Observation at one point for parabolic equations by a simplest way

Kim Dang PHUNG

Université d'Orléans.
September 2020, Chalès

Our goal

Ω is a C^{2} bounded convex domain in \mathbb{R}^{n},

$$
\left\{\begin{aligned}
\partial_{t} u-\Delta u=0 & \text { in } \Omega \times(0, T) \\
u(\cdot, 0)=u_{0} & \in L^{2}(\Omega) \\
\omega \text { is } & \text { a non empty open subset of } \Omega
\end{aligned}\right.
$$

Observation at one point in time

$$
\|u(\cdot, T)\|_{L^{2}(\Omega)} \leq C e^{\frac{c}{T^{\beta}}}\|u(\cdot, 0)\|_{L^{2}(\Omega)}^{\theta}\|u(\cdot, T)\|_{L^{2}(\omega)}^{1-\theta}
$$

What does it imply?

$u(\cdot, T)=0$ in $\omega \Longrightarrow u(\cdot, 0)=0$
Observability for the heat with a positive measurable set in time
Lebeau-Robbiano spectral inequality (and conversely)

$$
\sum_{\lambda_{i} \leq \lambda}\left|a_{i}\right|^{2} \leq c e^{c \lambda^{\beta^{\prime}}} \int_{\omega}\left|\sum_{\lambda_{i} \leq \lambda} a_{i} e_{i}(x)\right|^{2} d x
$$

This inequality is also true from Lebeau-Robbiano for

Bilaplacian $\partial_{t}+\Delta^{2} \quad($ Le Rousseau-Robbiano (JEMS 08))
Stokes operator (ChavesSilva-Lebeau (2016))
1d degenerate operator $\partial_{t}-\partial_{x}\left(x^{\gamma} \partial_{x}\right)$ with $\gamma \in(0,2)$
(Buffe (2018))
Time varying fractional Laplacian $\partial_{t}-\Delta^{\gamma(t)}$ with $\gamma(t) \geq \gamma_{0}>\frac{1}{2}$ (Liang Zhang-Xin Yu (2018))
with many applications in control theory and inverse problems

What are the known extensions from the proof here

Drop the convexity of Ω by localization and propagation of smallness

Add space-time coefficient
$\partial_{t} u-\operatorname{div}(A(x, t) \nabla u)+a(x, t) u+b(x, t) \cdot \nabla u=0$

State of art for unique continuation

Log convexity for backward: Agmon-Nirenberg (67), Bardos-Tartar (73), Ghidaglia (86), FanHua Lin (90),...

Carleman estimates for observability: Lebeau-Robbiano (95), Fursikov-Imanuvilov (96), ...

Log convexity

Claim :

$$
t \longmapsto \ln \|u(\cdot, t)\|_{L^{2}(\Omega)}^{2} \text { is convex }
$$

Indeed,

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|u(\cdot, t)\|^{2}+\langle-\Delta u, u\rangle=0 \\
N(t)=\frac{\langle-\Delta u, u\rangle}{\|u(\cdot, t)\|^{2}} \text { satisfies } \frac{d}{d t} N(t) \leq 0
\end{gathered}
$$

because

$$
\begin{aligned}
& \frac{d}{d t} N(t)\left(\|u\|^{2}\right)^{2}=\frac{d}{d t}\|\nabla u\|^{2}\|u\|^{2}-\|\nabla u\|^{2} \frac{d}{d t}\|u\|^{2} \\
&=-2\|\Delta u\|^{2}\|u\|^{2}+2\|\nabla u\|^{4} \leq 0
\end{aligned}
$$

Since

$$
t \longmapsto \ln \|u(\cdot, t)\|_{L^{2}(\Omega)}^{2} \text { is convex }
$$

we have

$$
\begin{aligned}
\ln \left\|u\left(\cdot, \theta t_{1}+(1-\theta) t_{2}\right)\right\|^{2} & \leq \theta \ln \left\|u\left(\cdot, t_{1}\right)\right\|^{2}+(1-\theta) \ln \left\|u\left(\cdot, t_{2}\right)\right\|^{2} \\
& \leq \ln \left(\left(\left\|u\left(\cdot, t_{1}\right)\right\|^{2}\right)^{\theta}\left(\left\|u\left(\cdot, t_{2}\right)\right\|^{2}\right)^{1-\theta}\right)
\end{aligned}
$$

in order to conclude that for $0<t<T$

$$
\|u(\cdot, t)\|^{2} \leq\left(\|u(\cdot, 0)\|^{2}\right)^{\theta}\left(\|u(\cdot, T)\|^{2}\right)^{1-\theta}
$$

