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ABSTRACT The goal here is to present two approaches concerning results on
observability and control of the Schrodinger equation in a bounded domain. Our
results are obtained from different works on the control of the heat equation or
of the wave equation. From the theory of exact and approximate controllability,
introduced by J.L. Lions [101, we know that observation is equivalent to approx-
imate controllability and stable observation is equivalent to exact controllability.

Our first result is based on a gaussian transform which traduces any estimate of
stable observability of the heat equation to an estimate of unstable observability
for the Schrodinger equation (see Section 1 below). This work is similar to those
done by L. Robbiano [14J for hyperbolic problems on the domain where the
geometrical control condition of C. Bardos, C. Lebeau and J. R.auch on the exact
controllability of the wave equation [1) is not satisfied.

Our second result is about exact control for the Schrödinger equation (see
Section 2) and is inspired by a transform introduced by L. Boutet de Monvel
[21 for the study of the propagation of singularities of an analogous solution of
the Schrodinger equation. Our strategy is to construct an exact control for the
Schrodinger equation from an exact controllability result for the wave equation.

1 Observability results for the Schrodinger
equation

Let be an open bounded domain of R'2 with a boundary ôft We
consider the Schrödinger equation with the Dirichiet boundary condition:

inQxRt
u=0
u(.,0)=u0 md,

where the solution u E C(R;HJ(d)) if u0 E
We say that we have stable boundary observability of the heat equation

if for all open I', non-empty set of Od, such that F C Od, for all T> 0,
there exists CT > 0 such that the solution w of the evolution problem

indxJO,T[
w=0

w(.,T) L2(cZ)
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satisfies

j lw(, 0)12 dx CT
(11r18

w12 dt&c
+ j

1T1112
dtdx).

We propose to establish the following observability estimates:

Theorem 1.1. If a stable boundary obseruability of the heat equation is
satisfied, then we have a boundary observability estimate in logarithmic
type for the Schrödinger equation.

Corollary 1.2. For all 0, there is > 0 such that for all initial data
uo E H2(1l) fl of problem (1.1), we have

p / t '
I Vuol2dx�expiCcJO UO

/ f
Jo \ dx ) JrJo

Remark 1.3. The estimate (1.4) is equivalent to

I 2dx I
in (2 + fr

Jo

Corollary 1.2 comes from Theorem 1.1 and the work of G. Lebeau and
L. Robbiano 1111 or of A.V. Fursikov and O.Yu. Imanuvilov [7J on the
exact controllability of the heat equation obtained from Carleman inequal-
ities. Note that D. Tataru 1151 gives a directly unique continuation esti-
mate for the Schrodinger equation with Dirichlet boundary condition from
Carleman's type inequalities. Corollary 1.2 is also valid for internal ob-
servability of the Schrodinger equation: Let w be a non-empty open set
included in fi. For all e > 0, there is > 0 such that for all initial data
ito E H2(1?) fl of problem (1.1), we have

P /
2 I I Iu(x,t)I2dxdt.

\ f0IuoI dx J

2 Exact control result for the Schrödinger equation

Let be a bounded open set in R", n > 1, with a boundary of class
C°°. Let T>0 and e E x ]0,T[;R). We say that the function e
controls exactly for the wave equation with partially null initial data if
for all E (cl), there is a boundary control g H'(R,; L2 such
that the solution of problem

I

O(,0)0 in�l
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satisfies 0 in fl x [T, -i-oo[.
We say that the function 9 controls geometrically if any generalized

bicharacteristic ray meets the set e 0 on a non—diffractive point. (see
[4D•

We propose to establish the following exact control result:

Theorem 2.1. If the function 9 : (x, t) E (x) 0(t) contn,ls Il exactly
for the wave equation with partially null initial data, then for all e > 0,
for all initial data w0 E H0' there exists a control L2 x J0,e[)
such that the solution of problem

IiOtw+IXw=0 in�lx]0,e[
w = on x ]0,e[ (2.2)

