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1 Introduction

This paper investigates the space of embedded minimal surfaces of finite
total curvature (FTC) in euclidean space. For a long time the only known
examples were the plane and the catenoid. In 1982, C. Costa discovered
a genus one example with 3 ends [1]. D. Hoffman and W. Meeks proved
that the Costa surface is embedded and constructed, for each genus ≥ 1, a
one-parameter family of embedded FTC minimal surfaces with three ends
[4]. Since then, several general methods to construct examples have been
proposed [8], [5].

In [6], the author developed a construction which does not rely on sym-
metries as do the previous ones. The input data for this construction is a
finite collection of points in the complex planes (the configuration), satisfying
a set of algebraic equations (the balancing condition). The output is a family
of embedded FTC minimal surfaces, whose geometry can be described quite
explicitely from the configuration. Roughly speaking, the surface is made
of planes with small catenoidal necks between them, and the configuration
gives the position of the necks, see figure 1.

There are two aspects of this construction which can be explored numer-
ically. The first one is the search for balanced configurations. Most of the
interesting examples I have found were discovered numerically. Sometime
they can be fully understood mathematically. They provide numerical, or

1



mathematical answer to several interesting questions about embedded FTC
minimal surfaces.

The other aspect is pictures. How can we actually compute these min-
imal surfaces ? Theoretically, they are constructed using Weierstrass Rep-
resentation. The Riemann surface is defined by opening nodes, a perfectly
explicit construction. Then three holomorphic 1-forms φ1, φ2, φ3 (the Weier-
strass data) are defined abstractly by prescribing periods. The question is :
how can we compute numerically these holomorphic 1-forms ? We provide
a constructive answer to this problem when all parts of the noded Riemann
surface have genus zero, and explain how this can be used to implement the
construction in [6].

Credits : the Maple software was used to carry all numerical computations de-
scribed in this paper. The domains were triangulated using Mathlab. I would
like to thank C. Georgelin for her help in using this package. The Maple files
are available on my web page : http://www.lmpt.univ-tours.fr/~traizet.
Also, on this page the reader will find 3D versions of the pictures in this paper
which can be freely rotated with the mouse.

2 Balanced configurations

A configuration is a collection of points {pk,i : 1 ≤ k ≤ M, 1 ≤ i ≤ Nk} in
the complex plane, together with some positive real numbers c1, · · · , cM . The

points pk,1, · · · , pk,Nk
form the kth layer of points. There are M layers, and

Nk points in the kth layer. (We also say that the points in the kth layer are
the points at level k.) The total number of points is N = N1 + · · ·+NM . The
numbers c1, · · · , cM are called the neck-sizes. The type of the configuration
is the sequence N1, · · · , NM .

Given a configuration which is balanced and non-degenerate (we will ex-
plain these terms shortly), the output of Theorem 1 in [6] is a one parameter
family of FTC minimal surfaces {Ms}0<s<ε (ε small enough). These surfaces
have genus N −M and have M + 1 embedded ends. They can be described
geometrically as M + 1 horizontal planes with small catenoidal necks be-
tween them, see figure 1. There are M layers of necks and Nk necks in the

kth layer, whose positions are given by the points pk,1, · · · , pk,Nk
. The necks

in the kth layer have waist radius sck. This geometric description only holds
asymptotically when s→ 0.
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Figure 1: A configuration of type 3,4,1, and a genus 5 embedded minimal
surface in the corresponding family. The boxes, crosses and circles represent
the points at level 1, 2 and 3 respectively.

The planes are perturbed to have logarithmic growth at infinity : the
surface has M + 1 catenoid type ends, whose logarithmic growths are as
follows : let Qk = Nk−1ck−1 − Nkck (with the convention N0 = NM+1 =

0). Then the logarithmic growth of the kth end is precisely sQk for k =
1, · · · ,M − 1, and is asymptotically sQk for k = M,M + 1 when s → 0.
(When the logarithmic growth is zero, the end is asymptotic to a plane). The
theorem also guarantees that provided Q1 ≤ · · · ≤ QM−1 < QM < QM+1,
the surfaces Ms are embedded (for s small enough). When this condition
is satisfied, we say that the configuration is embedded (a rather clumsy, but
convenient terminology).

Let me now explain the balancing condition. Let

Fk,i =

Nk∑
j=1
j 6=i

2c2k
pk,i − pk,j

−
Nk−1∑
j=1

ckck−1

pk,i − pk−1,j

−
Nk+1∑
j=1

ckck+1

pk,i − pk+1,j

with the convention that N0 = NM+1 = 0. Because of the analogy with 2D
electrostatic forces, we call Fk,i the force on pk,i. It interacts with all other
points in the same layer, and with the points in the layer directly below
and above it. We require that the points in each layer are distinct, and are
distinct from the points in the layer directly below and above it, so that Fk,i

is defined. (We say the configuration is non-singular).
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Figure 2: A genus one Costa Hoffman Meeks surface, as computed from the
configuration on the left.

The configuration is balanced provided all forces are zero : ∀k, ∀i, Fk,i =
0. These are N algebraic equations. These equations are not independent
because one has

∑
k,i Fk,i = 0. Moreover,

∑
k,i

pk,iFk,i =
M∑

k=1

nk(nk − 1)c2k −
M−1∑
k=1

nknk+1ckck+1. (1)

The right hand side only depends on the neck-sizes, and it must be equal
to zero for balanced configurations to exist. Provided the neck-sizes satisfy
this condition, we are left with N − 2 equations to solve. The balancing
condition is also invariant by translation and complex scaling of the points
(transformations z → az+b). We may normalize the positions of two points,
and are left with N − 2 parameters.

We say the configuration is non-degenerate if the jacobian matrix ∂Fk,i/∂p`,j

has complex rank N − 2. This is the maximum rank it may have.

2.1 Basic example : Costa Hoffman Meeks

The simplest examples have M = 2 layers of necks, with N1 = n ≥ 2 and
N2 = 1. The neck-sizes are c1 = 1, c2 = n − 1. The configuration has
dihedral symmetry of order n and is given by p1,i = ωi and p2,1 = 0, where
ω = exp(2πi /n). It is non-degenerate, see details in [6], proposition 1. The
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corresponding family of embedded FTC minimal surfaces is the Costa Hoff-
man Meeks family of genus n− 1, or rather, the extreme part of this family.
(I have no proof of this claim, except in the genus one case, by the classifica-
tion in [2]. All I really know is that the surfaces have the same symmetries as
the Costa Hoffman Meeks surfaces). These are also the only non-degenerate
balanced configurations with 2 layers of necks, see [6], proposition 1.

