ASYMPTOTICS OF SOME ULTRA-SPHERICAL POLYNOMIALS
AND THEIR EXTREMA

MAGALI RIBOT

ABSTRACT. Motivated by questions on the preconditioning of spectral meth-
ods, and independently of the extensive literature on the approximation of ze-
roes of orthogonal polynomials, either by the Sturm method, or by the descent
method, we develop a stationary phase-like technique for calculating asymp-
totics of Legendre polynomials. The difference with the classical stationary
phase method is that the phase is a nonlinear function of the large parameter
and the integration variable, instead of being a product of the large parameter
by a function of the integration variable. We then use an implicit functions
theorem for approximating the zeroes of the derivatives of Legendre polyno-
mials. This result is used for proving order and consistency of the residual
smoothing scheme [1], [19].

1. INTRODUCTION

When we discretize implicitly in time a partial differential equation, we have to
solve a linear system, where the matrix depends on the method used for the spatial
discretization. Spectral methods are classical methods, but they produce matrices,
which are not sparse and difficult to invert; therefore, their numerical efficiency
depends on the introduction of appropriate preconditioners. A preconditioner P
of a matrix M is a matrix, which can be more easily inverted than M and such
that the condition number of P~'M, that is to say the product of the norm of the
matrix P~'M by the norm of its inverse M ! P, is as close to 1 as possible.

In the case of a Laplace — or more generally an elliptic — operator, finite differ-
ences or finite elements methods have been proposed for preconditioning spectral
methods in Orszag [13], Haldenwang et al. [11] , Canuto and Quarteroni [3] or
Deville and Mund [7, 8].

In [18], Quarteroni and Zampieri investigate the finite element preconditioning
of Legendre spectral methods for various boundary conditions; in this article, they
show numerical evidence of the spectral equivalence between the Legendre spectral
matrix and the finite element matrix. They also apply the preconditioner they pro-
pose to domain decomposition methods in the framework of the elasticity problem.

Let us briefly recall that in the one-dimensional situation of a Laplace operator,
the coeflicients of the mass matrix are defined by the scalar product of the elements
of the basis, whereas the coefficients of the stiffness matrix are given by the scalar
product of the derivatives of the elements of the basis.

Denote by Kg the stiffness matrix associated to a spectral Legendre—Gauss—
Lobatto method for —d?/dxz? with Dirichlet boundary conditions, and by Kr the
stiffness matrix associated to the P; finite elements method on the nodes of this
spectral method.

Let Mg be the mass matrix of the spectral method and let Mg be the mass-
lumped matrix of the P; finite elements method constructed on the nodes of the
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spectral method. We define precisely all these matrices in [19]. We only need
here the coeflicients of the diagonal matrix M, Mg, which are given later in for-
mula (1.6).

Recent results of Parter [15] give the following bounds:

1 1
(1.1) iSRe(KFMSMF U,U)§|(KFM5MF U,U)| <c
C (KsU,U) (KsU,U)

Here (, ) denotes the canonical Hermitian scalar product. These results are based
on [14], which itself builds on Gatteschi’s results [9]. When Mp is not mass-lumped,
Parter [16] proves an analogous result to estimates (1.1).

The main result of [19] is the spectral equivalence between

Mé/2M;1/2KFM;1/2Mé/2

and K. As a consequence of a result of Parter and Rothman [17], which says that
Kr and Kg are equivalent, it suffices to prove the spectral equivalence between Kp
and

MéﬂM;l/?KFM;l/?Mé/z.

This question is motivated by the analysis of the residual smoothing scheme
(see [1] and [19]), which allows for fast time integration of the spectral approxima-
tion of parabolic equation.

It turns out that when I started working on this question, I was not aware of
Parter’s results, and I did not consult the recent literature on orthogonal poly-
nomials; instead of using a Sturm method or a descent method, as is done by
most authors in this field, I took the classical integral representation formula for
ultra-spherical polynomials (4.10.3) from Szegé [20], and I applied to this formula
a stationary phase strategy, in a region where the classical expansions cannot be
applied; this method gives an expansion at all orders, with estimates for the error
bound. Let us point out that this is not a classical stationary phase method, since
the exponential term is a non linear function of the large parameter and of the
integration variable.

Though the present result on preconditioning can be obtained with Parter’s
method, I feel that the treatment presented here of the asymptotics is novel and
more general. Indeed, the detailed calculations given here for derivatives of Le-
gendre polynomials could possibly be generalized to other classes of orthogonal
polynomials, such as derivatives of Chebyshev polynomials or more generally to all
ultra-spherical polynomials.

Let us describe why we need precise asymptotics of the zeroes of the derivatives of
Legendre polynomials to prove the equivalence between M é/ M " 12K rMy 20 é/ 2
and Kp. Let us also define precisely our notations.

We denote by Py the space of polynomial functions of degree N defined over
[-1,1]. Let us denote by Ly the Legendre polynomial of degree N and let —1 =
fo <& <o <E&v—1 <&y =1 be the roots of (1 — X?2)L’y; they are the nodes of
the spectral method. Let pi, 0 < k < N be the weights of the quadrature formula
associated to the nodes &; since this is a Gauss-Lobatto formula, we shall have

1 N
(1.2) Vo € Pon_1, / O(x)dx = Z‘I’(ﬁk)pk;

-1 k=0

the weights pj are strictly positive.
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Bernardi and Maday [2] give explicit expressions of the py’s:
2
N(N +1)’
2

(1.3) pk:N(N_’_l)L?V(fk),lngN—l.

posz:

We define ni by
(1.4) M = Arccos(&g).
Since we have
1= <& < - <éno1 <énv =1,
we infer that
O=nn <nn-1<--<m<n=m.
Remark 1.1. Since Ly is even (resp. odd) when N is even (resp. odd), we see
that
(1.5) En—gp =&k, for1<k<N-1
The matrices Mg and My are diagonal; we define the diagonal elements of
MglMs as:
2px
Ert1 — k-1
We make the convention that og = oy = 0.

(1.6) or = forl<k<N-1.

Remark 1.2. It has been proved in Lemma 3.1. of [17] and in Lemma 2.1. of [4]
that oy, is bounded independently of k and N. Precise estimates of o are available
in Parter’s Theorem 3.1. of [14]. This result is of great importance since the
quantities oy, appear in several problems related with spectral methods [5, 4].

Define the discrete H' norm by

N1 e\ 2
||U||H}V — (U*KFU)1/2 _ (Z |Uk+1 Uk' > :

= Chr1 — &k

the equivalence between Ml/QMgl/QKFMgl/QMé/Q and K is equivalent to the
existence of a constant C' > 0 independent of N such that

_ —1/2 1/2
CTHU Ny, < 1M5" 2 MU, < ClU s, -

Here, as is classical, we had to extend the definition of U by letting Uy = Un = 0.

So, let us consider the square of the HY norm of M, 1/2 1/ U given by

Nf okt — VaRUs|”

= Erv1 — &k

We first decompose /011 U1 — /or Uy as
\/Ok+1 ++/0 VOk+1 — Ok
(1.7) Vo VI TNVIR Uy — Uk) + R E Upsr + Ui).

The contribution of the first term of (1.7) in the estimate of the discrete H' norm

is
_ 1/2
NXf (Ug41 — Ur)? ‘ Uk+1
Skt — &k r

k=0

' Oht1
X

and we use Remark 1.2 to conclude.
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The main result of [19] consists in proving that the contribution of the second
term of (1.7) can also be estimated in terms of the discrete H' norm of U. This
result can also be deduced from Parter’s article [15]. In a first step, we observe that
discrete Holder continuity estimates give

U1+ Uil® < (2= 1&k] = (€1 1U 1y -

Thus, we are reduced to estimate

N-1

(%) Y 2ol el

= Sk — &k
But oy, is bounded from above and from below independently of k, see Remark 1.2;

we define

2
_ 2= 16kl = 1€kt

Err1 — &k

1 1

Ok+1 Ok

(1.9)

which is algebraically simpler but analytically equivalent to the expression appear-
ing in (1.8); according to Lemma 5.7., page 106 of [19], it suffices to show

N-1
YN = Z 1y is bounded independently of N.
k=0

Henceforth, we make the convention 1/c9 = 1/on = 0.
We deduce from symmetry (1.5), formulas (1.3), (1.6) and (1.9) that

UN—k = ptp—1, 1<k<N.

N -1
Denote by || the largest integer at most equal to the real r. Define N = {TJ ;

it suffices to estimate
N/
(1.10) S =3
k=0

since Xy < 23;.

