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Abstract .- In this paper, we establish a quantitative unique continuation property for some
time-periodic linear parabolic equations in a bounded domain 
. We prove that for time-periodic
heat equation with particular time-periodic potential, its solution u (x; t) satis�es ku (�; 0)kL2(
) �
C ku (�; 0)kL2(!) where ! � 
. Also we deduce the asymptotic controllability for the heat equation
with an even, time-periodic potential. Moreover, the controller belongs to a �nite dimensional subspace
and is explicitly computed.
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1 Introduction and main results

Throughout this paper, 
 is a connected bounded domain in Rd, d � 1, with a boundary @
 of class
C2, ! is a non-empty open subset of 
. Let `1 > 0 be the �rst eigenvalue of the operator �� with
the Dirichlet boundary condition (i.e. the smallest strictly positive eigenvalue of �� in H1

0 (
)). Let
T > 0 be a real number, we denote k:k1 the usual norm in L1 (
� (0; T )).

In this paper, we study an in�nite dimensional system generated by the following parabolic equation�
@ty ��y + ay = f in 
� (0;+1) ,

y = 0 on @
� (0;+1) , (1.1)

with an even, T -periodic, bounded potential a = a (x; t) 2 L1 (
� R) satisfying

`1 � kak1 and a (x; t+ T ) = a (x; t) = a (x;�t) in 
� R . (1.2)
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We assume that y (�; 0) = yo 2 L2 (
) and f = f (x; t) 2 L1loc
�
0;+1;L2 (
)

�
, so that (1.1) ad-

mits a unique solution y = y (x; t) 2 C
�
[0;+1) ;L2 (
)

�
. Let fG (t; s)g0�s�t<+1 be the T -periodic

evolutionary process on L2 (
), such that

y (�; t) = G (t; s) y (�; s) +
Z t

s

G (t; r) f (�; r) dr , (1.3)

for all 0 � s � t, where the T -periodicity of G (t; s) means G (t+ T; s+ T ) = G (t; s).

Notice that any bounded function in L1 (
� (0; T=2)) can be extended to be an even, T -periodic
potential a 2 L1 (
� R). Here, we are only interested in the case where (kak1 � `1) � 0 and a not
positive, because if (kak1 � `1) < 0 or a � 0, then the system (1.1) is clearly stable when f = 0.

The Poincaré map is usually de�ned by G (T + t; t). We restrict your attention on the operator G (T; 0)

G (T; 0) : L2 (
) �! L2 (
)
y (�; 0) 7�! y (�; T ) (1.4)

It is well-known that G (T; 0) is compact by the smoothing action of the di¤usion. Since a is even
and T -periodic, we see that G (T; 0) is self-adjoint. Consequently, there is a complete orthonormal
set in L2 (
) formed of eigenfunctions

�
zoj
�
j�1 of G (T; 0) corresponding to eigenvalues (�j)j�1, where

�j = �j (T ) depends on T , �j 2 R, �j ! 0 as j ! +1. Thus, we may arrange the eigenfunctions so
that the sequence (j�j j)j�1 is non-increasing, � � � � j�m+1j � j�mj � � � � � j�1j. Clearly, �j 6= 0 from
the backward uniqueness property for the linear parabolic equation. Furthermore, we will see that for
all T > 0 and for all even, T -periodic, bounded potential a, any eigenvalue �j (T ) of G (T; 0) satis�es

`1 +
ln j�j (T )j

T
� kak1 . (1.5)

The �rst result of the paper is as follows.

Theorem 1 .- There exist two constants co 2 (0; 1) and C > 0, both only depending on
! and 
, such that if we choose the time-periodicity T 2 (0; co] and an even, T -periodic potential
a 2 L1 (
� R) such that

`1 � kak1 � `1

�co
T

�1=4
,

then any eigenfunction zoj of G (T; 0) in L
2 (
), corresponding to the eigenvalue �j (T ) with j�j (T )j �

1, satis�es Z



��G (t; 0) zoj (x)��2 dx � eCkak
4=3
1

Z
!

��G (t; 0) zoj (x)��2 dx
for all t � 0.

The knowledge of the eigencouple of the Poincaré map plays a key role in the study of periodic
parabolic systems (see [14], [15]). Theorem 1 implies clearly that the eigenfunctions zoj of the Poincaré
map corresponding to the eigenvalues �j with j�j j � 1 has unique continuation property.

It is classical in control theory for linear PDE that the unique continuation property is linked with the
approximate controllability and more precisely, a quantitative uniqueness result yields an estimate of
the cost of the approximate control (see e.g. [12]). Here, our second theorem establishes an asymptotic
controllability (or open loop stabilizability) for the heat equation with time-periodic potential.

Theorem 2 .- There exist two constants co 2 (0; 1) and C > 0, both only depending on

 and !, such that if we choose the time-periodicity T 2 (0; co] and an even, T -periodic potential
a 2 L1 (
� R) such that

`1 � kak1 � `1

�co
T

�1=4
,
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and if there exists m > 0 such that

� � � � j�m+1 (T )j < 1 � j�m (T )j = � � � = j�2 (T )j = j�1 (T )j ,

then for each initial data yo 2 L2 (
), the control function fc 2 C
�
[0; T ] ;L2 (
)

�
satisfying8>>>>>>>>>>><>>>>>>>>>>>:

(i) fc (x; T � t) =
P

j=1;��;m
�j (t)G (t; 0) z

o
j (x) ,

(ii)

0B@ �1 (t)
...

�m (t)

1CA = � 1
T

h�R
!
G (t; 0) zo� (x)G (t; 0) z

o
j (x) dx

�
1��;j�m

i�10B@
R


yo (x)G (T; 0) zo1 (x) dx

...R


yo (x)G (T; 0) zom (x) dx

1CA ,

(iii)
R T
0
kfc (�; s)kL2(!) ds � eCkak

4=3
1 e(kak1�`1)T kyokL2(
) ,

implies that the solution y = y (x; t) 2 C
�
[0;+1) ;L2 (
)

�
of the following heat equation with potential

a and control function fc,8<: @ty ��y + ay = fc � 1j!�(0;T ) in 
� (0;+1) ,
y = 0 on @
� (0;+1) ,

y (�; 0) = yo in 
 ,

satis�es for all t � T ,
ky (�; t)kL2(
) � Cm e�t kyokL2(
) ,

where

 =
� ln j�m+1 (T )j

T
> 0 and Cm =

2eC(kak
4=3
1 +kak1T)

j�m+1 (T )j2
.

The notion of asymptotic controllability is usual in the nonlinear control theory of �nite dimensional
systems (see e.g. [7]). Here, (i) says that our control has a �nite dimensional structure (see also [4],
[5]). (ii) implies that the operator associating the initial data with the control function is linear which
gives a kind of robustness property of our control. (iii) gives us an explicit expression of the cost of
the control, from which we see easily that we can act a control on the equation in a very short time
T , but as a payment, eveness and T -periodicity for the potential a are required.

From the following property of the Poincaré map,

G (nT; 0) zoj = (�j)
n
zoj (1.6)

for all n 2 N, it is clear that if all eigenvalues �j satisfy j�j j < 1, then the system (1.1) is stable without
control. On the other hand, if the modulus of some eigenvalues of G (T; 0) are bigger than one, then
the equation (1.1) with f = 0 is unstable. We call such eigenvalues as unstable eigenvalues. Theorem 2
amonts to saying that if all unstable eigenvalues have same absolute value then the equation (1.1) with
f = fc � 1j!�(0;T ) can be stabilized by a control fc in a �nite dimension subspace of L2 (
) spanned
by
�
zoj
�
j=1;���;m which are the eigenfunctions of G (T; 0) corresponding to the unstable eigenvalues. So

it is important to study the unique continuation of the eigenfunctions of G (T; 0) corresponding to the
unstable eigenvalues. This is why we restrict our attention in Theorem 1 to the case where j�j j � 1.

The unique continuation property or more precisely the number of zeros of a one-dimensional
parabolic equation is well described in [1] which leads to the study of the asymptotic behaviour of
periodic 1d quasilinear parabolic equation [3], or to the consideration of the structural stability of
periodic 1d semilinear heat equation [6].

In order to get Theorem 1 and Theorem 2, we need a more general unique continuation result in
bounded domain 
 � Rd, d � 1, described as follows.
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Theorem 3 .- There exist two constants co 2 (0; 1) and C > 0, both only depending on 
 and
!, such that for all T 2 (0; co], � � 0 and q 2 L1 (
� (0; T )) satisfying

`1 + � � kqk1 � `1

�co
T

�1=4
,

we have Z



ju (x; 0)j2 dx � eCkqk
4=3
1

Z
!

ju (x; 0)j2 dx ,

where u 2 C
�
[0; T ] ;L2 (
)

�
solves the following T -periodic linear heat equation8<: @tu��u+ �u+ qu = 0 in 
� (0; T ) ,

u = 0 on @
� (0; T ) ,
u (�; 0) = u (�; T ) in 
 .