I. w(.,O)=w0 inIZ

satisfies

Corollary 2.2. We suppose there is no infinite order of contact between
the boundary x ]0, T[ and the bicharacteristics of 8? — & If the function
9: (x, t) E(x) 0(t) controls geometrically, then for all e > 0, for all
initial data w0 H0' (Il), there exists a control L2(8f1 x ]0,e[) such
that the solution of problem

inflx]0,e[
(2.3)

I. w(.,0)=w0 intl

satisfies w 0 in x {t � e}. Furthermore, we have on estimate of the
control as follows

� (1 + (2.4)

Remark 2.3. Corollary 2.2 comes from Theorem 2.1 and the work of C.
Bardos, G. Lebeau and J. Rauch [1] or of N. Burq and P. Gerard [4] on the
exact controllability of the wave equation from a microlocal analysis. The
constant is given by an observability estimate in the one dimensional
case. Our result is not optimal in norm in the sense that it is sufficient
to choose initial data ti,0 E H' to have an exact control result for
the Schrodinger equation, with hypothesis of the multiplier method [12]
[13] [5]. Also, G. Lebeau [9] has proved the exact controLlability for the
Schrodinger equation with the geometrical control condition of the wave
equation [1] and an analytic boundary. Furthermore, there exist open sets
which do not satisfy the geometrical control condition and in which it is
possible to control exactly with regular initial data [3]. Here, our goal is to
use knowledge of the exact controllability for the wave equation to obtain
an exact control result for the Schrodinger equation.
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3 Proof of the unstable observability results for the
Schrödinger equation

3.1 The parabolic problem

The proof of Theorem 1.1 comes from the work of Lebeau and Robbiano
[11] or of Fursikov and Imanuviov [7] on the exact controllability for the
heat equation from Carleman inequalities. We recall the result in (11] to be
complete:

Let be a Riemanian compact manifold with a boundary of class
and let be the laplacian on For all 0 < a < b < T, there exists

a continuous operator Sr : L2(ffl when 0 (resp.
: C0°°(wx]a,b[) with eventually = 0) such that for all

Vo E L2(Q), the solution of the heat equation

(resp. inIlx]0,T[
v=Sr(vo) (resp. =0)

v(,0)=vo

satisfies v(.,T) 0.
We have the following estimates:

Lemma 3.1. Let w be the solution of the following evolution problem:

w=0

Then,

> 0 f Iw(-? 0)12 dx S CT (j 1T
+ f

jT2)
(3.2)

> 0 f lw(, 0)12 dx � CT (j 1T
1w12 dtdx + j j 1fI2 dtdx).

(3.3)

Furthermore if w(.,T) E H2flH01(1Z), then

> 0 f Iw(,0)12 dx <CT (, j loT1112
dtdx).

(3.4)
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Another approach, based on the work of Fursikov and lmanuvilov
gives the following uniform time estimates [6]:

Let be a connected bounded open set included in with boundary
C C°°. Let w be the solution of the following evolution problem:

35
w = 0 on

Then, there is C > 0, such that for all T> 0, if w(•, T) L2(fz), we have

f � exp (c (i + 1)) j fT
wI2 dtdx (3.6)

and, there is C> 0, such that for all T> 0, if w(.,T) E H2 n we
have

j dx exp (c (1 + (1 JT
dtdx). (3.7)

Thus the constant Ce of estimate (1.6) could be written explicitly in e.

3.2 Proof of Theorem 1.1

Let F(z) = fReedr; then IF(z)I = Also, let
A > 0, and

FA(z) = AF(Az) =

We have

= (3.8)
2ir

Let s,io Rand

W10,A(s,x)
= f + is —

where We remark that + is — £) = + is —
and thus

= f —ia,FA(eo + is —
= + is — £) + 4(e) de.