Therefore from the definitions (1.9), (1.6) and (1.3) of ug, o and px, we have to
provide asymptotic expansions for Ly and for the zeroes & of L’y; we start from
classical integral or asymptotic formulas for Jacobi polynomials that can be found
in the literature.

For the reader’s convenience, it is advisable to consult the fourth edition of
Szegd’s book [20], which is the most complete.

We partition the interval {0,---, N’} into three subintervals:

{0, 7K}7
{K+1,---,|AN] —1} and
{LANJ, ,N/},

where K is bounded and will be chosen later, and A belongs to the open interval
(0,1/2).

Let us begin with the leftmost region 0 < k < K, where, since K is kept finite,
it suffices to find the limit of pg for N tending to infinity. Asymptotics for the
Legendre polynomials and their derivatives in this region are available as follows:
if NV tends to infinity and z is bounded by 7K, then

Ly (cos %) ~ Jo(z)
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where Jy is the classical Bessel function; an analogous statement holds for L'y
(formula (8.1.1) of Szegd [20]). If z; denotes the k-th positive zero of the Bessel
function Ji, we find for k£ > 1 [19] :

o1 + 20

lim pg = 5

2
N —+o00 64(2134_1 — Zk) |

(z 1 = 2zi-1)J8 (1) = (2y2 — 20)JG (2rs) |

The estimate needed for Theorem 5.8., page 108 of [19] is a direct consequence of
the above statement. We do not treat the region 0 < k < K in this article, since
we do not need new asymptotics.

Another result from Szegd’s book [20], formula (8.21.14), is: if A belongs to
(0,1/2) and AN < z < 7(1 — A)N, we have

P](Vl/2) (cos(z/N)) = Ly (cos i)

N
B p] 1x3x(2v—1)
(1.11) - 2“N11/2;)“’“’1/2 (2N —1)(2N —3)---(2N —2v + 1)
cos((N—v+1/2)z/N - (v+1/2)r/2 /2
X ( @sin(z/N)) 72 )+O(N 2)

where wy,1/7 is an explicitly known number and the remainder is uniform over the
interval [TAN,7(1 — A)N]. We also have analogous uniform asymptotics for L'y,
L%, and L; therefore, in the rightmost region |[AN| < k < N’ and thanks to a
quantitative implicit function theorem, we can find an expansion in terms of k£ and
N of the zero ny, of § — L'\ (cos@) which lies in a neighborhood of size O(N~2)
about

n/4d+kr (N—k)m+n/4
N+1/2 N+1/2 7

(1.12) ok =T —

this result will be proved here as Theorem 2.1 and will lead to an estimate of the
quantities o, |[AN] < k < N’ in Corollary 2.4.

There remains to treat the intermediate region, i.e. z between 7K and wAN; it
corresponds to K < k < |AN]. This case is not treated in the literature, and we
had to devise the estimates and their proof, using the stationary phase method.

Denote by P](\,)‘) the ultra-spherical polynomial of degree N over the interval

[-1, 1], i.e. the orthogonal polynomial of degree N relatively to the weight (1 —
Z2)A-1/2,

Remark 1.3. The Legendre polynomial Ly of degree N is precisely equal to P](Vl/z),

and as a consequence of (4.7.14) from [20], Ly is equal to P](V?’ﬁ) and LY is equal
to Pz(v5122) up to multiplicative constants.

In order to find asymptotics in the intermediate region, we write an integral
representation for P](VA):

21—2A (N 2) I N
P](\,A)(x) = Tz ( ]\_;—' ) /0 (x +1iv1— 22 cos <p) sin? 1 o dop.
We apply the principle of the stationary phase method as described in Lemma
7.7.3 of Hérmander’s book [12], but we cannot apply directly the lemma, since the
phase is not equal to a large parameter multiplied by a real function of all the
other variables: it is a complex function of the large parameter N and all the other
variables. We set

(1.13) XN = —iNsin(z/N)e /N
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and, for A such that 2X —1 is an even integer, we eventually find polynomials @, x
such that

PV (cos(z/N))

21-2X P(N + 2) e S o
— 2ﬁF(A)2 ( NI )Re ie” Z X T PQuA(xw/N)
’ v=A—1/2

< C(K, A 4N (N—l + Z—l)€72>\+1 ;

here X;V(VH/z) is the principal determination and C(K, A, ¢, ) depends only on

its arguments (Theorem 3.14). Finally, we use once again a quantitative implicit
function theorem to obtain an asymptotic expansion of the zero of Ly which lies in a
neighborhood of size O(1/N?) about (N —k+1/4)/(N+1/2), for K < k < [AN|
(Corollary 3.17); this asymptotic yields an expansion for o, K < k < [AN] at
Corollary 3.19. Hence we obtain in [19] an estimate on the sum of the u’s for
K <k <|AN].

The article is organized as follows: in section 2, we compute the asymptotics
of the zeroes in the rightmost region thanks to an implicit functions theorem and
we expand the ratios o,. Section 3, devoted to the intermediate region, is split
into four sections: in section 3.1, we explain the proof strategy; in section 3.2, we
prove a general lemma of stationary or non stationary phase method and we apply
it in section 3.3 to obtain expansions of Legendre polynomials; we finally obtain
asymptotics of the zeroes of their derivative and of the quantities oy in section 3.4.

2. THE REGION [AN]| <k < N’

In order to obtain asymptotics for u in the index range k € {|AN],---,N'}
in [19] as explained in the introduction, we first need asymptotics for the zeroes of
pB/2) _

N = ENyr

It is more convenient to state the following theorem in an interval which is

symmetric about N/2:

Theorem 2.1. Define
w/4+ km

N+3/2°
Then for all A € (0,1/2), there exist C, C' such that for all N > 2 and for all
integer k in {|{AN],---,[(1 = A)N}, there exists a unique zero 8y of PJ(V?’/Q)(COS 6)
in a ball of radius C'/N? about 6y 1.; moreover the following estimate holds

3 _ 9
8N2tanfy,, 8N3tanfyy

Oo.k =

(2.1) Or — b0 + < CN~—%,
Proof. The idea of the proof is to use the quantitative implicit function theorem
given in [6]; let us state it here for the reader’s convenience:

Lemma 2.2. Let X and Z be Banach spaces, and let f be a C? function from a
neighborhood U of xo € X to Z. Let zg = f(xg). Assume that A = Df(xo) has a
bounded inverse A=1. Assume that the ball of radius p and of center xg is included
i U. Let
M = sup A1 D2f(zq +€)]|.
1€1<p
There exist constants a and K given by
3ap

a =min(1, (2pM)7Y), K= e
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such that if |A= 29| < K, the equation
flz)=0
possesses a unique solution in the ball {|x — xo| < ap}; moreover, this solution

satisfies
|z — 0| < 2|A7 20| and |2 — 2o + A 20| < 2M A 2)2.

As P](V3 /) has the same parity as IV, the set of zeroes of P](\,3 /%) is invariant by the
symmetry x — —x, and therefore, at the index level, 6y, is a zero of P](\,3 /2) (cos @) iff

On_p is a zero of PJ(V?’/Q)(COS ), and moreover, On_j = m — 0. Therefore, it suffices
to prove the lemma for AN < k < N’.
The definition of the binomial coefficients is extended for all z € C and all integer

>0 as
v\ _ az—1)---(x—-1+1)
() ===
this expression vanishes if x is set equal to 0 or if [ is a negative integer. We use
the notation

(2.2)

C/N4A-1\ _ T(N+N
“’“_( N ) (N + )L\

We exploit the asymptotics of P](VA) given as (8.21.14) of [20] for A = 3/2, 5/2
and 7/2, since we need an estimate of 97 f/967 for j = 0,1,2, in order to apply
Lemma 2.2. We write the three term formula

2w
(3/2) _ N,3/2
‘PN (COS 9) = W{COS((N + 3/2)9 — 371'/4)
2.3) 3 cos((N +1/2)0 — 5m/4)
' "~ 22N +1) 2sin 0
1 N —1/2)0 —7n/4
_ 5 COS(( / ) 7T/ ) + O(N—5/2)
8(2N +1)(2N —1) (2sin9)?
which is uniform in 6 in [A/2,7/2] and in N; it is then convenient to define
2 si 3/2
(2.4) 70, Ny = ZIOT p2) s )
2wN3/2

since we seek the unique root 6, of f which belongs to a small neighborhood of g ,
we will have to calculate f (0o, N), (3f/90)(0ok, N) and to estimate 62 f/96* for
6 in (0o — rN~2, 01+ rN2]; we will choose r later. We differentiate (2.4) twice,
we use formula (4.7.14) from Szegé [20], viz.

d i A
P (@) = 2P0 (@)

and we find

af _ 3 f(aaN) 3\/5 - 5/2 (5/2)
(2.5) 20 (0,N) = 5 tand onas sin®/“0 Py’ (cos ),
and
82f 3 1 12v/2 . 3/2, (5/2)
) W(G’N) =1 (m - 2) f(O,N) — v cos f sin®/ 6 Py (cos )
+ M sin™/26 P](VYQZ) (cos@).

