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Equivalence between the spectral and the finite elements matrices
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Abstract

In this paper, we prove the spectral equivalence of the mass matrix for a Legendre–Gauss–Lobatto method with the
mass matrix of finite elements method; we also prove analogous results on rigidity matrices. For this purpose, we establish
some asymptotic formulae for Legendre polynomials and for the roots of their derivatives.
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1. Introduction

A well-known preconditioner for spectral methods uses
finite differences or low degree finite elements on the
nodes of the spectral method. This is a very efficient
process, which has been validated numerically by Orszag
[1], Deville and Mund [2], Canuto and Quarteroni [3] and
others . . . but for which the theory was lacking.

In this paper, we first show the spectral equivalence
of the rigidity matrix KS for a spectral Legendre–Gauss–
Lobatto method on the interval [−1,1] with Dirichlet con-
ditions with the rigidity matrix KF of P1 finite elements
method. In a second part, we prove the analogous equiva-
lence between the mass matrix MS for the spectral method
and the mass matrix MF for the finite elements method.
We finally establish that the norm of M−1

F MS considered as
an operator from the discrete Sobolev space H

1
N to itself is

bounded from below and from above independently on N .
All these results can be generalised to a square with Dirich-
let conditions with the tensored matrices 1⊗ K + K ⊗1 and
1⊗ M + M ⊗1.

2. Definitions and expressions of the mass and rigidity
matrices

Denote by L N the Legendre polynomial of degree N and
by −1 = ξ0 < ξ1 < · · · < ξN = 1 the roots of (1 − X2)L ′

N .
Proposition I.4.5 of Bernardi and Maday [4] gives us the
existence of non-negative numbers ρk , 0 ≤ k ≤ N such that
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for all polynomials � of degree at most equal to 2N −1,
1∫

−1

�(x)dx =
N∑

k=0

�(ξk)ρk .

Bernardi and Maday [4] establish an exact formula for ρk

which is

ρk = 2

N(N +1)L2
N (ξk)

, 0 ≤ k ≤ N . (1)

The collocation method on the knots ξk is defined by the
data of a basis, the Lagrange basis built on those knots
and denoted by lk for 0 ≤ k ≤ N , and the data of an inner
product defined by

(u,v)N =
N∑

k=0

u(ξk )v(ξk)ρk .

Thus, the coefficients of the mass matrix MS for the spec-
tral method are given by

(MS)i, j = (li , lj )N = δi, j ρj , 1 ≤ i , j ≤ N −1

and those of the rigidity matrix KS by

(KS)i, j = (l ′
i , l

′
j )N =

N∑
k=0

ρkl ′
i (ξk)l ′

j (ξk).

Let us now define the matrices for the finite elements
method. We denote by �k , 1 ≤ k ≤ N −1 the hat functions
centred on the knots ξk which span the space of P1 finite
elements. The coefficients of the mass matrix MF are
obtained by mass lumping, i.e. by approaching the integral
of �i�j for 1 ≤ i , j ≤ N −1 using the trapezoid rule. Thus,
MF is diagonal and

(MF )i,i = ξi+1 − ξi−1

2
, 1 ≤ i ≤ N −1.

The rigidity matrix KF is tridiagonal and its coefficient
(KF )i, j is the integral of �′

i�
′
j .
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3. Equivalence between the rigidity matrices

To prove the spectral equivalence between the rigidity
matrices, we use some operators defined as follows: αS

N

maps a vector r of R
N−1 to the polynomial which in-

terpolates the values rk at the knots ξk , 1 ≤ k ≤ N − 1;
conversely, βN collocates, i.e. if p is continuous on [−1,1]
with p(−1) = p(1) = 0, βN p is the vector of values p(ξk),
1 ≤ k ≤ N − 1; αF

N is the operator analogous to αS
N for

the finite elements method, i.e. αF
Nr is the piecewise affine

interpolation of rk at ξk .
To prove the spectral equivalence of KF with KS is

equivalent to prove the equivalence in H 1
0 -norm of the

operators αF
N βN and αS

N βN . This is first shown for functions
belonging to H 1

0 ∩ H 3 and the final result is obtained by
density of H 1

0 ∩ H 3 in H 1
0 .

We suppose that the converse is true and we construct a
sequence uN of H 1

0 ∩ H 3 such that

uN −→ u∞ strongly in H 2, |αS
N βN uN |1 = 1 and

|αF
N βN uN |1 −→ 0 as N −→ ∞.

We use Theorem III.1.19 of Bernardi and Maday [4]
which shows that αS

N βN is a continuous operator inde-
pendently on N and that the difference αS

N βN u − u for
u ∈ H 2 is bounded by 1/N ; we establish the analogous
result on αF

N βN and thus both sequences αS
N βN uN and

αF
N βN uN converge to u∞. Therefore, we infer that u∞ = 0

and |u∞|1 = 1.
This proves that the rigidity matrices KS and KF are

spectrally equivalent.

