > 0
only depend on η. Thus, there exist c2, k2 > 0 and a trajectory γ from z to ỹ′ of
length at most k2(d(z, z̃) +d(z0, y0)) + c2 and staying outside Nη(H). The distance
formula [42, Theorem 3.1] shows that there exist positive constants c3 and k3 such
that

d(z, ỹ′) ≥ k−1
3 (d(z, z0) + d(ỹ′, y0) + d(z0, y0))− c3.

Thus, the length of γ is at most kd(z, ỹ′) + c, where k and c only depend on η. �

We now conclude the proof. Note that ỹ′ is within a uniform bounded distance,
depending only on η, of a point on a relative geodesic from x̃ to y. From relative
Ancona inequalities for starlike sets [17, Proposition 3.12], it follows that

(3.5) G(x̃, y;Nη(H)c|r) ≤ CG(x̃, ỹ′;Nη(H)c|r)G(ỹ′, y;Nη(H)c|r).
Finally, the existence of one-step paths from ỹ′ to ỹ and x to x̃ yields

G(x, y;Nη(H)c|r) . G(x̃, y;Nη(H)c|r),

G(x̃, ỹ′;Nη(H)c|r) . G(x, ỹ;Nη(H)c|r)
and

G(ỹ′, y;Nη(H)c|r) . G(ỹ, y;Nη(H)c|r).
Therefore, one can replace x̃ by x and ỹ′ by ỹ in (3.5). �

Proposition 3.12. Let M ≥ 0. There exists ηM such that for every η ≥ ηM and
for every r ≤ Rµ, the transition kernel p′r has exponential moments up to M .

Proof. In view of (3.4), it is enough to prove that for large enough η,∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, x;Nη(H)c|r) ≤ Ce−2M‖x0‖,

where x0 is the projection of x on Zd. For every y /∈ Nη(H), denote by y0 its
projection on Zd and let ỹ be the point at distance η from H on a geodesic from
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y to H. Also, let Py0
be the set of points in Γ whose projection on Zd is at y0.

Proposition 3.8 shows that∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, x;Nη(H)c|r)

.
∑
y0∈Zd

∑
y∈Py0

G(e, ỹ;Nη(H)c|r)G(ỹ, x;Nη(H)c|r)

G(ỹ, y;Nη(H)c|r)G(y, ỹ;Nη(H)c|r).

Since the random walk is convergent, Lemma 2.7 yields∑
y∈Py0

G(ỹ, y;Nη(H)c|r)G(y, ỹ;Nη(H)c|r) . G′(e, e|Rµ) < +∞.

Consequently, ∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, x;Nη(H)c|r)

.
∑
y0∈Zd

G(e, ỹ;Nη(H)c|r)G(ỹ, x;Nη(H)c|r).

By Lemma 3.3, for η large enough, it holds that G(e, ỹ;Nη(H)c|r) . e−4M‖y0‖ and
G(ỹ, x;Nη(H)c|r) . e−2M‖y0−x0‖ . e2M‖y0‖−2M‖x0‖. As a consequence,

∑
y/∈Nη(H)

G(e, y;Nη(H)c|r)G(y, x;Nη(H)c|r) .

 ∑
y0∈Zd

e−2M‖y0‖

 e−2M‖x0‖

This concludes the proof, since
∑
y0∈Zd e−2M‖y0‖ < +∞. �

Proposition 3.12 allows us to describe the regularity of the map (r, u) 7→ Fr(u)

on (0, Rµ) × B̊(0,M) where M is the constant which appears at the end of the
previous subsection and B̊(0,M) is the open ball with center 0 and radius M . We
fix η such that both pr and p′r have exponential moments up to M .

Lemma 3.13. The function (r, u) 7→ Fr(u) is continuously differentiable on the
open set (0, Rµ)×B̊(0,M). Its derivative extends continuously to (0, Rµ]×B̊(0,M).

Proof. It suffices to prove that for every j, j′, Fj,j′;r(u) is continuously differentiable.
By definition,

Fj,j′;r(u) =
∑
x∈Zd

pj,j′;r(0, x)eu·x.

For all x ∈ Zd, the function f : (r, u) 7→ pj,j′;r(0, x)eu·x is continuously differentiable
and its derivative is given by

∇r,uf(r, u) = p′j,j′;r(0, x)eu·xvr + pj,j′;r(0, x)eu·xvu(x),

where vr = (1, (0, ..., 0)) and vu(x) = (0, x). Then,

‖∇r,uf‖∞ ≤ sup
r
p′j,j′;r(0, x)eM‖x‖ + ‖x‖ sup

r
p′j,j′;r(0, x)eM‖x‖.

Lemma 3.3 and Proposition 3.12 show that this quantity is summable. By domi-
nated convergence, we deduce that the function (r, u) 7→ Fj,j′;r(u) is continuously
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differentiable and its derivative equals

∇r,uFj,j′;r(u) =
∑
x∈Zd

p′j,j′;r(0, x)eu·xvr + pj,j′;r(0, x)eu·xvu(x).

This expression extends continuously to (0, Rµ]× B̊(0,M). �

We can now prove that the function r 7→ ρη(r) is differentiable on (0, Rµ] and
compute the value of its derivative.

Proposition 3.14. The function r 7→ ρη(r) is continuously differentiable on (0, Rµ]
and its derivative is given by ρ′η(r) = λ′r(ur).

Proof. The function F 7→ λ is analytic on the set where F has a unique dominant
eigenvalue. Thus, (r, u) 7→ λr(u) is continuously differentiable on (0, Rµ)× B̊(0,M)

and its derivative extends continuously to (0, Rµ] × B̊(0,M). Moreover, it follows
from [14, Proposition 3.5] that for all r, the Hessian of the map u 7→ λr(u) is
positive definite. Therefore, the implicit function theorem shows that the function
r 7→ ur is continuously differentiable on (0, Rµ], and so is the function r 7→ λr(ur).
Moreover,

ρ′η(r) = ∇uλr(ur) · u′r + λ′r(ur).

Since λr is strictly convex and reaches its minimum at ur, we have ∇uλr(ur) = 0,
hence the desired formula. �

Lemma 3.15. For any r ≤ Rµ, we have ρ′η(r) 6= 0.

Proof. We just need to show that λ′r(u) 6= 0 for any u ∈ B̊(0,M). For a strongly
irreducible matrix F , denote by C and by ν right and left eigenvectors associated to
the dominant eigenvalue λ. By the Perron-Frobenius Theorem [41, Theorem 1.1],
they both have positive coefficients. Moreover, one can normalize them such that
we have ν ·C = 1 and such that F 7→ C and F 7→ ν are analytic functions, see [14,
Lemma 3.3]. In particular, denoting by Cr(u) and νr(u) right and left eigenvectors
of Fr(u) associated with the eigenvalue λr(u), we get that the maps (r, u) 7→ Cr(u)
and (r, u) 7→ νr(u) are continuously differentiable and satisfy νr(u) · Cr(u) = 1.
Therefore,

λr(u) = νr(u) · Fr(u) · Cr(u)

and so

λ′r(u) = λr(u)

(
ν′r(u) · Cr(u) + νr(u) · C ′r(u)

)
+ νr(u) · F ′r(u) · Cr(u).

Differentiating in r the expression νr(u) · Cr(u) = 1, we get

ν′r(u) · Cr(u) + νr(u) · C ′r(u) = 0

and so
λ′r(u) = νr(u) · F ′r(u) · Cr(u).

Since p′r(e, x) is non-negative for every x ∈ Γ, the matrix F ′r has non-negative
entries. Also, it cannot be equal to the null matrix since p′r(e, x) is positive for at
least some x. Moreover, Cr(u) and νr(u) both have positive entries, hence λ′r(u) is
positive. �
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3.5. Asymptotics of G(j)
r . We set j = dd/2e − 1. Applying the previous results,

we prove the following statement; this is a crucial step in the proof of our main
theorem.

Proposition 3.16. Assume that µ is spectrally degenerate along H. If η is large
enough, then the following holds. As r → Rµ,
• if d is even then

G(j)
η,r(e, e|1) ∼ C log

(
1

Rµ − r

)
,

• if d is odd then

G(j)
η,r(e, e|1) ∼ C√

Rµ − r
.