Strong unique continuation for heat equation with potential in bounded domains 
 � Rd, d � 1, has
been widely studied, (see for instance [10], [11] and references therein). In [17], one obtains that any
solution v of the linear heat equation with time-independent Lipschitz continuous potential such that
v (�; to) = 0 in ! for some to 2 (0; T ), satis�es v = 0 in 
 � (0; T ). The idea of the proof in [17] is
to transform the solution v to a solution of an elliptic equation where unique continuation property
for elliptic operator can be used (see also [8]). Here we are interested in the unique continuation and
its quanti�cation of the linear time-periodic heat equation with time-dependent potential. The basic
technique used here is to combine some properties of time-periodic solutions of heat equation with a
kind of global Carleman estimate for an elliptic operator.

This paper is organized as follows. In section 2, we give an introduction of the Poincaré map and some
related preliminary results, then we prove Theorem 1. In section 3 and section 4, we give the proofs of
Theorem 2 and Theorem 3 respectively. In section 5, we point out some related results for a particular
case where the potential depends only on time. Finally, in the Appendix, we give the proof of the
Global Carleman inequality we need.

2 The Poincaré map

Let a be an even, T -periodic, bounded function in L1 (
� R); more precisely a (x; t+ T ) = a (x; t) =
a (x;�t) in 
� R. We consider the following heat equation with the potential a = a (x; t),�

@ty ��y + ay = f in 
� (s;+1) ,
y = 0 on @
� (s;+1) , (2.1)

where s � 0 and f 2 L1loc
�
0;+1;L2 (
)

�
. Let y 2 C

�
[s;+1) ;L2 (
)

�
be the mild solution of (2.1)

and G (t; s) be the T -periodic evolutionary process generated by �� + aI in L2 (
). More precisely,
fG (t; s)g0�s�t<+1 is a family of bounded linear operators from L2 (
) to itself, such that8>>>><>>>>:

(i) G (t; t) = I for all t � 0 ,
(ii) G (t; r)G (r; s) = G (t; s) for all 0 � s � r � t ,
(iii) The map (t; s) 7�! G (t; s) g is continuous for every �xed g 2 L2 (
) ,
(iv) G (t+ T; s+ T ) = G (t; s) for all 0 � s � t ,

(v) kG (t; s)k � e(kak1�`1)(t�s) for all 0 � s � t .

(2.2)

Thus the mild solution y of equation (2.1) can be written in the following form

y (�; t) = G (t; s) y (�; s) +
Z t

s

G (t; r) f (�; r) dr (2.3)
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for all 0 � s � t.

Now, we are going to focus our attention on the Poincaré map G (T; 0) and obtain some properties in
our case. Since a is even and T -periodic, we get that G (T; 0) is self-adjoint. Indeed, let pT 2 L2 (
)
and p 2 C

�
[0; T ] ;L2 (
)

�
be the solution of8<: �@tp��p+ ap = 0 in 
� (0; T ) ,

p = 0 on @
� (0; T ) ,
p (�; T ) = pT in 
 ,

(2.4)

then for all yo 2 L2 (
), Z



yo (x) p (x; 0) dx =

Z



[G (T; 0) yo (x)] pT (x) dx , (2.5)

that is
G� (T; 0) pT (x) = p (x; 0) . (2.6)

On the other hand, because a (x; T � t) = a (x; t), the solution w (x; t) = p (x; T � t) solves8>><>>:
@tw ��w + aw = 0 in 
� (0; T ) ,

w = 0 on @
� (0; T ) ,
w (�; 0) = pT in 
 ,

w (�; T ) = p (�; 0) in 
 .

(2.7)

Finally, for all pT 2 L2 (
),
G� (T; 0) pT (x) = G (T; 0) pT (x) . (2.8)

As G (T; 0) is a compact selfadjoint operator on L2 (
), we deduce that there is a complete orthonormal
set in L2 (
) formed by the eigenfunctions

�
zoj
�
j�1 of G (T; 0) with corresponding eigenvalues �j =

�j (T ) 2 R, which converge to 0 as j �! +1. Thus, we can arrange the eigenfunctions so that the
sequence (j�j j)j�1 is non-increasing.

Now we are able to give some properties of the eigencouple
�
zoj ; �j (T )

�
associated to the compact

selfadjoint operator G (T; 0).

Lemma 2-1 .- For all s 2 [0; T ] and � 2 L2 (
),Z



� (x)G (T � s; 0) zoj (x) dx =
Z



G (T; s)� (x) zoj (x) dx .

It follows immediately from Lemma 2-1 that for all s 2 [0; T ],Z



G (s; 0) zoi (x)
G (T � s; 0) zoj (x)

�j
dx = �ij . (2.8)

Lemma 2-2 .- As soon as the time-periodicity T > 0 and an even, T -periodic potential
a 2 L1 (
� R) are chosen, then any eigenvalue �j (T ) of G (T; 0) satis�es

`1 +
ln j�j (T )j

T
� kak1 .

Note that in particular, under the hypothesis of Theorem 1, the eigenvalue �j (T ) have to satisfy

`1 +
ln j�j (T )j

T
� kak1 � `1

�co
T

�1=4
. (2.9)
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2.1 Proof of Lemma 2-1

Let g = g (x; t) 2 C
�
[s; T ] ;L2 (
)

�
be the solution of8<: @tg ��g + ag = 0 in 
� (s; T ) ,

g = 0 on @
� (s; T ) ,
g (�; s) = � in 
 ,

(2.10)

and zj = zj (x; t) 2 C
�
[0; T ] ;L2 (
)

�
be the solution of8<:

@tzj ��zj + azj = 0 in 
� (0; T ) ,
zj = 0 on @
� (0; T ) ,
zj (�; 0) = zoj in 
 .

(2.11)

Now, from the relation a (�; T � t) = a (�; t), we obtain that the function t 7!
R


g (x; t) zj (x; T � t) dx

is constant. Indeed,

d
dt

R


g (x; t) zj (x; T � t) dx =

R


@tg (x; t) zj (x; T � t) dx+

R


g (x; t) (� (@tzj) (x; T � t)) dx

=
R


� (��+ a (x; t)) g (x; t) zj (x; T � t) dx

+
R


g (x; t) (��+ a (x; t)) zj (x; T � t) dx = 0 .

(2.12)
Consequently, for all t 2 [s; T ],Z




g (x; s) zj (x; T � s) dx =
Z



g (x; t) zj (x; T � t) dx =
Z



g (x; T ) zoj (x) dx . (2.13)

That completes the proof of Lemma 2-1.

2.2 Proof of Lemma 2-2

Let e� = ln j�j (T )j
T

2 R (2.14)

and u = u (x; t) 2 C
�
[0; 2T ] ;L2 (
)

�
be the solution of8<: @tu��u+ e�u+ au = 0 in 
� (0; 2T ) ,
u = 0 on @
� (0; 2T ) ,
u (�; 0) = zoj in 
 .

(2.15)

By an energy method, we have the following equality

1

2

d

dt

Z



ju (x; t)j2 dx+
Z



jru (x; t)j2 dx+ e� Z



ju (x; t)j2 dx+
Z



a (x; t) ju (x; t)j2 dx = 0 . (2.16)

Also, notice that u (x; t) = e�
e�tzj (x; t) = e�

e�tG (t; 0) zoj (x) 6= 0 and
u (�; 2T ) = u (�; 0) in 
 . (2.17)

From (2.16) and (2.17), we get�
`1 + e� � kak1�Z 2T

0

Z



ju (x; t)j2 dx � 0 . (2.18)

Consequently

`1 + e� = `1 +
ln j�j (T )j

T
� kak1 . (2.19)

This is the desired inequality.
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2.3 Proof of Theorem 1

For j�j (T )j � 1, we have that

� =
ln j�j (T )j

T
� 0 (2.20)

and u (x; t) = e��tzj (x; t) 2 C
�
[0; 2T ] ;L2 (
)

�
satis�es8<: @tu��u+ �u+ au = 0 in 
� (0; 2T ) ,

u = 0 on @
� (0; 2T ) ,
u (�; 2T ) = u (�; 0) in 
 .

(2.21)

Now, we apply Theorem 3 for the 2T -periodic solution u of (2.21) with q = a 2 L1 (
� (0; 2T ))
satisfying

`1 +
ln j�j (T )j

T
� kak1 � `1

� co
2T

�1=4
(2.22)

to obtain Z



ju (x; 0)j2 dx � eCkak
4=3
1

Z
!

ju (x; 0)j2 dx . (2.23)

It follows by translation in time and by the 2T -periodicity of u that for all t 2 [0; 2T ],Z



ju (x; t)j2 dx � eCkak
4=3
1

Z
!

ju (x; t)j2 dx . (2.24)

Consequently, we obtain that for all t 2 [0; 2T ],Z



��G (t; 0) zoj (x)��2 dx � eCkak
4=3
1

Z
!