2.2 Dihedral configurations

In this section we investigate the following question :

What is the least genus for an embedded, FTC minimal surface with r ≥ 2
ends ?

N. Kapouleas has proven the existence of embedded, FTC minimal sur-
faces with any number of ends [5]. His examples are constructed by desingu-
larization of a finite set of co-axial catenoids and horizontal planes. However,
the genus of his examples is very large by construction (in fact, it seems hard
to even estimate the genus).

D. Hoffman and W. Meeks have conjectured that the answer to the above
question is r− 2. M. Weber and M. Wolf have constructed, for each r ≥ 4, a
FTC minimal surface with genus r− 2 and r ends [8]. However, they cannot
mathematically prove that their examples are embedded, although numerical
pictures seem to indicate that they are (at least for a few values of r !).

Our result lies in between : we can prove existence of embbeded FTC
minimal surfaces with arbitrary number of ends, with an estimate of the
genus, but this estimate is not optimal.

The easiest way to compute balanced configurations with arbitrary num-
ber of layers M is to keep the symmetries of the Costa Hoffman Meeks
configuration and increase the number of layers (see figure 3). Let M ≥ 2
be the number of layers. Take N1 = · · · = NM−1 = n and NM = 1, where
n ≥ 2 is some integer. We want the configuration to have dihedral symmetry
of order n, so we set

pk,i = akω
i, 1 ≤ k ≤M − 1, pM,1 = 0

where ω = exp(2πi /n) and ak is such that an
k ∈ R∗. Equation (1) gives

M−1∑
k=1

n(n− 1)c2k −
M−2∑
k=1

n2ckck+1 = ncM−1cM . (2)
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Figure 3: A configuration of type 3,3,1 with dihedral symmetry, and a genus
4 embedded minimal surface in the corresponding family.

This determines cM as a function of the parameters c1, · · · , cM−1. By sym-
metry pM,1 = 0 and pk,iFk,i is the same for all i. In fact, elementary compu-
tations give

p1,iF1,i = (n− 1)c21 − nc1c2
an

1

an
1 − an

2

(3)

and for 2 ≤ k ≤M − 2,

pk,iFk,i = (n− 1)c2k − nck−1ck
an

k

an
k − an

k−1

− nckck+1
an

k

an
k − an

k+1

. (4)

We can fix a1 = 1, then these equations determine recursively a2, · · · , aM−1

as functions of c1, · · · , cM−1. The equation pM−1,iFM−1,i = 0 is then auto-
matically satisfied since

∑
pk,iFk,i = 0. Alternately, we can choose the values

of a1, · · · , aM−1, and the equations determine the value of c1, · · · , cM−1.

For M = 2 we recover the Costa Hoffman Meeks configuration. It turns
out that if M ≥ 3, these configurations are not always non-degenerate, but
the following is true : for generic values of the parameters c1, · · · , cM−1,
the configuration is non-degenerate. Here generic means : outside the zero
set of a non-zero polynomial. Indeed, non-degeneracy can be written as a
polynomial equation in c1, · · · , cM−1. To prove the statement, it suffices to
prove that this polynomial is not identically zero, so it suffices to exhibit one
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set of values of the parameters such that the configuration is non-degenerate,
for each n and M . We give the details of this computation in appendix A.1.
It is clear that for generic values of c1, · · · , cM−1, the configuration is non-
singular, which in this case means that all ak are non-zero and ak 6= ak+1.

It remains to choose the neck-sizes such that the configuration is embed-
ded. Take c1 = · · · = cM−1 = 1. Equation (2) gives cM = n−M + 1. Then
Q1 = −n, Q2 = · · · = QM−1 = 0, QM = M − 1 and QM+1 = n−M + 1. The
condition QM+1 > QM gives n > 2(M − 1), so we can take n = 2M − 1. We
obtain a family of embedded minimal surface, whose genus is 2(M − 1)2 and
number of ends is M + 1. This gives

Theorem 1 For each r ≥ 3, there exists an embedded FTC minimal surface
with r ends and genus 2(r − 2)2.

This estimate is by no mean optimal since the genus grows quadratically
with r, whereas the Hoffman Meeks conjecture asks for linear growth. It is
possible to improve this estimate, but not very much. In fact, it is possible to
prove that in general, for a configuration with M layers, if the total number
of necks is less than M(M − 1)/2, the configuration cannot be embedded,
whatever the repartition of the necks and the neck-sizes. Hence one cannot
construct minimal surfaces with r ends and genus less than (r − 1)(r − 2)/2
with this approach : quadratic growth of the genus cannot be avoided.

I believe that the Hoffman conjecture is true, and that there exists families
of examples of FTC minimal surfaces with r ends and genus r − 2, but the
family does not remain embedded all the way : it stops to be embedded a
long time before it eventually degenerates and enters the range of application
of our construction.

2.3 Asymmetrical configurations

In this section we investigate the following question :

What is the least genus for an embedded FTC minimal surface with no
symmetries ?

By a symmetry, I mean an ambient isometry preserving the surface (other
than the identity). In [6], an embedded, asymmetrical example of genus 45
with 5 ends was proven to exist, as well as examples of arbitrary high genus.
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Figure 4: An asymmetrical configuration of type 3,4,2 (embedded, genus 6).

Numerical search gives plenty of embedded, asymmetrical examples of
much smaller genus. The smallest genus I have found so far is 6 (see figure
4). Also, this numerical investigation has uncovered a genus 7 example which
is simple enough so that it can be proven mathematically to exist (see figure
6). In this section, we explain how one can compute configurations without
the help of symmetries, a situation quite opposite to section 2.2. A proof for
the genus 7 example is given in appendix A.2.

The only non-degenerate configurations with M = 2 layers are the Costa
Hoffman Meeks configurations. The simplest next case isM = 3 withN3 = 1,
which already gives plenty of interesting examples. Let me explain how I com-
pute examples in this particular case. The method generalizes to arbitrary
number of layers and necks, but is especially successful in this case.

Note that the balancing condition is invariant by permutation of the
points at each level, so we should not use pk,i as variables when computing
configurations, else each configuration will be duplicated N1!N2! times, so the
list of configurations will be huge and in fact the system will be impossible
to solve. So the right variables are the symmetrical functions of the points
at each level. Consider the polynomials

Pk(z) =

Nk∏
i=1

(z − pk,i).
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Figure 5: A genus 7 embedded, asymmetrical minimal surface, computed
from a configuration of type 4,5,1.

By translation, we may assume that a3,1 = 0, so P3 = z. Let us write the
forces in terms of P1, P2. We have

P ′k
Pk

(z) =
∑

i

1

z − pi

if Pk(z) 6= 0.