A win for time at the left will allow a win for space at the right

Carleman commutator

Do the same with a weight function

$$
f(x, t)=u(x, t) e^{\Phi(x, t) / 2}
$$

Then it solves (Escauriaza-Kenig-Ponce-Vega (JEMS 08))

$$
\partial_{t} f \underbrace{-\Delta f-\frac{1}{2} f\left(\partial_{t} \Phi+\frac{1}{2}|\nabla \Phi|^{2}\right)}_{S f \text { with }\langle S f, g\rangle=\langle S g, f\rangle+\int_{\partial \Omega} \partial_{n} f g d \sigma}+\underbrace{\nabla \Phi \cdot \nabla f+\frac{1}{2} \Delta \Phi f}_{-A f \text { with }\langle A f, g\rangle=-\langle A g, f\rangle}=0
$$

$$
\left\{\begin{array}{cl}
\partial_{t} f+S f=A f & \text { in } \Omega \times(0, T), \\
f=0 & \text { on } \partial \Omega \times(0, T), \\
\langle A f, f\rangle=0 & \\
\frac{1}{2} \frac{d}{d t}\|f(\cdot, t)\|^{2}+\langle S f, f\rangle=0 \\
N(t)=\frac{\langle S f, f\rangle}{\|f(\cdot, t)\|^{2}}
\end{array}\right.
$$

Next, compute $\frac{d}{d t} N(t)$

$$
\begin{aligned}
\frac{d}{d t}\langle S f, f\rangle & =\left\langle S^{\prime} f, f\right\rangle+\left\langle S f^{\prime}, f\right\rangle+\left\langle S f, f^{\prime}\right\rangle \\
& =\left\langle S^{\prime} f, f\right\rangle+2\left\langle S f, f^{\prime}\right\rangle \\
& =\left\langle S^{\prime} f, f\right\rangle+2\langle S f,-S f+A f\rangle \\
& =-2\|S f\|^{2}+\left\langle S^{\prime} f, f\right\rangle+2\langle S f, A f\rangle
\end{aligned}
$$

Therefore $\frac{d}{d t} N(t)\left(\|f\|^{2}\right)^{2}=\frac{d}{d t}\langle S f, f\rangle\|f\|^{2}-\langle S f, f\rangle \frac{d}{d t}\|f\|^{2}$

$$
=-2\|S f\|^{2}\|f\|^{2}+2(\langle S f, f\rangle)^{2}+\left\langle S^{\prime} f, f\right\rangle+2\langle S f, A f\rangle
$$

$$
\frac{d}{d t} N(t)\|f(\cdot, t)\|^{2} \leq\left\langle S^{\prime} f, f\right\rangle+2\langle S f, A f\rangle
$$

Choice of the weight function

Take the heat kernel $\Phi(x, t)=\frac{-\left|x-x_{0}\right|^{2} / 4}{T-t+h}-\frac{n}{2} \ln (T-t+h)$ or take it of the form $\Phi(x, t)=\frac{-s \varphi(x)}{T-t+h}$ such that

$$
\left\langle S^{\prime} f, f\right\rangle+2\langle S f, A f\rangle \leq \frac{\langle S f, f\rangle}{T-t+h}
$$

that is $\frac{d}{d t} N(t) \leq \frac{1}{T-t+h} N(t)$. Next, solve an ODE

$$
\left\{\begin{array}{l}
\frac{1}{2} \frac{d}{d t}\|f(\cdot, t)\|^{2}+N(t)\|f(\cdot, t)\|^{2}=0 \\
\frac{d}{d t} N(t) \leq \frac{1}{T-t+h} N(t)
\end{array}\right.
$$

to have for $t_{1}<t_{2}<T$

$$
\left\|f\left(\cdot, t_{2}\right)\right\|^{1+M} \leq C\left\|f\left(\cdot, t_{1}\right)\right\|^{M}\|f(\cdot, T)\|
$$

