Feuille TD n°8 : Convergence des séries de Fourier

- 1-. On définit la fonction sgn sur l'intervalle $[-\pi, \pi]$ par $\operatorname{sgn}(x) = 1$ si x > 0 et $\operatorname{sgn}(x) = -1$ si x < 0. On la prolonge en une fonction 2π -périodique sur \mathbf{R} .
- a) Calculer sa série de Fourier.
- b) En déduire que

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$$

- 2-. On considère la fonction $x \mapsto |x|$ sur l'intervalle $[-\pi, \pi]$ et on la prolonge en une fonction 2π -périodique sur \mathbf{R} .
- a) Calculer sa série de Fourier.
- b) En déduire que

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \ldots = \frac{\pi^2}{8}.$$

c) Montrer que

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}.$$

3-. Soit f la fonction paire 2π -périodique définie par

$$f(x) = \begin{cases} 1 & \text{si} \quad x \in [0, \pi/4] \\ 0 & \text{si} \quad x \in]\pi/4, \pi[\end{cases}$$

- a) La série de Fourier de f converge-t-elle uniformément vers f sur $[-\pi,\pi]$? Expliquer pourquoi.
- b) Exprimer $\sin(n\pi/4)$ et $\cos(n\pi/4)$ en fonction de n modulo 8.
- c) Calculer la série de Fourier de f et déterminer sa somme.
- d) Calculer la somme de la série $\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+3)}.$