P ′′k
P ′k

(pk,i) =
∑
j 6=i

2

pk,i − pk,j

.

Fk,i = c2k
P ′′k
P ′k
− ckck−1

P ′k−1

Pk−1

− ckck+1

P ′k+1

Pk+1

evaluated at z = pk,i.

From this we get that the configuration is balanced if the polynomial

c21zP
′′
1 P2 + c22zP

′′
2 P1 − c1c2zP ′1P ′2 − c2c3P1P

′
2 (5)

vanishes at the points p1,1, · · · , p1,N1 and p2,1, · · · , p2,N2 . Since this poly-
nomial has degree ≤ N1 + N2 − 1, it is identically zero. Writing that all
coefficients of this polynomial are zero gives a system of N1 +N2 quadratic
equations in the coefficients of P1, P2. The leading coefficient of (5) is

N1(N1 − 1)c21 +N2(N2 − 1)c22 −N1N2c1c2 −N2c2c3 (6)
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so we recover equation (1). We are left with N1 +N2 − 1 equations to solve.
The parameters are the N1 + N2 coefficients of P1 and P2. We may fix the
value of one coefficient by complex scaling of the configuration.

This system has a special form which makes it easier to solve. We may
use the first N1 equations to express the coefficients of P1 as functions of the
coefficients of P2, solving a linear system of N1 equations. By substitution in
the last N2 − 1 equations, we obtain a system of algebraic equations in the
N2−1 coefficients of P2 (one coefficient of P2 is normalized by scaling). This
works fairly well if N2 is small. If N1 is small, we can exchange the roles of
N1 and N2.

Once we have found a couple of polynomials P1, P2 satisfying (5), we re-
cover a configuration by computing their zeroes p1,1, · · · , p1,N1 and p2,1, · · · , p2,N2 .
We still must check that the configuration is non-singular, in the sense that
these points are distinct, so the forces are defined. In fact, (5) always has
the trivial solution Pk = zNk , which gives a useless configuration where all
points are equal to 0. But are the other ones non-singular ?

Note that the balancing condition does not make sense for a singular
configuration, but equation (5) still does, and may be seen as a way to make
sense of a balanced singular configuration. In fact, families of configuration
typically become singular for some particular values of the neck-sizes. But
in the present case, this can happen only for a finite number of values. To
understand why, assume that z0 is a zero of Pk with multiplicity mk ≤ Nk,
for k = 1, 2, 3 (if m3 = 1 then z0 = 0). Assume that m1 + m2 ≥ 2 or m2 +
m3 ≥ 2, so the configuration is singular. Also assume that (m1,m2,m3) 6=
(N1, N2, N3), else Pk = zNk for k = 1, 2, 3 and we have the trivial solution
to (5). Writing Pk = λk(z − z0)

mk + o((z − z0)
mk) and replacing in (5), we

obtain the equation

m1(m1 − 1)c21 +m2(m2 − 1)c22 −m1m2c1c2 −m2m3c2c3 = 0. (7)

Eliminating c3 from (6) and (7) we obtain a quadratic homogenous equation
in the unknowns c1, c2, whose coefficients depend on (m1,m2,m3). By in-
spection, we find that the coefficients of this equation are not all zero, so
normalizing by c1 = 1, there are at most two possible values for c2. Since
there are only a finite possible number of values for the triple (m1,m2,m3),
there are only a finite number of values of c2 for which a singular configuration
can occur.
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Figure 6: An asymmetrical configuration of type 5,4,1. There is a cluster of
4 points on the left and a cluster of 3 points on the right. This configuration
is almost singular.

Figure 6 displays a configuration of type 5,4,1 with c2 = 1.01. This
configuration is almost singular, it becomes singular when c2 = 1. One can
compute the configuration quite explicitely when c2 = 1, and conclude that
it is asymmetrical. The details of this computation are given in appendix
A.2. This proves the existence of an embedded, asymmetrical FTC minimal
surface of genus 7.

2.4 A minimal surface with a planar end of order 2

In this section we investigate the following question :

Can an embedded FTC minimal surface have a planar end of order two ?

We are talking about the order of the extended Gauss map at the puncture
corresponding to the end. This order is always at least 2 for a planar end.
There are examples of periodic minimal surfaces with planar ends of order
2, like the Riemann minimal examples. For the previously known examples
of FTC minimal surfaces with planar ends, the order of the Gauss map at
the end was always at least 3. But this was in fact forced by the symmetries
of these surfaces. In this section we exhibit an example with a planar end of
order 2.

We consider a configuration of type 5, 4, 1. We take c1 = 1 and c2 = 5/4,
equation (1) gives c3 = 11/4. The logarithmic growths of the ends are Q1 =
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−5, Q2 = 0, Q3 = 9/4, Q4 = 11/4, so the end at level 2 is planar.

The question is, how can we determine the order of the Gauss map at the
planar end ? Theoretically, we have the following asymptotic for the Gauss
map gs ofMs in a neighborhood of the planar end (corresponding to z =∞)

lim
s→0
−2(sgs(z)

−1) =

N1∑
i=1

c1
z − p1,i

−
N2∑
i=1

c2
z − p2,i

.

The right hand side can be expanded as

(N1c1 −N2c2)z
−1 + (c1

N1∑
i=1

p1,i − c2
N2∑
i=1

p2,i)z
−2 + o(z−2).

The first term vanishes because the end is planar. The Gauss map has order
2 if the second term is not zero. This condition is easy to check.

The configuration can be computed using the methods of section 2.3.
Unfortunately, I was not able to prove mathematically (meaning by hand)
that this configuration is non-degenerate. (What I can prove is that the
configuration is non-degenerate for generic values of the neck-sizes, but here
the neck-sizes are fixed.)

The computation can easily be done with a formal computer, however.
Moreover, the computation only involves rational numbers so can be carried
using exact arithmetic. This gives a numerical proof that there exists em-
bedded FTC minimal surface with a planar end of order 2. The details of
this computation are given in appendix A.3.

3 Pictures

The goal of this section is to explain how, given a balanced configuration,
one can compute numerically the corresponding family of minimal surfaces.
This is illustrated on figure 7 in the case of the Costa Hoffman Meeks genus
one family, corresponding to a configuration of type 2,1. The surface is
decomposed into three pieces, one per end. Each piece is parametrized on
a canonical circle domain, namely, the complex plane minus one or several
round disks. The point at infinity correspond to an end of the surface. (In
practice we clip the ends, so each piece is parametrized on a big disks minus
small disks.)
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Figure 7: Triangulation of the three circle domains generated with Mathlab
(left) and their image in space (right), in the case of the Costa Hoffman
Meeks genus one surface. The three pieces on the right match perfectly to
give the whole surface.
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If we identify the circle marked A with the circle marked A′, the circle
marked B with the circle marked B′ and the circle marked C with the circle
marked C ′, we obtain topologically a genus one surface with three ends. This
is our point of view on Riemann surfaces : canonical circles domains, with
pairs of circles identified. This kind of construction is called opening nodes,
because in the limit when the radii of the circles go to zero, we get a singular
Riemann surface with nodes (or double points).