Proof. We recall the following local limit theorem on Zd. For every r, we have
that p(n)

η,r (e, e) ∼ Cη,rRη(r)−nnd/2 as n tends to infinity. Its proof for fixed r is
standard, but we can be more precise. By [14, Proposition 3.14] applied to the
kernel Rη(r)pη,r, there exists Cr such that C−1

r Rη(r)np
(n)
η,rnd/2 − 1 converges to 0

as n → +∞. Moreover, the convergence is uniform on r and the function r 7→ Cr
is continuous. Consequently, the quantity Cr remains bounded away from 0 and
infinity. Fix ε > 0. Assume first that d is even, so that j = d/2− 1. Then, for large
enough n, say n ≥ n0, independently of r, we have∣∣∣C−1

r njp(n)
η,r − n−1ρη(r)n

∣∣∣ ≤ εn−1ρη(r)n.

Consequently, ∣∣∣∣∣∣
∑
n≥n0

(
njp(n)

η,r − Crn−1ρη(r)n
)∣∣∣∣∣∣ ≤ Crε

∑
n≥0

n−1ρη(r)n.

Thus,∣∣∣∣∣∣
∑
n≥0

njp(n)
η,r − Cr

∑
n≥0

n−1ρη(r)n

∣∣∣∣∣∣ ≤
∑

n≤n0−1

njp(n)
η,r + Cr

∑
n≤n0−1

n−1ρη(r)n

+ εCr
∑
n≥0

n−1ρη(r)n.

Note that

Cr
∑
n≥0

n−1ρη(r)n = Cr log

(
1

1− ρη(r)

)
.

Since ρη(r) converges to 1 as r → Rµ, this last quantity tends to infinity as r
converges to Rµ. In particular, this proves that∑

n≥0

njp(n)
η,r ∼

r→Rµ
Cr log

(
1

1− ρη(r)

)
,

and so

(3.6) G(j)
η,r(e, e|1) ∼

r→Rµ
C ′r log

(
1

1− ρη(r)

)
.
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By Proposition 3.14, there exists α ∈ R such that ρη(r) = 1+α(r−Rµ)+o (r −Rµ).
Lemma 3.15 yields α 6= 0, hence 1− ρη(r) ∼ α(Rµ − r). Combined with (3.6), this
concludes the proof. The case where d is odd is treated in the same way. �

4. Stability of the Martin boundary

This section is dedicated to the proof of the stability of the Martin boundary
(see Definition 2.6). In the case where the random walk is spectrally degenerate,
this had not been dealt with before. We adapt here the arguments of [14], [17] and
[18] in our context. The central result of this section is the following one.

Theorem 4.1. Let Γ be a relatively hyperbolic group with respect to virtually abelian
subgroups. Let µ be an admissible, symmetric and finitely supported probability
measure on Γ. Then, the Martin boundary of (Γ, µ) is stable.

Proof. Recall that the Martin boundary is stable if it satisfies the four conditions
given by Definition 2.6. Let us first explain why the three first conditions are
already known to be satisfied.

• As already mentioned, for all x, y ∈ Γ, since µ is admissible and Γ is non-
amenable it follows from Guivarc’h [26] that G(x, y|Rµ) < +∞, i.e. condi-
tion (1) of stability is satisfied.

• From [17, Theorem 1.2], conditions (2) and (3) of stability are satisfied for
any admissible random walk on a relatively hyperbolic group with virtually
abelian parabolic subgroups : the homeomorphism type of Γ∪∂rµΓ does not
depend on r ∈ (0, Rµ) and we denote ∂rµΓ by ∂µΓ. Moreover, there exists
an equivariant surjective and continuous map φµ : Γ ∪ ∂µΓ → Γ ∪ ∂RµµΓ
that extends the identity of Γ.

• It also follows from [17, Theorem 1.2] the r-Martin boundary of the random
walk is identified with the r-geometric boundary of Γ, defined as follows.
When r < Rµ, the r-geometric boundary is constructed from the Bowditch
boundary of Γ where each parabolic limit point ξ is replaced with the visual
boundary of the corresponding parabolic subgroup. Equivalently, it is the
Gromov boundary ∂Γ̂ to which has been attached at each parabolic limit
point ξH fixed by H the visual boundary of H. At r = Rµ, the r-geometric
boundary is given by the same construction, with the following modifica-
tion. The parabolic limit points are replaced with the visual boundary
of the corresponding parabolic subgroup only when the random walk is
spectrally nondegenerate along the underlying parabolic subgroup.

We are hence left with showing that the map

(x, y, r) ∈ Γ× Γ ∪ ∂µΓ× (0, Rµ] 7→ K(x, y|r)

is continuous, where for ξ ∈ ∂µ(Γ), we write K(x, ξ|Rµ) = K(x, φµ(ξ)|Rµ). Notice
that this property is proved in [17, Theorem 1.3] in the case where the random walk
is spectrally nondegenerate. Thus, what is left to prove is continuity at (x, ξ,Rµ),
where ξ is in the preimage of a parabolic limit point such that µ is spectrally
degenerate along the corresponding parabolic subgroup.

By using the geometric interpretation of the r-Martin boundaries mentioned
before, we need to check that, for any x ∈ Γ, any sequence (yn)n in Γ ∪ ∂µΓ which
converges to a point ξ in the geometric boundary of a parabolic subgroup H along
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which the random walk is spectrally degenerate and any (rn)n which converges to
Rµ, the sequence (K(x, yn|rn))n converges to K(x, ξ|Rµ).

Let us denote by πH(yn) the projection of yn on H. Since (yn) converges to
a point in ∂H the sequence (π(yn)) goes to infinity. As a consequence, for large
enough n, the point πH(yn) is within a bounded distance of a relative geodesic
from x to yn for every fixed x. Fix ε > 0. By Proposition 2.8, there exists η ≥ 0
such that G(x, yn;Bη(πH(yn))c|rn) ≤ εG(x, yn|rn). Hence, up to an error of order
ε, we can reduce to trajectories that do enter in Bη(πH(yn)). This allows us to
replace K(x, yn|r) by K(x, un|r) where un ∈ Bη(πH(yn)) and so to assume that
yn stays in a fixed neighborhood Nη(H). We refer to [18, Proposition 5.5] or [17,
Proposition 4.3] for more details. Now, this fixed neighborhood can be identified
with Zd × {1, ..., N} as in Section 3.3. Theorem 4.1 is thus a direct consequence of
Proposition 4.2 below which gives the convergence of (K(x, yn|rn))n. �

Proposition 4.2. Let p be a Zd-invariant transient kernel on E = Zd×{1, ..., N}.
Assume that p is irreducible and aperiodic and has exponential moments. Then,
the Martin boundary is stable and the function

(x, y, r) ∈ E × E ∪ ∂pE × (0, Rp] 7→ K(x, y|r)

is continuous.

The proof of this theorem relies on two lemmas. For any v ∈ Rd, we write
〈v〉 ∈ Zd the vector with integer entries which is closest (for the Euclidean distance)
to v, choosing the first in lexicographical order in case of ambiguity.

The next lemma is technical and is inspired by [14, Lemma 3.28]. It is used
in a particular case. Namely, pn is the convolution power of the transition kernel
of first return to Nη(H), βv is the derivative of the eigenvalue λv, αv is some
suited factor and Σv is the Hessian matrix associated with pη. The fact that the
quantity an defined in the lemma uniformly converges to 0 is a consequence of [14,
Proposition 3.16].

Lemma 4.3. Let pn(x) be a sequence of real numbers, depending on x ∈ Zd. Let
K ⊂ RN be a compact set and v 7→ αv and v 7→ βv two continuous functions on K,
with αv ∈ R and βv ∈ Rd. Let Σv be a positive definite quadratic form on Rd, that
depends continuously on v ∈ K. Define

an(x, v, γ) =

(
‖x− nβv‖√

n

)γ (
(2πn)

d
2 pn(x)ev·x − αve−

1
2nΣv(x−nβv)

)
.

Denote by g(x) the sum over n of the pn(x). If (an)n converges to 0 uniformly in
x ∈ Zd, v ∈ K and γ ∈ [0, 2d], then, for x ∈ Zd and for v ∈ K such that βv 6= 0, it
holds as t tends to infinity,

(2πt)
d−1

2 Σv(βv) g(〈tβv〉 − x)ev·(〈tβ(v)〉−x) = αv + o(1)

where the term o(1) is bounded by an asymptotically vanishing quantity which does
not depend on v.