The localization for space is given from $\|f(\cdot, T)\|$ as follows:

$$
\begin{aligned}
& \|f(\cdot, T)\|^{2}=\int_{\Omega}|u(x, t)|^{2} e^{\frac{-\left|x-x_{0}\right|^{2} / 4}{T-t+h}} d x \text { with } t=T \\
& \leq \int_{\Omega \backslash B\left(r, x_{0}\right)}|u(x, T)|^{2} e^{\frac{-\left|x-x_{0}\right|^{2} / 4}{h}} d x+\int_{B\left(r, x_{0}\right)}|u(x, T)|^{2} e^{\frac{-\left|x-x_{0}\right|^{2} / 4}{h}} d x \\
& \leq e^{-\frac{c}{h}} \int_{\Omega \backslash B\left(r, x_{0}\right)}|u(x, T)|^{2} d x+\int_{B\left(r, x_{0}\right)}|u(x, T)|^{2} d x \\
& \leq e^{-\frac{c}{h}} \int_{\Omega}|u(x, 0)|^{2} d x+\int_{B\left(r, x_{0}\right)}|u(x, T)|^{2} d x
\end{aligned}
$$

The left hand-side $\left\|f\left(\cdot, t_{2}\right)\right\|^{1+M}$ with a win for time implies:
Take t_{2} closed to T,

$$
\begin{aligned}
& \left(\int_{\Omega}|u(x, T)|^{2} d x\right)^{1+M} \leq\left(\int_{\Omega}\left|u\left(x, t_{2}\right)\right|^{2} d x\right)^{1+M} \\
& \leq\left(\int_{\Omega}\left|u\left(x, t_{2}\right)\right|^{2} e^{\frac{-\left|x-x_{0}\right|^{2} / 4}{T-t_{2}+h}} e^{\frac{\left|x-x_{0}\right|^{2} / 4}{T-t_{2}+h}} d x\right)^{1+M} \\
& \leq e^{\frac{C}{T-t_{2}+h}}\left(\left\|f\left(\cdot, t_{2}\right)\right\|^{2}\right)^{1+M}
\end{aligned}
$$

in order that

$$
e^{\frac{C(1+M)}{T-t_{2}+h}} e^{-\frac{c}{h}} \leq e^{-\frac{\kappa}{h}}
$$

to conclude

$$
\|u(\cdot, T)\|^{1+M} \leq c e^{C / T}\|u(\cdot, 0)\|^{M}\left\|u(\cdot, T)_{\mid \omega}\right\|
$$

UCP with space-time potential

$$
\left\{\begin{aligned}
\partial_{t} u-\Delta u+a(x, t) u=0 & \text { in } \Omega \times(0, T), \\
u(\cdot, 0)=u_{0} & \in L^{2}(\Omega), \\
\omega \text { is } & \text { a non empty open subset of } \Omega .
\end{aligned}\right.
$$

ODE

$$
\left\{\begin{array}{l}
\left|\frac{1}{2} d\|f(\cdot, t)\|^{2}+N(t)\|f(\cdot, t)\|^{2}\right|=|\langle a f, f\rangle| \leq\|a\|_{L^{\infty}}\|f(\cdot, t)\|^{2} \\
\frac{d}{d t} N(t) \leq \frac{1}{T-t+h} N(t)+\frac{\langle a f, f\rangle}{\|f(, t)\|^{2}}
\end{array}\right.
$$

UCP with space-time potential

$$
\left\{\begin{aligned}
& \partial_{t} u-\Delta u+a(x, t) u=0 \text { in } \Omega \times(0, T) \\
& u(\cdot, 0)=u_{0} \in L^{2}(\Omega) \\
& \omega \text { is a non empty open subset of } \Omega
\end{aligned}\right.
$$

Observation at one point in time

$$
\|u(\cdot, T)\|_{L^{2}(\Omega)} \leq C e^{\frac{c}{T}}\|u(\cdot, 0)\|_{L^{2}(\Omega)}^{\theta}\|u(\cdot, T)\|_{L^{2}(\omega)}^{1-\theta}
$$

What about $\varepsilon \partial_{t}^{2} u-\Delta u+\partial_{t} u+a(x, t) u=0$ for very small ε.
Can we have $u(\cdot, T)=0$ in $\omega \Longrightarrow u(\cdot, 0)=0$

Thank You