The minimal surface is parametrized by the Weierstrass Representation
in the following form :

X(z) =

(
Re

∫ z

z0

φ1,Re

∫ z

z0

φ2,Re

∫ z

z0

φ3

)
where φ1, φ2 and φ3 are three holomorphic 1-forms on our Riemann surface,
such that φ2

1 +φ2
2 +φ2

3 = 0 (the conformality equation). The Period Problem
asks that X(z) is well defined (independent of the integration path).

To find three holorphic 1-forms satisfying the conformality equation and
the Period Problem, we follow the following strategy : we construct φ1, φ2, φ3

by prescribing their periods around the necks. (These periods are imaginary,
so part of the Period Problem is already solved by definition. Each imaginary
part is a parameter). Then we adjust the parameters to solve φ2

1+φ2
2+φ2

3 = 0
and the remaining Period Problem.

This strategy has been used in [7] to construct triply periodic minimal
surfaces. We follow the construction in [7], with a few modifications due to
the fact that our minimal surfaces have ends.

This is not the strategy used to construct the family of minimal surfaces
in [6], where we use the classical form of the Weierstrass Representation (with
the Gauss map). The construction in [6] seems more difficult to implement.

The main question we have to answer to implement numerically the con-
struction in [7] is : how can we compute numerically these holomorphic
1-forms ? For each one of them, we need some kind of formula, in each
canonical circle domain. We answer this question in section 3.1. Each 1-
form is represented by some kind of series, whose coefficients are determined
by solving a linear system.

At this point we have a family of Riemann surfaces, and holomorphic
1-forms φ1, φ2, φ3, depending on a lot of parameters. These parameters are
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the center and radius of the circles, one Dehn twist parameter per neck, and
the imaginary part of the periods around the necks.

We have a well defined immersion on each canonical circle domain, but
there is no reason that the images fit together. For instance on figure 7, the
image of the circles A and A′ differ by a translation, and so do the images of
the circles B and B′. But there is no reason that these translations are the
same (as is the case on figure 7) : we need to adjust the parameters so that
this is the case. This is the Period Problem.

We also have to adjust the parameters so that φ2
1 + φ2

2 + φ2
3 = 0, so that

the immersion is minimal. Let ψ = φ2
1 + φ2

2 + φ2
3. This is a meromorphic

quadratic differential with at most double poles at the ends. The space of
such differentials has finite complex dimension 3N −M − 1. The question is
: how do we compute numbers from a quadratic differential ? Following the
construction in [7], we simply compute periods of ψ/dz along suitable cycles,
and check that we obtain 3N −M − 1 independent equations.

The total number of (real) equations we have to solve is 9N − 5M − 3.
This is a quite large number of equations : for example, for the asymmetrical
example of figure 5, with N = 10 and M = 3, we have 72 equations to solve.
How do we solve such a large nonlinear system ?

Theoretically, in [7], we solve these equations using the Implicit Function
Theorem. The proof of the Implicit Function Theorem, which is based on
the contraction mapping principle, gives a method to numerically compute
the solution, namely : assume we have a system of n equations in n variables,
depending on some parameter s, which we write as fs(x) = 0. Assume that
when s = 0, we are given a solution x0, and we know that A = df0(x0) is
invertible. Then for s small, we can solve fs(x) = 0 by the following iteration
scheme : define the sequence {xk}k∈N inductively by x0 = x0 and

xk+1 = xk − A−1fs(x
k). (8)

Then for s small, {xk}k∈N converges to a solution x of fs(x) = 0.

We apply this scheme to solve our equations. In a few words : At the
point x0, the underlying Riemann surface is fully noded (all circles have
radius zero : the necks collapse to double points), and the center of the circles
are given by the points of the configuration. We can compute explicitely all
equations at this point, see [7] for more details. The equations boil down to
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the balancing condition. Moreover, we can compute explicitely the jacobian
matrix A (derivative of equations with respect to parameters) at the point
x0. Provided the configuration is non-degenerate, the jacobian matrix is
invertible. We then invert numerically the jacobian and apply the iteration
scheme (8). For small values of s it converges very quickly to a fixed point
(several digits of precision are gained at each loop).

When we increase the value of s it doesn’t converge anymore. Here is
the idea to push the parameter s further : start from a previously computed
solution xs, increase s by a small amount, and apply again the above iteration
scheme with x0 = xs and A equal to the jacobian at xs. The basic problem
is that as soon as s is not zero, the nodes open (the circles have nonzero
radius), so we cannot compute explicitely the jacobian matrix. However, we
can compute a good approximation of the jacobian by pretending that the
Riemann surface is still noded. Because the radii remain quite small (even
though the other parameters move quite a lot), this gives us an approximate
jacobian which we can use instead of A.

Finally, to plot the surface, we need to integrate φ1, φ2, φ3. Because these
1-forms are represented as series, their integrals are readily computed : no
numerical integration is required.

The rest of the section is organized as follows : in section 3.1 we explain
how we compute numerically a holomorphic 1-form defined by prescribing
periods in the case of opening nodes. In section 3.2, we give more details
about the construction of the family of minimal surfaces.

3.1 Opening nodes : a model case

In this section we explain how to compute holomorphic 1-forms on Riemann
surfaces defined by opening nodes. For the simplicity of notations, we first
consider the case where the noded Riemann surface has only one part, which
has genus zero. Then we explain how one can generalize the construction to
other cases.

Consider 2N distinct points a−1 , · · · , a−N , a
+
1 , · · · , a+

N in the complex plane
We assume for convenience that the disks of radius one centered at these
points are disjoint. Identify for each i = 1, · · · , N the point a−i with the
point a+

i . This defines a noded Riemann surface Σ0 with N nodes, which we
call a1, · · · , aN . To open the nodes, consider N complex numbers t1, · · · , tN
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such that 0 < |ti| < 1. Remove the 2N disks D(a±i , |ti|). Identify the
annulus |ti| < |z − a−i | < 1 with the annulus |ti| < |z′ − a+

i | < 1 under the
identification rule (z− a−i )(z′− a+

i ) = ti. This defines a Riemann surface Σt,
where t = (t1, · · · , tN). We compactify Σt by adding the point at infinity,
and we still denote by Σt the compactification. The genus of Σt is N .