Proof. It is proved in [14, Lemma 3.28] that with the same assumptions, assuming
moreover that βv 6= 0 for every v ∈ K,

(2πt)
d−1

2 g(〈tβv〉 − x)ev·(〈tβ(v)〉−x) −→
t→∞

αv
Σv(βv)

,
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the convergence being uniform in v. The proof is the same as in Ney and Spitzer [29,
Theorem 2.2]. This is basically what we need to prove here, except that we want
to move the factor Σv(βv) to the left hand-side and keep uniform convergence over
v. By technical manipulations, when summing pn over n, Ney and Spitzer reduce
the proof to bounding e−y

2Σv(βv) by an integrable function. The key ingredient is
that Σv(βv) is uniformly bounded from below by some constant β, so that

(4.1) e−y
2Σv(βv) ≤ e−y

2β .

The function on the right-hand side is indeed integrable on [0,+∞) and the bound
is uniform in v, which allow Ney and Spitzer to prove uniform convergence in v.

In our context, we do not necessarily have βv > 0 for all v ∈ K and so we
cannot use compactness of K to ensure that Σ(βv) is uniformly bounded from
below. However, what we need to prove is that Σv(βv)(2πt)

d−1
2 g(〈tβv〉−x)e〈tβ(v)〉−x

converges uniformly in v and we can replace (4.1) by

Σv(βv)e
−y2Σv(βv) ≤ C 1

1 + y2
.

The right-hand side is again an integrable function and so we can conclude exactly
like in the proof of Ney and Spitzer [29, Theorem 2.2]. �

As announced, βv plays the role of ∇λr(u), hence this result yields the necessary
asymptotics of the Green function for every r, u such that ∇λr(u) 6= 0. On the
other hand, when ∇λr(u) = 0, we need the following lemma.

Lemma 4.4. With the same notations as in Proposition 4.3, assume that for every
γ ∈ [0, d− 1], an converges to 0, uniformly in x ∈ Zd and v ∈ K. Then, for x ∈ Zd
and for v ∈ K such that βv = 0, as y tends to infinity, we have

g(y − x)ev·(y−x) ∼ αvCd
1

‖Σ(y)‖ d−2
2

,

where Cd only depends on the rank d.

Proof. Define

g̃(y) =
∑
n≥1

1

(2πn)d/2
αve
− 1

2nΣv(y).

Setting tn = n
Σv(y−x) , we have ∆n := tn − tn−1 = 1

Σv(y−x) which tends to 0 as y
tends to infinity. Thus,

1

αv
(2π)d/2Σv(y − x)

d−2
2 g̃(y − x) =

∑
n≥1

t−d/2n e−
1

2tn ∆n

is a Riemannian sum of
∫ +∞

0
t−d/2e−

1
2t dt = C ′d. Consequently, we just need to

show that
g(y − x)ev·(y−x)

g̃(y − x)
−→
y→∞

1.

Equivalently, we prove that

g(y − x)ev·(y−x) − g̃(y − x) = o
(
‖y‖−(d−2)

)
.
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We set

αn = sup
y∈Zd

sup
γ∈[0,d−1]

(
‖y − x‖√

n

)γ ∣∣∣(2nπ)d/2pn(y − x)ev·(y−x) − αve−
1

2nΣv(y−x)
∣∣∣ .

By assumption, (αn)n converges to 0 as n tends to infinity. Let ε > 0. Then for
n ≥ n0, αn ≤ ε. We have

‖y − x‖d−2
∣∣∣g(y − x)ev·(y−x) − g̃(y − x)

∣∣∣ ≤ 1

‖y − x‖(2π)d/2

n0−1∑
n=1

αn
n1/2

+
1

‖y − x‖(2π)d/2

‖y−x‖2∑
n=n0

αn
n1/2

+
‖y − x‖d−2

(2π)d/2

∑
n>‖y−x‖2

αn
nd/2

.

The first term in the right-hand side converges to 0 as ‖y‖ tends to infinity. The
second term is bounded by

ε

‖y − x‖(2π)d/2

∫ ‖y−x‖2
0

t−1/2dt . ε.

The last term is bounded by

ε‖y − x‖d−2

(2π)d/2

∫ +∞

‖y−x‖2
t−d/2dt . ε.

This concludes the proof. �

All the ingredients are gathered to end the proof of Proposition 4.2. Roughly
speaking, Lemma 4.3 yields the convergence of the Martin kernels, as r tends to
Rµ, r < Rµ, and y tends to a point ξ in the Martin boundary. Lemma 4.4 gives
in turn the convergence of the Martin kernels for fixed r = Rµ and y converging
to the same ξ. Since these two limits coincide, this proves continuity of the map
(x, y, r) 7→ K(x, y|r).

Proof of Proposition 4.2. For all u ∈ Rd and r ∈ [0, Rµ], let Fr(u) be the vertical
displacement transition matrix defined in Section 3.3 and let λ(r, u) be its dominant
eigenvalue. Let K be the set of pairs (r, u) such that r ∈ [0, Rµ] and u satisfies
that λ(u) = 1. Since r 7→ λr is a continuous function from [0, Rµ] to the set of
continuous functions of u, the set K is compact.

Recall that for fix k, j ∈ {1, ..., N}, we write pk,j(x, y) = p((x, k), (y, j)), for every
x, y ∈ Zd. According to [14, Proposition 3.14, Proposition 3.16], for every k, j in
{1, ..., N}, the kernel pk,j satisfies the assumptions of Lemma 4.3 and Lemma 4.4
if we define

α(r,u) :=
1

det(Σu)
Cr(u)kνr(u)j ,

βu,r = ∇λr(u) and Σ(r,u) to be the inverse of the quadratic form associated to
the Hessian of the eigenvalue λ(u) and where Cr(u) and νr(u) are right and left
eigenvectors associated to λr(u).

Consider ξ in the boundary ∂H of H and let ((yn, jn))n be a sequence in E
which converges to ξ, i.e. (yn)n tends to infinity and (yn/‖yn‖)n converges to ξ.
Also write e = (0, k0) for the basepoint of E.



LOCAL LIMIT THEOREM FOR CONVERGENT REL. HYPERBOLIC GROUPS 29

Assuming that r < Rµ, [14, Lemma 3.24] shows that the map

u ∈ {u, λr(u) = 1} 7→ ∇λr(u)

‖∇λr(u)‖
is a homeomorphism between {u, λr(u) = 1} and Sd−1. Thus, there exists ur,n such
that

yn
‖yn‖

=
∇λr(ur,n)

‖∇λr(ur,n)‖
.

As explained in the previous section, [18, (5), Proposition 4.6] shows that the set
{u, λr(u) = 1} is contained in a fixed ball B(0,M). Therefore, ur,n is bounded
and so is ‖∇λr(ur,n)‖. Setting tn = ‖yn‖/‖∇λr(ur,n)‖, we see that (tn)n tends to
infinity and that

yn = tn∇λr(ur,n).

Consider now a sequence (rn)n converging to Rµ, rn < Rµ. By Lemma 4.3,

(2πtn)
d−1

2 G((x, k), (yn, jn)|rn)eurn,n·(y−x)

=
1

Σrn,ur,n(∇λr(ur,n))

(
Crn(urn,n)kνrn(urn,n)jn

det(Σrn,urn,n)
+ o(1)

)
and

(2πtn)
d−1

2 G(e, (yn, jn)|rn)eurn,n·y

=
1

Σrn,ur,n(∇λr(ur,n))

(
Crn(urn,n)k0

νrn(urn,n)jn
det(Σrn,urn,n)

+ o(1)

)
Consequently,

K((x, k), (yn, jn)|rn) = eur,n·x
Crn (urn,n)kνrn (urn,n)jn

det(Σrn,urn,n ) + o(1)

Crn (urn,n)k0
νrn (urn,n)jn

det(Σrn,urn,n ) + o(1)
.

By [17, Lemma 5.6], the sequence (urn,n)n converges to uRµ as (yn/‖yn‖)n tends
to ξ and (rn)n tends to Rµ. Note that the limit does not depend on ξ. Indeed, uRµ
is a point such that λRµ(uRµ) = 1 and by (3.3), the minimum of λRµ is 1. Since
λRµ is strictly convex, the point uRµ is unique. The o(1) term above is uniform in

r, hence (K((x, k), (yn, jn)|rn))n converges to euRµ,ξ·x
CRµ (uRµ,ξ)k
CRµ (uRµ,ξ)k0

.
Assume now that r = Rµ is fixed and (yn)n converges to ξ. We apply Lemma 4.4

to the same parameters αv, βv, Σv to deduce that

K((x, k), (yn, jn)|Rµ) ∼ euRµ,ξ·x
CRµ(uRµ,ξ)k

CRµ(uRµ,ξ)k0

.

