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Abstract. We consider a system of two reaction-diffusion equations coming out of
reversible chemistry. When the reaction happens on the totality of the domain, it
is known that exponential convergence to equilibrium holds (with explicit rate). We
show in this paper that this exponential convergence also holds when the reaction
happens only on a given open set of a ball, thanks to an observation estimate deduced
by logarithmic convexity.

1. Introduction and main result

Considering as in [CDF] a general reversible chemical reaction between species A1,..,
Am diffusing in a chemical reactor:

(1) α1A1 + · · ·+ αmAm 
 β1A1 + · · ·+ βmAm, αi, βi ∈ N,
and modeling the above reaction according to the mass action law with the stoichio-
metric coefficients αi, βi ∈ N, and with the reaction rates l1, l2 > 0, we end up with the
following system for the concentrations ai of the species Ai:

(2) ∂tai − di ∆xai = (βi − αi)

(
l1

m∏
j=1

a
αj
j − l2

m∏
j=1

a
βj
j

)
, i = 1, ..,m,

where di is the diffusion rate of species Ai. We refer to [BDS] for a formal derivation
of this system (when m = 2) starting from kinetic theory. We also refer to [DFT] and
the references therein for more complex systems, corresponding to networks of chemical
reactions.

In [DF, DF3], exponential convergence to an homogeneous equilibrium is proven with
an explicit rate thanks to entropy methods, when di > 0 (i = 1, ..,m) and l1, l2 > 0 are
constant, for simple systems of 2, 3, or 4 equations (and for homogeneous Neumann
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boundary conditions). Those results are extended to a much larger class of systems
in [DFT]. The case when one diffusion rate is zero, for simple systems, has also been
studied in [DF2] (see also [BDS], Rmk. 3.7).

In this paper, we investigate an issue which has not been considered yet, namely the
case when the reaction rates are proportional to the concentration of a catalyst which
may be equal to 0 on a large part of the domain. More precisely, we suppose that
l1 = l2 := k(x, t)/2 ≥ 0, where k is strictly positive on a (possibly small) ball included
in the domain.

We present for that a new method, based on an observation inequality, on a typi-
cal example of nonlinear reaction-diffusion systems coming out of reversible chemistry,
namely

2 A 
 2 B,

where A and B are chemical species of respective concentrations a := a(x, t) ≥ 0,
b := b(x, t) ≥ 0. This corresponds (with slightly different notations) to (1) when
m = 2, α1 = β2 = 2, α2 = β1 = 0.

We suppose that the species A has a diffusion rate d1 > 0 and that the species B has
a diffusion rate d2 > 0. We also assume that those species are confined in a chemical
reactor represented by the ball Ω := B (0, R) := {x ∈ Rn; |x| < R}, where n∈ {1, 2, 3},
and |Ω| = 1 (that is R = 1

2
if n= 1, R = π−1/2 if n= 2, and R = ( 3

4π
)1/3 if n= 3),

so that homogeneous Neumann boundary conditions are imposed. Finally and most
importantly, the terms arising from the reaction process are given by the mass action
law as described earlier, and l1 = l2 := k(x, t)/2 ≥ 0. Recording (2), the corresponding
system writes

(3)


∂ta− d1∆a = k(x, t) (b2 − a2) , in Ω× (0,+∞) ,
∂tb− d2∆b = −k(x, t) (b2 − a2) , in Ω× (0,+∞) ,
∂na = ∂nb = 0 , on ∂Ω× (0,+∞) ,
a (·, 0) = a0 , b (·, 0) = b0 , in Ω ,

where ∂n := n(x) · ∇, and n(x) is the unit outward normal vector at point x ∈ ∂Ω.

We consider initial data a0, b0 ∈ C2
(
Ω
)

(compatible with the Neumann boundary
condition) which satisfy the bound:

(4) ∀x ∈ Ω , 0 < B0 ≤ a0 (x) and 0 < B0 ≤ b0 (x) ,
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for some constant B0 > 0, and we suppose that

(5)

∫
Ω

[a0 (x) + b0 (x)] dx = 2 .

At this point, we remark that at the formal level, the following a priori estimates
hold:

(6)
d

dt

∫
Ω

(a+ b) = 0 ,

(7)
1

2

d

dt
‖(a, b)‖2

(L2(Ω))2 + d1

∫
Ω

|∇a|2 + d2

∫
Ω

|∇b|2 +

∫
Ω

k(x, t) (a+ b) |a− b|2 = 0 .

Because of the terms d1

∫
Ω
|∇a|2 and d2

∫
Ω
|∇b|2, we expect that lim

t→∞
a(t, x) = a∞,

lim
t→∞

b(t, x) = b∞, for some constants a∞ ≥ 0 and b∞ ≥ 0. Moreover, as soon as

k is strictly positive on some fixed open set of Ω, a∞ = b∞ because of the term∫
Ω
k (a+ b) |a− b|2. Finally, estimate (6) ensures that

∫
Ω

(a∞ + b∞) =
∫

Ω
(a0 + b0) = 2.

Remembering that |Ω| = 1, we finally expect that the equilibrium is (a∞, b∞) = (1, 1).

Our main result shows that even if the catalyst has a concentration k := k(x, t) which
is strictly positive only on a small ball, then exponential convergence to equilibrium
with an explicit rate still holds (we recall that this is indeed known when k is a strictly
positive constant, cf. for example [DFT]).

Theorem 1.1. We define Ω := B (0, R) := {x ∈ Rn; |x| < R}, where n ∈ {1, 2, 3},
the centered ball of Rn of measure 1. We also assume that d1, d2 > 0 and k ∈
C2(Ω×R+;R+). We consider initial data a0, b0 ∈ C2

(
Ω
)

(compatible with the Neumann
boundary condition) which satisfy (4) and (5).

We finally assume that there exists x0 ∈ Ω and r > 0 such that B (x0, r) ⊂ Ω and
k (x, t) ≥ k0 > 0 for any (x, t) ∈ B (x0, r)× (0,+∞).

Then there exists a unique smooth (C2(Ω × [0,+∞))) solution to system (3), such
that

(8) inf
t≥0,x∈Ω

a(x, t) ≥ B0 , inf
t≥0,x∈Ω

b(x, t) ≥ B0 ,

and for any t ≥ 0,

(9) ‖a (·, t)− 1‖2
L2(Ω) + ‖b (·, t)− 1‖2

L2(Ω) ≤ γ e−βt
(
‖a0 − 1‖2

L2(Ω) + ‖b0 − 1‖2
L2(Ω)

)
,
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where γ > 0 and β > 0 can be explicitly estimated (from above for γ and from below for
β) in terms of |x0|, r, ‖(a0, b0)‖L3(Ω), B0, k0, ||k||L∞(Ω×R+), d1, d2.

A first part of the proof is based on the entropy method (cf. [DFT]). We choose for
the entropy the simplest possible functional, that is the square of the L2 norm of a− 1
added to the square of the L2 norm of b− 1. However, because of the degeneracy of k,
it is not possible to directly relate the entropy dissipation to the entropy itself.

Our idea is therefore to introduce a new observation estimate (Prop. 2.1) for the
system, which enables to perform a Gronwall lemma, and get the expected exponential
decay. The proof of this observation estimate is based on another observation estimate,
for two heat equations whose right-hand sides satisfy some specific inequality. More
precisely, we show the

Proposition 1.2. Let Ω := B (0, R) := {x ∈ Rn; |x| < R}, when n ∈ {1, 2, 3}, be
the centered ball of Rn of measure 1, and let d1, d2 > 0. We also consider x0 ∈ Ω
and r > 0, such that B (x0, r) ⊂ Ω. Let (u1, u2, v1, v2) be smooth (C2(Ω × [0,+∞)))
functions satisfying the system of two heat equations with unknowns (u1, u2), together
with homogeneous Neumann boundary conditions, and an outside force (v1, v2):

(10)

 ∂tu1 − d1∆u1 = v1 , in Ω× (0,+∞) ,
∂tu2 − d2∆u2 = v2 , in Ω× (0,+∞) ,
∂nu1 = ∂nu2 = 0 , on ∂Ω× (0,+∞) .

We also assume that u1, u2, v1, v2 satisfy the following bounds, for some K0 > 0,
(11)
∀ (x, t) ∈ Ω× R+ , |(v1, v2) (x, t)|2 ≤ K0

(
|(u1, u2) (x, t)|2 + |(u1, u2) (x, t)|4

)
,

(12) ∀i ∈ {1, 2} , ∀t ∈ R+ , ‖ui (·, t)‖2
L3(Ω) ≤ K0 ,

and

(13) ∀ 0 ≤ t1 < t2 , ‖(u1, u2) (·, t2)‖2
(L2(Ω))2 ≤ ‖(u1, u2) (·, t1)‖2

(L2(Ω))2 .