WN,3/2
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We first calculate f(0o %, N) with the help of formula (2.3) and we find
f(Ook, N) =

(2.7) 3 5 )
(—1)’@{4(2N +1)tanfyr  16(2N +1)(2N — 1) tan by, } +O(N73).

We can also evaluate f(0, N) for |§ — 6y x| < rN~2: by Taylor expansion,
lcos((N +3/2)0 — m/4)| < r(N +3/2)N2,

and therefore

(2.8) 0 — 0| <TNT2 = [f(0)] = (r + 1)O(N ),

the error term being uniform for k between |AN | and N'.

We calculate now 0f /00 at (0o, N): first we substitute the value found at (2.7)
into the first term on the right hand side of (2.5); as 6 1 is bounded away from 0
and 7, this first term is an O(N’l)7 uniformly for AN < k < N’. For the second

term of the right hand side of (2.5), we need a two-term expansion of Pz(v5 / 2), namely

o) Pz(v5/2) (cosf) = (22:;\7% (cos((N +5/2)0 — 57 /4)
' 15 cos((N +3/2)0 — Trr/4) 1
TN+ 3/2) Sind ) +ON),

The error term is uniform on the interval [A/2,7/2].
We replace N by N — 1 in (2.9) and we observe that

6v2(sin0)* 2wy 152 3WN-15/2
(28in0)5 2wy 30 2 wna/e

(2.10) =N,

according to the definition (2.2) of wy . Furthermore,
cos((N +3/2)0 1 — 5m/4) = (=1)F!
and

cos((N +1/2)8g1, — T /4) = (—1)*sin(fo 1)
Thus we find the asymptotic

of

(2.11) A(k,N) = 55

(Bo.k, N) = (=1)"(N +15/8) + O(N ).
Now, we choose 7:
4
r=3 sup{N?|f(0o.x, N)/A(k,N)| : N > 1,AN < k < N'};

our estimates show that indeed r is bounded.

There remains to give an estimate of 92 f /902 over the interval [6o,x—TN -2, 0o+
rN~2]. The first term in the right hand side of (2.6) is an O(1/N), thanks to (2.8);
the second term in the right hand side of (2.6) is an O(N) in virtue of (2.10) and
the expansion (2.9); the last term in the right hand side of (2.6) is estimated with

the help of the one-term expansion of PJ(\,7 /2 given by

2wy 72
(2sin)7/2

but wy_27/2/wn,3/2 = O(N?) and by a Taylor expansion, cos((N + 3/2)0 — 7r/4)
is an O(r/N) on the relevant interval. Therefore, we obtain the estimate

2
S 6. =+ 1O,

P’ (cos ) = cos((N +17/2)0 — Trr/4) + O(N*/?);

(2.12) 10— 00| < N2 = ‘
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and once again, the estimate is uniform with respect to k such that AN < k < N/,
to r, and to V.

We have then M = O(r + 1) = O(1) and for all large enough N, 2rM N2 is
strictly less than 1, so that we may take a = 1 in the statement of Lemma 2.2. But
then K is equal to 3r/4N?2, and by definition of r, |f(0ox, N)/A(k,N)| < K, and
the conclusion of the lemma applies. Relation (2.1) is simply the translation to our
particular problem of the conclusion of Lemma 2.2. (I

Remark 2.3. We can compare this result with expansion (2.6a) of Parter’s arti-
cle [14]; using Remark 1.3, we expand formula (2.1) with N — 1 instead of N and
we find ezactly formula (2.6a) of [14]. The main interest of our formula is that the
remainder is independent of k and that 0y is expanded to the next order.

We can now prove the following corollary, which gives an estimate of the quan-
tities og.

Corollary 2.4. The quantities oy, |AN]| < k < N’ defined at equation (1.6) have
the following expansion :

2
0% =1+ gag + O(1/N?),

where the error term is uniform in N and in 'k € {{AN],--- ,N'}.
Proof. We consider now the zero 7y, of 6 — L’\(cos ). Let us define

(N—k+1/4)m

Nk =" 179
N+1/2
using Remark 1.3 and equation (2.1) of Theorem 2.1, we have the asymptotic
3 1

2.13 —op— —— (11— =)+ ONY,
( ) e =10k =~ SN2 tan 7o,k ( N) +0( )

the error term being uniform in N and in k € {|AN],--- ,N'}.
Let us now compute an expansion of Ly (cosny), in order to calculate p; defined
at equation (1.3).

The three term asymptotic expansion of Ly = P](\,1 /2) given at equation (1.11) is

2w
P/ (cos ) = \/%(Tl + Ty +Ts) + O(N~7/2),
where Ty = cos((N +1/2)0 — m/4),
- 1 cos((N —1/2)0 — 3m/4)
=N o) 2 sin 0 and
T — 9 cos((N —3/2)0 — 5m/4)
T 82N —1)(2N - 3) (2sin6)?

In this subsection, we write for simplicity

t = tan(nok)-

We infer from the asymptotic (2.13) the following asymptotics for each of the terms
T, Ts and T3 when 6 = ny:

- 9 -
Ty = (—1)NF (1 — W) +O(N7?),

1 1 3
T = (—1 N—k-1_~ 1 - N73
2= (=1 SN( +2N+8Nt2)+0( )

9 (1
N—-k—1 -3
Ty = (~1) e (F? - 1) +O(N73).
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Therefore, the sum T + 15 + T3 is

1 1 3
214) T4+ To+Ty=(-D)""(1- = - O(N~—3).
(2.14) 1+ T+ T =(-1) < SN T TosNe 1&Wﬂ>+ V)
We also need an expansion for 1/4/sinn: from the Taylor expansion
3
(215) Sinr]k = Sin?’]()’k <1 - W + O(NB)) y
we infer
1 1 3
2.16 — = 1+ +O(N73) ).
( ) V/sinmy \/sin 10,k ( 16 N2¢2 ( ))
Finally, we get an expansion of wy 1,2 with the help of Stirling’s formula:
1 1 1
2.1 =—\1-—=+4+ ——= N3 ).
(2.17) WN1/2 = ( v T 1z O ))

We perform the product of (2.14), (2.16) and (2.17), and we find

V2 1 1
2.18 Ly (cos = ()N 1——+—+ON_3>.
Observe that the error term in (2.18) is uniform in N and in k € {|AN],---,N'}.

In order to calculate oy, we need an asymptotic of £x41 —€x—1: we write a Taylor
expansion of 11 = cosnr+1 at g, and we obtain

&1 — &1 =

. 1
sin g (Mk—1 — Me+1) — 5((77k+1 — k) = (Me—1 — Mk)?) cos
1

+ E((ﬂkﬂ —mk)® = (Me—1 — me)?) sinm + O(N ™).

Another Taylor expansion gives ng+1 — Ng:

3(1+1/¢ _
Mex1 — Nk = (Mo,kx1 — 7o,k (1 + %) +O(N™Y).

Therefore, we obtain with the help of (2.15):

Shr1 — k-1 . T 3 w2 )
2.1 _— = . 1 - N .
(2.19) 5 51n770,kN+1/2 +8N2 Gz + O( )
We put together (2.18) and (2.19) and we obtain the expansion of oy, given by
2
T 3

3. THE REGION K < k < [AN|

Let us find the asymptotics of the zeroes of the derivatives of Legendre polyno-
mials in the intermediate region, which is the most difficult to handle.

The goal of this section is to infer Corollary 3.17 from a long chain of results; we
state it here, for the reader to understand our final aim; it will be stated again at
its natural place.

Corollary 3.17. Define
(N —k+1/4)
N+1/2
Then for all K > 0 and for all A € (0,1/2), there exist C, C' such that for all
N > 2 and for all integer k in {K,--- ,|AN]}, there exists a unique zero 0 of

Oox =
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Ly (cos®) in a ball of radius C'/N? about 6y k; moreover the following estimate
holds

13 n 49
8N2tanfy ),  12N3tanbp k

(3.71) Or — 0ok — <C((NT'+KTHY.

For that purpose, we first calculate expansions of Legendre polynomials and we
begin by explaining the strategy of the proof.