Thus, as (yn, jn) → ξ and rn → Rµ with rn < Rµ, the limit of the two sequences
(K((x, k), (yn, jn)|rn))n and (K((x, k), (yn, jn)|Rµ))n coincide. �

5. Asymptotics of the full Green function

The purpose in this section is to show that, for a convergent random walk on a
relatively hyperbolic group whose Martin boundary is stable, the asymptotics of the
derivatives of the full Green function are given by the asymptotics of the derivatives
of the Green functions associated to the first return kernels to dominant parabolic
subgroups. The precise statement is given in Theorem 5.4 below. This is the last
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crucial step before the proof of the local limit theorem. Note that throughout this
section, we do not need to assume that parabolic subgroups are virtually abelian.

If x ∈ Γ, we define I(k)
x (r) by

I(k)
x (r) =

∑
x1,...,xk∈Γ

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, x|r).

For x = e, we write I(k)(r) = I
(k)
e (r). These quantities are related to the derivatives

of the Green function by the following result. We inductively define

F1,x(r) =
d

dr
(rGr(e, x))

and
Fk,x(r) =

d

dr
(r2Fk−1,x(r)), k ≥ 2.

The following lemma generalizes Lemma 2.7 and is valid for any transition kernel.

Lemma 5.1. [15, Lemma 3.2] For every x ∈ Γ and r ∈ [0, Rµ],

Fk,x(r) = k!rk−1I(k)
x (r).

The following result is a direct consequence of this lemma.

Proposition 5.2. For every k ≥ 1, x ∈ Γ and r ≤ Rµ,

I(k)
x (r) � G(e, x|r) +G′(e, x|r) + ...+G(k)(e, x|r).

Moreover, if k is the smallest integer such that I(k)(Rµ) = +∞ — or equivalently
such that G(k)(e, e|Rµ) = +∞ — then, as r → Rµ,

I(k)
x (r) ∼ CG(k)(e, x|r).

For any parabolic subgroupH of Γ and any η ≥ 0, we also set for every x ∈ Nη(H)
and r ∈ [0, Rµ]

I
(k)
H,η,x(r) =

∑
x1,...,xk∈Nη(H)

G(e, x1|r)G(x1, x2|r)...G(xk−1, xk|r)G(xk, x|r).

Again, if x = e, we write I(k)
H,η(r) = I

(k)
H,η,e(r). Since G(x, x′|r) = GH,η,r(x, x

′|1) for

any x, x′ ∈ Nη(H), the quantities I(k)
H,η,x(r) are related to the derivatives of GH,η,r

at 1 by the same formulae as in Lemma 5.1.

We now fix a finite set {H1, ...,HN} of representatives of conjugacy classes of
the parabolic subgroups. For η ≥ 0, we define

(5.1) J (k)
η (r) =

N∑
p=1

I
(k)
Hp,η(r)

and J (k)(r) = J
(k)
0 (r), k ≥ 1.

Proposition 5.3. Consider a finitely generated relatively hyperbolic group Γ and
a finitely supported symmetric and admissible probability measure µ on Γ. Assume
that the random walk is convergent, i.e. I(1)(Rµ) is finite. Let k be the smallest
integer such that J (k)(Rµ) is infinite. Then, the quantity I(j)(Rµ) is finite for every
j < k and for every η ≥ 0,

I(k)(r) � J (k)
η (r)

where the implicit constant only depends on η.
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Proof. Clearly, we have J (j)(r) . I(j)(r) for every j. Also, by [15, Lemma 5.7], the
sum I(j) is bounded by some quantity that only depends on all the I(l)(r), l < j
and on all the J (l)(r), l ≤ j. Thus, by induction, I(j)(Rµ) is finite for every j < k

and I(k)(r) . J (k)(r). Finally, J (j)(r) � J
(j)
η (r), where the implicit constant only

depends on η. �

The purpose of this section is to prove the following theorem that refines Pro-
postion 5.3. Its assumptions are satisfied as soon as the parabolic subgroups are
virtually abelian, according to Theorem 4.1 and [17, Proposition 4.3].

Theorem 5.4. Consider a finitely generated relatively hyperbolic group Γ and a
finitely supported symmetric and admissible probability measure µ on Γ. Assume
that the random walk is convergent, i.e. I(1)(Rµ) is finite. For any parabolic sub-
group H of Γ and any r ≤ Rµ, let pH,r be the first return kernel to H associated
with rµ.

Assume that the following holds.
• The Martin boundary is stable and the function

(x, y, r) ∈ Γ× Γ ∪ ∂µΓ× (0, Rµ] 7→ K(x, y|r)
is continuous.

• The 1-Martin boundary of (H, pH,Rµ) is reduced to a point for all H such
that the random walk is spectrally degenerate along H.

Let k be the smallest integer such that J (k)(Rµ) is infinite. Then, for every η ≥ 0,
there exists a constant Cη such that as r → Rµ,

I(k)(r) ∼ CηJ (k)
η (r).

The next two subsections are dedicated to the proof of this theorem.

5.1. Asymptotics of the second derivative. We start with proving Theorem 5.4
when k = 2, i.e. J (1)(Rµ) is finite and J (2)(Rµ) is infinite. We first consider the
case η = 0.

Claim 5.5. Under the assumptions of Theorem 5.4, if k = 2, then there exists a
positive constant C such that

I(2)(r) ∼ CJ (2)(r).

5.1.1. Step 1. I(2)(r) via Birkhoff sums. We write H(x, y|r) = G(x, y|r)G(y, x|r).
The purpose of this paragraph is to express I(2)(r) up to a bounded error as∑

n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψr

(
T k[e, x]

)
,

where the function Ψr is introduced below. See precisely Proposition 5.8.
Many computations are analogous to [16, Section 4, Section 5] and we first make

some general comments about our strategy. In [16], the first author introduced the
transfer operator

Lr(f)(x̃) =
∑
T ỹ=x̃

H(e, y|r)
H(e, x|r)

f(ỹ).

Here, x̃ and ỹ are words accepted by the automaton G encoding relative geodesics
given by Theorem 2.3, x and y are the corresponding elements of Γ and T is the



32 MATTHIEU DUSSAULE, MARC PEIGNÉ, AND SAMUEL TAPIE

left shift on this automaton. Roughly speaking, we choose a fixed relative geodesic
[e, x] from e to x for every x ∈ Γ. Then, T ỹ = x̃ means that [e, x] is obtained from
[e, y] by deleting the first increment. Denoting by ∅ the empty word, we see that

H(e, e|r)Lnr (f)(∅) =
∑
x∈Ŝn

H(e, x|r)f(x).

With this terminology, we thus want to express I(2)(r) as the sum of the iterates
of Lr of the Birkhoff sum of Ψr.

However, spectral nondegeneracy is used in crucial ways in [16]. First, to prove
that the spectral data of Lr vary continuously in r, second to check that the different
functions involved in the proofs have sufficient regularity to control the convergence
of the iterates of Lr. As a consequence, we cannot use thermodynamic formalism
as in [16] in the present paper. On the other hand, assuming convergence of the
random walk simplify many computations. For instance, a formula analogous to
the one we want to prove in this paragraph is given by [16, Proposition 5.3], but
the error term, rather than being bounded, involves I(1)(r) which explodes at Rµ.
To overcome this difficulty, the analogous function Ψr introduced in [16] is more
sophisticated than the one that we use below.

Thus, if we skip the spectral degeneracy assumption, we cannot use the operator
Lr and this is the main difference with [16]. Nevertheless, for our purpose, rough
asymptotic estimates of I(1)(r) are sufficient.

We now start the proof of Claim 5.5. By definition, I(1)(r) =
∑
x∈ΓH(e, x|r).

We introduce the function Φr defined by

Φr(x) =
∑
y∈Γ

G(e, y|r)G(y, x|r)
G(e, x|r)

.

We then have

I(2)(r) =
∑
x∈Γ

H(e, x|r)Φr(x).

We fix a finite generating set S. Using the automaton G encoding relative
geodesics given by Theorem 2.3, for any x ∈ Γ, we choose a relative geodesic
[e, x] from e to x. Also, we write Ω0 = {H1, ...,HN} and H0 = S so that each
increment of a relative geodesic is in one of the Hj . Distinct parabolic subgroups
have finite intersections, see for instance [13, Lemma 4.7], so up to enlarging H0 to
a bigger finite set, we can assume that all Hj are disjoint. This is not needed, but
this might help readability.