It is well known that the space of holomorphic 1-forms on Σt has complex
dimension N , and that a holomorphic 1-form is uniquely defined by prescrib-
ing its periods on the circles around the points a+

1 , · · · , a+
N . Let ω be the

holomorphic 1-form on Σt defined by prescribing∫
C(a+

i ,1)

ω = 2πi ci, i = 1, · · · , N

where c1, · · · , cN are given complex numbers. The question is : how can we
actually compute ω ?

We are aiming for a formula of the form

ω =
∑
±

N∑
i=1

∞∑
n=1

A±i,n
(z − a±i )n

dz (9)

where the complex numbers A±i,n are such that A±i,nt
−n
i is bounded, so that

the series converges on the domain |z − a±i | > |ti|. (In the above formula,
the sum on ± means that we add two terms, on for + and one for −). It is
not hard to see that ω admits such a representation, using a Laurent series
in the annuli |ti| < |z − a±i | < 1 and the fact that a holomorphic 1-form on
the Riemann sphere C ∪ {∞} must be identically zero.

The residues A±i,1 are determined by the prescribed periods : since the
circle C(a+

i , 1) is homologous in Σt to the circle C(a−i , 1) with the opposite
orientation, we must have

A±i,1 = ±ci.
We want ω to be well defined on Σt, namely invariant under the identification
rule used to define Σt. This should uniquely determine all coefficients A±i,n.
Let

ϕi(z) = a−i +
ti

z − a+
i

so ϕi maps the annulus |ti| < |z − a+
i | < 1 to the annulus |ti| < |z − a−i | < 1

and Σt is defined by identifying z with ϕi(z). The fact that ω is well defined
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on Σt is equivalent to ϕ∗iω = ω on the annulus |ti| < |(z − a+
i )| < 1, for all

i = 1, · · · , N . This is equivalent to

∀m ∈ Z,
∫

C(a+
i ,1)

(z − a+
i )mϕ∗iω =

∫
C(a+

i ,1)

(z − a+
i )mω (10)

By a change of variable,∫
C(a+

i ,1)

(z − a+
i )mϕ∗iω = −

∫
C(a−i ,1)

(
ti

z − a−i

)m

ω.

So (10) may be rewritten as

∀m ≥ 1, A±i,m+1 = − tmi
2πi

∫
C(a∓i ,1)

ω

(z − a∓i )m
. (11)

(Notation : the sign ∓ on the right side is opposite to the sign ± on the left
side). This is an infinite dimensional linear system in the unknowns A±i,n,
n ≥ 2. Let us introduce the following notations

ω0 =
∑
±

N∑
i=1

±ci
z − a±i

dz,

A = (A±i,n : i ≤ N, n ≥ 2),

α(A) =
∑
±

N∑
i=1

∞∑
n=2

A±i,n
(z − a±i )n

dz,

F±i,m(α) = −t
m−1
i

2πi

∫
C(a∓i ,1)

α

(z − a∓i )m−1
,

F (α) = (F±i,m(α) : i ≤ N, m ≥ 2).

Then (11) may be rewritten as A = F (ω0 + α(A)). We solve this fixed point
problem using the standard iteration scheme : define the sequence {Ak}k∈N
by induction by A0 = 0 and Ak+1 = F (ω0 + α(Ak)). To see that {Ak}k∈N
converges to a fixed point, we introduce the following Banach norms :

||A|| =
∑
±

N∑
i=1

∞∑
n=2

|A±i,n|

18



||α||∞ =
∑
±

N∑
i=1

sup
z∈C(a±i ,1)

|α(z)|

Then straightforward estimates give

||α(A)||∞ ≤ ||A||

||F (α)|| ≤

(
2N∑
i=1

|ti|
1− |ti|

)
||α||∞

Hence ||F (ω0)|| <∞ and provided all ti are small enough, A 7→ F (α(A)) is a
contracting linear operator. It follows, by the standard fixed point theorem,
that the sequence {Ak}k converges to a solution A of A = F (ω0 +α(A)). Let
ω = ω0 + α(A). From (11), we have the estimate

|A±i,m| ≤ |ti|m−1||ω||∞ (12)

Hence each series
∑

nA
±
i,n(z− a±i )−n converges for |z− a±i | > |ti|, so ω is the

desired one form.

What we have achieved is a constructive proof of the existence and unique-
ness of ω on Σt, provided all ti are small enough. The above method general-
izes easily to the case of meromorphic differentials with prescribed principal
part at the poles, provided the poles are outside the disks D(a±i , 1) : simply
add the principal parts to ω0. The method also generalizes to the case of
several Riemann spheres connected by nodes (see section 3.2), the notations
are just a little more cumbersome. On the other hand, it is essential to the
above argument that all the parts of the noded Riemann surface have genus
zero so we can represent ω as a series.

There are several reasons why a constructive proof is interesting. First
of all, this allows us to compute numerically ω, which is our interest in this
paper. The estimate (12) says that the coefficients A±i,n decay rapidly with
n, provided all ti remain small. So it is legitimate to truncate the series to
some finite order. Typically for the examples we will consider, |ti| is of order
0.01 and we truncate the series to the order n = 10.

The method is also interesting from the theoretical point of view because
it generalizes to the case of infinitely many Riemann spheres connected by
nodes. In this case, by opening the nodes we obtain non compact Riemann
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surfaces of infinite genus. The standard “abstract algebraic geometry” ma-
chinery does not seem to apply to this setup. This might be useful to con-
struct, for instance, non-periodic minimal surfaces of infinite topology.

The integral in (11) can be explicitely computed using the following for-
mula

Resb
1

(z − a)n(z − b)m
=

(
n+m− 2

m− 1

)
(−1)m−1

(b− a)n+m−1
.

3.2 How we compute the family of minimal surfaces

In this section we give more details about how we compute numerically the
family of minimal surfaces corresponding to a given configuration. As was
already said, we follow very closely the construction in [7], with a few modi-
fications to to the fact that our surfaces have catenoidal ends. In particular,
the notations and normalizations are as in this paper. Giving all the details
of the construction would essentially amount to write a proof of the main
theorem in [6], which is not our point here, so we will be quite allusive.

We define a family of Riemann surfaces by opening nodes : We take
M + 1 copies of the complex plane, labeled C 1, · · · ,C M+1. We take Nk +
Nk−1 distinct points a−k,1, · · · , a

−
k,Nk

and a+
k−1,1, · · · , a

+
k−1,Nk−1

in C k (with the

convention N0 = NM+1 = 0). We identify the point a−k,i in C k with the point

a+
k,i in C k+1, for each possible (k, i). This defines a noded Riemann surface

with N = N1 + · · ·+NM nodes.