3.1. The strategy of the proof. In order to calculate formulas for L (cos ) and
for Ly (cos®) and their derivatives, we will use the integral representation given by
formula (4.10.3) of Szegd [20]: define

21722 (N +2))
T2 N
the following formula holds for A > 0 and all z € [—1,1]:

m N
(3.2) P](\,)‘) () =Z(\,N) / (x +iv1—22cos gp) sin?* ! p dep.
0

In fact, this formula is also true for all z € C, provided that we choose the appro-
priate determination of the square root appearing in the integrand.
We define the two following functions:

In(z,9) = (cos(z/N) + isin(z/N) cos o)
and gy such that fy = expgn, i.e.

gn(z,¢) = Nln(cos(z/N) + isin(z/N) cos ¢)

(3.1) Z(\N) =

where we have taken the principal determination of the logarithm.
We infer from (3.2) the expression of the ultra-spherical polynomials at z =
cos(z/N):

P (cos(z/N)) = Z(X, N)Re ( / i Fn(z,0)sin?* 1o dnp)
(3.3) o
=Z(A, N)Re (/0 exp gn (2, ) sin?* L o dgo)

In our calculations, we will often need the following useful remark:

Remark 3.1. The function gy is an even function of ¢ and therefore its derivatives
of odd order will vanish at ¢ = 0.

We shall seek an asymptotic formula for foﬂ fn(z,¢)sin®* "1y dp.
Let d belong to [0, 7/4[ and 9 be a cut-off function having the following properties
¥ is even, m-periodic, of class C°° with values in [0, 1],

3.4
(34) 1 is equal to 1 over [0, d] and to 0 over [26, 7/2].

The function ¥ will enable us to localize difficulties.
Therefore, we can write

/ u(z,0)sin?? o dyp =/ b() (2, 0) sin L o dip
(3.5) 0 0

+ / (1= () i (2 0) sin? ! o dip.
0

We will apply a stationary phase strategy, meaning that the second integral in the
right hand side of (3.5) is small: this statement is made precise at Corollary 3.6.
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The main effort is devoted to the estimate of

/o V(@) fn(z,0)sin®* " pdp :/0 () exp gn (2, ) sin? L o dp
(3.6) /2
= 2Re </ V() exp gn (2, ) sin® 71 @d@)
0

by the stationary phase method.
We use a homotopy technique as in Hérmander’s proof. Let ¢y be the quadratic
part of Taylor’s expansion of gn(z,-) at 0, i.e.

2 32
g
av(2,9) = gn(2,0) + -7 (,0)
2 Oy
(3.7) No?
=iy ¥ sin(z/N)e /N,
and define
(3-8) Rn(z,0) = gn(2,9) — an (2, 9).
The extensions of gy and fy as functions over R x [0, 7] x [0, 1] are given by
(3.9) gn (2, 9,8) = sgn(2,0) + (1 = s)an (2, ¢) = an (2, ¢) + sBn (2, )
and
(310) fN(ngoa S) :eXPgN(Za% 5)'

The double of the real part of the integral

/2
(3.11) Ina(z,9) =/0 P(p) exp gn (2, ¢, 5) sin®* ! pdp

is equal to (3.6) for s = 1 and for s = 0, it can be expanded simply. Therefore, in
order to estimate Zy (2, 1), we use a Taylor expansion at s = 0, viz.

210y

k
sl 0| < L

T ok (z,s)‘.

(3.12) Ina(z,1)—

< max
prd 0<s<1
We produce explicit approximations of the terms (0'Zy_,/9s')(z,0) and the formula
for Zn x(z, 1) will be a sum of these explicit approximations plus a sum of remainders
which have to be estimated. There are two kinds of remainders : one comes from
the difference between (0'Zy x/9s')(z,0) and its approximation, and another one
comes from the right hand side of (3.12).

The derivative 0'Zx »/0s' is given by

O'In
Ost
In order to obtain the explicit approximations of (0'Zy,/9s')(z,0) mentioned

above, we first approximate Ry by its Taylor expansion. Let ry be the Taylor
expansion of Ry (z,-) with respect to ¢ of order 2(k + 1) at 0:

(3.13)

/2
(2,8) = /0 B(0) Rl (2, 0) exp gx (2, 0, 8) s g .

k+1

2y 827
¥ gN
3.14 rn(ze) =Y
( ) N( 90) = (2,}/)1 8()027

observe here that we do not have odd powers of ¢, since Ry is even. Corollary 3.11
gives an estimate of

(2,0);

/2
(3.15) / B(0) (Riy(2,0) — s (2. 9)) exp an (2, 0) sin 1 od.
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Then, the usable explicit approximations will be calculated using Lemma 7.7.3 of
Hormander [12] for the following integrals :

/2
/0 Do)l (2, @) expgn (2 o, 5) sin? 1 o d,

which is done at Corollary 3.13.

Finally, we estimate O¥Zy y/ds*, which is the main part of the right hand side
of equation (3.12), at Corollary 3.9.

The usable algebraic expressions of the terms which appear in asymptotics of
P](VA) are given first in general form at Theorem 3.14 for 2\ — 1 an even integer, and
explicit results for A =1/2, 3/2, 5/2 and 7/2 are given at Corollary 3.15.

3.2. A general lemma of stationary and non-stationary methods. We show
a general lemma to help proving all the estimates explained in section 3.1.
We need several preliminary technical results. First we estimate exp(gn(z, ¢, s)).

Lemma 3.2. For all N > 2, for all ¢ € [0,7], for all z € RY and for all s € [0,1],

|exp(gN(z, 2 5))' <L

Proof. It suffices to check Re gn (2, ¢, s) < 0 which is true provided that Re gn (2, )
and Regn (%, ) are less than or equal to 0.

The real part of gy is NIn (1 — sin®(2/N) sin® ¢) /2 which has the required sign.
The real part of gy is —N?sin?(z/N)/2 which is also less than or equal to 0. [

Differentiating composite functions can be done with the help of Faa di Bruno’s
formula, see for instance Lemma I1.2.8 of Hairer [10].

For m € N, let C(m) be the set of multi-indices v = (y1,72,---) € NN such that
Y1 > 2 > -+ and such that ZieN ~v; = m. Therefore ; vanishes beyond a certain
rank; we denote by () the largest integer ¢ such that «; > 1 and we observe that
I(~) < m. For instance, if we only write the non zero terms of each v, C(3) is equal
to {(3), (2,1), (1,1,1)}.

Faa di Bruno’s formula states that there exist integer constants C(vy,m) such
that

()
dm
_ M) (v3)
(3.16) S AoB = > Cly,m)AY oB)HBV :
~EC(m) Jj=1
Here, A and B are functions of one real variable. In consequence, if we take

A(x) = aF, with k € Z, we can calculate for any function B the derivatives of
BF .
qm k 1(v)
BF = C(v, (AN BF-I() B,

YEC(mM) j=1

(3.17)

Let us estimate now the derivatives of (9gxn/dp) !, which will arise later when
we will perform several integrations by part, and let us also estimate the derivatives
of gn.

Lemma 3.3. For all k € N, for all o« > 0, there exists C > 0 such that for all
N > 2, for all ¢ € (0,7 — ] and for all z € [rK,wAN], the following estimates
hold

(3.18) LAy (z,0)| < ¢ (N"t4+27h
' o0k \dgn [0p) | =GR
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and

gN
Dpk+

k+1
(3.19) ‘8

o) <05
Proof. Write

v(p) = sin e (as in numerator) and

(3.20) dn(z,¢) = (cos(z/N) + isin(z/N) cos¢) (as in denominator).

Then the first derivative of gy and its inverse are

dgn v(p)
3.21 ——(z,) = —tNsin(z/N)—F——
(3.21) S (s1) = —isinz/N) T2
and
3.22  (5p) = — .
(3:22) 9n 10557 N/ ()
Leibniz formula gives
o 1 / YR\ oAy o (1
(3.23) Dok > SEm gam \ )
Op* \ Ogn /Op Nsm (z/N) = \m/) O¢ Oy v
The successive derivatives of 1/v are computed using (3.17) for &k = —1; up to

arithmetic constants, the terms we find in (3.23) are of the form

i(v)

(3.24) R l(v)H
' Nsin(z/N) dpk—m

8@WJ

we substitute the expressions of the derivatives

ddy .
(3.25) e (z,¢) = isin(z/N)cos (¢ + jm/2), forall j > 1
and
(3.26) o' (p) =sin (¢ +nm/2)

Op™
into (3.24): for m = k, the expressions (3.24) are equal to

1)

H sin(p + v;7/2)
] 1

i(cos(z/N) + isin(z/N) cos<p) 1
Nsin(z/N) i+

which can be estimated by C/(zp"+1).
For m < k — 1, the terms (3.24) are of the form

1(7)
1 1

- k— 2)——— [[si /2
<ol (= mi/2) oy st +m/2)

which can be estimated by C/(N¢**+1), proving thus (3.18).
Similarly, we write a Leibniz formula for 0%+ gy/0¢*+!:

ak—i—lgN k k ak—my 8m 1
(3.27) W(zasﬂ) —ilNsin(z/N) mZ: (m>m(@)&,ﬁ <a> (2, ).