Consider a finite relative geodesic

α = (α−k1
α−k1+1..., α0, α1, ..., αk2

)

such that α0 = e. We denote by Γα1 the set of elements y ∈ Γ such that y1 and α1

lie in the same Hj ; that is the increments of [e, y] and α with index 1 belong to the
same parabolic subgroup, as suggested by the following picture.
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e

α−

α1

α+

y ∈ Γα1

y1

We then define Ψr(α) by

Ψr(α) =
∑
y∈Γα1

G(α−, y|r)G(y, α+|r)
G(α−, α+|r)

,

where α− = α−k1 and α+ = αk2 are the left and right extremities of α. Let T be
the left shift on relative geodesics, so that T kα is the relative geodesic α(k)−1α.
Our first goal is to prove the following.

Proposition 5.6. Let x ∈ Ŝn. Then

Φr(x) =

n−1∑
k=0

Ψr

(
T k[e, x]

)
+O(n).

Proof. Set [e, x] = (e, x1, x2, ..., xn). Fix k ≤ n − 1. Let Γk be the set of elements
y such that the projection of y on [e, x] in the relative graph Γ̂ equals xk. If there
are several projections, we choose the one which is the closest to e. Let jk be such
that x−1

k xk+1 ∈ Hjk .
We set, for k ≤ n− 1,

Σk =
∑
y∈Γk

G(e, y|r)G(y, x|r)
G(e, x|r)

−Ψr(T
k[e, x]).

Consider some y ∈ Γk, k ≤ n−1, so that the projection of the relative geodesic x−1
k y

on T k[e, x] = x−1
k [e, x] equals e. Consider also the relative geodesic [e, x−1

k y] and
write [e, x−1

k y] = (e, z1, ..., zm). Note that the condition z1 ∈ Hjk exactly means
that x−1

k y ∈ Γ(Tk[e,x])1
. Consequently, in Σk, we are left with the elements y ∈ Γk

such that z1 /∈ Hjk . We prove that the contribution of such y is bounded. Roughly
speaking, those y project on Hjk near e. Precisely, we prove the following.

Claim 5.7. If z1 /∈ Hjk , then any relative geodesic from zm = x−1
k y to x−1

k x passes
within a bounded distance of e.

Proof. By [42, Lemma 1.15], there exists L ≥ 0 such that if the projection in the
Cayley graph of Γ of zm on Hjk is at distance at least L from e, then the relative
geodesic [e, x−1

k y] contains an edge in Hjk . Since [e, x−1
k y] is a relative geodesic,

This edge cannot be z1. Thus, the projection of zm on Hjk is within L of e. By
[15, Lemma 4.16], we also know that any relative geodesic [zm, x

−1
k x] from zm to

x−1
k x passes within a bounded distance of x−1

k xk+1. If d(e, x−1
k xk+1) ≤ L, this

proves that [zm, x
−1
k x] passes within a bounded distance of e. On the contrary, if

d(e, x−1
k xk+1) ≥ L, then using [42, Lemma 1.15] once again, such a geodesic has an

edge in Hjk . By [42, Lemma 1.13], the entrance point in Hjk is within a bounded
distance of the projection of zm on Hjk , which is itself at a distance at most L of e.
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Thus, in any case, any relative geodesic from zm to x−1
k x passes within a bounded

distance of e. �

By relative Ancona inequalities, we deduce that

G(y, x|r) = G(x−1
k y, x−1

k x|r) � G(x−1
k y, e|r)G(e, x−1

k x|r) = G(y, xk|r)G(xk, x|r).

Now, using again [15, Lemma 4.16], since y ∈ Γk, any relative geodesic from x−1
k to

zm = x−1
k y passes within a bounded distance of e. Thus, similarly, relative Ancona

inequalities yield
G(e, y|r) � G(e, xk|r)G(xk, y|r).

Finally, by definition, xk is on a relative geodesic from e to x, hence

G(e, x|r) � G(e, xk|r)G(xk, x|r).

We deduce that whenever z1 /∈ Hjk , it holds
G(e, y|r)G(y, x|r)

G(e, x|r)
. G(xk, y|r)G(y, xk|r).

Therefore, Σk is bounded by∑
y∈Γk
z1 /∈Hjk

G(xk, y|r)G(y, xk|r) .
∑
y∈Γ

G(xk, y|r)G(y, xk|r) = I(1)(r).

Now, we treat the case k = n. Any y ∈ Γn projects on [e, x] at x. By [15,
Lemma 4.16], any relative geodesic from e to y passes within a bounded distance
of x. Thus, weak relative Ancona inequalities yield this time

G(e, y|r)G(y, x|r)
G(e, x|r)

. G(x, y|r)G(y, x|r).

Thus, we get ∑
y∈Γn

G(e, y|r)G(y, x|r)
G(e, x|r)

. I(1)(r).

Since the random walk is convergent, I(1)(r) is uniformly bounded. Summing over
k from 0 to n, we thus have∣∣∣∣∣Φr(x)−

n−1∑
k=0

Ψr

(
T k[e, v]

)∣∣∣∣∣ . n,
which is the expected bound. �

We deduce the following.

Proposition 5.8. We have

I(2)(r) =
∑
n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψr

(
T k[e, x]

)
+O(1).

Proof. By Proposition 5.6,∣∣∣∣∣∣I(2)(r)−
∑
n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψr

(
T k[e, x]

)∣∣∣∣∣∣ .
∑
n≥0

n
∑
x∈Ŝn

H(e, x|r).
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We now prove that
∑
x∈Ŝn H(e, x|Rµ) decays exponentially fast in n, using that the

random walk is convergent. In order to simplify the proof, we use thermodynamic
formalism.

As explained above, following [16], the sum
∑
x∈Ŝn H(e, x|r) can be written as

the value at the empty sequence of the nth iterate of the transfer operator Lr
applied to the constant function equal to 1, see [16, Section 6.1] for more details.
Moreover, by [16, Lemma 4.3], the Markov shift associated with the automaton
G encoding relative geodesics has finitely many images and by [16, Lemma 4.5,
Lemma 4.7], the transfer operator Lr has finite pressure and is semisimple. Thus, by
[16, Theorem 3.5], we have

∑
x∈Ŝn H(e, x|r) ∼ CeP (r), where P (r) is the maximal

pressure of Lr. Since the random walk is convergent, we must have P (Rµ) < 0.
Therefore, the sum

∑
n≥0 n

∑
x∈Ŝn H(e, x|Rµ) is finite. This concludes the proof,

since H(e, x|r) ≤ H(e, x|Rµ). �

5.1.2. Step 2. J (2)(r) via Birkhoff sums. By Proposition 5.8, our Claim 5.5 is a
direct consequence of the following statement.

Proposition 5.9. With the same notations as before,

∑
n≥0

n−1∑
k=0

∑
x∈Ŝn

H(e, x|r)Ψr

(
T k[e, x]

)
∼ CJ (2)(r).

Proof. Using the automaton G encoding relative geodesics, we uniquely decompose
x ∈ Ŝn as x = x2hx1, where x1 ∈ Ŝn−k−1, h ∈ Hj for some j and x2 ∈ Ŝk. If y is
fixed, we write Xj

y (resp. Xy
j ) for the set of elements z of relative length j that can

precede (resp. follow) y in the automaton G. We also write Xy, respectively Xy for
the set of all elements z that precede, respectively follow y, without specifying the
length of z. Writing y = h′x′ and setting α = T k[e, x], the fact that y ∈ Γα can be
reformulated as h′ ∈ Γh, where Γh is the set of elements h′ such that h and h′ lie
in the same Hj . We thus need to study∑̃

:=
∑
k≥0

∑
n≥k+1

∑
x1∈Ŝn−k−1

∑
h∈X1

x1

∑
x2∈Xkh

H(e, x1|r)
H(e, x2hx1|r)
H(e, x1|r)∑

h′∈Γh

∑
x′∈Xh′

G(x−1
2 , h′x′|r)G(h′x′, hx1|r)

G(x−1
2 , hx1|r)

.

We reorganize the sub-sum over h, x2, h
′, x′ as∑

h∈X1
x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)
∑

x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)

χr(h, h
′, x1, x2, x

′),

where the function χr is defined by

χr(h, h
′, x1, x2, x

′) =
G(hx1, x

−1
2 |r)

G(e, x−1
2 |r)G(h, e|r)G(x1, e|r)

G(x−1
2 , h′x′|r)

G(x−1
2 , e|r)G(e, h′|r)G(e, x′|r)

G(h′x′, hx1|r)
G(x′, e|r)G(h′, h|r)G(e, x1|r)

(5.2)
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so that∑̃
=
∑
k≥0

∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χr(h, h′, x1, x2, x
′)

The quantity J (2) appears in the sub-sum
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r).