Then there exist c > 1 and M > 1 (both depending on K0, |x0|, r, and d1, d2) such
that for any T > 0,(

‖(u1, u2) (·, T )‖2
(L2(Ω))2

)1+M

≤ ec(1+ 1
T ) ‖(u1, u2) (·, T )‖2

(L2(B(x0,r)))
2

×
(
‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)M
.
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This Proposition is based on the logarithmic convexity method introduced by [BT]
and developed by [BP], [PW], [P] for linear parabolic problems with Dirichlet bound-
ary conditions, and by [BuP] for linear parabolic problems with Neumann boundary
conditions.

The main novelty here is the treatment of a nonlinear (because of assumption (11))
parabolic system with Neumann boundary conditions. Up to now, only scalar equations
had been treated (cf. [BuP]). We also choose weights which are more explicit with
respect to this last reference, this leads to a more explicit dependence of the rate of
convergence towards equilibrium.

Our feeling is that our method can be generalized to much more general systems of
the type (2), or even to systems appearing when networks of reactions are considered
(cf. [DFT]), provided that the solutions to those systems are bounded uniformly in
time (this is far from being always known, even when the reaction rates are constant).
It could probably also be generalized to domains which are more general than a ball,
though for general domains the explicit character of the rates of convergence could be
lost.

We wish to point out that the case of a system of two reaction-diffusion equations in
which one diffusion rate is zero and the reaction rate is also zero on a non-negligible set,
is quite different, since the appearance of an homogeneous equilibrium is not expected
in such a situation.

Since the proofs that we propose are long and technical, we present here an overview
of these proofs, where we try to explain the ideas underlying them.

We start the proof of Theorem 1.1, described in Section 2, by an attempt to use the
entropy method (cf. [DFT]). In the context of this method, we introduce a simple
entropy (Lyapunov functional), that is H(t) := ||a(·, t) − 1||2L2(Ω) + ||b(·, t) − 1||2L2(Ω).

Because of the degeneracy of k, it is not possible to directly relate the entropy dissipation
to the entropy H, but only to its localized version Hloc(t) := ||a(·, t) − 1||2L2(B(x0,r))

+

||b(·, t) − 1||2L2(B(x0,r))
. We use therefore an observation inequality for the system (3),

stated in Proposition 2.1, which relates H1+M (t) and Hloc (t) HM (0), for some M > 1.
Proposition 2.1 is a direct consequence of Proposition 1.2 stated above, which is itself
an observation inequality, but for a different system, made of two heat equations with
source terms, obtained by freezing the right-hand sides in system (3) (what remains of
the original nonlinear system is the assumed estimate (11), linking (v1, v2) and (u1, u2)).
A slight modification of the entropy method enables then to conclude to the exponential
convergence towards equilibrium stated in Theorem 1.1.
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We are then left to prove Proposition 1.2, that is, to obtain an observation estimate
for a system of two heat equations (with unknowns denoted by (u1, u2)) with Neumann
boundary conditions, and a source term (v1, v2). The proof of this observation estimate
is based on a variant of the logarithmic convexity method for linear and nonlinear
parabolic systems introduced by [BT].

A first step (step 1 in Section 3) consists in a change of unknowns in the system of
two heat equations. In order to focus on the time T and the ball B(x0, r) appearing
in the observation estimate, we introduce (f1, f2) =

(
u1 e

Φ1/2, u2 e
Φ1/2

)
with Φ1(x, t) :=

sϕ1(x)
T−t+h , for s, h well chosen positive parameters, and where ϕ1 is a carefully selected non
positive function which has a unique critical point at x0. In order to treat the Neumann
boundary condition, we also introduce (f3, f4) :=

(
u1 e

Φ3/2, u2 e
Φ3/2

)
, with Φ3 chosen in

such a way that Φ1 = Φ3 and ∂nΦ1 +∂nΦ3 at the boundary, so that the boundary terms
in the integrations by parts disappear in the computations performed later. This change
of variables can be described as a deformation of the system via a weight function, and
is typical of Carleman techniques (see e.g. [Le B], [HZ]). Step 1 is concluded by a
statement of the basic properties of the system satisfied by f := (fi)i=1,..4, written as
∂tf + Sf = Af + F , where S, A are the symmetric and antisymmetric parts of the
system, and F is the source term.

In step 2, we write down the energy estimate related to the system satisfied by f , using
two quantities: the energy E := ||f (·, t) ||2

(L2(Ω))4 = 〈f, f〉 and the frequency function

N := 〈Sf,f〉
〈f,f〉 . The computation of d

dt
N involves a quantity related to the Carleman

commutator, defined as 〈[S,−∂t +A] f, f〉.
Then, step 3 is devoted to the establishment of a suitable bound for 〈[S,−∂t +A] f, f〉,

and consequently for d
dt

N. Here the choice of the parameter s will play a key role.
Using a lemma proven in [BuP] (which can be viewed as a variant of estimates

appearing in the logarithmic convexity method, in which one computes (lnE)′′) for
solutions of the two differential inequalities obtained in the previous step, one obtains
at the end of step 4 an Hölder stability estimate for E (estimate (45)), typical of what
is provided by the logarithmic convexity method.

In step 5, we use this Hölder stability estimate in order to make the L2 norm of
(u1, u2) on the ball B(x0, r) appear in the computations, which enables to conclude the
proof of Proposition 1.2 by an optimization with respect to the parameter h.

2. Proof of Theorem 1.1

We start here the
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Proof of Theorem 1.1: Note first that under the assumptions of Theorem 1.1, the
existence, uniqueness and smoothness of a solution to (3) is a consequence of standard
theorems for parabolic equations (cf. for example [D] or [LSU]). The minimum principle
estimate (8) can easily be seen at the formal level by considering, for a given time t,
the point x ∈ Ω where min(a, b) reaches its minimum. For a rigorous proof, we refer to
[D], p.100-101 (where the proof is detailed for a slightly different system).

Note then that for this solution, the following estimate holds:

1

3

d

dt

∫
Ω

(a3 + b3) = −2d1

∫
Ω

a |∇a|2 − 2d2

∫
Ω

b |∇b|2 −
∫

Ω

k (b2 − a2)2 ≤ 0 .

As a consequence

(14) ∀t ≥ 0 ,

∫
Ω

[
a3 (·, t) + b3 (·, t)

]
≤
∫

Ω

[
a3

0 (x) + b3
0 (x)

]
dx .

Then we write down the energy identity (7) for the quantities U1 := a−1, U2 := b−1:

(15)
1

2

d

dt
‖(U1, U2)‖2

(L2(Ω))2 +d1

∫
Ω

|∇U1|2 +d2

∫
Ω

|∇U2|2 +

∫
Ω

k (a+ b) |U2 − U1|2 = 0 ,

and the identity

(16) ∀t ≥ 0 ,

∫
Ω

[U1(·, t) + U2(·, t)] = 0 ,

which is a direct consequence of (5), (6).

The proof of Theorem 1.1 is then an application of the following observation estimate
at one point in time:

Proposition 2.1. Under the assumptions of Theorem 1.1, there exist c > 1 and M > 1
(both depending on |x0|, r, ‖(a0, b0)‖L3(Ω), ||k||L∞(Ω×R+), d1, d2) such that for any t >
t1 ≥ 0,(

‖(a− 1, b− 1) (·, t)‖2
(L2(Ω))2

)1+M

≤ e
c
(

1+ 1
t−t1

)
‖(a− 1, b− 1) (·, t)‖2

(L2(B(x0,r)))
2

×
(
‖(a− 1, b− 1) (·, t1)‖2

(L2(Ω))2

)M
.

Proof of Proposition 2.1: Under the assumptions of Proposition 2.1 (which are
those of Theorem 1.1), we see that U1 := a − 1 and U2 := b − 1 are smooth (C2(Ω ×



8 LAURENT DESVILLETTES AND KIM DANG PHUNG

[0,+∞))) and satisfy the system ∂tU1 − d1∆U1 = k (U1 + U2 + 2) (U2 − U1) , in Ω× (0,+∞) ,
∂tU2 − d2∆U2 = −k (U1 + U2 + 2) (U2 − U1) , in Ω× (0,+∞) ,
∂nU1 = ∂nU2 = 0 , on ∂Ω× (0,+∞) .

Considering v1 := k (U1 +U2 +2) (U2−U1), v2 := −k (U1 +U2 +2) (U2−U1), we see that
v1 and v2 are smooth (C2(Ω× [0,+∞))) and that (13) holds (when (u1, u2) is replaced
by (U1, U2)) thanks to (15).

