Feuille de TP n°4: Equations différentielles. Problèmes aux limites.

Exercice 1: Méthode des différences finies-Reprise de l'exercice 2 du TD 4

On considère les problèmes suivants :

(1) Conditions aux bords de Dirichlet homogènes :

$$-u''(x) = e^x$$
, $x \in [0, 1]$, $u(0) = 0, u(1) = 0$,

(2) Conditions aux bords de Dirichlet non homogènes :

$$-u''(x) = e^x$$
, $x \in [0,1]$, $u(0) = 1$, $u(1) = 2$,

(3) Conditions aux bords mixtes:

$$-u''(x) = e^x$$
, $x \in [0, 1]$, $u(0) = 0, u'(1) = 0$,

(4) Coefficient de diffusion non homogène avec $k(x) = e^x$:

$$-(e^x u')'(x) = (x+1)e^x, \quad x \in [0,1], \quad u(0) = 0, u(1) = 0,$$

(5) Terme de réaction avec c = 4:

$$-u''(x) + 4u(x) = 3e^x$$
, $x \in [0,1]$, $u(0) = 0$, $u(1) = 0$.

Dans chacun de ces cinq cas:

- 1. Calculer la solution exacte.
- 2. Programmer la méthode des différences finies correspondante.
- 3. Evaluer l'ordre de la méthode.

Exercice 2: Equation de la chaleur: introduction aux EDP- Reprise de l'exercice 5 du **TD 4**

On cherche à trouver une valeur approchée de la fonction u(t,x) avec t>0 et $x\in[0,1]$ vérifiant l'équation de la chaleur suivante :

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0.$$

On considère en espace les conditions aux bords

$$u(t, x = 0) = 0$$
, $u(t, x = 1) = 0$, pour tout $t > 0$

et en temps la condition initiale

$$u(t=0,x) = \sin(\pi x)$$
, pour tout $x \in [0,1]$.

En temps, on considère le pas de temps $\Delta t > 0$ et les temps discrets $t_n = n\Delta t, n \in \mathbb{N}$. En espace, on considère le pas d'espace $\Delta x > 0$ et les points discrets $x_i = i\Delta x, i \in \{0, \dots, M+1\}$ tels que $x_0 = 0$ et $x_{M+1} = 1$. On note u_i^n une approximation de la valeur $u(t_n, x_i)$ de la fonction u évaluée au temps t_n et au point x_i et on appelle U^n le vecteur de taille M dont la i-ème composante est $u_i^n, 1 \le i \le M$.

On utilise la méthode des différences finies pour discrétiser la dérivée en espace.

- 1. Calculer la solution au temps T=0.2 en utilisant la méthode d'Euler explicite en temps avec $\Delta x = 0.1$ et $\Delta t = 0.002$, puis $\Delta t = 0.01$. Que remarquez vous?
 - 2. Même chose pour la méthode d'Euler implicite en temps. Que remarquez vous?
 - 3. Tracer l'évolution au cours du temps de la solution ainsi trouvée.