ASYMPTOTICS OF SOME ULTRA-SPHERICAL POLYNOMIALS AND THEIR EXTREMA 15

We use formula (3.17) with & = —1, i.e.

() E9 = T Com-D e )

8(,0 ~yeC(m)

() A
o%id
<11 8@5\](2’@);

(3.28)

j=1
up to arithmetic constants, we substitute the values (3.25) and (3.26) of the deriva-

tives of dy and v and for k > 1, Leibniz formula implies that the terms of the
sum (3.27) are of the following form

(i sin z /N ) )
(cos z/N +isinz/N cos @)+

— iNsin(z/N)sin(p + (K — m)7/2)

(3.29) i)
X H cos(p + v;m/2).
j=1

It is plain that the modulus of (3.29) is at most equal to N|sinz/N| and the
conclusion of the lemma is clear. O

The technical lemma 3.5 will be used many times in the foregoing estimates; it
depends on the preliminary lemma 3.4.

Let p € Nand b € (0, 7). Let u be a function of class CP over [1K, +00) x [0, b];
assume that there exist a real ¢ > 2p and a real [ > 0 such that the following norm

3.30 = et | ——
(3.30) lully.er = goax max  max 2 951 7
z€[r K,mAN]

is finite. We define by induction

UQZU,
(3.31) 0 Un
=2 (2 ) foran ep—1).
U1 EACITIGE or all m € {0 p—1}

We need to estimate the derivatives of the functions (3.31), since they will appear
in the integration by parts which will be performed in the stationary and non
stationary phase methods.

Lemma 3.4. Let u be a function of class CP over [nK,+00) x [0,b]; assume that
there exist ¢ > 2p and | > 0 such that ||ull, ., < +oc. Then, there exists C > 0
such that for all N > 2, for all m € {0,--- ,p}, for all g € {0,--- ,p—m}, for all
¢ € [0,b] and for all z € [nK,TAN],

91 — —1\ym—Il, c—q—2m
(332) ‘8—@qu(27§0)‘ < CHu”q—i-m.,c,l (N ! +z 1) lgo -z :
Proof. Let us prove this lemma by induction on m. We have

T ) = T2z,
agpq JSD _8<pq JSD

and thus using the hypothesis made on |Jul| we infer that

01Uy
Ol

p,c,l?

(z,so)' < lullger 2'¢°™0 < Cllullyeq (N7 4271 e

q,c,l

Assuming that estimate (3.32) is proved for m, we use definition (3.31) and Leibniz
formula:
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U i1 _§ g+ 1\ 915U, 9° 1
dpt =\ s ) 0prTs 9pt \Ogn/0p)

Using the induction hypothesis and Lemma 3.3,

8Q+175Um o° 1
W('Zv ©) 00 \ Dgn /00 (z,9)
<C Hu||q+m+1—s,c,l (Nil + Zﬁl)erlilSDc*qi?i%n
<C Hu”querLcJ (N_l + Z_l)m'i_l_l(pc_q_z(m‘f‘l),
and the proof of Lemma 3.4 is complete. 0

Here is our general lemma:

Lemma 3.5. Let k € N* and b € [0, 7). Take u in C§°([rK,+00) x [0,b]); assume
that there exist | > 0 and ¢ > 2(k + 1) such that |[ull,, ., is finite. Then there
exists C such that for all N > 2 and all z € [nK,7AN],

(3.33) max

< C N—l —1 k.
s€[0.1] < Clluflypgeg ( +277)

b
/ u(z, @) expgn(z, v, s) dp
0

Proof. Thanks to several integrations by part and using definition (3.31), we can
write the integral appearing in the left hand side of (3.33) as

b
/ u(z, ) expgn(z,p,s)dp =
0

b

k+l—1 m
(3.34) Z [(_1) Um(z,sﬂ)expgzv(z,ép,s)]

m=0 891\//8(,0 0

b
+ (—1)FH / Uk+1(2, ¢) exp gn (2, ¢, 5) dp.
0

Since u is equal to 0 in a neighborhood of ¢ = b, for all m € {0,--- k. +1 — 1}, for
all z in [7K,7AN], Up(z,b) vanishes and thus all the integrated terms at ¢ = b
disappear:

b k+i—1 U
= _1ym_—__m
| u oo oo e 3 () g 2O expan (20,9

(3.35) b
+(—1)k”/ Uk+1(2, ¢) exp gn (2, ¢, 5) dep.
0

Thanks to Lemmas 3.3 and 3.4, we can estimate all these terms.
Lemma 3.3 with £ = 0 and Lemma 3.4 with ¢ = 0 give for m in {0, --- ,k+1—1},
in the neighborhood of ¢ = 0,
U’m.

i~
591\7/580( ©)

where O(1) is bounded independently of ¢ € [0,b], z € [t K,7AN], N > 2 and of

finite [ and m. Since ¢ > 2(k +1) > 2m + 1, we obtain [U,,/(dgn/d¢)](z,0) = 0.

Moreover, exp gn(%#,0, s) = exp(iz) and thus equation (3.35) becomes

_ O(l)(N_l + z—l)m—l+1(pc—2m—1

b
/ u(z, @) expgn(z, @, s) dp
0

b
= (—1)AH / Urii(2, ) exp gy (2 0, ) do.
0
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Thanks to Lemma 3.2 and Lemma 3.4 with m = k£ + [ and ¢ = 0, we obtain
estimate (3.33). O

3.3. Asymptotics of Legendre polynomials. Now that Lemma 3.5 is proved,
we can estimate the integrals displayed in section 3.1.

First, a straightforward corollary of Lemma 3.5 shows that the second integral
of the right hand side of (3.5) is small.

Corollary 3.6. Let ¢ satisfy conditions (3.4). For all positive integer k and for
all X > 0, there exists C' such that for all N > 2 and for all z in [K,7AN], the
following estimate holds:

(3.36) [ 0= venemantz o) W\ < O(N"' 421,
0

Proof. We use Lemma 3.5 with u(z,¢) = (1 — 9(¢))sin®* 1 and b = 7 — §/2.
The function u and its derivatives vanish in a neighborhood of ¢ = b and in the
neighborhood [, 8] of 0; if we set | = 0 and ¢ = 2k, [lull;, o, o 1s finite. We infer
from Lemma 3.5 that

/ <1—w«o))expgzv(z,go,l)sm”%odsa\
0

"3 . oA—1
/0 (1 =9(p))expgn(z, ¢, 1)sin™ " pdp

<C Hu”k,Qk,O (Ni1 + 271)k7
where C' depends only on &, which is estimate (3.36). O

In order to apply Lemma 3.5 to the remainder defined by equation (3.12), we
need to estimate the derivatives of the powers of Ry, defined at equation (3.8).

Lemma 3.7. For all k € N* and m € N, there exists C > 0 such that for all
N > 2, for all z € [wK,wAN] and for all ¢ € [0,7/2],

om Rk,

(3.37) o (z,¢)| < C2Fmin(1, p**~™).

Proof. For k=1 and m < 3, Taylor’s integral formula gives

O Rn(e0) _ 70w (60— ¢
O™ 0 Op* 7 (3—m)!

)3—m

dy',
and for m > 4,
8mRN o 8mgN
We infer immediately from these relations and the parity of Ry with respect to ¢
the estimates

|Rn(z,9)] < Cy'z,

%(z,w)‘ < Cp’z,
0’R
O™Ry

—(ZAP)‘ < Cypz for m > 3, m odd,
Op™

O™ Ry
™

(z,ap)‘ < Cz for m > 4, m even.
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Using Faa di Bruno’s formula (3.17), we obtain

339 Spree = 3 ctum (L Yo Hm LA

i
yeC(m) a(p

Let us denote by v the number of indices j € {1,---,l(7y)} such that v; = 1, by
vy the number of indices j € {1,---,l(7)} such that v; = 2; v, is the number of
indices j such that v; > 3 is odd and v, is the number of indices such that v; > 4
is even.

Thus, we have the following two relations:

(3.40) Vi + v+ Vo Ve = 1(7)
and
(3.41) m =51+ +Y(y) = V1 + 202 + 3V, + 4ve.