It remains to control the sub-sum∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χr(h, h′, x1, x2, x
′).

Proposition 5.10. The functions χr are bounded uniformly in r ∈ [0, Rµ]. More-
over, as r tends to Rµ, χr uniformly converges to χRµ .

Proof. The proof relies on the stability of the Martin boundary. By the relative
Ancona inequalities, every quotient in the definition of χr is uniformly bounded.
Thus, we just need to prove that each of them uniformly converges to some limit
as r → Rµ.

We start with the first term and we fix ε > 0. By Proposition 2.8, there exists
η, independent of r, such that

G(hx1, x
−1
2 ;Bη(h)c|r) ≤ εG(hx1, x

−1
2 |r).

Decomposing a trajectory that does enter Bη(h) according to its first passage hu
in this ball, we deduce that for every r ≤ Rµ,∣∣∣∣∣∣ G(hx1, x

−1
2 |r)

G(e, x−1
2 |r)G(h, e|r)G(x1, e|r)

−
∑

u∈Bη(e)

G(x1, u;Bη(e)c|r)G(hu, x−1
2 |r)

G(e, x−1
2 |r)G(h, e|r)G(x1, e|r)

∣∣∣∣∣∣ . ε
and so we just need to prove that

∑
u∈Bη(e)

G(x1,u;Bη(e)c|r)
G(e,x−1

2 |r)
G(hu,x−1

2 |r)
G(h,e|r)G(x1,e|r) converges

as r tends to Rµ, uniformly in x1, h, x2. We study separately the two ratios which
appear in this sum.

Lemma 5.11. For fixed η, the ratio G(x1,u;Bη(e)c|r)
G(x1,e|r) converges to G(x1,u;Bη(e)c|Rµ)

G(x1,e|Rµ) ,
uniformly in x1 and u ∈ Bη(e).

Proof. By finiteness of Bη(e), it is sufficient to prove that the convergence is uniform
in x1. Since the function (x, y, r) 7→ K(x, y|r) is continuous, the ratio G(x1,u|r)

G(x1,e|r)

uniformly converges to G(x1,u|Rµ)
G(x1,e|Rµ) . Conditioning on the last passage through Bη(e)

before u, we have

G(x1, u|r) = G(x1, u;Bη(e)c|r) +
∑

v∈Bη(e)

G(x1, v|r)G(v, u;Bη(e)c|r),

where, as r → Rµ,
(i) G(x1,v|r)

G(x1,e|r) uniformly converges to G(x1,v|Rµ)
G(x1,e|Rµ) ;

(ii) G(v, u;Bη(e)c|r) uniformly converges to G(v, u;Bη(e)c|Rµ). �
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Similarly, to study the behavior of the ratio G(hu,x−1
2 |r)

G(e,x−1
2 |r)G(h,e|r) as r → Rµ, we use

Proposition 2.8 and replace G(hu, x−1
2 |r) by∑

v∈Bη′ (e)

G(hu, v;Bη′(e)
c|r)G(v, x−1

2 |r),

where η′ only depends on ε and η. As above, we check that both G(hu,v;Bη′ (e)
c|r)

G(h,e|r)

and G(v,x−1
2 |r)

G(e,x−1
2 |r)

uniformly converge, as r → Rµ.
This shows uniform convergence of the first quotient in the definition of χr. We

deal similarly with the two other ones to conclude. �

Let ε > 0. Since
∑
xH(e, x|Rµ) is finite, if |Rµ − r| is small enough, we have∑

k≥0

∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′)G(h′, h)G(h, e)

∑
x2∈Xkh

H(e, x2|r)
∑

x′∈Xh′
H(e, x′|r)

∣∣χr(h, h′, x1, x2, x
′)− χRµ(h, h′, x1, x2, x

′)
∣∣

≤ ε
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′)G(h′, h)G(h, e) ≤ εJ (2)(r).

We can thus replace χr by χRµ in the expression of
∑̃

.

Proposition 5.12. Consider a parabolic subgroup H along which the random walk
is spectrally degenerate. As h, h′ ∈ H tend to infinity and d(h, h′) tends to infinity,
the function ∑

k≥0

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χRµ(h, h′, x1, x2, x
′)

converges to a function χ̃H(x1). Moreover, the convergence is uniform in x1 and
r ∈ [0, Rµ] and the function χ̃H is bounded.

We first prove the following lemma.

Lemma 5.13. If D is large enough and if d(e, h) > D, the set of x2 that can
precede h lying in a fixed parabolic subgroup H is independent of h.

Proof. Let h1 and h2 be in the same parabolic subgroup H, such that both have
length bigger than D. Assume that x can precede h1. By [15, Lemma 4.11], if D is
large enough, the concatenation of x and h2 is a relative geodesic. Now, consider
elements x̃ and h̃ in H such that x̃h̃ = xh2, hence x̃h̃h−1

2 h1 = xh1 so that x̃ ≥ x

in the lexicographical order. If x̃ > x, then the concatenation of x̃ and h̃ is bigger
than the concatenation of x and h2. Otherwise, x̃ = x and so h̃ = h2. Therefore x
can precede h2. �

The same proof does not apply to elements x′ that can follow h′. However,
decomposing elements of Γ as h′x′ and choosing the inverse lexicographical order
rather than the original lexicographical order, we get similarly the following result.

Lemma 5.14. If D is large enough and if d(e, h′) > D, the set of x′ that can follow
h′ lying in a fixed parabolic subgroup H is independent of h′.
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We can now prove Proposition 5.12. We use here that the Martin boundary of
the first return kernel pH,Rµ is reduced to a point.

Proof. By Lemmas 5.13 and 5.14, it is enough to prove that χRµ(h, h′, x1, x2, x
′)

converges to a function, as h, h′ tend to infinity and d(h, h′) tends to infinity, uni-
formly in x1, x2, x

′. Uniformity is proved using Proposition 2.8, as in the proof of
Proposition 5.10. Thus, we just need to prove that for fixed u and v, the ratio
G(hu,v|Rµ)
G(h,e|Rµ) converges as h tends to infinity. We write

G(hu, v|Rµ)

G(h, e|Rµ)
=
G(hu, v|Rµ)

G(hu, e|Rµ)

G(hu, e|Rµ)

G(h, e|Rµ)
=
G(hu, v|Rµ)

G(hu, e|Rµ)

G(u, h−1|Rµ)

G(e, h−1|Rµ)
.

Both hu and h−1 tend to infinity. Since we assume that the Martin boundary of the
first return kernel to H is reduced to a point, both ratios G(hu,v|Rµ)

G(hu,e|Rµ) and G(u,h−1|Rµ)
G(e,h−1|Rµ)

converge, as h tends to infinity. �

To simplify notations, we set

Ĩ(2)(r) =
∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)

∑
k≥0

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χRµ(h, h′, x1, x2, x
′).

(5.3)

We also write Hh for the parabolic subgroup containing h. When h lies in several
parabolic subgroups, we arbitrarily choose one of them and, if possible, we choose
one along which the random walk is spectrally degenerate. Recall that the inter-
section of two parabolic subgroups is finite, hence Hh is uniquely defined if d(e, h)
is large enough. Finally, if the random walk is spectrally nondegenerate along H,
we set χ̃H(x1) = 1.

Proposition 5.15. Let ε > 0. If |r −Rµ| is small enough, then∣∣∣∣∣∣Ĩ(2)(r)−
∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)χ̃Hh(x1)

∣∣∣∣∣∣
. εJ (2)(r).

Proof. There exists Dε such that if the random walk is spectrally degenerate along
Hh and if d(e, h), d(e, h′), d(h, h′) ≥ Dε.∣∣∣∣∣∣

∑
k≥0

∑
x2∈Xkh

∑
x′∈Xh′

H(e, x2|r)H(e, x′|r)χRµ(h, h′, x1, x2, x
′)− χ̃Hh(x1)

∣∣∣∣∣∣ ≤ ε.
Now, the remaining sum∑

n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)

is bounded by J (2)(r). Therefore, we can assume that either the random walk is
spectrally nondegenerate along H, or that one of d(e, h), d(e, h′), d(h, h′) is at most
Dε. On the one hand, the sub-sum in (5.3) over the h and h′ such that, either
d(e, h) < Dε or d(e, h′) < Dε or d(h, h′) < Dε, is uniformly bounded. Thus, it
can be bounded by εJ (2)(r) if r is close enough to Rµ. On the other hand, the
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sub-sum over the h and h′ such that d(e, h), d(e, h′), d(h, h′) ≥ Dε but the random
walk is spectrally nondegenerate along Hh is also uniformly bounded and can thus
be bounded as well by εJ (2)(r) if r is close enough to Rµ. �

To conclude the proof, we only need to prove that∑
n≥0

∑
x1∈Ŝn

H(e, x1|r)
∑
h∈X1

x1

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)χ̃Hh(x1) ∼ CJ (2)(r).