4. Equivalence between the mass matrices

We first prove that the mass matrices MS and MF are
spectrally equivalent. Since they are both diagonal, it is
sufficient to show that the coefficients

σk = 2ρk

ξk+1 − ξk−1
, 1 ≤ k ≤ N −1 (2)

of the diagonal of M−1
F MS are bounded from above and

below independently on N . For this purpose, we use esti-
mates on ρk with respect to ξk of Bernardi and Maday [4]
and estimates on ηk = arccosξk from Theorems 6.21.2 and
6.21.3 of Szegö [5].

The last but not least thing to prove is that M−1
F MS

is bounded from below and from above independently on
N as an operator from the discrete Sobolev space H

N
1 ,

composed of the vectors U of R
N−1 such that αF

N U ∈ H 1
0 ,

to itself. We define the norm over H
N
1 as ||U ||

H
1
N

= |αF
N U |1

and setting U0 = UN = 0, it is equal to:

‖U‖
H

1
N

=
(

N−1∑
k=0

|Uk+1 −Uk |2
ξk+1 − ξk

)1/2

.

Let us set

N ′ =
⌊

N −1

2

⌋
and

µk = 2−|ξk |− |ξk+1 |
ξk+1 − ξk

(√
σk+1 −√

σk

)2
.

We prove that a vector of H
N
1 is discrete Hölder continuous

and using the previous result on σk , it is thus sufficient to
show that

∑N ′
k=0 µk is bounded independently on N . We

recall that not only the sum index depends on N but also
the elements ξk and σk .

For this purpose, we study the expression µk for three
different areas: k bounded, i.e. k ∈ [0, K ]; k belonging to
[λN , N/2] with 0 < λ < 1/2 and finally k belonging to
[K ,λN]. The global method is the same for these three
areas: we have or establish an asymptotic formula for
L ′

N (cosθ) which gives an asymptotic formula for ηk =
arccos(ξk). Using or proving an asymptotic formula for
L N (cosθ), we calculate L N (ξk) and thanks to Eq. (1) we
obtain an asymptotic formula for ρk . We deduce a formula
for σk from Eq. (2) and therefore a formula for µk . What
differs in the three areas is the way we obtain the formulae
for L ′

N and L N .
For k ∈ [λN , N/2], we use asymptotic formulae for

L ′
N (cosθ) and L N (cosθ) given by Theorems 8.21.10 and

8.21.4 of Szegö [5]. Their remainders are uniform for
θ ∈ [ε,π/2] for all ε > 0 and since ηk is equivalent to
(π/4+ kπ)/(N +3/2), we can only use those formulae for
k ∈ [λN , N/2]. We deduce the asymptotic formula for ξk

from the formula of L ′
N (cosθ) using a convenient version

of the implicit functions theorem given by Lemma 7.1. of
De Mottoni and Schatzman [6].

For k ∈ [0, K ], we use Theorems 8.1.1 and 8.1.2 of
Szegö [5] which say that uniformly on a bounded interval,
L N (cos(z/N)) is equivalent to J0(z) and L ′

N (cos(z/N)) to
2N J1(z)/z where J0 and J1 are Jacobi functions. Therefore,
ηk is equivalent to zk/N where zk is the kth positive zero
of J1 and the implicit functions theorem of [6] gives us an
asymptotic formula for zk .

At last, for k ∈ [K ,λN], we use integral representa-
tion of L N (cosθ) and L ′

N (cosθ) given by formula 4.10.3
of Szegö [5]. To calculate an asymptotic for L N (cosθ) and
L ′

N (cosθ), we generalise the method of stationary phase ex-
plained in chapter 7.7 of Hörmander [7] and the convenient
variable for the asymptotic is not 1/N but N sin(z/N)−1.
The same implicit functions theorem of [6] enables us to
find a formula for ξk and therefore for µk to complete the
proof.

5. Conclusions

On the one hand, our proof validates practical knowl-
edge which has been available and widely used since 1980.

GALAYAA B.V./MIT2_221: pp. 2019-2188



2112 M. Ribot, M. Schatzman / Second MIT Conference on Computational Fluid and Solid Mechanics

It is interesting to notice that formulae and estimates which
are available in the literature of orthogonal polynomials,
such as Szegö [5], can be extended for the needs of numeri-
cal analysis. On the other hand, the results of this article are
an essential step for the analysis of preconditioned Runge–
Kutta methods used for the integration of diffusion equa-
tions. Besides, in a paper in preparation, we have already
proved some results of unconditional stability, convergence
and order for the Richardson extrapolation of the residual
smoothing scheme. This is a scheme introduced by Aver-
buch et al. [8] to integrate numerically parabolic equations
with a self-adjoint operator A and a preconditioner B of A;
the scheme is time-explicit in A and time-implicit in B, and
one of our examples is to obtain A from a spectral Gauss–
Lobatto–Legendre method and B from the finite elements
method. Therefore, this article enables us to estimate the
consistency error of the residual smoothing scheme in that
case and to conclude the complete study of the properties
of that scheme.
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