As u is the solution of (1.1), Wt0,,, satisfies

x) + x) = fR iFA(€O + is — £)dt
W,0,A(s,x) = 0 Vx (3.9)

I. W1(,..\(0, x) = (FA * 4u(x,.)) (e0) Vx ci.
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We define E Let L >0. We choose 'I' E Cr(]0,L[), 0 � 'i � 1,
4' ion such that � < We take K =
— = -rJ• So, mesK0 = mesK = = K[ and '

and dist(K;K0) = We will choose to K0.
By application of (3.2), satisfies the following estimate:

J I(FA * (10)12 dx CT [ 1 z)12 dsdx
JrJo

T' 2

+ f I I I iFA(1o + is — t)4"(t)u(x,i)dtl dsdx (3.10)
I

I I IOnWe0,A(s,x)l2dsdxirfo

= j 1T
j FA(t0 + is — dsdx

Jo JrIJR 211
2T 2

< — I I
— 4

3ds) dx

< Isup'112 L f
1L

— 4ir JrJo

2

+is dsdx

I4"(l)I Iu(x,t)Idtldxds
Jo JcIIJR 211

I

A2 2
< I (1 e_41t0_h12 I'V(€)12 Iu(x,t)12d1) mes(K)dx
— 4ir

< 4dist(K,Ko)2 sup I'I'(t)l2mes(K) f I F) 2dtdx
— JQJK

< (K,Ko)2 1 IttoI2dx
4ir J0
A2T 1A21 42L2

—

— (L)2)]

— exp
[-i-

(L)2)] jIuoI2dx.
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Thus, inequality (3.10) becomes:

J (FA * .)) dx
n

2 LA2TL [1exp
4ir I Jrjo

A2T 1A2 /
+ CT—eXP

— (L)2)] j IuoI2dx (3.11)

By the Parseval relation, we have:

j (x, — (FA * 4!u (x,•)) (€o)12 deo

_—. 2 2 2

= I
I

< j
f 1c1'(e0)u (x, + $(€o)810u (x, deo

— — — I I< A2[(L)
L

JK JO

By integrating on we obtain

I I (x, — (FA * (x,.)) &o)12 d€odx
in JR

4 [(4)7 1L

L KJfl Join
2 L [12 dx + L I dx]. (3.12)[(i) in

So, from (3.11) and (3.12)

mes(Ko) I = I Iin JK0 in
A2TL / A2� mes(Ko)Cr

4ir \2 ) JrJo
A2T

+ mes(Ko)CT—exp (T2
—

jIuoI2dx

+ A2 — I f
4 2L

\LJ



172 K.-D. Phung

Finally

L

f — 114ir

J Iuol2dx+Cr—exp — — —
2 (8),ij n

1 42[8fj]
By choosing L = 8AT, with (1 — A2) <0 and T < 1, this becomes

8AT

j Itiol2dx � I I
Jr jo

+

12

+
+

(A2_ j Iuol2dx

� JJSAT

1 2 1 1 lj
Iuol2dx +

j

We write

8AT

I Iuol2dx < Cexp(A2T2) I 1 t)I2dedx + j
(3.13)

Now, we take

1 T31

f < Cexp
T Ji

dx rJo

We conclude by choosing T = 1, with e > 0. The estimate (1.4) of
Theorem 1.1 is obtained by interpolation.
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4 Proof of the exact control result for the
Schrödinger equation

4.1 The Schrödinger equation in one space dimension

We give two results on the Schrödinger equation in one dimension.

Proposition 4.1. If n = 1, then for all w C = ]A, B[ non-empty open
set in IR and a neighbourhood of the point x = B, for all E > 0,
there is > 0 such that for all u0 E initial data of problem (1.1),
we have

re I'
2 II 2

IlUolILa(n) j j IuI dxdt.
JO Jw

Proposition 4.2. There exists a triplet (f, u, F) such that

+ = f•1113T,2,2T1 — ® 6(s + 2T)
+83u®5(s—2T) in ]0,efxR3

(4.2)

F(e,)=0 in 1—T,T1.

Proof of the Proposition 4.1. Comes from the multiplier method [12J, [13],
[5). The constant 13e could be written explicitly in c, from (3.6).