��G (t; 0) zoj (x)��2 dx . (2.25)

Hence, if we choose co in Theorem 1 to be co
2 in Theorem 3 and same C, we complete the proof of

Theorem 1.

3 The asymptotic controllability problem

In this Section, we prove Theorem 2. Recall that if (kak1 � `1) < 0, then the system (1.1) is already
stable with f = 0. We consider the solution of the following heat equation with a potential a =
a (x; t) 2 L1 (
� R) satisfying a (x; t+ T ) = a (x; t) = a (x;�t) in 
� R and (kak1 � `1) � 0,8<: @ty ��y + ay = fc � 1j!�(0;T ) in 
� (0;+1) ,

y = 0 on @
� (0;+1) ,
y (�; 0) = yo in 
 ,

(3.1)

where yo 2 L2 (
) and fc 2 C
�
[0; T ] ;L2 (
)

�
. It is clear that for all integers n � 1, we have

y (�; nT ) = G (nT; 0) yo +

Z nT

0

G (nT; s)
�
fc (�; s) � 1j!�(0;T )

�
ds . (3.2)

Let
�
zoj ; �j (T )

�
be the eigencouple of the compact selfadjoint operator G (T; 0), then

yo =
X
j�1

�Z



yo (x) zoj (x) dx

�
zoj . (3.3)
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It follows from Lemma 2-1 that for any s 2 [0; T ],

G (T; s)
�
fc (x; s) � 1j!�(0;T )

�
=
P
j�1

�R


G (T; s)

�
fc (x; s) � 1j!�(0;T )

�
zoj (x) dx

�
zoj (x)

=
P
j�1

�R



�
fc (x; s) � 1j!�(0;T )

�
G (T � s; 0) zoj (x) dx

�
zoj (x) .

(3.4)
By (3.3), (3.4) and by the periodicity of G (t; s), we infer

G (nT; 0) yo =
P
j�1

�R


yo (x) zoj (x) dx

�
G (nT; 0) zoj

=
P
j�1 �

n
j

�R


yo (x) zoj (x) dx

�
zoj

(3.5)

and
G (nT; s)

�
fc (x; s) � 1j!�(0;T )

�
= G (nT; T )G (T; s)

�
fc (x; s) � 1j!�(0;T )

�
=
P
j�1

�R



�
fc (x; s) � 1j!�(0;T )

�
G (T � s; 0) zoj (x) dx

�
G (nT; T ) zoj (x)

=
P
j�1

�
1j(0;T ) �

R
!
fc (x; s)G (T � s; 0) zoj (x) dx

�
G ((n� 1)T; 0) zoj (x)

=
P
j�1 �

n�1
j

�
1j(0;T ) �

R
!
fc (x; s)G (T � s; 0) zoj (x) dx

�
zoj (x) .

(3.6)

We conclude from (3.5) and (3.6) that y (x; nT ) =
P
j�1 �

n
j Yj (T ) z

o
j (x) for all integers n � 1, where

Yj (T ) =

Z



yo (x) zoj (x) dx+
1

�j

Z T

0

Z
!

fc (x; s)G (T � s; 0) zoj (x) dxds . (3.7)

Recall that we have arranged the eigenfunctions so that the sequence (j�j j)j�1 is non-decreasing. Let
m > 0 be such that j�j j � j�m+1j < 1 for all j � m+ 1 and 1 � j�mj � j�j j for all j = 1; � � �;m. Now
we decompose y (x; nT ) as follows

y (x; nT ) = y1;m (x; nT ) + y2;m (x; nT ) , (3.8)

where
y1;m (x; nT ) =

X
j=1;���;m

�nj Yj (T ) z
o
j (x) (3.9)

and
y2;m (x; nT ) =

X
j�m+1

�nj Yj (T ) z
o
j (x) . (3.10)

Note that y1;m is the projection of y in the subspace of L2 (
) spanned by eigenfunctions
�
zoj
�
j=1;���;m

of G (T; 0) corresponding to the unstable eigenvalues (�j)j=1;���;m while y2;m is the projection of y in
the subspace of L2 (
) spanned by eigenfunctions

�
zoj
�
j�m+1 of G (T; 0) corresponding to the stable

eigenvalues (�j)j�m+1. Next, we estimate respectively
R


jy2;m (x; nT )j2 dx and

R


jy1;m (x; nT )j2 dx.

It follows �rst from (3.10) thatR


jy2;m (x; nT )j2 dx =

P
j�m+1

j�j j2n jYj (T )j2

=
P

j�m+1
j�j j2n

���R
 y (x; T ) zoj (x)�j
dx
���2 . (3.11)

Indeed, because of the eveness and T -periodicity of a, we haveR T
0

R
!
fc (x; s)

G(T�s;0)zoj (x)
�j

dxds

=
R T
0

R


(@ty (x; s)��y (x; s) + a (x; T � s) y (x; s))

G(T�s;0)zoj (x)
�j

dxds

=
R


y (x; T )

zoj (x)

�j
dx�

R


yo (x) zoj (x) dx .

(3.12)

As j�j j � j�m+1j < 1 for all j � m+ 1, we deduce from (3.11) thatR


jy2;m (x; nT )j2 dx � j�m+1j2(n�1)

P
j�m+1

��R


y (x; T ) zoj (x) dx

��2
� j�m+1j2(n�1)

R


jy (x; T )j2 dx .

(3.13)
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On the other hand, we haveZ



jy1;m (x; nT )j2 dx =
X

j=1;���;m
j�j j2n jYj (T )j2

by (3.9) where

Yj (T ) =

Z T

0

�
1

T

Z



yo (x) zoj (x) dx+
1

�j

Z
!

fc (x; s)G (T � s; 0) zoj (x) dx
�
ds . (3.14)

Now we are on the position to construct a control function fc = fc (x; s) 2 C
�
[0; T ] ;L2 (
)

�
such that

for all x 2 
, for all s 2 [0; T ],

fc (x; T � s) =
X

i=1;���;m
�i (s)G (s; 0) z

o
i (x) , (3.15)

where �i = �i (s) 2 C ([0; T ]) and

1

T

Z



yo (x) zoj (x) dx+
1

�j

Z
!

fc (x; s)G (T � s; 0) zoj (x) dx = 0 (3.16)

for all j = 1; � � �;m, which implies
R


jy1;m (x; nT )j2 dx = 0.

By (3.15) and (3.16), it su¢ ces to obtain f�i (s)gi=1;���;m by solving the following linear systemX
i=1;���;m

�i (s)

Z
!

zi (x; s) zj (x; s) dx = �
�j
T

Z



yo (x) zoj (x) dx (3.17)

that is264
R
!
z1 (x; s) z1 (x; s) dx � � �

R
!
zm (x; s) z1 (x; s) dx

...
. . .

...R
!
z1 (x; s) zm (x; s) dx � � �

R
!
zm (x; s) zm (x; s) dx

375
0B@ �1 (s)

...
�m (s)

1CA = � 1
T

0B@
R


yo (x) z1 (x; T ) dx

...R


yo (x) zm (x; T ) dx

1CA ,

(3.18)
where zj = zj (x; t) 2 C

�
[0;+1) ;L2 (
)

�
is the solution of8<:

@tzj ��zj + azj = 0 in 
� (0;+1) ,
zj = 0 on @
� (0;+1) ,

zj (�; 0) = zoj in 
 .
(3.19)

The existence of such �i (s) 2 C ([0; T ]) can be proved if and only if for all s 2 [0; T ], the matrix�R
!
G (s; 0) zoi (x)G (s; 0) z

o
j (x) dx

�
1�i;j�m is invertible .

3.1 Invertibility of
�R
!
G (s; 0) zoi (x)G (s; 0) z

o
j (x) dx

�
1�i;j�m

By contradiction, we assume that the matrix M (s) =
�R
!
zi (x; s) zj (x; s) dx

�
1�i;j�m is not invert-

ible for some s 2 [0; T ] �xed. Then the lines of M (s) are linearly dependent which implies that
fzi (x; s)gi=1;���;m are linearly dependent in L2 (!). Hence there exists (�1 (s) ; � � �; �m�1 (s)) a non-
zero vector in Rm�1 such that

�1 (s) z1 (�; s) + � � �+ �m�1 (s) zm�1 (�; s)� zm (�; s) = 0 in ! . (3.20)

However, by the assumption that j�m+1j < 1 � j�mj = � � � = j�2j = j�1j, it follows that the function

{s (x; t) = �1 (s) z1 (x; t) + � � �+ �m�1 (s) zm�1 (x; t)� zm (x; t) (3.21)
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satis�es 8<:
@t{s ��{s + a{s = 0 in 
� (0; 2T ) ,

{s = 0 on @
� (0; 2T ) ,
{s (�; 2T ) = j�1j2 {s (�; 0) in 
 .