Moreover,

|(v1, v2)|2 = 2k2 (U1 + U2 + 2)2 (U2 − U1)2 ≤ 32 ‖k‖2
L∞(Ω×R+) (|(U1, U2)|2 + |(U1, U2)|4) ,

and finally (using (14)),
||(U1(·, t)||3L3(Ω) =

∫
Ω

|a(·, t)− 1|3 ≤ 4

∫
Ω

a3(·, t) + 4 ≤ 4

∫
Ω

(
a3

0 + b3
0

)
+ 4 ,

||(U2(·, t)||3L3(Ω) =

∫
Ω

|b(·, t)− 1|3 ≤ 4

∫
Ω

b3(·, t) + 4 ≤ 4

∫
Ω

(
a3

0 + b3
0

)
+ 4 ,

so that (11) and (12) hold (when (u1, u2) is replaced by (U1, U2)) with

K0 := max

([
4

∫
Ω

(
a3

0 + b3
0

)
+ 4

]2/3

, 32 ‖k‖2
L∞(Ω×R+)

)
.

Then it is possible to use Proposition 1.2 (when (u1, u2) is replaced by (U1, U2)) and to
get Proposition 2.1 after a simple time translation.

We proceed with the

End of the Proof of Theorem 1.1:
By Poincaré-Wirtinger’s inequality applied to U1 + U2 (using identity (16), and de-

noting by Cp the corresponding constant), the assumption k (·, t) ≥ k0 > 0 on B (x0, r),
and remembering (8), we see that

2 ‖(U1, U2)‖2
(L2(B(x0,r)))

2 = ‖U1 + U2‖2
L2(B(x0,r))

+ ‖U1 − U2‖2
L2(B(x0,r))

≤ ‖U1 + U2‖2
L2(Ω) +

1

2B0k0

∫
Ω

k (a+ b) |U2 − U1|2

≤ Cp ‖∇ (U1 + U2)‖2
L2(Ω) +

1

2B0k0

∫
Ω

k (a+ b) |U2 − U1|2

≤ 4β1

(
d1

∫
Ω

|∇U1|2 + d2

∫
Ω

|∇U2|2 +

∫
Ω

k (a+ b) |U2 − U1|2
)

,



DEGENERATE REACTION-DIFFUSION SYSTEM 9

with β1 :=max
(
Cp
2d1
, Cp

2d2
, 1

8B0k0

)
.

Combining the above estimate with (15) and Proposition 2.1, we deduce that

β1
d

dt
‖(U1, U2) (·, t)‖2

(L2(Ω))2 +
1

e
c
(

1+ 1
t−t1

)
(
‖(U1, U2) (·, t)‖2

(L2(Ω))2

)1+M

(
‖(U1, U2) (·, t1)‖2

(L2(Ω))2

)M ≤ 0 ,

which can be rewritten

(17)
e
−c

(
1+ 1

t−t1

)
M
β1(

‖(U1, U2) (·, t1)‖2
(L2(Ω))2

)M ≤ d

dt

[(
‖(U1, U2) (·, t)‖2

(L2(Ω))2

)−M]
.

Integrating (17) over (t1 + 1, t2) with t2 > t1 + 1 ≥ 1 and using 1
t−t1 ≤ 1, so that

e
−c

(
1+ 1

t−t1

)
≥ e−2c, we obtain

e−2cM
β1

(t2 − t1 − 1)

‖(U1, U2) (·, t1)‖2M
(L2(Ω))2

≤ 1

‖(U1, U2) (·, t2)‖2M
(L2(Ω))2

− 1

‖(U1, U2) (·, t1 + 1)‖2M
(L2(Ω))2

.

But ‖(U1, U2) (·, t1 + 1)‖2
(L2(Ω))2 ≤ ‖(U1, U2) (·, t1)‖2

(L2(Ω))2 thanks to (15). Therefore,

(18) ‖(U1, U2) (·, t2)‖2
(L2(Ω))2 ≤

(
1

1 + e−2cM
β1

(t2 − t1 − 1)

) 1
M

‖(U1, U2) (·, t1)‖2
(L2(Ω))2 .

Now, choose t1 = 2m and t2 = 2 (m+ 1), where m ∈ N (so that t2 > t1 + 1 ≥ 1). Then
estimate (18) becomes

‖(U1, U2) (·, 2 (m+ 1))‖2
(L2(Ω))2 ≤ θ ‖(U1, U2) (·, 2m)‖2

(L2(Ω))2 ,

where θ :=
(

1
1+e−2cM/β1

)1/M

∈ (0, 1). A direct induction shows that

‖(U1, U2) (·, 2m)‖2
(L2(Ω))2 ≤ θm ‖(U1, U2) (·, 0)‖2

(L2(Ω))2 .

Choosing 2m ≤ t < 2 (m+ 1), we obtain thanks to (15) that

‖(U1, U2) (·, t)‖2
(L2(Ω))2 ≤ 1

θ
e−t

|lnθ|
2 ‖(U1, U2) (·, 0)‖2

(L2(Ω))2 .

We conclude the proof of Theorem 1.1 by taking γ := 1/θ, β := |lnθ|/2.
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3. Heat systems with Neumann boundary conditions

The object of this section is the

Proof of Proposition 1.2: It starts here and is divided into 5 steps, described in
subsections 3.1 to 3.5.

3.1. Step 1: Change of functions. We recall that Ω is the centered ball of measure 1
of Rn, with n= 1, 2, 3. Without loss of generality, we suppose that x0 = (|x0|, 0, .., 0).
Then we consider

(19) ψ (x) := ψ(x1, .., xn) =
(
R2 − |x|2

) ( 2|x0|R
|x0|2 +R2 − 2|x0|x1

)
,

which is well defined and is C∞ on an open ball containing Ω. Moreover ψ > 0 on Ω,
and ψ = 0 on ∂Ω. In particular ∂nψ ≤ 0 on ∂Ω. One can check that

∂ψ

∂xk
(x) =

−4|x0|Rxk
|x0|2 +R2 − 2|x0|x1

if k 6= 1 ,

∂ψ

∂x1

(x) =
−4|x0|Rx1

|x0|2 +R2 − 2|x0|x1

+ (R2 − |x|2)
4|x0|2R

(|x0|2 +R2 − 2|x0|x1)2
.

Then it is easy to see that ψ has a unique critical point at x0 on Ω, which is a global
nondegenerate maximum. Indeed (for j, k = 1, ..,n),

∂2ψ

∂xj∂xk
(x0) = − 4|x0|R

R2 − |x0|2
δjk .

Further, there exist c01, c02 > 0, depending only on |x0|, such that for any x in a
small neighborhood (also only depending on |x0|) of x0, the following estimate holds:

(20) c01 |∇ψ (x)|2 ≤ ψ (x0)− ψ (x) ≤ c02 |∇ψ (x)|2 .

We introduce f := (fi)1≤i≤4, where fi := ui e
Φi/2, and Φi (x, t) := sϕi(x)

Γ(t)
, s ∈ (0, 1],

h ∈ (0, 1],

(21)


Γ (t) := T − t+ h , for any t ∈ [0, T ] ,
ϕ1 (x) := ψ (x)− ψ (x0) , for any x ∈ Ω ,
ϕ2 := ϕ1 , on Ω ,
ϕ3 (x) := −ψ (x)− ψ (x0) , for any x ∈ Ω ,
ϕ4 := ϕ3 , on Ω ,
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and

(22) u3 := u1 , u4 := u2 .

Clearly,

(23) Φ2 = Φ1 and Φ4 = Φ3 .

Notice that {
ϕ1 = ϕ3 , on ∂Ω ,

∂nϕ1 + ∂nϕ3 = 0 , on ∂Ω ,

so that,

(24)

{
Φ1 = Φ3 , on ∂Ω× (0, T ) ,

∂nΦ1 + ∂nΦ3 = 0 , on ∂Ω× (0, T ) .

We look for the equation solved by fi by computing eΦi/2 (∂t − di∆)
(
e−Φi/2fi

)
, where

(25) d3 := d1 and d4 := d2 .

We introduce for that purpose the operators

(26)

{
Aifi := −di∇Φi · ∇fi − 1

2
di∆Φifi ,

Sifi := −di∆fi − ηifi ,

where i = 1, .., 4 and

(27) ηi :=
1

2
∂tΦi +

1

4
di |∇Φi|2 .

We also define Sf := (Sifi)1≤i≤4, Af := (Aifi)1≤i≤4, and z :=
(
vie

Φi/2
)

1≤i≤4
where

(28) v3 := v1 , v4 := v2 .

After this change of functions and the introduction of the new notations, the system
(10) rewrites

(29)

{
∂tf + Sf = Af + z in Ω× (0, T ) ,
∂nfi − 1

2
∂nΦifi = 0 on ∂Ω× (0, T ) , i = 1, .., 4 .

