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Linear Regression?

Probabilistic Relaxation in 1d

Probabilistic Relaxation in 2d



Linear Regression

Data
(xk , yk)1≤k≤N ∈ (R2)N (1)

Goal

argmin
a,b∈R2

N∑
k=1

(axk + b − yk)
2 (2)

Questions 1. Why linear functions?
2. Why sum of squares?



Error : e 7→ e2 vs e 7→ |e|

Data (xk)1≤k≤R ∈ RN

Mean argmin
x∈R

N∑
k=1

(x − xk)
2

Median argmin
x∈R

N∑
k=1

|x − xk |

Warning outliers =⇒ median > mean

Historically computation easier with squares



To be Linear or not to be linear?

Data (xk , yk)1≤k≤N ∈ (R2)N

Generalized Linear

argmin
a∈Rd

N∑
k=1

(
d∑

i=1

aigi(xk)− yk

)2

Demo in companion notebook

Limits Inverse Problem in companion notebook



Linear Regression?

Probabilistic Relaxation in 1d

Probabilistic Relaxation in 2d



Data (xk)1≤k≤N ∈ RN

Modelling X1, . . . ,XN ,M , S r.v.

P(X1 = x1, . . . ,XN = xn | S = σ,M = m)

=
N∏

k=1

P(Xk = xk | S = σ,M = m)

=
N∏

k=1

exp(−(xk −m)2/2σ)√
2πσ

=
exp(−

∑N
k=1(xk −m)2/2σ)

(2πσ)N/2



Bayes Theorem

Since P(A | B) := P(A ∩ B)/P(B)
Then P(A | B) = P(B | A)P(A)/P(B)

Taking the logarithm

ln(P(A | B)) = ln(P(B | A)) + ln(P(A))− ln(P(B))

Maximum likelihood indifferent (Ai)1≤i≤d + B =⇒
argmax
1≤i≤d

ln(P(B | Ai)).



Previous situation

argmax
m,σ

P(S = σ,M = m | X1 = x1, . . . ,XN = xn)

Becomes

argmax
m,σ

−
∑N

k=1(xk −m)2

2σ
− ln(2πσ)

2N

So

m = x̄ :=
1

N

N∑
k=1

xk and σ =
1

N

N∑
k=1

(xk − x̄)2.



Why the Normal Distribution?

▶ Fixed mean and variance on R : normal
distribution maximizes entropy

▶ Fixed mean on R+ : exponential distribution
maximizes entropy

▶ On [a, b] : uniform distribution maximizes
entropy

▶ More assumptions =⇒ other distributions



Inference/Decision split

Generative AI distribution =⇒ sampling!

Bayesian Way

P(X = x | X1 = x1, . . . ,XN = xn)

=

∫
P(X = x ,S = σ,M = m |X1 = x1, . . . )dσdm

=

∫
P(X = x | S = σ,M = m)

P(S = σ,M = m | X1 = x1, . . . )dσdm.



Linear Regression?

Probabilistic Relaxation in 1d

Probabilistic Relaxation in 2d



Linear Regression Bis

Data (xk , yk)1≤k≤N ∈ (R2)N

Modelling P(y | x , a, b) := e−
(y−ax−b)2

2σ√
2πσ

Meaning X1, . . . ,XN ,Y1, . . . ,YN ,A,B r.v.

P(Y = y | X = x ,A = a,B = b)

+ Disintegration Theorem



Same Computation

▶ Conditional Independance

▶ Maximum Likelihood

▶ We end up with

argmax
a,b

−
∑N

k=1(yk − axk − b)2

2σ
+

N

2
ln(2πσ)



Inverse Problem

Gaussian Mixture Distribution see notebook

Maximum Likelihood numerical optimization!

General

1. Neural Network Output: distribution
parameters

2. Maximum Likelihood: Loss function to
optimize



Exercise

1. Compute the loss functions for the inverse
problem and a neural network.

2. Apply the same ideas to a classification
problem.
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