(3.22)

Let u (x; t) = e�
lnj�1j
T t{s (x; t), then u 2 C

�
[0; 2T ] ;L2 (
)

�
solves8<: @tu��u+ lnj�1j

T u+ au = 0 in 
� (0; 2T ) ,
u = 0 on @
� (0; 2T ) ,
u (�; 2T ) = u (�; 0) in 
 .

(3.23)

By Theorem 3, there exists a constant c1 > 0 such that if we choose a 2 L1 (
� R) such that

`1 � kak1 � `1

� c1
2T

�1=4
(3.24)

and noting that

`1 +
ln j�1j
T

� kak1 and
ln j�1j
T

� 0 , (3.25)

which follows from Lemma 2-2 and the fact that j�1j � 1, then the solution u = u (x; t) of (3.23)
satis�es

u (�; 0) = 0 in ! =) u (�; 0) = 0 in 
 . (3.26)

It follows by translation in time and by the 2T -periodicity of u that

u (�; s) = 0 in ! =) u (�; s) = 0 in 
 . (3.27)

So {s (�; s) = 0 in 
 and

�1 (s) z
o
1 + � � �+ �m�1 (s) zom�1 � zom = 0 in 
 . (3.28)

This contradiction shows that the matrix
�R
!
zi (x; s) zj (x; s) dx

�
1�i;j�m is invertible for all s 2 [0; T ]

and0B@ �1 (s)
...

�m (s)

1CA = � 1
T

264
R
!
z1 (x; s) z1 (x; s) dx � � �

R
!
zm (x; s) z1 (x; s) dx

...
. . .

...R
!
z1 (x; s) zN (x; s) dx � � �

R
!
zm (x; s) zm (x; s) dx

375
�1

�

0B@
R


yo (x) z1 (x; T ) dx

...R


yo (x) zm (x; T ) dx

1CA .

(3.29)
Consequently, if we take the control function fc 2 C

�
[0; T ] ;L2 (
)

�
in equation (3.1) as

fc (x; t) =
X

i=1;���;m
�i (T � t) zi (x; T � t) , (3.30)

then the corresponding solution y 2 C
�
[0;+1) ;L2 (
)

�
satis�es

ky (x; nT )kL2(
) = ky2;m (x; nT )kL2(
) � j�m+1j
(n�1) ky (�; T )kL2(
)

� j�m+1j(n�1)
�
kyokL2(
) e(

kak1�`1)T +
R T
0
kfc (�; s)kL2(!) e(

kak1�`1)(T�s)ds
�
,

(3.31)
for all integers n � 1, where �m+1 is the �rst eigenvalue such that j�m+1j < 1 .
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3.2 Estimate of kfc (�; s)kL2(!)

It follows from (3.31) that we would like to compute
R T
0
kfc (�; s)kL2(!) e(

kak1�`1)(T�s)ds. We have

�
�1 (s) � � � �m (s)

�
�
h�R

!
zi (x; s) zj (x; s) dx

�
1�i;j�m

i0B@ �1 (s)
...

�m (s)

1CA
= � 1

T

�
�1 (s) � � � �m (s)

�
�

0B@
R


yo (x) z1 (x; T ) dx

...R


yo (x) zm (x; T ) dx

1CA
(3.32)

or equivalently

Z
!

������
X

i=1;���;m
�i (s) zi (x; s)

������
2

dx = � 1
T

Z



yo (x)
X

i=1;���;m
�i (s) zi (x; T ) dx , (3.33)

which implies P
i=1;���;m

�i (s) zi (�; s)

2

L2(!)

� 1
T ky

okL2(
)

 P
i=1;���;m

�i (s) zi (�; T )

L2(
)

� 1
T ky

okL2(
)

 P
i=1;���;m

�i (s)G (T; s) zi (�; s)

L2(
)

� 1
T ky

okL2(
)

G (T; s) P
i=1;���;m

�i (s) zi (�; s)

L2(
)

� 1
T ky

okL2(
) e(
kak1�`1)(T�s)

 P
i=1;���;m

�i (s) zi (�; s)

L2(
)

.

(3.34)

Now we claim that there exists a constant c > 0 such that
X

i=1;���;m
�i (s) zi (�; s)


L2(
)

� c


X

i=1;���;m
�i (s) zi (�; s)


L2(!)

. (3.35)

Indeed, since j�m+1j < 1 � j�mj = � � � = j�2j = j�1j, then the function

{s (x; t) =
X

i=1;���;m
�i (s) zi (x; t) (3.36)

satis�es 8<:
@t{s ��{s + a{s = 0 in 
� (0; 2T ) ,

{s = 0 on @
� (0; 2T ) ,
{s (�; 2T ) = j�1j2 {s (�; 0) in 
 .

(3.37)

Let u (x; t) = e�
lnj�1j
T t{s (x; t), then u 2 C

�
[0; 2T ] ;L2 (
)

�
satis�es8<: @tu��u+ lnj�1j

T u+ au = 0 in 
� (0; 2T ) ,
u = 0 on @
� (0; 2T ) ,
u (�; 2T ) = u (�; 0) in 
 .

(3.38)
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By Theorem 3, there exists a constant c1 > 0, which is the same as that in (3.24) such that if we
choose a 2 L1 (
� R) satisfying (3.24) and note (3.25) then the following estimate holdsZ




ju (x; 0)j2 dx � eCkak
4=3
1

Z
!

ju (x; 0)j2 dx , (3.39)

where C > 0 is a constant which depends only on ! and 
. It follows by translation in time and by
the 2T -periodicity of u solution of (3.38) that for all s 2 [0; T ],Z




ju (x; s)j2 dx � eCkak
4=3
1

Z
!

ju (x; s)j2 dx , (3.40)

which implies Z



j{s (x; s)j2 dx � eCkak
4=3
1

Z
!

j{s (x; s)j2 dx (3.41)

or equivalently 
X

i=1;���;m
�i (s) zi (�; s)


L2(
)

� eCkak
4=3
1


X

i=1;���;m
�i (s) zi (�; s)


L2(!)

, (3.42)

as desired. By (3.42) and (3.34) we get
X

i=1;���;m
�i (s) zi (�; s)


L2(!)

� 1

T
kyokL2(
) e(

kak1�`1)(T�s)eCkak
4=3
1 . (3.43)

Now we conclude that if we take co = c1
2 where c1 is given in (3.39) then for all a 2 L1 (
� R)

satisfying

`1 � kak1 � `1

�co
T

�1=4
, (3.44)

we may take the control function fc 2 C
�
[0; T ] ;L2 (
)

�
as form (3.15) with estimatesR T

0
kfc (�; s)kL2(!) ds � 1

T e
Ckak4=31 kyokL2(
)

R T
0
e(kak1�`1)(T�s)ds

� eCkak
4=3
1 e(kak1�`1)T kyokL2(
)

(3.45)

and Z T

0

kfc (�; s)kL2(!) e(
kak1�`1)(T�s)ds � eCkak

4=3
1 e2(kak1�`1)T kyokL2(
) , (3.46)

so that the corresponding solution y 2 C
�
[0;+1) ;L2 (
)

�
of (3.1) satis�es (3.31).

3.3 Exponential decay of the solution

Now we turn to obtaining the exponential decay of the solution. Let CT;a = 1 + eCkak
4=3
1 e(kak1�`1)T .

By (3.31) and (3.46), it follows that

ky (�; nT )kL2(
) � j�m+1j
(n�1)

CT;ae
(kak1�`1)T kyokL2(
) (3.47)

for all integers n � 1.

For any t � T , we may write t = nT +� where n � 1 and 0 � � < T . Since y (�; t) = G (t; nT ) y (�; nT ),
it follows from (3.47) that

ky (�; t)kL2(
) = ky (�; nT )kL2(
) e(
kak1�`1)(t�nT ) � ky (�; nT )kL2(
) e(

kak1�`1)T

� exp
�
� (n� 1) ln

�
1

j�m+1(T )j

��
1

j�m+1(T )j2
CT;ae

2(kak1�`1)T kyokL2(
) ,
(3.48)
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which implies

ky (�; t)kL2(
) � exp
�
� t

T
ln

�
1

j�m+1 (T )j

��
CT;ae

2(kak1�`1)T

j�m+1 (T )j2
kyokL2(
) (3.49)

for all t � T , and completes the proof of Theorem 2.

4 The quantitative unique continuation for time-periodic heat
equation with potential

In this section, we shall show Theorem 3 by dividing the proof into three steps. In the �rst step, we
study the solutions u locally in ! � ft = 0g then, in the second step, we apply a global Carleman
inequality for elliptic operators where time t 2 (0; T ) is seen as a parameter. In the last step, we
conclude the proof of Theorem 3 by choosing an adequat time T .