We open the nodes as in section 3.1, using one complex parameter tk,i

per node. This creates a neck connecting C k with C k+1. We call Σt the
resulting Riemann surface, and ∞1, · · · ,∞M+1 the points at infinity, which
will correspond to the ends of our minimal surface. The genus of Σt is N−M .
(Note that the circle of center a−k,i in C k and the circle of center a+

k,i in C k+1,

both of radius
√
|ti|, are identified : these are the boundary circles of the

canonical domains in figure 7.)

Next we define three meromorphic 1-forms φ1, φ2, φ3 on Σt, with poles at
∞1, · · · ,∞M+1, by prescribing periods on the circles C(a+

k,i, 1) as explained
in section 3.1. The principal parts at the poles are forced by the fact that
we want horizontal embedded ends : φ1 and φ2 need double poles, with no
residue, and φ3 needs a simple pole. As explained in section 3.1, we represent

20



φν as

φν,k = λν,kdz +

Nk∑
i=1

∞∑
n=1

A−ν,k,i,n

(z − a−k,i)
n
dz +

Nk−1∑
i=1

∞∑
n=1

A+
ν,k−1,i,n

(z − a+
k−1,i)

n
dz. (13)

Here φν,k denotes φν in C k. The first term takes care of the double pole at
∞k. We require that

λ1,k = 1, λ2,k = (−1)k+1i , λ3,k = 0.

The residues are determined by the period conditions :

A±ν,k,i,1 = ±cν,k,i

where cν,k,i are prescribed real numbers.

As explained in section 3.1, the coefficients Aν,k,i,n for n ≥ 2 may be
computed by solving a linear system by iteration. Adapted to the case at
hand, this gives the following recipe :

A±ν,k,i,m+1 ← −δm,1λν,ktk,i + (−tk,i)
m

∞∑
n=1

(
n+m− 2

m− 1

)
 Nk∑

j=1
j 6=i

A∓ν,k,j,n

(a∓k,i − a
∓
k,j)

n+m−1
+

Nk∓1∑
j=1

A±ν,k∓1,j,n

(a∓k,i − a
±
k∓1,j)

n+m−1

 .
(δi,j denotes the Kronecker symbol). Namely, we compute the right hand
side for all ν, k, i and for all m ≥ 1, we replace all Aν,k,i,m+1 by the values
we have found, and we iterate this process until each Aν,k,i,m+1 is equal to
the right hand side at the desired order of accuracy. As was already said, we
also truncate the series to some reasonnable order, depending on how small
the parameters tk,i are.

The meromorphic 1-forms can be explicitely integrated :

Xν,k(z) = Re

∫
φν,k

= λν,kz +

Nk∑
i=1

(
Aν,k,i,1 log |z − a−k,i|+ Re

∞∑
n=2

A−ν,k,i,n

(1− n)(z − a−k,i)
n−1

)

+

Nk−1∑
i=1

(
Aν,k−1,i,1 log |z − a+

k−1,i|+ Re
∞∑

n=2

A+
ν,k−1,i,n

(1− n)(z − a+
k−1,i)

n−1

)
.
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The Period Problem can be written as

Xν,k(a
−
k,i +

√
tk,i)−Xν,k+1(a

+
k,i +

√
tk,i) is independent of i. (14)

Let ψ = φ2
1 + φ2

2 + φ2
3. Following [7], we solve the following equations :∫

C(a−k,i,1)

(z − a−k,i)
ψ

dz
= 0, 1 ≤ k ≤M, 1 ≤ i ≤ Nk (15)

∫
C(a+

k,i,1)

ψ

dz
= 0, 1 ≤ k ≤M, 2 ≤ i ≤ Nk (16)∫

C(a−k,i,1)

ψ

dz
= 0, 1 ≤ k ≤M, 1 + 2δk,1 ≤ i ≤ Nk (17)

Im

(
2∑

i=1

a−1,i

∫
C(a−1,i,1)

ψ

dz

)
= 0 (18)

Provided the Period Problem is solved (namely all periods of φ1, φ2 and φ3

are pure imaginary), ψ also automatically satisfies the following equation

M+1∑
k=1

(−1)k

[
Nk∑
i=1

∫
C(a−k,i,1)

z
ψ

dz
+

Nk−1∑
i=1

∫
C(a+

k−1,i,1)

z
ψ

dz

]
∈ i R. (19)

This mysterious relation is a consequence of Riemann’s bilinear relation.
For completeness we give a proof of this equation in appendix A.4. By the
same argument as in [7], one can prove that provided t is small enough,
these 6N − 2M − 2 real equations are linearly independent, so solving this
system guarantees that ψ = 0. For completeness, we provide a proof of this
statement in appendix A.5.

A Appendix

A.1 Dihedral configurations are non-degenerate

In this section we prove that the dihedral configurations of section 2.2 are non-degenerate
for generic values of the parameters c1, · · · , cM−1. As explained in this section, it suffices
to find one set of values of the parameters such that the configuration is non-degenerate.
We take ak = t2

k

for 1 ≤ k ≤ M − 1. We shall prove that for t > 0 small enough, the
configuration is non-degenerate.
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The idea is the following : scale the configuration so that the points at level k are the
nth roots of unity. Then the points at level < k go to infinity and the points at level > k
go to 0 when t → 0, and in the limit we get a Costa Hoffman Meeks configuration. So
for small t, the configuration may be seen as several Costa Hoffman Meeks configuration
imbricated into each other. Non-degeneracy thus boils down to the fact that the Costa
Hoffman Meeks configuration is non-degenerate.

We may normalize c1 = 1. Then c2, · · · , cM−1 are determined inductively by (3), (4)
and CM is determined by (2). Their limits when t→ 0 are

lim ck =
(
n− 1
n

)k−1

for 1 ≤ k ≤M − 1 and

lim cM =
(n− 1)M−1

nM−2
.

Tedious computations give the following limits for the partial derivatives of the forces :

lim
(
t2

k+1 ∂Fk,i

∂pk,i

)
= lim c2k

n− 1
ω2i

− 2
∑
j 6=i

1
(ωi − ωj)2

 .

lim
(
t2

k+1 ∂Fk,i

∂pk,j

)
= lim c2k

2
(ωi − ωj)2

if j 6= i.

lim
(
t2

k+1 ∂Fk,i

∂pk−1,i

)
= 0.

lim
(
t2

k+1 ∂Fk,i

∂pk+1,i

)
= −ckck+1

ω2i
.

lim

(
t(4−n)2k−1 ∑

i

ωi ∂Fk,i

∂pk,j

)
= lim ckck−1

n2

ωj
with the convention c0 = 0.

lim

(
t(4−n)2k−1 ∑

i

ωi ∂Fk,i

∂pk−1,j

)
= 0.

lim

(
t(4−n)2k−1 ∑

i

ωi ∂Fk,i

∂pk+1,j

)
= −δ2,n

n2ckck+1

ωj
.