Proof of the Proposition 4.2. From the HUM method and Proposition 4.1,
for all data u0 L2 (]—2T, 2T[), there exists a control I L2a0,e[ x ]3T/2,
2T[) such that the solution U: (t,s) '—p u(t,s) C([0,e]; L2(J — 2T, 2T[))
satisfies

+ = f•1113T/2,2T1 in )0,e[ x ]—2T, 2T[
u (., —2T) = 0, u (., 2T) = 0 on 10, Cf

3u(0,.)=0 in ]—2T,2T[
u(e,.)=u0 in ]—2T,2T[

and

If IIL2(JO,c(x)3T/2,2T1) (4.4)

In particular, we take u0(e,s) = where s E ]—2T,2T[,

x (]—2T,2T[), 0 X 1, XU-T.rl = 1. Thus,

e

� 2e (4.5)

Let

H — u(t,s) in [0,e] x [—2T,2T] 46( ,s)
— 0 in [0,e] x (]—oo,—2T[u]2T,+oo[)
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where u is the solution of (4.3). Thus,

+ = f.11j3r12,2r1 — O,u ® 5 (s + 2T)
+89u®5(s—2T)

H(0,)=0 mR3 (4.7)

H(e,s) =

and

IIHIIL2(lo,E(xJ_2r,2T1) < e � (4.8)

Let E (I, s) be the fundamental solution of the Schrodinger equation in one
dimension:

2

E(t,s) = (4.9)

The solution E E C°° ({t > 0) x R,) n C ([0, +oo[; (R3)) satisfies

in {t>0}xR8
j E (o,) = S (.) H—'1'2' (R3). (4.10)

We finally choose F (t, s) = E (t, s) + H (t, s), which is the solution of (4.2).

4.2 The hyperbolic problem

We give a result for the exact control of the wave equation.

Proposition 4.3. If the function 9 : (x,t) x
]0, T[ ; R) controls exactly il for the wave equation with partially null ini-
tial data then, for all initial data (il), there exists a control

E H'(]—T,T[;L2(OIfl) such that the solutiony C(R;
L2(1l)) satisfies

inIlxR
= on Oil X IR

4 11= = 0 in

Futherinore

IIQIIL2(rxj_T,TL) + IIOtUIILa(rx)_T,T() < CT (4.12)

Proof of Proposition We extend the solution (x, t) of (2.1) by sym-
metry:

' 'I(x,t) inilx[O,T) 413y
x [—T, O[. . )

And from the HUM method, we have

I19l1L2(aflx)_T,T() + IIOtOIIL2(9flxI_T,TI) � CT (4.14)
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4.3 Proof of Theorem 2.1

Let 0< t Wedefinew(x,t) such that

w(x,t) = (4.15)

where y (x,e) '—i y(x,€) and F : (t,€) u—' F(t,€) are solutions of the
problems

y (x, t)IanxI—T,Tt = (x) £) •1Iaczxl—r,r( (4 16
infl

(]—oo,—T]U[T,-i-oo[)

and

in ]0,e[x(—T,T]
F(0,.)=o(.) (4.17)

F(e,)=0 in [—T,T].

The existence of y is given by the Proposition 4.3 with the hypothesis of
exact controllability for the wave equation with partially initial data. The
existence of F is given by the Proposition 4.2 where the support of the
second member of (4.2) does not meet 1O,E[ x 1—T,TE.

We calculate (jôt + w (x, t):

iôtw(x,t) = f
= (t, £) y (x, £) de
=0.

(4.18)

Conclusion

w(x,t) = on x ]0,e[
419w(.,0)=w0

w(.,e)=0
with an estimate of the control (x, t) on x 10, e[, given by

=

= fTr_(E+H)(t,i)0()de (4.20)

= +

where

IIt9t,2IIL2(anxjo.cL) = IfTT H (t, £) (x, del dxdt
2� f0 IIH (t, )11L2(I dt Ik)(x, )11L2(I_T.r() dx

<
(4.21)
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and

IIt'e,111L2(ôflxIoeE) = 10 fsfl (t, €) p(x,t)
(4.22)

= JR dxdt

and

Ilk del

dx

+

le(x,t)(e)I
+ flel�M

ScM ()12 +

5

cM !1QIIL2(anxR) + cM' JR deds

<

(4.23)

Remark 4.4. The proofs of Theorems 1.1 and Theorem 2.1 are still true
if we change the laplacien operator by an elliptic, autoadjomt, regular in
espace operator. We complete the result of control in [8].
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