The double sum over x1 and h that can precede x1 is exactly the sum over every
element of relative length 1+d̂(e, x1), so we can replace this double sum by a double
sum over h and x1 that can follow h. We thus need to prove that∑

h

∑
h′∈Γh

G(e, h′|r)G(h′, h|r)G(h, e|r)
∑
n≥0

∑
x1∈Xhn

H(e, x1|r)χ̃Hh(x1) ∼ CJ (2)(r).

By Lemma 5.14, if d(e, h) is large enough, then the set of x1 that can follow h is
independent of h. This concludes the proof, since for fixed D, the sub-sum over the
h such that d(e, h) ≤ D is uniformly bounded. �

This concludes the proof of Claim 5.5. To end the proof of Theorem 5.4 in the
case k = 2, we only need to show the following result.

Proposition 5.16. Under the assumptions of Theorem 5.4, if k = 2, then for
every η ≥ 0, there exists a positive constant Cη such that

J (2)
η (r) ∼ CηJ (2)(r).

Denote by Eη the set of x ∈ Γ such that x is in Nη(H) for some H. Recall that
for a relative geodesic α such that α(0) = e, the set Γα1

contains all the elements
x ∈ Γ such that x1 and α1 lie in the same Hj . Setting

Ψη
r(α) =

∑
y∈Γα1

G(α−, y|r)G(y, α+|r)
G(α−, α+|r)

1α−1
− α+∈Eη1y∈Eη

the proof of Proposition 5.16 is exactly the same as the one of Claim 5.5, replacing
Ψr by Ψη

r .

5.2. Higher derivatives. We now consider the general case, i.e. J (j)(Rµ) is finite
for every j < k and J (k) is infinite. We introduce the function Φ

(k)
r and Ψ

(k)
r defined

for any x ∈ Γ by

Φ(k)
r (x) =

∑
y1,...,yk−1

G(e, y1|r)G(y1, y2|r)...G(yk−1, v|r)
G(e, v|r)

.

and, for any relative geodesic α such that α(0) = e,

Ψ(k)
r (α) =

∑
y1,...,yk−1∈Γα1

G(α−, y1|r)G(y1, y2|r)...G(yk−1, α+|r)
G(α−, α+|r)

.

As above, it holds
I(k)(r) =

∑
x∈Γ

H(e, v|r)Φ(k)
r (x).

We have the following.
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Proposition 5.17. There exists Dk such that, for any x ∈ Ŝn,

Φ(k)
r (x) =

n−1∑
j=0

Ψ(k)
r

(
T j [e, v]

)
+O(nDk).

Proof. Like in the proof of Proposition 5.6, we consider the set Γl of elements y
such that the projection of y on [e, x] is at xl. If all the yj do not lie in the same
Γl, then ∑

y1,...,yk−1

G(e, y1|r)G(y1, y2|r)...G(yk−1, x|r)
G(e, x|r)

is bounded by a quantity only involving the J (j)(r), j < k, which are uniformly
bounded. Consequently, we can restrict the sum in the definition of Φ

(k)
r to the yj

lying in the same Γl and then, the remainder of the proof of Proposition 5.6 can be
reproduced. �

As in Proposition 5.8, we get

I(k)(r) =
∑
n≥0

n−1∑
l=0

∑
x∈Ŝn

H(e, x|r)Ψ(k)
r

(
T l[e, x]

)
+O(1)

and we conclude like in the case k = 2. This proves Theorem 5.4. �

6. Proof of the local limit theorem

In this section, we prove Theorem 1.3. Recall that for fixed x in Γ,

I(k)
x (r) =

∑
y1,...,yk

G(e, y1|r)...G(yk, x|r).

Proposition 6.1. Under the assumptions of Theorem 5.4, for every η ≥ 0 and
every x ∈ Γ, there exists Cη,x such that

I(k)
x (r) ∼ Cη,xJ (k)

η (r).

Sketch of proof. We use the same arguments as in Theorem 5.4. Let us briefly
outline the case k = 2.

We have

I(2)
x (r) =

∑
y,z∈Γ

G(e, y|r)G(y, z|r)G(z, e|r)G(z, x|r)
G(z, e|r)

.

We introduce the function Φr,x defined by

Φr,x(z) =
∑
y∈Γ

G(e, y|r)G(y, z|r)
G(e, z|r)

G(z, x|r)
G(z, e|r)

,

i.e. Φr,x(z) = Φr(z)
G(z,x|r)
G(z,e|r) . We then have

I(2)
x (r) =

∑
z∈Γ

H(e, z|r)Φr,x(z).
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We can then reproduce the same proof, replacing the function χr defined in (5.2)
by the function χr,x defined by

χr,v(h, h
′, z1, z2, z

′) =
G(hz1, z

−1
2 |r)

G(e, z−1
2 |r)G(h, e|r)G(z1, e|r)

G(z−1
2 , h′z′|r)

G(z−1
2 , e|r)G(e, h′|r)G(e, z′|r)

G(h′z′, hz1|r)
G(z′, e|r)G(h′, h|r)G(e, z1|r)

G(z2hz1, x|r)
G(z2hz1, e|r)

.

Thus, χr,x = χr
G(z2hz1,x|r)
G(z2hz1,e|r) and it is bounded by a constant that only depends on

x. Since we assume that the Martin boundary is stable and the function

(x, y, r) ∈ Γ× Γ ∪ ∂µΓ× (0, Rµ] 7→ K(x, y|r)
is continuous, the family (χr,x)r uniformly converges to χRµ,x, as r tends to Rµ.
This is enough to reproduce the proof of Theorem 5.4. �

We now prove Theorem 1.3 and so we assume in particular that parabolic sub-
groups are virtually abelian. By Theorem 4.1 and [17, Proposition 4.3], the assump-
tions of Theorem 5.4 are satisfied. Combining Proposition 3.16 and Proposition 6.1,
we get the following result.

Corollary 6.2. For every x, there exists Cx > 0 such that, as r → Rµ

G(j)(e, x|r) ∼ Cx√
Rµ − r

if d is odd,

and G(j)(e, x|r) ∼ Cx log

(
1

Rµ − r

)
if d is even.

In both cases, we deduce that p(n)(e, x) ∼ CxR
−n
µ n−d/2; let us explain this last

step. The odd case is proved exactly like [23, Theorem 9.1]. The method is based
on a Tauberian theorem of Karamata and also applies to the even case.

Let us give a complete proof of the even case for sake of completeness. A function
f is called slowly varying if for every λ > 0, the ratio f(λx)/f(x) converges to 1 as
x tends to infinity. Combining Corollary 6.2 and [4, Corollary 1.7.3] (applied with
the slowly varying function log) one gets

n∑
k=0

kjRkµµ
∗k(x) ∼ C ′x log(n).

Moreover, by [23, Corollary 9.4],

(6.1) njRnµ(µ∗n(e) + µ∗n(x)) = qn(x) +O
(
e−cn

)
,

where c > 0 and the sequence (qn(x))n is non-increasing. We first deduce that
n∑
k=0

kjRkµqk(e) ∼ C0 log(n).

The same proof as in [23, Lemma 9.5] yields

njRnµqn(e) ∼ C1n
−1

and so, using again (6.1),
njRnµµ

∗n(e) ∼ C1n
−1.
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Recall that j = d/2− 1, so that

µ∗n(e) ∼ C1R
−n
µ n−d/2.

Since G(j)(e, e|r) +G(j)(e, x|r) ∼ (Ce+Cx) log 1/(Rµ− r) as r → Rµ, we can again
apply [4, Corollary 1.7.3] to deduce that

n∑
k=0

kjRkµqk(x) ∼ C(0)
x log(n).

The fact that (qn(x))n is non-increasing readily implies

njRnµqn(x) ∼ C(1)
x n−1

as above. Finally, using (6.1) once again,

µ∗n(x) ∼ C(2)
x R−nµ n−d/2.