We infer from equation (3.38) the estimate

k lv) ll(z[) 0V R z SD < Czo‘ 4k—4l(vy)+3v1 +2v2+v,
8@7

Jj=1

where « = k — I(v) + v1 + v2 + vy + Ve, and from equation (3.40), we infer the
estimate

1Y) Ay
0" R
RN (’Y)( .0) I I 5:0%N (z,90)| < Czk 4k—4l(7)+3v1+2v2+vo

j=1
Equations (3.40) and (3.41) lead to

4k —4l(y)+ 31 +2va + v, =4k — 11 — 209 — 31, — dve > 4k —m
and the expression 4k —41(7) + 311 + 2v2 + v, is also non negative since [(7y) belongs

to {0,- -, k}; this completes the proof of estimate (3.37). O

We deduce easily an analogous lemma for the derivatives of the powers of ry,
defined at equation (3.14).

Lemma 3.8. For all k € N* and m € N, there exists C > 0 such that for all
N > 2, for all z € [wK,wAN] and for all ¢ € [0,7/2],

" koo 4k—m
(z,0)| < Cz"min(l, ¢ ).

(3.42) e

Proof. The estimates for 0™ry/0p™ are analogous to the estimates (3.38) for
OMRy /0™ and consequently the estimate for 0™rk /0™ is the same as esti-
mate (3.37) for 9™ R /0™, O

Recall that Zy  has been defined at equation (3.11). The following corollary
gives estimates of its derivatives.

Corollary 3.9. For all integer k > 1 and all A > 1/2, there exists C' such that for
all N > 2 and for all z in [nK,7AN] ,

OF T
8Sk (Z, 8)

(3.43) max

< O(N7Y 4 27hk,
s€[0,1]
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Proof. The derivatives of Zy » are given by formula (3.13) and we use Lemma 3.5
with u(z, ) = ¥(p)RE (2, ¢) sin® 7! ¢ and b = 7/2; since, in virtue of Lemma 3.7,
llwllo, ap s is finite, we obtain from Lemma 3.5

maxe |2V ol < Gl (N1 4 21,
se[0.1]| Os = 2k,4k,k
that is estimate (3.43). O

We estimate in next lemma the derivatives of the difference between RY; and r,
where 7y is defined at (3.14).

Lemma 3.10. For alll € N* and m € N, there exists C > 0 such that for all
N > 2, for all z € [nK,wAN] and for all p € [0,7/2]

87?’7.
o™
Proof. First, as in Lemma 3.7, we consider the case | = 1 and we estimate the
successive derivatives of Ry —ry. We observe that the derivative of order m of rp

vanishes for m > 2k + 3. We calculate the derivatives of Ry — rn in terms of the
derivatives of gn and using Taylor’s formula and Lemma 3.3 we find the inequalities

(3.44) (Rﬁv - rﬁv)(z, )| < C7 min(1, <p2k+4l_m).

W(z, ©)| < Cp*Hi=my for m € {0,-- -, 2k + 2},
¥
(3.45) %(z, ©)| < Cpz, for m > 2k + 3, m odd,
W(z, )| < Cz, for m > 2k + 4, m even.
¥

We factorize Ry —rl; as

Ry —rly =Ry —ry) (RY + RYrv + -+
and a Leibniz formula gives

mU S () e

v=0 g=0v=0

VPRI oPry,
97 (2, ) 90 (2, ¢)-

Let us write
0™V (Ry —w) PR 9°r¥,
B L e G b G

(3.46) T~ =

Thanks to estimate (3.45), Lemmas 3.7 and 3.8, we can estimate T3, as follows:
|T5..,] < C2'min (1, <p2k+4*m+7) min (1, @417474”7"”5) min (1, @4”76)
< Cz'min(1, p2k+at-m)

which proves estimate (3.44). O

We can now infer from Lemma 3.10 an estimate of the remainder (3.15):
Corollary 3.11. For k in N*, 1 € {0,--- ,k — 1} and X\ > 1/2, there exists C > 0
such that for all N > 2 and for all z € [t K, 7AN]

/2
/ " 50) (R (09) = 1 (e10) expav(z, )5 o

<CO(NT' 4 27hEk

(3.47)



20 MAGALI RIBOT

Proof. We set u(z,¢) = (p) (R (z,¢) — 'y (2,¢)) sin®*~ ! and b = 7/2. We
deduce from Lemma 3.10 that |[ull,,; 5,4, is finite and Lemma 3.5 yields equa-
tion (3.47). O

We state for the reader’s convenience the one-dimensional version of Lemma
7.7.3 of Hérmander [12]:

Lemma 3.12. Assume a # 0 with Im(a) > 0 and u € S, the Schwartz space over
R. Then for every p € N*, there exists C > 0 such that

zar a \~1/2 1 P/
[t () Tp<u,a>§0(m) -

= 1 82Ju
! Q2 (0).

with

(3.48)
7=0
Here, the principal determination of the fractional power is chosen.

We estimate the last remainder; the number xy is defined at equation (1.13).
Let 1j,) be the characteristic function of [a, b].

Corollary 3.13. Let k in N*, [ € {0, - — 1} and X such that 2X —1 is an even
integer, there exists C' such that for all N > 2, for all z € [t K, 7AN],

k+ll
/ Y(p)rhy (2, ) sin?~ @eXN“"ﬂd(p——U 2
(2xn)?

(3.49) o527
X 8(,02j (1#(90)7“5\/ (Za SD) SiDQA_l (pl[—ﬂ/QJr/Q] (SD)) (Zv 0)

S C(N—l + Z_l)k+1/2.
Here, the principal determination of the square root has been chosen.
Proof. We use Lemma 3.12 with

W(z,9) = /2,72 (@) (@)1 (2, 0) sin®* ", p =k + | and a = —ixn,
[T )] s

22—1

the remainder is equal to C' |xy
In virtue of Lemma 3.8, the norm [[u|y; 9,1 4, is finite and the remainder is
bounded by
Uiar—1 o, —1\k+i+1/2
Cllullagyorgr a2 (N7 +277) L/

which completes the proof. O

Now that Lemmas 3.2 to 3.13 are proved, we can apply the strategy of proof
described at the beginning of the present section to find an asymptotic formula for
rY.

Theorem 3.14. Let A =1/2,3/2,5/2,7/2, ---. Then, there exist real polynomials
Qv of degree v for all v € N such that, for all k € N*, for all K € N and for all
A €(0,1/2), the following estimate holds for all N > 2 and for all z € [t K, wAN]:

P (cos(z/N))
3.50 -
(3.50) —2\/EZ(A,N)RG{Z'€” ) x;”“/”czmx(xN/N)H
v=A—1/2

< O(K,A,k, A) (N—l + Z_l)]gfg)\Jrl

3
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where C(K, A, k,\) depends only on the displayed arguments and the constant
Z (A, N) is defined at equation (3.1).

Proof. We split (3.3) as in (3.5). Corollary 3.6 implies that the second integral of
the right hand side of (3.5) is an O(N ™! + z~1)F,
We deduce from equation (3.12) and Corollary 3.9 that

— 10Ty

Il 95l
1=0

(3.51) Ina(z,1) = (2,00 + O (N1 +27Hk).

Let us obtain an expression for

Iy
Os!

We replace Ry by its Taylor expansion ry defined at equation (3.14). We set

(270)=/0 V()R (2, 0) exp an (2, ¢) sin®* L p dop.

Inaa(z / (@)l (2, ¢) exp(xn®/2) sin®* ! p dop.

Corollary 3.11 implies that
IIn
Os!
We now use Corollary 3.13 to obtain an algebraic expression for Jn,; . Equa-
tion (3.49) yields

(2,0) = e“JN,M(z) + O ((N_1 + z_l)k) .

R J z, sin?? 1
JNl)\ _Z\/— Z l 1 62( ( SD) (»0)(270)

(3.52) = 9 2xaw) e 0%
10 ( (N~! ¢ z*l)’““/?) .