As pointed out in the introduction, We have deformed the original solution (u1, u2)
by a weight function eΦ1/2, in order to focus on the information around x0. Our choice
to add the functions (f3, f4) =

(
u1e

Φ3/2, u2e
Φ3/2

)
to the system is motivated by the

problems related to the boundary conditions. Namely, it enables to get the identities
(24) on the boundary, which will kill the boundary terms in the future integrations by
parts.
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Let now 〈·, ·〉 denote the usual scalar product in (L2 (Ω))
4
, and ‖·‖ be its correspond-

ing norm. We regroup some useful identities in the following:

Lemma 3.1. For any (smooth enough, R4-valued) functions f := f(x, t) = (fi)i=1,..,4,
any constants di > 0, and any (smooth enough) functions Φi := Φi(x, t), ui = fi e

−Φi/2

(i = 1, .., 4), the following identities hold as soon as (21) – (29) hold:

(30)



〈Af, f〉 = 0 ,

〈Sf, f〉 =
∑
i=1,..,4

[
di

∫
Ω

|∇fi|2 −
∫

Ω

ηi |fi|2
]

,

d

dt
〈Sf, f〉 =

∑
i=1,..,4

∫
Ω

(−∂tηi) |fi|2 + 2 〈Sf, ∂tf〉 := 〈S ′f, f〉+ 2 〈Sf, ∂tf〉 .

Proof of Lemma 3.1 . Thanks to an integration by parts,

〈Af, f〉 :=
∑
i=1,..,4

∫
Ω

(
−di∇Φi · ∇fi −

1

2
di∆Φifi

)
fi

= −
∑
i=1,..,4

∫
Ω

[
di∇Φi · ∇

(
1

2
|fi|2

)
+

1

2
di∆Φi |fi|2

]
= −

∫
∂Ω

[
d1∂nΦ1

(
1

2
|f1|2

)
+ d2∂nΦ2

(
1

2
|f2|2

)
+ d3∂nΦ3

(
1

2
|f3|2

)
+ d4∂nΦ4

(
1

2
|f4|2

)]
= −

∫
∂Ω

d1

(
∂nΦ1e

Φ1 + ∂nΦ3e
Φ3
)(1

2
|u1|2

)
−
∫
∂Ω

d2

(
∂nΦ1e

Φ1 + ∂nΦ3e
Φ3
)(1

2
|u2|2

)

using (22), (23), (25) and recalling that fi = uie
Φi/2.

Now, (24) implies that

(31) ∂nΦ1e
Φ1 + ∂nΦ3e

Φ3 = 0 on ∂Ω× (0, T ) .

This completes the proof of the identity 〈Af, f〉 = 0.
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Then, we observe that

〈Sf, f〉 −

[ ∑
i=1,..,4

di

∫
Ω

|∇fi|2 −
∑
i=1,..,4

∫
Ω

ηi |fi|2
]

= −
∑
i=1,..,4

∫
∂Ω

difi∂nfi

= −
∑
i=1,..,4

∫
∂Ω

di

(
1

2
∂nΦi |fi|2

)
because of the boundary condition in (29)

= 0 similarly as for 〈Af, f〉 .

We finally compute
d

dt
〈Sf, f〉 :=

d

dt

( ∑
i=1,..,4

[
di

∫
Ω

|∇fi|2 −
∫

Ω

ηi |fi|2
])

. By an inte-

gration by parts,

d

dt
〈Sf, f〉 =

∑
i=1,..,4

[
di

∫
Ω

2∇fi · ∇∂tfi −
∫

Ω

∂tηi |fi|2 −
∫

Ω

2ηifi∂tfi

]
= −

∑
i=1,..,4

di

∫
Ω

2∆fi∂tfi +
∑
i=1,..,4

[
di

∫
∂Ω

2∂nfi∂tfi −
∫

Ω

∂tηi |fi|2 −
∫

Ω

2ηifi∂tfi

]
=
∑
i=1,..,4

2

∫
∂Ω

di∂nfi∂tfi +
∑
i=1,..,4

∫
Ω

(−∂tηi) |fi|2 + 2 〈Sf, ∂tf〉 .

But, by the boundary condition in (29), it holds∑
i=1,..,4

∫
∂Ω

di∂nfi∂tfi =
∑
i=1,..,4

∫
∂Ω

di

(
1

2
∂nΦifi∂tfi

)
=
∑
i=1,..,4

1

2

∫
∂Ω

di∂nΦiuie
Φi/2

(
∂tuie

Φi/2 + ui
1

2
∂tΦie

Φi/2

)
.

The first contribution is proportional to∫
∂Ω

[
d1∂nΦ1u1∂tu1e

Φ1 + d2∂nΦ2u2∂tu2e
Φ2 + d3∂nΦ3u3∂tu3e

Φ3 + d4∂nΦ4u4∂tu4e
Φ4

]
=

∫
∂Ω

[
d1

(
∂nΦ1e

Φ1 + ∂nΦ3e
Φ3
)
u1∂tu1 + d2

(
∂nΦ1e

Φ1 + ∂nΦ3e
Φ3
)
u2∂tu2

]
using (22), (23), (25). Thanks to (31), we see that

∑
i=1,..,4

∫
∂Ω

di∂nΦiui∂tuie
Φi = 0.
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The last contribution is proportional to∑
i=1,..,4

∫
∂Ω

di∂nΦi∂tΦi |ui|2 eΦi

=

∫
∂Ω

[
d1

(
∂nΦ1∂tΦ1e

Φ1 + ∂nΦ3∂tΦ3e
Φ3
)
|u1|2 + d2

(
∂nΦ1∂tΦ1e

Φ1 + ∂nΦ3∂tΦ3e
Φ3
)
|u2|2

]
= 0

where in the second line, we used (22), (23), (25). In the third line, we used the identity
∂tΦ1 = ∂tΦ3 on ∂Ω× (0, T ), which is a consequence of (24).

This completes the proof of Lemma 3.1.

3.2. Step 2: Energy estimates. Thanks to a standard energy method (taking the
scalar product against f and integrating by parts), we get, starting from eq. (29) and
using the first identity of Lemma 3.1:

(32)
1

2

d

dt
‖f‖2 + 〈Sf, f〉 = 〈z, f〉 .

Introducing the frequency function

(33) N := N (t) =
〈Sf, f〉
‖f‖2 ,

we see that, thanks to (29), to the third part of Lemma 3.1, and to identity (32),

d
dt

N (t)
(
‖f‖2)2

= (〈S ′f, f〉+ 2 〈Sf, ∂tf〉) ‖f‖2 − 〈Sf, f〉 (−2 〈Sf, f〉+ 2 〈z, f〉)
= (〈S ′f, f〉+ 2 〈Sf,Af〉) ‖f‖2 − 2 ‖Sf‖2 ‖f‖2 + 2 〈Sf,z〉 ‖f‖2

+2 〈Sf, f〉2 − 2 〈Sf, f〉 〈z, f〉
= (〈S ′f, f〉+ 2 〈Sf,Af〉) ‖f‖2 − 2

∥∥Sf − 1
2
z
∥∥2 ‖f‖2 + 1

2
‖z‖2 ‖f‖2

+2
〈
Sf − 1

2
z, f

〉2 − 1
2
〈z, f〉2 .

Thanks to Cauchy-Schwarz inequality, we obtain the following estimate for d
dt

N (t):

(34)
d

dt
N (t) ‖f‖2 ≤ 〈S ′f, f〉+ 2 〈Sf,Af〉+ ‖z‖2 .

Note that the computation above is similar to the one of Bardos-Tartar (cf. [BT]), in
which however A = 0. Note also that the vocabulary“logarithmic convexity method”
is related to the fact that in the case when z = 0, one has d2

dt2
ln
(
‖f‖2) = −2 d

dt
N.
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3.3. Step 3: Carleman commutator estimates. The next ingredient in the proof
of Proposition 1.2 is the following:

Proposition 3.2. Under the assumptions of Proposition 1.2 (and using the notations
(21) – (28)), there exist s0 ∈ (0, 1], C0 ∈ (0, 1), C1 > 1 depending only on K0, |x0|, d1,
d2, such that when s ∈ (0, s0], h ∈ (0, 1],

(i) ηi ≤ 0 and 〈Sf, f〉 ≥ 0,
(ii) ‖z‖2 ≤ C1

(
‖f‖2 + 〈Sf, f〉

)
,

(iii) 〈S ′f, f〉+ 2 〈Sf,Af〉 ≤ 1 + C0

Γ
〈Sf, f〉+

C1

h2
‖f‖2 .

We briefly explain here why we call the Proposition 3.2 above a “Carleman commuta-
tor estimate”. Using the standard definition for a commutator [A,B] = AB−BA, one
can check that the quantity 〈[S,−∂t +A] f, f〉, called Carleman commutator, satisfies
the identity (for f ∈ C1 ([0, T ] ;C∞0 (Ω))): 〈[S,−∂t +A] f, f〉 = 〈S ′f, f〉 + 2 〈Sf,Af〉,
and this last quantity is the one which is estimated in Proposition 3.2, (iii).