4.1 Step 1: Local property of u near t = 0

The goal of this subsection is to prove the following result:

Lemma 4-1 .- There exist a non-empty open subset e! of ! and a constant C! > 1 depending
only on ! and 
 such that for all T > 0 and integers M � 2, we have

Re! ju (x; t)j2 dx � e2kqk1t
�
C! (M + 2)

2+ d
M t

�M R


ju (x; 0)j2 dx

+e2kqk1t (M + 2)
d
M

�
1�(C!(M+2)2t)

M

1�C!(M+2)2t

�R
!
ju (x; 0)j2 dx

for all t 2 (0; T ), where the solution u solves the following linear heat equation with potential8<: @tu��u+ �u+ qu = 0 in 
� (0; T ) ,
u = 0 on @
� (0; T ) ,

u (�; 0) 2 L2 (
) .

Proof of Lemma 4-1 .- Let xo 2 Rd and ro > 0; we denote

B (xo; r) =
�
x 2 Rd njx� xoj � ro

	
,

D (xo; r) =
�
x 2 Rd njxi � xoi j � ro , for all i = 1; � � �; d

	
.

(4.1)

Without loss of generality, we suppose that there exists r > 0 such that D (0; 2r) � !. Then B (xo; r) �
! for all xo 2 [�r; r]d. Let N � 4 be an arbitrary but �xed integer; we have

B (xo; r=N) � B (xo; 2r=N) � � � � � B (xo; r) � ! . (4.2)

Let us de�ne a sequence of smooth function �n 2 C10 (B (xo; nr=N)) for n = 2; � � �; N such that8<: 0 � �n � 1 ,
�n = 1 in B (xo; (n� 1) r=N) ,

jr�nj � 2N=r .
(4.3)

The construction of such sequence �n is standard.
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Let � 2 C10 (B (xo; ro)); multiplying the equation in Lemma 4-1 by �2u, we get the usual energy
equality

1
2
d
dt

R


j�u (x; t)j2 dx+

R


j�ru (x; t)j2 dx+ �

R


j�u (x; t)j2 dx

= �
R


q (x; t) j�u (x; t)j2 dx� 2

R


� (x)ru (x; t) � r� (x)u (x; t) dx , (4.4)

from which, after some calculation involving Cauchy-Schwarz inequality, we infer

1

2

d

dt

Z
B(xo;ro)

j�u (x; t)j2 dx � kqk1
Z
B(xo;ro)

j�u (x; t)j2 dx+ kr�k2L1(B(xo;ro))
Z
B(xo;ro)

ju (x; t)j2 dx ,

(4.5)
Multiplying (4.5) by e�2kqk1t, we obtain

d

dt

 Z
B(xo;ro)

j�u (x; t)j2 dx e�2kqk1t
!
� 2 kr�k2L1((xo;ro))

 Z
B(xo;ro)

ju (x; t)j2 dx e�2kqk1t
!
.

(4.6)

Taking � = �n and ro = nr=N in (4.6), using (4.3), it follows that

d

dt
gn (t) � 8 (N=r)2 gn+1 (t) (4.7)

for all n = 2; � � �; N � 1, where

gn (t) =

Z
B(xo;nr=N)

j�nu (x; t)j2 dx e�2kqk1t . (4.8)

Integrating (4.7) over (0; t), we obtain that for all n = 2; � � �; N � 1,

gn (t) � 8 (N=r)2
Z t

0

gn+1 (�) d� + gn (0) . (4.9)

By induction, we deduce that for n = 0; � � �; N � 3,

g2 (t) �
�
8 (N=r)

2
�n+1

tn
Z t

0

gn+3 (�) d� +
X

j=0;���;n

�
8 (N=r)

2
t
�j
gj+2 (0) . (4.10)

By (4.8), (4.3) and (4.10), after some computation, we haveR
D(xo;r=(N

p
d)) ju (x; t)j

2
dx e�2kqk1t �

R
B(xo;r=N)

ju (x; t)j2 dx e�2kqk1t

�
R
B(xo;2r=N)

j�2u (x; t)j2 dx e�2kqk1t � g2 (t)

�
�
8 (N=r)

2
�N�2

tN�3
R t
0
gN (�) d� +

P
j=0;���;N�3

�
8 (N=r)

2
t
�j
gj+2 (0)

�
�
8 (N=r)

2
�N�2

tN�3
R t
0

R
B(xo;r)

j�Nu (x; �)j2 dxe�2kqk1�d�

+
P

j=0;���;N�3

�
8 (N=r)

2
t
�j R

B(xo;(j+2)r=N)
j�j+2u (x; 0)j2 dx

�
�
8 (N=r)

2
�N�2

tN�3
R t
0

R


ju (x; �)j2 dxe�2kqk1�d� +

�
1�(8(N=r)2t)

N�2

1�8(N=r)2t

�R
!
ju (x; 0)j2 dx .

(4.11)
On the other hand, it is easy to check that for all � 2 (0; T ),Z




ju (x; �)j2 dx e�2kqk1� �
Z



ju (x; 0)j2 dx , (4.12)

which together with (4.11) impliesR
D(xo;r=(N

p
d)) ju (x; t)j

2
dx

� e2kqk1t
��
8 (N=r)

2
�N�2

tN�2
R


ju (x; 0)j2 dx+

�
1�(8(N=r)2t)

N�2

1�8(N=r)2t

�R
!
ju (x; 0)j2 dx

�
.

(4.13)
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Now, we break the rectangle
h
0; rp

d

id
� Rd into Nd small rectangles Dj , j = 1; � � �; Nd, having same

shape, by dividing each interval
h
0; rp

d

i
intoN small pieces (i.e.

h
0; rp

d

i
=

S
k=0;���;N�1

h
k r
N
p
d
; (k + 1) r

N
p
d

i
and

h
0; rp

d

i2
=

 S
k=0;���;N�1

h
k r
N
p
d
; (k + 1) r

N
p
d

i!
�
 S
k=0;���;N�1

h
k r
N
p
d
; (k + 1) r

N
p
d

i!
, ...etc. It is

clear that meas (Dj1 \Dj2) = 0 for j1 6= j2 and alsoZ
h
0; rp

d

id ju (x; t)j2 dx =
X

j=1;���;Nd

Z
Dj

ju (x; t)j2 dx . (4.14)

One can check that for each Dj , j = 1; � � �; Nd,

Dj � D

�
xo; k

r

N
p
d

�
, (4.15)

if xo = (xo1; � � �; xod) 2 [�r; r]
d with xoi , j = 1; � � �; d, equals k

�
r=N

p
d
�
for some k = 0; � � �; N �1, which

implies by (4.14) thatRh
0; rp

d

id ju (x; t)j2 dx
� Nde2kqk1t

��
8 (N=r)

2
t
�N�2 R



ju (x; 0)j2 dx+

�
1�(8(N=r)2t)

N�2

1�8(N=r)2t

�R
!
ju (x; 0)j2 dx

�
.

(4.16)

Let M = N � 2 � 2; we have

R
rp
d
[0;1]d

ju (x; t)j2 dx � e2kqk1t
��

8
r2 (M + 2)

2+ d
M t

�M R


ju (x; 0)j2 dx

�
+e2kqk1t

�
(M + 2)

d
M

�
1�( 8

r2
(M+2)2t)

M

1� 8
r2
(M+2)2t

�R
!
ju (x; 0)j2 dx

�
.

(4.17)

Lemma 4-1 follows.

4.2 Step 2: Observability estimate for periodic-parabolic solutions

The goal of this section is to prove the following observability inequality:

Theorem 4-1 .- Let e! be a non-empty open subset of !. There exists a constant c > 0 such
that for all T > 0, � � 0 and q 2 L1(
� (0; T )), we haveZ




ju (x; 0)j2 dx � e2kqk1T

T
exp

�
c
�
1 + �2=3 + kqk4=31

��Z T

0

Z
e! ju (x; t)j

2
dxdt ,

where u 2 C
�
[0; T ] ;L2 (
)

�
solves the following T -periodic in time linear heat equation with potential8<: @tu��u+ �u+ qu = 0 in 
� (0; T ) ,

u = 0 on @
� (0; T ) ,
u (�; 0) = u (�; T ) in 
 .

As we know, for initial condition problems of parabolic equation, the constant of observability grows
in an exponentially fast way of order e1=T (see [12]). However, Theorem 4-1 shows that the constant
of observability exploses for small time only in a polynomially fast way of order 1=

p
T for parabolic

equations with time-periodic condition.
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In order to prove Theorem 4-1, we need the following propositions.