We differentiate 7 (2, ¢) sin®*~! ¢ with respect to ¢ up to order 2j and we take its
value at ¢ = 0.
Define
9" sin?A !
Sn,\ = 874;0"(0)
We first remark that s, » vanishes when n is odd or n < 2\ — 3. Indeed, since

2\ — 1 is even, x — sin® !z is an even function and its derivatives of odd order

at ¢ = 0 vanish. Moreover, Faa di Bruno’s formula (3.17) yields
22— 1

0" sin -1
-~ 1 gin2A—1-1(7)
oo g C(v,n < 1) )l(’y).bln (0)

Consequently, when n < 2\ — 3, 2XA — 1 — I(vy) is positive since {(7) < n and thus
for all y € C(n), sin?* 171 (0) vanishes.
Therefore, for [ = 0, we infer that

k—1
1 1 _
jNOA( )—Z\/_ Z _WSZJA+O((N + z 1)k+1/2)
Jj=A— 1/2] X

Consider next the case [ > 1. We need first to calculate the successive even deriva-
tives of 7l (2, ) at ¢ = 0. We deduce from the definition (3.14) of rx that for j in
{0,---,2l — 1} and for j > I(k + 1) + 1, 0%rk; /0% (2,0) vanishes.
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Using version (3.17) of Faa di Bruno’s formula and observing that for « in C(j),
ré{lm(z, 0) = d1,4(y) we find that for j in {21,---, (k +1)i}:

02yl . 82%7"]\/
YEC()) 1<i<i
U(v)=l
and in virtue of definition (3.14),
. 0%ign
YEC()) 1<i<i
W=l
Thanks to equations (3.27), (3.26), (3.28) and (3.25), we obtain
32Wg1\/ o
6@2% (270) = (_1)% 1XN
(355) ’yi—l
2v; — 1 XN\ @)
(AN
<3 ( . ) 3 C(2a,2p)l(a)! ( o ) ,
p=0 a€C(p)
that is to say there exists a real polynomial T',, of degree ; — 1 such that
82%9N
a2 (2,0) = xnTv, (xn/N).

Therefore we deduce, from equation (3.54), that for j in {21,---, (k + 1)i},

251
0%ry

(3.56) a2 (2,0) = XS (xn/N),
where S; ; is a real polynomial of degree j — .
Hence, using Leibniz’ formula, we infer for > 1 that for j in {0, --- ,k+1— 1},

9% (rﬁ\, (z, ) sin?* 1

Op?i
min(j—A+1/2,(k+1)1) y
X Z <2m) 52j—2m,)\Sl,m(XN/N)-

m=21

9) (2.0) = ¥

Therefore, we deduce that for j in {0,---,2l 4+ X —3/2},

9% (1l (2, ) sin2 1
(3.57) (riv(2 J;;m ?) (2.0) =0
and for j > 214+ X\ —1/2
22—1

0% (rﬁv (2, p) sin
Op2i
where S’M,)\ is a real polynomial of degree j —1 — A+ 1/2.
Eventually, formulas (3.52), (3.57) and (3.58) yield

k+1—1 1—j—1/2

Tvia) =iV Y A St /N) + O (N4 271)k2)

19j+1/2
j=2l4+A—1/2 J:

(3.58) i (2,0) = XN Sijx(xn/N),

and henceforth
k=1  ktl—1 l—j—1/2

. iz XN a
Tya(z,1) = iv/re AN G\ (xn/N)
(3.59) ’ gj_m%:m 11j2i1/2

+O (Nt +27HR),
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where S'Oyj)\ is a constant and for [ > 1, S’M,)\ is a polynomial of degree j—I—A+1/2.
Finally, we obtain with ¥ = j — [ in formula (3.59) that

k—1

P&*’(cos(z/zv»=Z<A,N>2\/%Re{z’e“ > xN<”“/2>Qy,A(xN/N>}

v=A—1/2
+ 0 ((N_1 + z_l)k_QHl) )
with @, of degree v — A + 1/2, which completes the proof. ([

Corollary 3.15 gives explicit values of the asymptotic for the cases A = 1/2, 3/2,
5/2 and 7/2.

Corollary 3.15. Let (y = ie**/Nyn = Nsin(z/N).
For A=1/2 and k = 3, Theorem 3.1} yields

(/2 — /22 z 8

Py (cos(z/N))—\/7<1/2 lcos< +2N+ 4>

Sy 3185\ 1/ 32 3w\ (1 5
(3.60) 8N T 128N?) Ty R ACEETY

315 3
384 C2, oN ' 1
For A =3/2 and k = 4, we obtain

(3/2) _ 2 1 3z
PN3 (COS(Z/N))__(N+2)(N+1)\/;@ |f308 (Z+ﬁ+z)

(3.61) % 1_24_& +isin Z+5_Z+E E_E
' 8N  128N?2 (N 2N 4 8 64N
1187 Tz
_ = N—l —1\2 .
384412\;(305( 2t ot ) + 0 (( +271)?%)

For A\=5/2 and k = 4, Theorem 8.1/ implies

P(5/2)(cos(z/N)) 18\/7(N;|4) ﬁl <z+25—; %)
N

(3.62)
105 115 Tz 3T
—2 T 1).
><<6 4N)+4CN sin ( et gt 4) +0(1)
For A=7/2 and k = 4, we find
(7/2) __i\/?(NﬂLG)! 1 7z
(3.63) Pr/ " (cos(z/N)) = SV 417\]/2 z+ 2N+ 1

+ O(N + 2)%
Proof. We follow the proof of Theorem 3.14 and we find that for A = 1/2,

QO,l/Q(XN/N) = 1/\/5
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and, for v > 1,

279 1
Qua2(xn/N) = Z Z %W

1<I<k—1 mit+mi=j
A <htl—1  7i>2
(364) j—l=v

1 92 'YigN
. H (XN D (Z’O)>'

1<1<l

Let us calculate Q1 1/2 and Q21/2. We infer from equation (3.55) the following
derivatives of gy with respect to p at ¢ = 0:

P o0 o (1455)
and
o IN(2,0) = <1+15—+30XN)
08 N N2
We deduce from these derivatives that
Q1,1/2(xn/N) = 8\1/— ( 3XN)
and

1 (43  55xn . 185\
JR— R _|_ R R
5/2 \192 " 32N " 64NZ
which give the asymptotic formula (3.60).

We use for A = 3/2 the successive derivatives of the square of the sine function
at ¢ = 0 which are

Q2,1/2(XxN/N) =

9" sin? o (—1)”/2“2”71 when n is even, n > 2,
(3.65) ——7(0) = {

O™ o when n is odd or n = 0.

Therefore, we obtain

_1\v+1
QV,3/2(XN/N) = % [L2V—1/2

D SEED S fu = e L
(3.66) 1<i<k—1  20<m<j—1 2m) 22m /2= !
2l+1<]<k+l 1vi++y=m

j—l=v vi>2

1 1 0%igy
X H 20 <X_N Ry (2,0)>]7

1<i<l

and more precisely, we have the following values:

Q1,3/2(xn/N) = 1/V2,

1 (13 15xw
Q23/2(xn/N) = 52 <4 + N >7

and
QB,S/Q(XN/N) =

which lead to equation (3.61).

1 (1187 735yn  1505x%
2v2 \ 192 " 32N 64N2 )’
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We calculate the successive derivatives of the sine function to the power 4 at
¢ =0 and we find

(—1)"/2(22"=3 —2n=1)  swhen n is even, n > 4,

n qind
a;;;n(p(o) —30 when n is odd or
n=0,n=2.
These derivatives enable us to calculate:
Q2.5/2(xn/N) = 6V2,
and
Q35/2(xN/N) = -2 (1715 + %%)

and this yields formula (3.62).
Eventually, the successive derivatives of the sine function to the power 6 at ¢ =0
are
(_1)n/2+12n—53(3n—1 _ on+l + 5)
9" sin® ¢ .
o (0) = when n is even, n > 6,
(pn
0 when nisoddorn=0,n=2,n=4.
Therefore we find that
Q3,7/2(xn/N) = 30v2

and the calculation of formula (3.63) completes the proof. g

3.4. Asymptotics of the zeroes of the first derivatives of Legendre poly-
nomials. Now that the formulas for L and its derivatives have been computed
in Corollary 3.15, we can find an asymptotic formula for the zeroes of L’y in the
region K < k < AN.

Theorem 3.16. Define

_ m/4+ kT

- 1+3/2N°

Then for all A in (0,1/2) and for all K € N, there exist C, C' such that for all
N > 2 and for all integer k in {K,---,|AN]}, there exists a unique zero zy of

P](\,B/z) (cos(z/N)) in a ball of radius C' /N about zo 1 and moreover the following
estimate holds

20,k

13 i 22
8N tan(zo.x/N) = 3NZ2tan(zox/N)

(3.67)  |zk — 2ok <C(NP+ KTH3.
Proof. We use the same method as in the proof of Theorem 2.1 and we use again
Lemma 2.2 to calculate an asymptotic formula for the zero zx of P](\f' / 2)(cos(z /N));
this function is given by formula (3.61) of Corollary 3.15.