Proof of Proposition 3.2: We recall that{
ϕ1 (x) = ψ (x)− ψ (x0) , for any x ∈ Ω ,
ϕ3 (x) = −ψ (x)− ψ (x0) , for any x ∈ Ω ,

and start with the

Lemma 3.3. We define ϑ := {ρ ≤ |x| < R} ⊂ Ω = B (0, R), selecting ρ > 0 in such
a way that x0 /∈ ϑ. Then there exists c1, c2, c3 > 0 depending only on |x0| and ρ, such
that:

(i) For any x ∈ Ω,

|∇ϕ1 (x)|2 ≤ c1 |ϕ1 (x)| and |∇ϕ3 (x)|2 ≤ c1 |ϕ3 (x)| ;

(ii) For any x ∈ ϑ,

|ϕ1 (x)| ≤ c2 |∇ϕ1 (x)|2 and |ϕ3 (x)| ≤ c2 |∇ϕ3 (x)|2 ;

(iii) For any x ∈ Ω \ϑ ,

|ϕ1 (x)| ≤ c2 |∇ϕ1 (x)|2 and ϕ3 (x)− ϕ1 (x) ≤ −c3 .

Proof of Lemma 3.3: Thanks to estimate (20), and noticing that |∇ψ (x)|2 =
|∇ϕ1 (x)|2 and ψ (x0) − ψ (x) = |ϕ1 (x)|, we conclude that (i) − (ii) − (iii) holds for
ϕ1. For ϕ3, we get (i) − (ii) because |ϕ3 (x)| > 0 for any x ∈ Ω and |∇ϕ3 (x)| > 0 for
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any x ∈ ϑ. Finally, ϕ3 (x) − ϕ1 (x) = −2ψ (x) < 0 for any x ∈ Ω \ϑ , which enables to
complete the proof of Lemma 3.3.

We come back to the proof of Proposition 3.2. We observe that

ηi =
1

2
∂tΦi +

1

4
di |∇Φi|2 =

s

Γ2

(
−1

2
|ϕi|+

1

4
dis |∇ϕi|2

)
,

so that using Lemma 3.3 (i), there exists s1 ∈ (0, 1] depending only on d1, d2, and |x0|
such that when s ∈ (0, s1],

(35) ηi (x, t) ≤ 0 for any (x, t) ∈ Ω× [0, T ] .

As a consequence, using the second part of identity (30), one can deduce that for any
s ∈ (0, s1], the estimate 〈Sf, f〉 ≥ 0 holds.

Now, one can prove part ii) of Proposition 3.2. Indeed, we see that

‖z‖2 =
∑
i=1,..,4

∫
Ω

|vi|2 eΦi

≤ 2

∫
Ω

(|v1|2 + |v2|2) eΦ1 using Φ3 ≤ Φ1, Φ2 = Φ1, Φ4 = Φ3, v3 = v1, v4 = v2

≤ 2K0

∫
Ω

[
|u1|2 + |u2|2 + (|u1|2 + |u2|2)2

]
eΦ1 using (11)

≤ 4K0

(
‖f‖2 +

∫
Ω

|u1|4 eΦ1 +

∫
Ω

|u2|4 eΦ2

)
because Φ1 = Φ2 .

But thanks to Hölder and Sobolev inequalities (and denoting by CSob the constant in
this last inequality), for any i ∈ {1, 2},∫

Ω

|ui|4 eΦi ≤ ‖u2
i ‖Lp(Ω)

∥∥u2
i e

Φi
∥∥
Lq(Ω)

whenever 1
p

+ 1
q

= 1

≤
(∫

Ω

|ui|2p
) 1

p
(∫

Ω

|fi|2q
) 1

q

with p = 3
2

and q = 3

≤ K0CSob

(∫
Ω

|fi|2 +

∫
Ω

|∇fi|2
)

,

using assumption (12) in the last inequality, and remembering that H1(Ω) ⊂ L6(Ω) for
n≤ 3. Since ηi ≤ 0 (see (35)) and therefore d1

∫
Ω
|∇f1|2 + d2

∫
Ω
|∇f2|2 ≤ 〈Sf, f〉 by the

second part of identity (30), this gives the desired estimate when

C1 ≥ 4K0 max
(

1 +K0CSob, (min
i
di)
−1K0CSob

)
.
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It remains to prove part iii) of Proposition 3.2.

We recall that

〈S ′f, f〉 :=
∑
i=1,..,4

∫
Ω

(−∂tηi) |fi|2 .

Moreover, using the definition of Sf and Af , the bracket 2 〈Sf,Af〉 writes

2 〈Sf,Af〉 = 2
∑
i=1,..,4

∫
Ω

(di∆fi + ηifi)

(
di∇Φi · ∇fi +

1

2
di∆Φifi

)
.

Then, four integrations by parts give

2 〈Sf,Af〉 =
∑
i=1,..,4

(
−2d2

i

∫
Ω

∇fi∇2Φi∇fi − d2
i

∫
Ω

∇fi∆∇Φifi − di
∫

Ω

∇ηi · ∇Φi |fi|2
)

+2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∇Φi · ∇fi −
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi |∇fi|2

+
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∆Φifi +
∑
i=1,..,4

di

∫
∂Ω

ηi∂nΦi |fi|2 .

Indeed,∫
Ω

∆fi∇Φi · ∇fi =

∫
∂Ω

∂nfi∇Φi · ∇fi −
∫

Ω

∇fi∇2Φi∇fi −
∫

Ω

∇fi∇2fi∇Φi ,

and ∫
Ω

∇fi∇2fi∇Φi =
1

2

∫
∂Ω

∂nΦi |∇fi|2 −
1

2

∫
Ω

∆Φi |∇fi|2 .

Second, ∫
Ω

∆fi∆Φifi =

∫
∂Ω

∂nfi∆Φifi −
∫

Ω

∇fi∆∇Φifi −
∫

Ω

∆Φi |∇fi|2 .

Third,

2

∫
Ω

ηifi∇Φi · ∇fi =

∫
∂Ω

ηi∂nΦi |fi|2 −
∫

Ω

∇ηi · ∇Φi |fi|2 −
∫

Ω

ηi∆Φi |fi|2 .
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Then, we see that

〈S ′f, f〉+ 2 〈Sf,Af〉 =
∑
i=1,..,4

(
−2d2

i

∫
Ω

∇fi∇2Φi∇fi − d2
i

∫
Ω

∇fi∆∇Φifi

)
+
∑
i=1,..,4

∫
Ω

(−∂tηi − di∇ηi · ∇Φi) |fi|2

+2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∇Φi · ∇fi −
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi |∇fi|2

+
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∆Φifi +
∑
i=1,..,4

di

∫
∂Ω

ηi∂nΦi |fi|2 .

Next, the computation of ∂tηi + di∇ηi · ∇Φi gives

∂tηi + di∇ηi · ∇Φi =
1

2
∂2
t Φi + di∇∂tΦi · ∇Φi +

1

2
d2
i∇Φi∇2Φi∇Φi

=
1

Γ
∂tΦi +

1

Γ
di |∇Φi|2 +

s

2Γ
d2
i∇Φi∇2ϕi∇Φi

=
2

Γ

(
1

2
∂tΦi +

1

4
di |∇Φi|2

)
+

1

2Γ
di |∇Φi|2 +

s

2Γ
d2
i∇Φi∇2ϕi∇Φi,

since ∂2
t Φi = 2

Γ
∂tΦi and ∂tΦi = 1

Γ
Φi. Therefore, by definition (27) of ηi,

−∂tηi − di∇ηi · ∇Φi = − 2

Γ
ηi −

1

2Γ
di |∇Φi|2 −

s

2Γ
d2
i∇Φi∇2ϕi∇Φi ,

and one can conclude that

(36)

〈S ′f, f〉+ 2 〈Sf,Af〉

=
∑
i=1,..,4

(
−2d2

i

∫
Ω

∇fi∇2Φi∇fi − d2
i

∫
Ω

∇fi∆∇Φifi

)
+

1

Γ

∑
i=1,..,4

∫
Ω

(
−2ηi −

1

2
di |∇Φi|2 −

s

2
d2
i∇Φi∇2ϕi∇Φi

)
|fi|2

+2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∇Φi · ∇fi −
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi |∇fi|2

+
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∆Φifi +
∑
i=1,..,4

di

∫
∂Ω

ηi∂nΦi |fi|2 .
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First we estimate the contribution of the gradient terms. We observe that (since ψ
is smooth on Ω (see (19)),

∣∣di∇2Φi

∣∣+ |di∆∇Φi| ≤
C2 s

Γ
,

where C2 only depends on d1, d2, and |x0|.
As a consequence, using Young’s inequality,

(37)

∑
i=1,..,4

(
−2d2

i

∫
Ω

∇fi∇2Φi∇fi − d2
i

∫
Ω

∇fi∆∇Φifi

)
≤ C3s

Γ

∑
i=1,..,4

di

∫
Ω

|∇fi|2 +
C3s

Γ
‖f‖2 ≤ C3s

Γ

∑
i=1,..,4

di

∫
Ω

|∇fi|2 +
C3

h
‖f‖2 ,

where we used in the last line the inequalities 1
Γ
≤ 1

h
and s ∈ (0, 1]. Here, C3 only

depends on d1, d2, and |x0|.