Proposition 4-1 .- Let !o be a non-empty open subset of 
. There exist a smooth function
' = ' (x) � 1 and a constant c > 0, such that for all T > 0, � � 0, q 2 L1(
 � (0; T )) and
� � c

�
1 + �2=3 + kqk4=31

�
, we have

d
dt

�
1
2

R


e2�'(x) jru (x; t)j2 dx+ 1

2�
R


e2�'(x) ju (x; t)j2 dx� �2

R


e2�'(x) jr'j2 ju (x; t)j2 dx

�
+ 1
c

�R


e2�'(x) jru (x; t)j2 dx+ �2

R


e2�'(x) ju (x; t)j2 dx

�
� c

�
�
R
!o
e2�'(x) jru (x; t)j2 dx+ �3

R
!o
e2�'(x) ju (x; t)j2 dx

�
for almost every t 2 (0; T ), where u = u (x; t) solves the following linear heat equation with potential8<: @tu��u+ �u+ qu = 0 in 
� (0; T ) ,

u = 0 on @
� (0; T ) ,
u (�; 0) 2 H2 (
) \H1

0 (
) .

Proposition 4-2 (Global Carleman inequality for the operator � � �).- Let !o be a
non-empty open subset of 
. There exist a smooth function ' = ' (x) � 1 and a constant c > 0, such
that for all � � 0, eq 2 L1 (
), � > c

�
1 + �2=3 + keqk4=3L1(
)

�
and w 2 H2 (
) \H1

0 (
), we have2�r' � r �e�'w�� eqw2
L2(
)

+ 1
c

�
�
R


e2�'(x) jrw (x)j2 dx+ �3

R


e2�'(x) jw (x)j2 dx

�
�
e�' (�� �)w2

L2(
)
+ c

�
�
R
!o
e2�'(x) jrw (x)j2 dx+ �3

R
!o
e2�'(x) jw (x)j2 dx

�
.

The proof of Proposition 4-2 is given in the Appendix.

Proof of Proposition 4-1 .- We apply Proposition 4-2 to the solution u of the linear heat equation
with potential, then we deduce that there exist a smooth function ' = ' (x) � 1 and a constant c > 0,
such that for all � � 0, q 2 L1 (
� (0; T )), and � > c

�
1 + �2=3 + kqk4=31

�
, we have

2�r' � r �e�'u (�; t)�� q (�; t) e�'u (�; t)2
L2(
)

+ 1
c

�
�
R


e2�'(x) jru (x; t)j2 dx+ �3

R


e2�'(x) ju (x; t)j2 dx

�
�
e�' (�� �)u (�; t)2

L2(
)
+ c

�
�
R
!o
e2�'(x) jru (x; t)j2 dx+ �3

R
!o
e2�'(x) ju (x; t)j2 dx

�
(4.18)

for almost every t 2 (0; T ).

On the other hand, we multiply equation �@tu+ (�� �)u� qu = 0 by e2�' (�� �)u and integrate
it over 
 to get

1
2
d
dt

R


e2�'(x) jru (x; t)j2 dx+ 1

2�
d
dt

R


e2�'(x) ju (x; t)j2 dx+

e�' (�� �)u (�; t)2
L2(
)

=
R


q (x; t)u (x; t) (�� �)u (x; t) e2�'(x)dx�

R


@tu (x; t) 2�r' (x) � ru (x; t) e2�'(x)dx

=
R


q (x; t)u (x; t) (�� �)u (x; t) e2�'(x)dx

�
R


@tu (x; t) e

�'(x)2�r' (x) � r
�
e�'(x)u (x; t)

�
dx

+
R


@tu (x; t) e

�'(x)2�r' (x) �
�
�r' (x) e�'(x)

�
u (x; t) dx

(4.19)

which implies

1
2
d
dt

R


e2�'(x) jru (x; t)j2 dx+ 1

2�
d
dt

R


e2�'(x) ju (x; t)j2 dx� �2 ddt

R


jr' (x)j2 e2�'(x) ju (x; t)j2 dx

+
e�' (�� �)u (�; t)2

L2(
)
�
R


q (x; t)u (x) (�� �)u (x; t) e2�'(x)dx

= �
R


@tu (x; t) e

�'(x)2�r' (x) � r
�
e�'(x)u (x; t)

�
dx .

(4.20)
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Replacing @tu by (�� �)u� qu in the right hand side of (4.20), we deduce that

1
2
d
dt

R


e2�' jru (x; t)j2 dx+ 1

2�
d
dt

R


e2�' ju (x; t)j2 dx� �2 ddt

R


jr'j2 e2�' juj2 dx

+
e�' (�� �)u (�; t)2

L2(
)

+
R


e�'(x) (�� �)u (x; t)

�
2�r' (x) � r

�
e�'(x)u (x; t)

�
� q (x; t) e�'(x)u (x; t)

�
dx

=
R


q (x; t)u (x; t) e�'(x)2�r' (x) � r

�
e�'(x)u (x; t)

�
dx .

(4.21)

By Cauchy-Schwarz inequality, it follows thatR


q (x; t)u (x; t) e�'(x)2�r' (x) � r

�
e�'(x)u (x; t)

�
dx

= 2�
R


q (x; t)u (x; t) e�'(x)r' (x) �

�
�r' (x) e�'(x)u (x; t) + e�'(x)ru (x; t)

�
dx

� 2�2 kqk1 kr'k
2
L1(
)

e�'u2
L2(
)

+ 2� kqk1 kr'kL1(
)
e�'u

L2(
)

e�'ru
L2(
)

.
(4.22)

Then, we conclude by (4.21) and (4.22) that

1
2
d
dt

hR


e2�'(x) jru (x; t)j2 dx+ �

R


e2�'(x) ju (x; t)j2 dx� 2�2

R


jr' (x)j2 e2�'(x) ju (x; t)j2 dx

i
+
e�' (�� �)u (�; t)2

L2(
)

+
R


e�'(x) (�� �)u (x; t)

�
2�r' (x) � r

�
e�'(x)u (x; t)

�
� q (x; t) e�'(x)u (x; t)

�
dx

� 2�2 kqk1 kr'k
2
L1(
)

e�'u2
L2(
)

+2� kqk1 kr'kL1(
)
e�'u

L2(
)

e�'ru
L2(
)

.
(4.23)

Consequently, there exists a constant ec > 0 such for all � � 0 and q 2 L1(
� (0; T )), we have
1
2
d
dt

hR


e2�'(x) jru (x; t)j2 dx+ �

R


e2�'(x) ju (x; t)j2 dx� 2�2

R


jr' (x)j2 e2�'(x) ju (x; t)j2 dx

i
+ 1
2

e�' (�� �)u (�; t)2
L2(
)

+ 1
2

e�' (�� �)u (�; t)2
L2(
)

+
R


e�'(x) (�� �)u (x; t)

�
2�r' (x) � r

�
e�'(x)u (x; t)

�
� q (x; t) e�'(x)u (x; t)

�
dx

� ec kqk1 �R
 e2�'(x) jru (x; t)j2 dx+ �2 R
 e2�'(x) ju (x; t)j2 dx�
(4.24)

for almost every t 2 (0; T ).

By (4.18) and (4.24), we get

1
2

2�r' � r �e�'u (�; t)�� q (�; t) e�'u (�; t)2
L2(
)

+ 1
2c

�
�
R


e2�'(x) jru (x; t)j2 dx+ �3

R


e2�'(x) ju (x; t)j2 dx

�
� c
2

�
�
R
!o
e2�'(x) jru (x; t)j2 dx+ �3

R
!o
e2�'(x) ju (x; t)j2 dx

�
� 1

2

e�' (�� �)u (�; t)2
L2(
)

� �1
2
d
dt

hR


e2�'(x) jru (x; t)j2 dx+ �

R


e2�'(x) ju (x; t)j2 dx� 2�2

R


jr' (x)j2 e2�'(x) ju (x; t)j2 dx

i
� 1
2

e�' (�� �)u (�; t)2
L2(
)

� 1
2

R


e�'(x) (�� �)u (x; t)

�
2�r' (x) � r

�
e�'(x)u (x; t)

�
� q (x; t) e�'(x)u (x; t)

�
dx

+ec kqk1 �R
 e2�'(x) jru (x; t)j2 dx+ �2 R
 e2�'(x) ju (x; t)j2 dx�
(4.25)

from which it follows that

d
dt

�
1
2

R


e2�' jru (x; t)j2 dx+ 1

2�
R


e2�' ju (x; t)j2 dx� �2

R


jr'j2 e2�' juj2 dx

�
+ 1
2

�e�' (�� �)u (�; t)�+ �2�r' � r �e�'u (�; t)�� q (�; t) e�'u (�; t)�2
L2(
)

+ 1
2c�
�R



e2�' jru (x; t)j2 dx+ �2

R


e2�' ju (x; t)j2 dx

�
� ec kqk1 �R
 e2�' jru (x; t)j2 dx+ �2 R
 e2�' ju (x; t)j2 dx�
+ c
2

�
�
R
!o
e2�' jru (x; t)j2 dx+ �3

R
!o
e2�' ju (x; t)j2 dx

�
.