Since C1 is positive and the random walk is admissible, the quantity C(2)
x is also

positive. This concludes the proof of Theorem 1.3 when the random walk is ape-
riodic. If not, then note that it is symmetric so its period must be 1 or 2, hence
the desired estimates for p2n and p2n+1 follow. Finally, Corollary 1.4 follows from
Theorem 1.3 and [22, Proposition 4.1]. �

7. Divergence and spectral positive recurrence

In this section, we describe the relationship between divergence and spectral
positive recurrence of random walks on relatively hyperbolic groups. As before,
assume that Γ is a finitely generated relatively hyperbolic group with respect to
virtually abelian subgroups and fix a finite set Ω0 of representatives of conjugacy
classes of parabolic subgroups.

Recall that a random walk on Γ is called spectrally positive recurrent if it is
divergent and has finite Green moments, i.e. using the notations defined in (5.1),
if J (2)(Rµ) is finite. By definition, this occurs when I(2)

H (Rµ) < +∞ for all para-
bolic subgroup H ∈ Ω0. We prove here that under some assumptions, divergence
automatically implies spectral positive recurrence, that is, assuming that I(1)(Rµ)

is infinite, we have for all H that I(2)
H (Rµ) is finite.

If the random walk driven by µ is spectrally nondegenerate along H, then we
automatically have I(2)

H (Rµ) < +∞. This is because I(2)
H is finite if and only if

the second derivative of t 7→ GH,Rµ(e, e|t) is finite at 1, which obviously holds if
RH(Rµ) > 1. Furthermore, by [17, Proposition 6.1], if H has rank d ≤ 4, then µ
cannot be spectrally degenerate along H. Thus, I(2)

H (Rµ) = +∞ can only happen
if d ≥ 5.

Next, assume that µ is spectrally degenerate along H. Up to taking η large
enough, the first return kernel pH,η,Rµ has exponential moments. Therefore, the
local limit theorem (1.1) implies that whenever the rank of H is at least 7, then
GH,η,Rµ(e, e|1), G′H,η,Rµ(e, e|1) and G′′H,η,Rµ(e, e|1) are all finite. We deduce that

I
(2)
H,η(Rµ) is finite, hence I(2)

H (Rµ) is also finite. To conclude, I(2)
H (Rµ) = +∞ can

only happen if d = 5 or 6 and the random walk is spectrally degenerate along H.
We gather these comments in the following proposition.
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Proposition 7.1. Let Γ be a a finitely generated relatively hyperbolic group Γ with
respect to virtually abelian subgroups. Let µ be a finitely supported, admissible,
symmetric probability measure on Γ. Assume that for every parabolic subgroup H
of rank 5 or 6, the random walk is spectrally nondegenerate along H. Then the
random walk is spectrally positive recurrent if and only if it is divergent.

In a separate paper [19], we show that there exist examples of spectrally degen-
erate random walks on relatively hyperbolic groups with parabolic subgroups being
virtually abelian of rank d = 5 or 6, which are divergent but not spectrally positive
recurrent. They show exotic local limit theorems which are neither of the form (1.1)
nor (1.2). We construct such examples on free products of abelian groups.

Remark 7.1. Note that these exotic examples contradict [8, Lemma 4.5]. Unfortu-
nately the proof of this lemma shows a subtle gap. A previous version of our article
contained a similar gap, which leaded to the (wrong) conclusion that any divergent
random walk is spectrally positive recurrent as soon as parabolic subgroups are
virtually abelian.

8. Beyond virtually abelian parabolic subgroups

In this final section, we explain exactly where we use the assumption that para-
bolic subgroups are virtually abelian and how our results could be generalized.

Our overall strategy can be decomposed into two main steps. We assume that
µ is convergent and we let k be the first integer such that I(k)(Rµ) is infinite, which
is also the first integer such that J (k)(Rµ) is infinite. First, by Proposition 3.16, for
large enough η, J (k)

η (r) is asymptotic either to −C log(Rµ−r) or to C(Rµ−r)−1/2.
Second, by Proposition 6.1, for every η and every x ∈ Γ, there exists Cη,x such
that I(k)

x (r) ∼ Cη,xJ (k)
η (r) as r → Rµ.

For the first step, we need an accurate control of the derivatives of GH,η,r as r
tends toRµ. Our argument relies on enhanced Ancona inequalities (Proposition 3.8)
whose proof uses virtually abelian parabolic subgroups, to ensure that any subgroup
of H quasi-isometrically embeds into Γ. Moreover, a large part of our arguments in
Section 3.4 uses the expansion of the Green function on virtually abelian groups.

For the second step, the assumptions of Proposition 6.1 are that
• the 1-Martin boundary of (H, pH,Rµ) is reduced to a point for every influ-

ential parabolic subgroup H;
• the Martin boundary is stable.

By [17, Proposition 4.10], if H is any virtually nilpotent parabolic subgroup and
µ is spectrally degenerate along H, then the Martin boundary of (H, pH,Rµ) is
reduced to a point. However, we can only prove that the Martin boundary of (Γ, µ)
is stable whenever parabolic subgroups are virtually abelian. Indeed, if H is a
virtually nilpotent parabolic subgroup, the homeomorphism type of the r-Martin
boundary of H for r below the inverse of the spectral radius is not known. The
stability of this Martin boundary seems hard to show without first studying its
homeomorphism type.

Nevertheless, we expect that our results hold for virtually nilpotent parabolic
subgroups and we now briefly explain why.

We first point out that finitely supported random walks on virtually nilpotent
groups and virtually abelian groups present the same type of expansions for the
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Green function. Indeed, let H0 be a finitely generated virtually nilpotent group
and let µ0 be a finitely supported, admissible, aperiodic probability measure on
H0. Denote by G0 the Green function associated with µ0 and by R0 its radius of
convergence, i.e. the inverse of the spectral radius of µ0. Assuming further that µ0

is symmetric, we have that R0 = 1 by amenability.
Virtually nilpotent finitely generated groups have polynomial growth and the

exact degree of the growth d0 was identified independently by Bass [3] and Guivarc’h
[25] as the homogeneous dimension of the group. By a celebrated result of Gromov
[24], the converse is true and groups of polynomial growth are exactly virtually
nilpotent groups.

By the landmark results of Alexopoulos, we have that for every fixed x ∈ H0,

µ∗n0 (x) ∼ CxR−n0n−d0/2,

where d0 is the homogeneous dimension of H0, see precisely [1, Corollary 1.17,
Corollary 1.18]. We deduce that j0 = dd0/2e − 1 is the first integer such that
G

(j0)
0 (e, e|R0) is infinite. We also deduce from Karamata’s Tauberian theorem [4,

Corollary 1.7.3] that as r tends to R0, we have G(j0)
0 (e, x|r) ∼ −C ′x log(1 − r) if

d0 is even and G
(j0)
0 ∼ C ′x(1 − r)−1/2 if d0 is odd. We can thus expect that our

first step above still holds if parabolic subgroups are virtually nilpotent. However,
when considering the first return kernel to a parabolic subgroup H, we only get a
transition kernel which has exponential moments. We thus need an extension of
Alexopoulos’ results which are only proved under a finite support assumption.

Also, in the special case of adapted random walks on free products, our results
extend to virtually nilpotent parabolic subgroups as we now show.

Consider a free product Γ = Γ0 ∗ Γ1 and assume that Γi are virtually nilpotent.
Let µi be a finitely supported, admissible and symmetric probability measure on
Γi and define the adapted probability measure µα = (1− α)µ0 + αµ1 on Γ. Let di
be the homogeneous dimension of Γi. We can use the arguments of Candellero and
Gilch [8] in the convergent case to deduce that

µ∗nα (x) ∼ CxR−nn−d/2,
where d is the minimum of di such that µα is spectrally degenerate along Γi.
Indeed, the assumptions of [8, Theorem 3.1] only involve the expansions of the
Green functions of µ0 and µ1 and we explained above that virtually nilpotent
groups and virtually abelian groups present the same type of expansions for the
Green function.

To conclude, let us mention that our approach is unlikely to extend to any
class of parabolic subgroups. Indeed, in order to compare the singularities of the
Green function with those of the induced Green functions on parabolic subgroups,
we crucially use that there exists an integer k such that J (k)(Rµ) is infinite, or
equivalently such that I(k)(Rµ) is infinite. However, this property may fail, as
proved in the recent work [12, Example 5.3].
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