Let A be the n× n complex matrix defined by

Ai,i =
n− 1
ω2i

− 2
∑
j 6=i

1
(ωi − ωj)2

,

Ai,j =
2

(ωi − ωj)2
if j 6= i.
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This is the jacobian matrix of the Costa Hoffman Meeks configuration, with the last row
and column removed. Since the Costa Hoffman Meeks configuration is non-degenerate,
A has rank n − 1 and any minor of size n − 1 of A is invertible. Let B be the n × n
matrix defined by Bi,j = Ai,j for i < n and Bn,j = ω−j . Then B has rank n. Indeed, the
operation Cn ←

∑
ωjCj on the columns of B gives the column Cn = (0, · · · , 0, n).

Returning to the dihedral configuration, put the variables in lexicographic order :
p1,1, · · · , p1,n, · · · , pM−1,1, · · · , pM−1,n, pM,1. Consider the jacobian matrix, remove the
first line, the first column, the last line and the last column. Let Lk,i denote the row
corresponding to Fk,i. Perform the following row operations :

Lk,1 ←
t(4−n)2k−1

n2ckck−1

∑
i

ωiLk,i for k ≥ 2,

Lk,i ←
t2

k+1

c2k
Lk,i for k ≥ 2, i ≥ 2.

By the above formulae, one obtains a matrix which converges when t → 0 to a matrix
which has upper triangular block form, with M square blocks on the diagonal. The first
block has size n − 1 and is an invertible minor of A. The other M − 1 blocks are equal
to B so are invertible. Hence this limit matrix is invertible. It follows that the dihedral
configuration is non-degenerate for t small enough.

A.2 An asymmetrical configuration of type 5, 4, 1.

In this section we give a proof that there exists a family of embedded asymmetrical con-
figuration of type 5, 4, 1, namely we take N1 = 5, N2 = 4, N3 = 1. We may normalize
c1 = 1. c3 is determined in function of the free parameter c2 by (6). By a straightforward

computation, the configuration is embedded provided 1 < c2 <
5−
√

5
2

' 1.381.

We first study the case c2 = 1. Equation (6) gives c3 = 3. Write

P1 = z5 +
4∑

i=0

aiz
i, P2 = z4 +

3∑
i=0

biz
i.

We assume that a0 6= 0, as the case a0 = 0 only gives very symmetric configurations. We
also assume that b3 6= 0, and take b3 = 2 by scaling. Equation (5) with z = 0 gives b1 = 0.
Expanding equation (5) we find

4(1− a4)z7 − 6(a3 + a4 − b2)z6 − 6(a2 + 2a3)z5 − 2(2a1 + 7a2 − 10b0 + 2a3b2)z4

−6(2a1 + a2b2 − 2a4b0)z3 − 6(a0 + a1b2 − a3b0)z2 − (4a0b2 − 2a2b0)z = 0.

Let Ei be the coefficient of zi in this equation. Write x = b2. Equations E7 to E2 in this
order determine all coefficients as functions of x by solving only linear equations. We find,
in this order,

a4 = 1, a3 = x− 1, a2 = 2− 2x,
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a0 =
1
4
(−4x3 + 2x2 + 9x− 7), a1 =

1
4
(6x2 − 13x+ 7), b0 =

1
4
(2x2 − 9x+ 7).

Reporting these values in E1 gives the equation

P (x) := 4x4 − 4x3 + 2x2 − 9x+ 7 = 0.

which factors as
(x− 1)(4x3 + 2x− 7) = 0.

This polynomial has four simple roots, two of which are complex. Let x0 be one of them.
Using Euclid’s algorithm we find that

D := gcd(P1, P2) = z3 + (−x0 + 2)z2 + (x2
0 − x0)z +

1
4
(4x2

0 + 2x0 − 7)

and P1, P2 factor as

P1 = (z2 + (x0 − 1)z − x0 + 1)D, P2 = (z + x0)D.

In particular P1 and P2 share three roots, so the configuration is singular. Let us prove
that the configuration is asymmetrical if x0 is not real. Let ϕ : C → C be a symmetry
of the configuration (other than the identity), so ϕ fixes the set of roots of Pk, for each
k = 1, 2, 3. Then ϕ(0) = 0, and ϕ fixes the sum of the roots of P1, which is equal to
1. Hence ϕ(z) = z. This implies that the coefficients of P1 are real, hence x0 is real, a
contradiction. So the configuration is asymmetrical.

For arbitrary values of c2, we can solve the equations in the same way, except that the
computations cannot be explicitely done by hand, so we content ourself with the form of
the solutions. In the following, the notation `(·) means a linear function of its arguments
whose coefficients are rational functions of c2. We normalize b3 = 1 and write b2 = x as
before. Then (5) has the form

`(a4, 1)z7 + `(a3, a4, x)z6 + `(a2, a3, a4x)z5 + `(a1, a2, a3x, b0)z4

+`(a0, a1, a2x, a4b0)z3 + `(a0, a1x, a3b0)z2 + `(a0x, a2b0)z = 0

Let Ei be the coefficient of zi in this equation. Solving E7, E6 and E5 gives

a4 = p0(x), a3 = p1(x), a2 = p1(x).

where the notation pr(x) denotes a polynomial of degree at most r in the variable x whose
coefficients are rational functions of c2. Equations E4, E2 and E2 then give a linear system
in the unknowns a0, a1 and a2. The determinant ∆ of this system has the form ∆ = p1(x).
The Cramer formula gives

a0 =
p3(x)

∆
, a1 =

p3(x)
∆

, b0 =
p3(x)

∆
.

Multiplying E1 by Delta and replacing the above values gives an equation of the form
P (x) = 0, where P is a polynomial of degree at most 4 whose coefficients are rational
functions of c2. When c2 = 1, we have seen that that no division by zero occurs in this
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computation, and P has four simple roots. Therefore, this remains true for generic values
of c2 (namely, except for a finite number of values). Also for c2 = 1, P has two complex
roots. This remains true by continuity for c2 close to 1.