Lemma 3.4. There exists a constant C4 > 0 depending only on |x0| and d1, d2 such
that for any s ∈ (0, 1],

2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∇Φi · ∇fi −
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi |∇fi|2

+
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∆Φifi +
∑
i=1,..,4

di

∫
∂Ω

ηi∂nΦi |fi|2

≤ C4s

Γ

∑
i=1,..,4

di

∫
Ω

|∇fi|2 +
C4s

Γ

∑
i=1,2

di

∫
Ω

|∇Φi|2 |fi|2 +
C4

h2
‖f‖2 .

Proof of Lemma 3.4: We claim that
∑
i=1,..,4

di

∫
∂Ω

ηi∂nΦi |fi|2 = 0.

We first observe that thanks to (24), the following extra identities hold:

(38) ∂tΦ1 = ∂tΦ3 , |∇Φ1| = |∇Φ3| on ∂Ω× (0, T ) .



20 LAURENT DESVILLETTES AND KIM DANG PHUNG

Then, since ηi = 1
2
∂tΦi + 1

4
di |∇Φi|2,∑

i=1,..,4

di

∫
∂Ω

ηi∂nΦi |fi|2 =
∑
i=1,..,4

di

∫
∂Ω

(
1

2
∂tΦi +

1

4
di |∇Φi|2

)
∂nΦi |ui|2 eΦi

= d1

∫
∂Ω

(
1

2
∂tΦ1 +

1

4
d1 |∇Φ1|2

)
∂nΦ1 |u1|2 eΦ1

+d2

∫
∂Ω

(
1

2
∂tΦ1 +

1

4
d2 |∇Φ1|2

)
∂nΦ1 |u2|2 eΦ1

+d1

∫
∂Ω

(
1

2
∂tΦ3 +

1

4
d1 |∇Φ3|2

)
∂nΦ3 |u1|2 eΦ3

+d2

∫
∂Ω

(
1

2
∂tΦ3 +

1

4
d2 |∇Φ3|2

)
∂nΦ3 |u2|2 eΦ3 ,

where in the second line, we used identities (22), (23), (25). This completes the claim
thanks to identities (24), (38).

We then observe that

(39) 2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∇Φi · ∇fi −
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi |∇fi|2 = 0 .

Indeed, since ∇Φi = ∂nΦi
−→n on ∂Ω× (0, T ), we see first that

2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∇Φi · ∇fi = 2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi |∂nfi|2

= 2
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi

∣∣∣∣12∂nΦifi

∣∣∣∣2 because ∂nfi =
1

2
∂nΦifi

= 0 ,

thanks to identities (22), (23), (25) and (24).
We then observe that on ∂Ω× (0, T ),

|∇fi|2 =
∣∣∇uieΦi/2 + ui

1
2
∇Φie

Φi/2
∣∣2

=
∣∣∂τui−→τ + ui

1
2
∂nΦi
−→n
∣∣2 eΦi because ∂nui = 0 and ∂τΦi |∂Ω = 0

=
(
|∂τui|2 +

∣∣1
2
ui∂nΦi

∣∣2) eΦi .

As a consequence, −
∑
i=1,..,4

d2
i

∫
∂Ω

∂nΦi |∇fi|2 = 0, where we used identities (22), (23),

(24), (25).
We complete in this way the proof of identity (39).
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Next, it remains to treat the contribution of
∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∆Φifi. We introduce

C5 := max
Ω
|∆ψ|. Note that C5 only depends on |x0|.∑

i=1,..,4

d2
i

∫
∂Ω

∂nfi∆Φifi =
∑
i=1,..,4

d2
i

∫
∂Ω

1

2
∂nΦi∆Φi |fi|2 because ∂nfi =

1

2
∂nΦifi

≤ C5s

2Γ

∑
i=1,..,4

d2
i

∫
∂Ω

|∂nΦi| |fi|2 because |∆Φi| =
s

Γ
|∆ϕi| ≤

C5s

Γ

≤ C5s

Γ

∑
i=1,2

d2
i

∫
∂Ω

|∂nΦi| |fi|2

=
C5s

Γ

∑
i=1,2

d2
i

∫
∂Ω

(−∂nΦi) |fi|2 because ∂nΦ1 ≤ 0 and Φ2 = Φ1 .

In the third line we used d2
3

∫
∂Ω

|∂nΦ3| |f3|2 = d2
1

∫
∂Ω

|∂nΦ1| |f1|2, which holds thanks

to identities (25), (24), and f3 = f1 on ∂Ω × (0, T ). Similar computations hold for

d2
4

∫
∂Ω

|∂nΦ4| |f4|2.

Then, thanks to an integration by parts,∫
∂Ω

(−∂nΦi) |fi|2 = −2

∫
Ω

∇fi · ∇Φifi −
∫

Ω

∆Φi |fi|2

≤
∫

Ω

|∇fi|2 +

∫
Ω

|∇Φi|2 |fi|2 +
C5s

h
‖f‖2 ,

using Young’s inequality and the estimate |∆Φi| = s
Γ
|∆ϕi| ≤ C5s

h
. Therefore, one can

conclude that for any s ∈ (0, 1],∑
i=1,..,4

d2
i

∫
∂Ω

∂nfi∆Φifi ≤ max
i
di
C5 s

Γ

∑
i=1,..,4

di

∫
Ω

|∇fi|2

+ max
i
di
C5 s

Γ

∑
i=1,2

di

∫
Ω

|∇Φi|2 |fi|2 + (max
i
di)

2C
2
5

h2
‖f‖2 .

This completes the proof of Lemma 3.4.

Finally, we estimate the contribution of

1

Γ

∫
Ω

(
−2ηi −

1

2
di |∇Φi|2 −

s

2
d2
i∇Φi∇2ϕi∇Φi

)
|fi|2 +

C4s

Γ
di

∫
Ω

|∇Φi|2 |fi|2 ,
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where C4 is the constant appearing in Lemma 3.4.

Lemma 3.5. There exists s2 ∈ (0, 1] and C6 > 0, both depending only on |x0| and d1,
d2 such that when s ∈ (0, s2],

1

Γ

∑
i=1,..,4

∫
Ω

(
−2ηi −

1

2
di |∇Φi|2 −

s

2
d2
i∇Φi∇2ϕi∇Φi

)
|fi|2 +

C4s

Γ

∑
i=1,2

di

∫
Ω

|∇Φi|2 |fi|2

≤ 1

Γ

∑
i=1,..,4

(
2− 1

4
di
s

c2

)∫
Ω

(−ηi) |fi|2 +
C6

h
‖f‖2 .

Proof of Lemma 3.5: First observe that(
−2ηi −

1

2
di |∇Φi|2 −

s

2
d2
i∇Φi∇2ϕi∇Φi

)
+ C4sdi |∇Φi|2

≤ −2ηi +

(
−1

2
+ s

(
1

2
max
i
di max

Ω

∣∣∇2ψ
∣∣+ C4

))
di |∇Φi|2

≤ −
(

2ηi +
1

8
di |∇Φi|2

)
for any s ∈ (0, s2] if s2 > 0 is well chosen. Indeed, it is sufficient to take s2 :=
3
8
(1

2
max
i
di max

Ω
|∇2ψ|+ C4)−1.

Now, from∑
i=1,..,4

∫
Ω

(
−2ηi −

1

2
di |∇Φi|2 −

s

2
d2
i∇Φi∇2ϕi∇Φi

)
|fi|2 + C4 s

∑
i=1,2

di

∫
Ω

|∇Φi|2 |fi|2

≤
∑
i=1,..,4

(
2

∫
Ω

(−ηi) |fi|2 −
1

8
di

∫
Ω

|∇Φi|2 |fi|2
)

,

we want to achieve∑
i=1,..,4

∫
Ω

(
−2ηi −

1

2
di |∇Φi|2 −

s

2
d2
i∇Φi∇2ϕi∇Φi

)
|fi|2 + C4 s

∑
i=1,2

di

∫
Ω

|∇Φi|2 |fi|2

≤
∑
i=1,..,4

(
2− 1

4
di
s

c2

)∫
Ω

(−ηi) |fi|2 + C6 ‖f‖2 .

We will treat separately the case i = 1 (which is similar to the case i = 2 since Φ2 = Φ1)
and the case i = 3 (which is similar to the case i = 4 since Φ4 = Φ3).