It is equivalent to calculate the zero zj of

: 3/2
(3.68) f(z,N) = —@%PS/”(COSQ/J\/)).
We are searching this zero in the neighborhood of
_ m/A+ kT
14+ 3/2N°
We calculate f(zox, N) thanks to formula (3.61) of Corollary 3.15 and we obtain

_ 1)k
(3.69)  f(zom N) = W (81—; - 92?32) +0 ((N*1 + K’1)5/2) :

20,k
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We differentiate formula (3.68) to obtain:
01, yy_ 3 _IGN)
9z " T 2N tan(z/N)

i 3\@ W% sin®/(=/N) PR (cos (/)

and using formula (3.69) and equation (3.62) of Corollary 3.15, we find

(3.70)

A(k,N) = g(zO,k,N) =(-DFtyoWt+ K.

0z
We calculate now the second derivative of the function f using formula (3.70):
0 f 3 1
——(z,N) = -2 N
022 (2 V) 4N? <tan2(z/N) ) f(zN)

+12y/ 5 (NLJW cos(z/N) sin®?(z/N)P{? (cos(2/N)

~ 15/ 5% (NL;%' sin”/? (2 /N) P/ (cos(z/N)).

Let C' be a positive real such that |A*1(k,N)f(zo7k,N)| < CN~'. Let z belong
to the ball of center zp and of radius 2CN 1. We still use formula (3.69) and
equations (3.62) and (3.63) of Corollary 3.15 to compute

0% f _ _
Therefore the number M of Lemma 2.2 is finite and the number a is equal to 1. The
radius 2C' N2 has been chosen so that the hypothesis |A*1(k7 N) f(z0,k, N)| <K
is satisfied. Therefore, we have the following asymptotic formula:

13

SN tan(eo /M) +O (N1 4 KH?).

Zk = 20,k +

In order to have a more precise asymptotic formula, we use once more Lemma 2.2
with the same function f but in the neighborhood of

13
Ak = 0k o r /N
We compute the values of f and its derivatives at z = z; ; and we find
22
N)= (—1)t1____ 22 L o((N~!2 K1)
f(sz? ) ( ) 3N2 tan(zoyk/N) + (( + ) ) ’

0
O (1 N) = (1) £ OV 4 K

and if z belongs to the ball of center z1 ; and of radius 2CN~1, the following
estimate holds:

0% f _ _
Eventually, we obtain the following asymptotic formula
13 22

2k =20k + +O (NP + K1),

8N tan(zox/N)  3N2tan(zox/N)

We then have the straightforward corollary:
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Corollary 3.17. Define
gy, TNk +1/4)
: N +1/2

Then for all K > 0 and for all A € (0,1/2), there exist C, C' such that for all
N > 2 and for all integer k in {K,--- ,|AN]}, there exists a unique zero 0 of
Ly (cos®) in a ball of radius C'/N? about 6y k; moreover the following estimate
holds

13 49

1 Ok — 0o, — <C((NT'4+KEHY.
(371) E 0k T S N tan Oy, | 12N tanfo.y, < C(NTH+ KT

Remark 3.18. Observe that (3.71) is compatible with (2.1), because the error term
in (3.71) is large with respect to the error term in (2.1).

We end this section with the following corollary, which gives the expansion of
the quantity oy :
Corollary 3.19. The quantities o, K < k < |AN| defined at equation (1.6) have
the following expansion :
2 n 2 n 49
3N2  6N2  12NZtan(no k)

Proof. The proof of this corollary follows the same sketch as the proof of Corol-
lary 2.4. Using equation (3.71) of Corollary 3.17, we find that

L (&) = <—1>N+k+1\/§¢ﬁ (1 e L %)
+O((N"'+K1)?)
and we use equation (1.3) to compute 1/px:
i N (1 L n 23 49

o =1+

s +0 (NP + K7h3).

pr msinng g 2N 24N? 12N?%t?

Now, to calculate oy, we compute g1 — Ek—1:

. m 1 11 2
€k+1 - gk—l :281117]07]6— <1 - >

) +O((NT"+ K1),

N
+O((NT"+KHY

and we obtain
2pk 2 2 49

=1 N '+ K H3).
+3N2+6N2+12N2t2+0(( + )

op = —————
S

REFERENCES

[1] A. Averbuch, A. Cohen, and M. Israeli. A stable and accurate explicit scheme for parabolic
evolution equations. http://www.ann. jussieu.fr/~cohen/para.ps.gz, 1998.

[2] Christine Bernardi and Yvon Maday. Approzimations spectrales de problémes auzx limites
elliptiques. Springer-Verlag, Paris, 1992.

[3] Claudio Canuto and Alfio Quarteroni. Preconditioned minimal residual methods for Cheby-
shev spectral calculations. J. Comput. Phys., 60(2):315-337, 1985.

[4] Claudio Canuto. Stabilization of spectral methods by finite element bubble functions. Com-
put. Methods Appl. Mech. Engrg., 116(1-4):13-26, 1994. ICOSAHOM’92 (Montpellier, 1992).

[5] Mark H. Carpenter, David Gottlieb, and Chi-Wang Shu. On the conservation and convergence
to weak solutions of global schemes. J. Sci. Comput., 18(1):111-132, 2003.

[6] Piero de Mottoni and Michelle Schatzman. The Thual-Fauve pulse: Skew stabilization. Tech-
nical Report 304, Equipe d’Analyse Numérique de Lyon, 1999. http://numerix.univ-1lyonl.
fr/publis/publiv/1999/schatz1609/publi.ps.gz.



28

[7]
(8]

[9]

[10]

(11]
(12]
(13]
[14]
(15]
[16]
(17]

(18]

(19]

20]

MAGALI RIBOT

M. Deville and E. Mund. Chebyshev pseudospectral solution of second-order elliptic equations
with finite element preconditioning. J. Comput. Phys., 60(3):517-533, 1985.

M. O. Deville and E. H. Mund. Finite-element preconditioning for pseudospectral solutions
of elliptic problems. SIAM J. Sci. Statist. Comput., 11(2):311-342, 1990.

Luigi Gatteschi. Uniform approximation of Christoffel numbers for Jacobi weight. In Nu-
merical integration, III (Oberwolfach, 1987), volume 85 of Internat. Schriftenreihe Numer.
Math., pages 49-59. Birkhauser, Basel, 1988.

E. Hairer, S. P. Ngrsett, and G. Wanner. Solving ordinary differential equations. I, volume 8
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition,
1993. Nonstiff problems.

P. Haldenwang, G. Labrosse, S. Abboudi, and M. Deville. Chebyshev 3-D spectral and 2-D
pseudospectral solvers for the Helmholtz equation. J. Comput. Phys., 55(1):115-128, 1984.
Lars Hormander. The analysis of linear partial differential operators. I. Springer Study Edi-
tion. Springer-Verlag, Berlin, second edition, 1990. Distribution theory and Fourier analysis.
Steven A. Orszag. Spectral methods for problems in complex geometries. J. Comput. Phys.,
37(1):70-92, 1980.

Seymour V. Parter. On the Legendre-Gauss-Lobatto points and weights. J. Sci. Comput.,
14(4):347-355, 1999.

Seymour V. Parter. Preconditioning Legendre special collocation methods for elliptic prob-
lems. I. Finite difference operators. SIAM J. Numer. Anal., 39(1):330-347 (electronic), 2001.
Seymour V. Parter. Preconditioning Legendre spectral collocation methods for elliptic prob-
lems. II. Finite element operators. SIAM J. Numer. Anal., 39(1):348-362 (electronic), 2001.
Seymour V. Parter and Ernest E. Rothman. Preconditioning Legendre spectral collocation
approximations to elliptic problems. SIAM J. Numer. Anal., 32(2):333-385, 1995.

Alfio Quarteroni and Elena Zampieri. Finite element preconditioning for Legendre spec-
tral collocation approximations to elliptic equations and systems. SIAM J. Numer. Anal.,
29(4):917-936, 1992.

Magali Ribot. Etude théorique de méthodes numériques pour les systéemes de réaction-
diffusion; application a des équations paraboliques non linéaires et non locales. PhD thesis,
Université Claude Bernard — Lyon 1, December 2003. http://math.unice.fr/ ribot/these.
pdf.

Géabor Szegd. Orthogonal polynomials. American Mathematical Society, Providence, R.I.,
fourth edition, 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII.

LABORATOIRE DIEUDONNE, UNIVERSITE DE NICE-SOPHIA ANTIPOLIS, 06108 NICE CEDEX 2,

FRANCE. FAX : (4+33) 4 93 51 79 74

E-mail address: ribot@math.unice.fr