We have seen in section 2.3 that for generic values of c2, the configuration is non-
singular. Let us now prove that it is non-degenerate, provided it is non-singular and x0

is a simple root of P . Fix the values of c1, c2 and c3. Let pk,i(t) be a deformation of
the configuration with pk,i(0) = pk,i, where t is a real parameter. Assume that Fk,i(t) =
o(t). We must prove that up to complex scaling and translation, pk,i(t) = pk,i(0) + o(t).
Normalize translation by p3,1(t) = 0. Define as before the polynomials Pk,t =

∏
(z −

pk,i(t)). Equation (5) gives that

c21zP
′′
1,tP2,t + c22zP1,tP

′′
2,t − c1c2zP ′1,tP

′
2,t − c2c3P1,tP

′
2,t = o(t)

at the points p1,1(t), · · · , p1,N1(t), p2,1(t), · · · , p2,N2(t). By linear algebra, the coefficients
of the above polynomial are all o(t). If we call a0(t), · · · , a4(t) and b0(t), · · · , b3(t) the
coefficients of P1,t and P2,t, normalize scaling by b3(t) = 2 and write b2(t) = xt, we obtain,
by the above computation, the equation P (xt) = o(t), where P is the same polynomial.
(Recall that the coefficients of P only depend c2, which is fixed, so P does not depend on
t.) Since x0 is a simple root of P , this implies that xt = x0 + o(t). Then we have ai(t) =
ai(0) + o(t) and bi(t) = bi(0) + o(t). Hence pk,i(t) = pk,i(0) + o(t), so the configuration is
non-degenerate.

We conclude that if c2 > 1 is close enough to 1, the configuration is non-singular,
non-degenerate, asymmetric and embedded.

A.3 An example with a planar end of order 2

In this section, we give a computer proof that there exists embedded FTC minimal surfaces
with a planar end of order 2. We continue with the example of type 5, 4, 1 of the previous
section and take the value c2 = 5/4, which gives a planar end at level 2. Here are the
results :

a4 =
5
24
, a3 = −105

256
+

15
16
x, a2 =

3465
2048

− 4595
1152

x

a0 = − 1
9437184

−493537968x+ 121415679 + 768946176x3 + 162269440x2

16x+ 9

a1 =
1

1966080
6967296x3 − 8351343 + 29794864x− 26814720x2

16x+ 9

b0 = −49313
18432

x+
63
256

x2 +
71379
65536

P (x) = −1524209068800x2−285169111920x+2183134638080x3+180302283315+1490178539520x4.

The discriminant of P is

137262067070756943236221183727217566386581834266359030391280500736000000
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which is non-zero, so P has four simple roots. Each of them gives a non-degenerate
configuration.

To prove that each configuration is non-singular, we use the argument described at the
end of section 2.3. The only values of (m1,m2,m3) which satisfy (7), with m1 +m2 ≥ 2
or m2 + m3 ≥ 2, are (1, 4, 1) and (5, 4, 1). Both of them give P2 = z4, which is not the
case because b3 = 2. So the configurations are non-singular. Finally, we have

c1
∑

i

p1,i − c2
∑

i

p2,i = −c1a4 + c2b3 =
55
24
6= 0

so the Gauss map has order 2 at the planar end.

A.4 Proof of equation (19)

By the Residue theorem, we have

Nk∑
i=1

∫
C(a−k,i,1)

z
ψ

dz
+

Nk−1∑
i=1

∫
C(a+

k−1,i,1)

z
ψ

dz
= −2πi Res∞k

(
z
ψ

dz

)
. (20)

Let g be the genus of Σ and A1, · · · , Ag, B1, · · · , Bg be a canonical homology basis of Σ.
We apply Riemann’s bilinear relation ([3], page 241) to the pair of meromorphic 1-forms
(φ1, φ2) (these are meromorphic differentials of the second kind)

g∑
i=1

∫
Ai

φ1

∫
Bi

φ2 −
∫

Ai

φ2

∫
Bi

φ1 = 2πi
M+1∑
k=1

Res∞k

(
φ2

∫
φ1

)
. (21)

By assumption, the period problem is solved, so all periods of φ1 and φ2 are imaginary.
Hence the left side is real. To compute the residues at ∞k, we write, in a neighborhood
of ∞k,

φ1 = dz + µ1,k
dz

z2
+ o(

dz

z2
),∫

φ1 = z − µ1,k

z
+ o(

1
z
),

φ2 = (−1)k+1i dz + µ2,k
dz

z2
+ o(

dz

z2
),

φ3 = Qk
dz

z
+ o(

dz

z
)

where µ1,k, µ2,k are some complex numbers and Qk is real. This gives

Res∞k

(
z
ψ

dz

)
= −2µ1,k + 2(−1)kiµ2,k −Q2

k,

Res∞k

(
φ2

∫
φ1

)
= (−1)k+1iµ1,k − µ2,k.
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Since Qk is real,

Im Res∞k

(
z
ψ

dz

)
= 2(−1)k+1Re Res∞k

(
φ2

∫
φ1

)
. (22)

Equations (20), (21) and (22) prove (19).

A.5 Proof that the equations are independent

Let ψ be any meromorphic quadratic differential on Σ with at most double poles at
∞1, · · · ,∞M+1. In this section we prove that equations (15) to (19) imply that ψ = 0,
provided t is small enough. The idea is to prove that this is true if t = 0, and conclude
by continuity. When t = 0, Σt is a noded Riemann surface. In this case, the notion of
holomorphic quadratic differential must be replaced by that of a regular quadratic differ-
ential : a regular quadratic differential ψ is holomorphic outside the nodes (with at most
double poles at ∞1, · · · ,∞M+1), and has at most double poles at each side a−k,i and a+

k,i

of each node, with the same residue. (The residue of a q-differential at a pole p is the
coefficient of ζ−q in the expansion of ψ in term of a local coordinate ζ such that ζ(p) = 0.
This is independent of the choice of the local coordinate). The space of regular quadratic
differentials on Σt depends holomorphically on t, including at t = 0.

Let ψ be a regular quadratic differential on Σ0 satisfying equations (15) to (19).
Since ψ has at most double poles at∞1, · · · ,∞M+1, ψ/dz is holomorphic at∞1, · · · ,∞k.
Equation (15) imply that ψ/dz has at most simple poles at all a+

k,i, a
−
k,i. Equations (16) and

(17) imply that the only possible poles of ψ/dz are at a−1,1, a
−
1,2, and a+

k,1 for k = 1, · · · ,M .
Since ψ/dz has at most one simple pole in each C k∪{∞k}, k ≥ 2, we conclude that ψ = 0
in each C k, k ≥ 2. Equations (18) and (19) imply that

a−1,1Resa−1,1

ψ

dz
+ a−1,2Resa−1,2

ψ

dz
= 0.

The Residue Theorem in C 1 gives

Resa−1,1

ψ

dz
+ Resa−1,2

ψ

dz
= 0.

These two equations imply that ψ/dz has no residue in C 1, so ψ = 0.
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