Recall that

ηi =
s

Γ2

(
−1

2
|ϕi|+

1

4
dis |∇ϕi|2

)
.
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Thanks to Lemma 3.3 (ii)−(iii), for any x ∈ Ω, |ϕ1 (x)| ≤ c2 |∇ϕ1 (x)|2. This implies

− |∇Φ1|2 = − s
2

Γ2
|∇ϕ1|2 ≤ −

s2

c2Γ2
|ϕ1| =

2s

c2

(
− s

2Γ2
|ϕ1|

)
≤ 2s

c2

η1 .

Therefore,

−1

8
d1

∫
Ω

|∇Φ1|2 |f1|2 ≤
1

4
d1
s

c2

∫
Ω

η1 |f1|2

and similarly for i = 2, one has −1

8
d2

∫
Ω

|∇Φ2|2 |f2|2 ≤
1

4
d2
s

c2

∫
Ω

η2 |f2|2. Consequently,

∑
i=1,2

(
−1

8
di

∫
Ω

|∇Φi|2 |fi|2
)
≤
∑
i=1,2

1

4
di
s

c2

∫
Ω

ηi |fi|2 =
∑
i=1,2

(
−1

4
di
s

c2

)∫
Ω

(−ηi) |fi|2 .

Thanks again to Lemma 3.3 (ii)−(iii), the properties of ϕ3 require to treat separately
the cases when x ∈ ϑ and x ∈ Ω \ϑ , where ϑ = {ρ ≤ |x| < R}, with ρ > 0 such that

x0 /∈ ϑ. We take here ρ = |x0|+R
2

. We first observe that when x ∈ ϑ ,

(40) − |∇Φ3 (x, ·)|2 = − s
2

Γ2
|∇ϕ3 (x)|2 ≤ − s2

c2Γ2
|ϕ3 (x)| ≤ 2s

c2

η3 (x) .

We see that∑
i=3,4

(
−1

8
di

∫
Ω

|∇Φi|2 |fi|2
)
≤
∑
i=3,4

(
−1

8
di

∫
ϑ

|∇Φi|2 |fi|2
)

since ϑ ⊂ Ω

≤
∑
i=3,4

1

4
di
s

c2

∫
ϑ

ηi |fi|2 thanks to estimate (40)

=
∑
i=3,4

1

4
di
s

c2

∫
Ω

ηi |fi|2 −
∑
i=3,4

1

4
di
s

c2

∫
Ω\ϑ

ηi |fi|2

≤
∑
i=3,4

(
−1

4
di
s

c2

)∫
Ω

(−ηi) |fi|2 + C6

∑
i=1,2

∫
Ω

|fi|2

where in the last line, we defined

C6 := max
i
di

C7

c2 c2
3

, C7 := max
Ω
|ψ|+ max

i
di max

Ω
|∇ψ|2 ,
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and noticed that

−1

4
d3
s

c2

∫
Ω\ϑ

η3 |f3|2 ≤
1

4
d3
s

c2

∫
Ω\ϑ

(
C7s

Γ2

)
|u3|2 es

1
Γ
ϕ3 since |η3| ≤

C7s

Γ2

=
1

4
d3
s

c2

∫
Ω\ϑ

(
C7s

Γ2

)
|u3|2 es

1
Γ
ϕ1es

1
Γ

(ϕ3−ϕ1)

≤ 1

4
d3
s

c2

∫
Ω\ϑ

(
C7s

Γ2

)
|u3|2 es

1
Γ
ϕ1e−s

1
Γ
c3 by Lemma 3.3(iii)

≤ C6

∫
Ω\ϑ
|u3|2 es

1
Γ
ϕ1 = C6

∫
Ω\ϑ
|u1|2 es

1
Γ
ϕ1 because u3 = u1

≤ C6

∫
Ω

|f1|2 .

We proceed similarly for i = 4 and get −1

4
d4
s

c2

∫
Ω\ϑ

η4 |f4|2 ≤ C6

∫
Ω

|f2|2. Finally, we

see that∑
i=1,..,4

(
−1

8
di

∫
Ω

|∇Φi|2 |fi|2
)
≤
∑
i=1,..,4

(
−1

4
di
s

c2

)∫
Ω

(−ηi) |fi|2 + C6

∑
i=1,2

∫
Ω

|fi|2 .

The fact that 1
Γ
≤ 1

h
completes the proof of Lemma 3.5.

Consequently, by (36), (37), Lemma 3.4 and Lemma 3.5, for any s ∈ (0, s1] ∩ (0, s2]
and any h ∈ (0, 1], we see that

〈S ′f, f〉+ 2 〈Sf,Af〉 ≤ (C3 + C4)
s

Γ

∑
i=1,..,4

di

∫
Ω

|∇fi|2 + (C3 + C4 + C6)
1

h2
‖f‖2

+
1

Γ

∑
i=1,..,4

(
2− dis

4c2

)∫
Ω

(−ηi) |fi|2

≤ (C3 + C4)
s

Γ

∑
i=1,..,4

di

∫
Ω

|∇fi|2 + (C3 + C4 + C6)
1

h2
‖f‖2

+

(
2−min

i
di

s

4c2

)
1

Γ

∑
i=1,..,4

∫
Ω

(−ηi) |fi|2 .

For s ∈ (0, s0], where s0 :=min(s1, s2, (C3 + C4)−1, c2 (min
i
di)
−1), we see that

〈S ′f, f〉+ 2 〈Sf,Af〉 ≤ 1 + C0

Γ
〈Sf, f〉+

C1

h2
‖f‖2 ,

with C0 := 1−min
i
di

s0

4c2

∈ (0, 1) and C1 ≥ C3 + C4 + C6.
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Taking

C1 := max(1, C3 + C4 + C6, 4K0 (1 +K0CSob), 4K
2
0 CSob(min

i
di)
−1) ,

we complete the proof of Proposition 3.2.

Let us summarize the inequalities for the energy ‖f‖2 and the frequency function
N, that we got so far: We first observe that thanks to (32), Young’s inequality and
Proposition 3.2(ii), when h ∈ (0, 1], we get (for all s ∈ (0, s0])

(41)

∣∣∣∣12 d

dt
‖f‖2 + 〈Sf, f〉

∣∣∣∣ = |〈z, f〉| ≤ 1

2C1

‖z‖2 +
C1

2
‖f‖2 ≤ 1

2
〈Sf, f〉+

C1

h
‖f‖2 .

Moreover, thanks to (34), Proposition 3.2(ii) and (iii), we also get (when h ∈ (0, 1] and
for all s ∈ (0, s0]) for some C0 ∈ (0, 1):

(42)
d

dt
N ≤ 〈S

′f, f〉+ 2 〈Sf,Af〉+ ‖z‖2

‖f‖2 ≤
(

1 + C0

Γ
+ C1

)
N +

2C1

h2
.

From now on, we take s := s0 given by Proposition 3.2, and recall that s0 only depends
on K0, |x0| and d1, d2.

3.4. Step 4: Use of a differential inequality. We now state the following Lemma:

Lemma 3.6. Let h > 0, T > 0 and F1, F2 ∈ C ([0, T ]). Consider two nonnegative
functions E,N ∈ C1 ([0, T ]) such that (when t ∈ [0, T )):

∣∣∣∣12 d

dt
E (t) +N (t)E (t)

∣∣∣∣ ≤ (1

2
N (t) +

C0

T − t+ h
+ C1

)
E (t) + F1 (t)E (t) ,

d

dt
N (t) ≤

(
1 + C0

T − t+ h
+ C1

)
N (t) + F2 (t) ,

where C0, C1 ≥ 0.
Then for any 0 ≤ t1 < t2 < t3 ≤ T , the following estimate holds:

(43) E (t2)1+M ≤ eD
(
T − t1 + h

T − t3 + h

)3C0(1+M)

E (t3)E (t1)M ,
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with

M := 3

∫ t3

t2

etC1

(T − t+ h)1+C0
dt∫ t2

t1

etC1

(T − t+ h)1+C0
dt

and

D := 3 (1 +M)

[
(t3 − t1)

(
C1 +

∫ t3

t1

|F2| dt
)

+

∫ t3

t1

|F1| dt
]

.

The proof of Lemma 3.6 can be found in [BP].

We now come back to the proof of Proposition 1.2.

Consider h ∈ (0, 1] and ` > 1 such that `h <min(1/2, T/4). Taking t3 := T , t2 :=
T − `h, and t1 := T − 2`h, in Lemma 3.6, estimate (43) becomes

E (T − `h)1+M` ≤ eD` (2`+ 1)3C0(1+M`) E (T )E (T − 2`h)M` ,

where

D` := 3 (1 +M`)

(
C1 +

∫ T

T−2`h

(|F1|+ 2`h |F2|) dt
)

,

and

(44) M` := 3

∫ T

T−`h

etC1

(T − t+ h)1+C0
dt∫ T−`h

T−2`h

etC1

(T − t+ h)1+C0
dt

.