(4.26)
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By taking � � c
�
1 + �2=3 + kqk4=31

�
+ 4cec kqk1 in (4.26), we deduce that the inequality

d
dt

�
1
2

R


e2�'(x) jru (x; t)j2 dx+ 1

2�
R


e2�'(x) ju (x; t)j2 dx� �2

R


jr' (x)j2 e2�'(x) ju (x; t)j2 dx

�
+c
�R



e2�'(x) jru (x; t)j2 dx+ �2

R


e2�'(x) ju (x; t)j2 dx

�
� c

2

�
�
R
!o
e2�'(x) jru (x; t)j2 dx+ �3

R
!o
e2�'(x) ju (x; t)j2 dx

�
(4.27)

holds for all � � c1

�
1 + �2=3 + kqk4=31

�
where c1 > 0 is large enough. This completes the proof of

Proposition 1.

Proof of Theorem 4-1 .- Through the proof of Theorem 4-1, c denotes several positive constants
only depending on the geometry. By integrating the estimate in Proposition 4-1 over (0; T ), we getR T

0

R


e2�'(x) jru (x; t)j2 dxdt+ �2

R T
0

R


e2�'(x) ju (x; t)j2 dxdt

� c
�
�
R T
0

R
!o
e2�'(x) jru (x; t)j2 dxdt+ �3

R T
0

R
!o
e2�'(x) ju (x; t)j2 dxdt

�
,

(4.28)

thanks to the T -periodicity of u. With an adequat choice of � > c
�
1 + �2=3 + kqk4=31

�
in (4.28), it

follows thatZ T

0

Z



ju (x; t)j2 dxdt � exp
�
c
�
1 + �2=3 + kqk4=31

�� Z T

0

Z
!o

ju (x; t)j2 dx+
Z T

0

Z
!o

jru (x; t)j2 dx
!
.

(4.29)
By the usual energy method (i.e. equality like (4.4)), we also haveZ T

0

Z
!o

jru (x; t)j2 dxdt � (c+ kqk1)
Z T

0

Z
e! ju (x; t)j

2
dx (4.30)

for some !o � e! � !, using the T -periodicity of u.

Consequently, for all T > 0, � � 0 and q 2 L1 (
� (0; T )),Z T

0

Z



ju (x; t)j2 dxdt � exp
�
c
�
1 + �2=3 + kqk4=31

��Z T

0

Z
e! ju (x; t)j

2
dx . (4.31)

where u solves the following T -periodic in time linear heat equation with potential8>><>>:
@tu��u+ �u+ qu = 0 in 
� (0; T ) ,

u = 0 on @
� (0; T ) ,
u (�; 0) = u (�; T ) in 
 ,
u (�; 0) 2 H2 (
) \H1

0 (
) .

(4.32)

By density of H2 (
)\H1
0 (
) in L

2 (
), this last estimate is also true for solutions u with initial data
in L2 (
).

On the other hand, we recall that

e2kqk1t
Z



ju (x; T )j2 dx � e2kqk1T
Z



ju (x; t)j2 dx (4.33)

and

T � 1

2 kqk1

�
e2kqk1T � 1

�
=

Z T

0

e2kqk1tdt . (4.34)

Finally, it follows from (4.33), (4.34) and (4.31) thatR


ju (x; 0)j2 dx =

R


ju (x; T )j2 dx � e2kqk1T

T

R T
0

R


ju (x; t)j2 dxdt

� e2kqk1T

T exp
�
c
�
1 + �2=3 + kqk4=31

�� R T
0

Re! ju (x; t)j2 dxdt .
(4.35)

This completes the proof of Theorem 4-1.

18



4.3 Step 3: Choice of T

Now we are able to conclude the proof of Theorem 3 as follows. By integrating over (0; T ) the estimate
in Lemma 4-1, we have

1
T

R T
0

Re! ju (x; t)j2 dx � e2kqk1T
�
C! (M + 2)

2+ d
M T

�M R


ju (x; 0)j2 dx

+e2kqk1T (M + 2)
d
M

�
1�(C!(M+2)2T)

M

1�C!(M+2)2T

�R
!
ju (x; 0)j2 dx .

(4.36)

Combining the later with Theorem 4-1, we deduce that there exists a constant c > 1 such that for all
T > 0, q 2 L1(
� (0; T )) and integers M � 2, we haveR



ju (x; 0)j2 dx

� exp
�
c
�
1 + �2=3 + kqk4=31

��
e4kqk1T

�
C! (M + 2)

2+d=M
T
�M R



ju (x; 0)j2 dx

+exp
�
c
�
1 + �2=3 + kqk4=31

��
e4kqk1T (M + 2)

d=M

�
1�(C!(M+2)2T)

M

1�C!(M+2)2T

�R
!
ju (x; 0)j2 dx .

(4.37)
From this we infer that there exists a constant c > 1 such that for all T > 0, � � 0 and q 2
L1(
� (0; T )) satisfying `1 + � � kqk1, the inequalityR



ju (x; 0)j2 dx � ec(1+T )kqk

4=3
1

�
C! (M + 2)

2+d=M
T
�M R



ju (x; 0)j2 dx

+ec(1+T )kqk
4=3
1 (M + 2)

d=M

�
1�(C!(M+2)2T)

M

1�C!(M+2)2T

�R
!
ju (x; 0)j2 dx

(4.38)

holds for all integers M � 2.

First we choose an integer M � 2 so that

M < 2 kqk4=31

 
1 + d

`
4=3
1

+ 2c

!
�M + 1 , (4.39)

which can be done because kqk1 � `1. By (4.39), it follows that�
1 + d �M ,

1 + 2c kqk4=31 �M .
(4.40)

By (4.40) and (4.38), we infer

R


ju (x; 0)j2 dx � eM�1+c(T�1)kqk4=31

�
C! (2M)

3
T
�M R



ju (x; 0)j2 dx

+ec(1+T )kqk
4=3
1 (2M)

�
1�(C!(2M)2T)

M

1�C!(2M)2T

�R
!
ju (x; 0)j2 dx .

(4.41)

Next, we choose T > 0, so that T � 1

eC!

 
4kqk4=31

 
1+d

`
4=3
1

+2c

!!3 < 1
eC!(2M)3

� 1, which can be done

because of (4.39). Then by (4.41), we getZ



ju (x; 0)j2 dx � e�1
Z



ju (x; 0)j2 dx+ e2ckqk
4=3
1 (2M)

2
Z
!

ju (x; 0)j2 dx , (4.42)

which gives

�
1� e�1

� Z



ju (x; 0)j2 dx � e2ckqk
4=3
1

"
4 kqk4=31

 
1 + d

`
4=3
1

+ 2c

!#2 Z
!

ju (x; 0)j2 dx . (4.43)
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Now let co = 1

eC!

 
4

 
1+d

`
4=3
1

+2c

!!3

`41

, then by (4.43), we conclude that if `1 + � � kqk1 and kqk1 �

`1
�
co
T

�1=4
, then there exists a constant C > 0 such thatZ




ju (x; 0)j2 dx � eCkqk
4=3
1

Z
!

ju (x; 0)j2 dx , (4.44)

where the solution u 2 C
�
[0; T ] ;L2 (
)

�
satis�es the following T -periodic in time linear heat equation

with potential 8<: @tu��u+ �u+ qu = 0 in 
� (0; T ) ,
u = 0 on @
� (0; T ) ,
u (�; 0) = u (�; T ) in 
 .

(4.45)

The proof of Theorem 3 is now completed.

5 The autonomous case

Let us denote by `i, with 0 < `1 < `2 � `3 � �� �, and by ei for i � 1, the eigenvalues and eigenfunctions
of �� in H1

0 (
). Recall here that (ei)i�1 forms an orthonormal basis of the Hilbert space L
2 (
).

Let a = a (t) 2 L1 (R) be an even, T -periodic potential. From a Galerkin method, G (t; s) can be
explicitly expressed by G (t; s) = e�

R t
s
a(�)dte�(t�s) and one can check easily that the eigencouple�

zoj ; �j
�
of the compact selfadjoint operator G (T; 0) satis�es�

�j = e�`jT�
R T
0
a(�)d� ,

zoj = ej .

Furthermore, we obtain the following asymptotic controllability result.