We now observe that thanks to inequalities (41), (42), the assumptions of Lemma 3.6
are fulfilled when E (t) := ‖f (·, t)‖2, N is the frequency function given by (33), h ∈
(0, 1], F1(t) :=

C1

h
, F2(t) :=

2C1

h2
and C0, C1 are the constants appearing in Proposition

3.2.

Therefore, thanks to Lemma 3.6, for all h ∈ (0, 1] and ` > 1 such that `h <min(1/2, T/4),
the following estimate holds (with s = s0):

(45)
(
‖f (·, T − `h)‖2)1+M` ≤ K`

(
‖f (·, T )‖2) (‖f (·, T − 2`h)‖2)M`

,

where K` := eD` (2`+ 1)3C0(1+M`), with D` = 3C1 (1 +M`) (1 + 2`+ 8`2), and M` given
by (44).
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Note that (when `h <min(1/2, T/4)),

(46)

M` ≤ 3
eC1T

eC1(T−2`h)

∫ T

T−`h

1

(T − t+ h)1+C0
dt∫ T−`h

T−2`h

1

(T − t+ h)1+C0
dt

≤ 3e2C1`h
[(`+ 1)h]−C0 − h−C0

[(2`+ 1)h]−C0 − [(`+ 1)h]−C0

≤ 3eC1
(`+ 1)C0

1−
(
`+1
2`+1

)C0
.

3.5. Step 5: Introducing B (x0, r). Observe that

‖(f1, f2)‖2
(L2(Ω))2 ≤ ‖f‖2 ≤ 2 ‖(f1, f2)‖2

(L2(Ω))2 .

Indeed, the fact that ϕ3 ≤ ϕ1 and s0
Γ
> 0, implies ‖(f3, f4)‖2

(L2(Ω))2 ≤ ‖(f1, f2)‖2
(L2(Ω))2

by (21) and (22), which gives the desired estimates. Therefore, thanks to (45),

(47)

(
‖(f1, f2) (·, T − `h)‖2

(L2(Ω))2

)1+M`

≤ K`

(
2 ‖(f1, f2) (·, T )‖2

(L2(Ω))2

)(
2 ‖(f1, f2) (·, T − 2`h)‖2

(L2(Ω))2

)M`

.

On the other hand, the fact that ϕ2 = ϕ1, ϕ1 ≤ 0 and s0
Γ
> 0, implies

‖(f1, f2)‖2
(L2(Ω))2 ≤ ‖(u1, u2)‖2

(L2(Ω))2 .

Combining the above with the non-increasing property (13) of the energy, one can first
get

(48) ‖(f1, f2) (·, T − 2`h)‖2
(L2(Ω))2 ≤ ‖(u1, u2) (·, 0)‖2

(L2(Ω))2 .

Second, we make B (x0, r) appear out of ‖(f1, f2) (·, T )‖2
(L2(Ω))2 as follows:

(49)

‖(f1, f2) (·, T )‖2
(L2(Ω))2

=

∫
B(x0,r)

|(u1, u2) (·, T )|2 e
s0
h
ϕ1 +

∫
Ω\B(x0,r)

|(u1, u2) (·, T )|2 e
s0
h
ϕ1

≤ ‖(u1, u2) (·, T )‖2
(L2(B(x0,r)))

2 + e−
s0µ0
h ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

thanks to estimate (13), ϕ2 = ϕ1, and the fact that on Ω \B (x0, r) , ϕ1 ≤ −µ0 for some
µ0 > 0 depending only on |x0| and r.
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Third, thanks to estimate (13) and ϕ1 = ϕ2,

(50)
‖(u1, u2) (·, T )‖2

(L2(Ω))2 ≤
∫

Ω

|(u1, u2) (·, T − `h)|2 e
s0

(`+1)h
ϕ1e−

s0
(`+1)h

ϕ1

≤ e
s0µ1

(`+1)h ‖(f1, f2) (·, T − `h)‖2
(L2(Ω))2 ,

where µ1 := sup
x∈Ω

(−ϕ1(x)) only depends on |x0|.

Combining estimates (47) to (50), we can deduce
(51) (

‖(u1, u2) (·, T )‖2
(L2(Ω))2

)1+M`

≤ e
s0µ1(1+M`)

(`+1)h

(
‖(f1, f2) (·, T − `h)‖2

(L2(Ω))2

)1+M`

≤ K` e
s0µ1(1+M`)

(`+1)h

(
2 ‖(f1, f2) (·, T )‖2

(L2(Ω))2

)(
2 ‖(f1, f2) (·, T − 2`h)‖2

(L2(Ω))2

)M`

≤ 2K` e
s0µ1(1+M`)

(`+1)h

(
2 ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)M`

×
(
‖(u1, u2) (·, T )‖2

(L2(B(x0,r)))
2 + e−

s0µ0
h ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)
.

This estimate is true for any ` > 1 and any h ∈ (0, 1] satisfying `h <min(1/2, T/4).
Recall that s0 only depends on K0, |x0| and d1, d2.

We now will choose ` > 1 sufficiently large to fulfill the inequality µ1(1+M`)
(`+1)

≤ µ0

2
, so

that s0µ1(1+M`)
(`+1)h

− s0µ0

h
≤ − s0µ0

2h
. This is possible since lim

`→+∞
µ1(1+M`)

(`+1)
= 0 because (see

(46)) M` ≤ 3eC1 (`+1)C0

1−( 2
3)
C0

, with C0 ∈ (0, 1). Note that chosen in this way, ` depends on

|x0|, r and d1, d2.

Thus, (51) becomes

(52)

(
‖(u1, u2) (·, T )‖2

(L2(Ω))2

)1+M`

≤ 2K`

(
2 ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)M`

×
(
e
s0µ0
2h ‖(u1, u2) (·, T )‖2

(L2(B(x0,r)))
2 + e−

s0µ0
2h ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)
.

This estimate is true for any h ∈ (0, 1] satisfying `h <min(1/2, T/4). Recall that
1/ (2`) ≤ 1, therefore the interpolation inequality (52) holds for any h > 0 satisfying
h <min(1/ (2`) , T/ (4`)).
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Since now ` > 1 is large but fixed, we denote M := M` and K := K`. Then, for any
h > 0 satisfying h <min(1/ (2`) , T/ (4`)), estimate (52) becomes

(53)

(
‖(u1, u2) (·, T )‖2

(L2(Ω))2

)1+M

≤ 21+MK
(
‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)M
×
(
e
s0µ0
2h ‖(u1, u2) (·, T )‖2

(L2(B(x0,r)))
2 + e−

s0µ0
2h ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)
.

On the other hand, for any h > 0 satisfying h ≥min(1/ (2`) , T/ (4`)), 1 = e−
s0µ0
2h e

s0µ0
2h ≤

e−
s0µ0
2h e

s0µ0
2 (2`+ 4`

T ), which implies thanks to (13):

(54)

(
‖(u1, u2) (·, T )‖2

(L2(Ω))2

)1+M

≤
(
‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)1+M

e−
s0µ0
2h e

s0µ0
2 (2`+ 4`

T )

≤ eµ2(1+ 1
T )
(
‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)M
×
(
e
s0µ0
2h ‖(u1, u2) (·, T )‖2

(L2(B(x0,r)))
2 + e−

s0µ0
2h ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)
,

where µ2 := 2s0µ0` only depends on K0, |x0|, r and d1, d2.
Consequently, combining (53) and (54), one can get an estimate which holds for any

h > 0: Precisely, there exists µ3 := µ2 + 1 +M +K depending only on K0, |x0|, r and
d1, d2, such that for any h > 0,(

‖(u1, u2) (·, T )‖2
(L2(Ω))2

)1+M

≤ eµ3(1+ 1
T )
(
‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)M
×
(
e
s0µ0
2h ‖(u1, u2) (·, T )‖2

(L2(B(x0,r)))
2 + e−

s0µ0
2h ‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)
.

Now, one can minimize with respect to h in (0,+∞) or simply choose h > 0 such that

e−
s0µ0
2h =

‖(u1, u2) (·, T )‖(L2(B(x0,r)))
2

‖(u1, u2) (·, 0)‖(L2(Ω))2

,

in order to obtain the desired estimate under the form(
‖(u1, u2) (·, T )‖2

(L2(Ω))2

)1+(1+2M)

≤ 4e2µ3(1+ 1
T ) ‖(u1, u2) (·, T )‖2

(L2(B(x0,r)))
2

×
(
‖(u1, u2) (·, 0)‖2

(L2(Ω))2

)(1+2M)

.

This concludes the proof of Proposition 1.2.



30 LAURENT DESVILLETTES AND KIM DANG PHUNG

References

[BP] C. Bardos and K.D. Phung, Observation estimate for kinetic transport equations by diffusion
approximation. C. R. Math. Acad. Sci. Paris, 355, no.6, (2017), 640–664.
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