Theorem 5-1 .- Suppose that a = a (t) 2 L1 (R) is a space-independent potential satisfying�
(i) a (t+ T ) = a (t) = a (�t) in R ,
(ii) `1 � � 1

T

R T
0
a (t) dt < `2 ;

then for all initial data yo 2 L2 (
), the control function f 2 L1
�
0; T ;L2 (
)

�
given by

f (x; t) = � 1
T
e�`1t�

R T
T�t a(�)d�

 R


yo (x) e1 (x) dxR
!
je1 (x)j2 dx

!
e1 (x)

implies that the solution y = y (x; t) 2 C
�
[0;+1) ;L2 (
)

�
of the following heat equation with potential

a = a (t), 8<: @ty ��y + ay = f � 1j!�(0;T ) in 
� (0;+1) ,
y = 0 on @
� (0;+1) ,

y (�; 0) = yo in 
 ,

satis�es for all t � T ,

ky (t)kL2(
) � eC(kak
�=2
1 +kak1T) exp

 
�
 
`2 +

1

T

Z T

0

a (�) d�

!
t

!
kyokL2(
)

and Z T

0

kf (s)kL2(!) ds � eCkak
�=2
1 e(kak1�`1)T kyokL2(
) ,
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where C > 0 is a constant which only depends on the geometry and � � 0. More precisely, � = 2
3

for general non-empty subdomain ! � 
 and � = 0 under the Geometrical control condition of the
work of Bardos-Lebeau-Rauch (i.e. 
 � Rd, d � 1, is of class C1, there is no in�nite order of contact
between the boundary @
 and the bicharacteristics of @2t ��, and all generalized bicharacteristic ray
of @2t �� meets ! � (0; Tc) for some 0 < Tc < +1).

Remark that no hypotheses on T > 0 are required with a space-independent potential which satis�es
(kak1 � `1) � 0 thanks to (ii). We omit details of the proof here. For general non-empty subdomain
! � 
, we apply Theorem A (see Appendix) to get a quanti�cation of the unique continuation property
for the eigenfunction of �� in H1

0 (
) and deduce � =
2
3 . When the Geometrical control condition

of the work of Bardos-Lebeau-Rauch [2] is satis�ed, then we apply the observability estimate for the
wave equation for a �xed frequency and deduce � = 0.

If the even, T -periodic bounded potential a = a (t) depends only on time t, then G (T; 0) is a positive
operator and the �rst eigenvalue is of multiplicity one (see Krein-Rutman theorem in e.g. [15]). We do
not know if such result is still true for a potential a = a (x; t) depending on space and time. Observe
that here no positivity hypotheses on the potential or on the initial data are imposed as in [15] or as
in [9].

6 Appendix: Global Carleman inequality for the operator (�� �)

Carleman estimates are widely used in applied problems (see [16] for inverse problems or e.g. [13],
[12], [18] for controllability problems). In what follows, we present the proof of the Global Carleman
inequality for the operator (�� �) that we have used (see Proposition 4-2 or Theorem A below). In
our inequality in Theorem A, the presence of the �rst term in the left hand side plays a key role.

Theorem A .- Let 
 be a bounded connected domain in Rd, d � 1, with a boundary @
 of class
C2, and !o be a non-empty open subset of 
. Then there exist a smooth function ' = ' (x) � 1 and

a constant C > 0, such that for all e� 2 R, for all eq 2 L1 (
), for all � > C

�
1 +

���e����2=3 + keqk4=3L1(
)

�
,

for all w 2 H2 (
) \H1
0 (
), we have2�r' � r �e�'w�� eqw2

L2(
)
+ 1

C

�
�
R


e2�'(x) jrw (x)j2 dx+ �3

R


e2�'(x) jw (x)j2 dx

�
�
e�' ��� e��w2

L2(
)
+ C

�
�
R
!o
e2�'(x) jrw (x)j2 dx+ �3

R
!o
e2�'(x) jw (x)j2 dx

�
.

6.1 An equality with weight

We denote k:k =
�R
(�)2 dx

�1=2
the usual norm in L2 (
) associated to the scalar product (�; �) =R

(�; �) dx. From now, we shall omit all xs in the functions of x.

Let � > 0, ' = ' (x) 2 C2
�
Rd
�
be arbitrary but given. We shall prove �rst that function v (x) =

e�'(x)w (x) where w 2 H2 (
) \H1
0 (
) satis�es the following8>>>>>>>>>>>>><>>>>>>>>>>>>>:

�v � ��'v + �2 (r')2 v � e�v � eqv2 + k2�r'rv + eqvk2
+2 (boundary terms)

+4�
R P

i @
2
i ' (@iv)

2
+ 2�3

R
r'r

�
(r')2

�
(v)

2

+4�
R P

i

P
j 6=i @ij'@iv@jv

=
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8><>:
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and
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Z
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(@nv)
2
@n' . (A3)

Proof of (A1) .- We shall start from computation of all derivatives of v = e�'w and then write

term e�'
�
�� e��w as the sum of P1v and P2v where P1 is an di¤erential operator of order 1 and P2

is an di¤erential operator of order 2 given below; after that we calculate
R
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2
dx where the

term
R


(P2v; P1v) dx plays a key role.

One can check easily that
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From this we get by integrations by parts�
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Then by (A7) and (A9), we infere�' ��� e��w2 � ��v � ��'v + �2 (r')2 v � e�v � eqv2 + k�2�r'rv + eqvk2�
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or equivalently

kP2vk2 + k2�r'rv � eqvk2 + 2 (boundary terms)
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By adding 2�
R P
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2 on the both side of (A11) and noting that div
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(A12)

as desired.
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Proof of (A2) .- By integrations by parts and the fact that v 2 H2 (
) \H1
0 (
), it follows that
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as desired.

Proof of (A3) .- By (A8) and (A9) we can check that
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(A15)

Since v 2 H2 (
) \H1
0 (
), we deduce from (A15) that
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Since vj@
 = 0, rv = (rv � n)n and then we have
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R
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(A17)

This completes the proof of (A3).

6.2 Choice of the weight function

We shall prove that with a particular choice of ' = ' (x) � 1 there exists a constant C > 0 such that

for all e� 2 R, for all eq 2 L1 (
), and � > C

�
1 +

���e����2=3 + keqk4=3L1(
)

�
, the estimate
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holds for all w 2 H2 (
) \H1
0 (
).
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Proof of (A18) .- We study the particular case that ' (x) = e� (x) where � > 0 and  is a smooth
non-negative function. One can check that

�' = �2 (r )2 '+ �� ' (A19)
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it follows that
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On the other hand, by (A1) and (A2), we infer
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which together with (A22) gives
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or equivalently
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Next we compute the term 2��2
R
(r )2 ' (rv)2. To this end, we observe by (A2) that
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which implies
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Finally, it follows from (A25) and (A27) that
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or equivalently
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Now, we choose  such that  2 C2
�


�
,  (x) > 0 in 
,  (x) = 0 on @
 and

jr (x)j > 0 8x 2 
 n!o , (A30)

where !o � ! is an arbitrary �xed subdomain of 
 such that !o � !. The existence of such function
 was proved in [13]. Then the boundary terms (A3) are non-negative. More precisely, for all � > 0,
� > 0,

boundary terms = ��
Z
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(@nv)
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(�@n )' � 0 . (A31)

By (A30), (A31) and (A29), there exists a constant C > 0, such that for all � > 0 there is a constant
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C� > 0 such that for all � > 0, we have
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Using Cauchy-Schwarz inequality in (A32), we get
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Finally, we obtain that, (recall that ' � 1) for all � > 1, for all � > 1,
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(A34)

where C > 0 is a constant independent of � and �. Now we may choose and �x � > 1 large enough in
(A34) to get
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where C > 0 is a constant independent of �. Then by (A35), using properties of  , we may choose �
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large enough so that �3=2 > C1

�
1 +

���e����+ keqk2L1(
)� to get
k2�r'rv � eqvk2 + 1

C2

�
�3
R

n!o (v)

2
+ �

R

n!o (rv)

2
�

�
e�' ��� e��w2 + C2 ��3 R!o (r')2 ' (v)2 + � R!o ' (rv)2� , (A36)

where C1 and C2 are two constants independent of �.

Finally, we have proved that there exists a constant C > 0 such that for all e� 2 R, eq 2 L1 (
) and

� > C

�
1 +

���e����2=3 + keqk4=3L1(
)

�
, the following estimate holds

k2�r'rv � eqvk2 + 1
C

�
�3
R


(v)

2
+ �

R


(rv)2

�
�
e�' ��� e��w2 + C ��3 R!o (v)2 + � R!o (rv)2� . (A37)

Thus, coming back to the function w, we obtain that for all � > C

�
1 +

���e����2=3 + keqk4=3L1(
)

�
,

2�r'r �e�'w�� eqe�'w2 + 1
C

�
�3
R



�
e�'w

�2
+ �

R



�
r
�
e�'w

��2�
�
e�' ��� e��w2 + C ��3 R!o �e�'w�2 + � R!o �r �e�'w��2� , (A38)

which completes the proof of (A18).

Finally, we deduce from (A38),2�r'r �e�'w�� eqe�'w2 + 1
C

�
�3
R



�
e�'w

�2
+ �

R



�
e�'rw

�2�
�
e�' ��� e��w2 + C ��3 R!o �e�'w�2 + � R!o �e�'rw�2� . (A39)

which implies Theorem A.

This closes the Appendix on the Global Carleman inequality for the operator �� e� where e� 2 R.
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