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1 Introduction

In this paper we consider embedded, complete, simply-periodic minimal sur-
faces in Euclidean space R®, with horizontal planar ends and finite topology
in the quotient by the period. We call them simply-periodic minimal surfaces
with horizontal planar ends.

The classical example is the family of Riemann examples. These surfaces
may be imagined as a periodic set of horizontal equidistant planes with
one neck between each plane. Wei constructed a similar family where the
number of necks is alternately 1 and 2. The parameter for these families
is the period 7, a non horizontal vector. When the period 7 becomes
horizontal, these surfaces degenerate. The degenerate surface may be seen
as horizontal planes with infinitesimally small necks between them. The
goal in this paper is to start from such a degenerate situation and recover
the family of minimal surfaces. A necessary condition for the existence of
the family is that the infinitesimal necks satisfy a balancing condition, see
Theorem 1. This is also sufficient up to a non-degeneracy hypothesis, see
Theorem 2.

To state our results we need some definitions. Let {M;}, t > 0 be a
family of simply-periodic minimal surfaces with horizontal planar ends and
period T;. We may order the ends of M; by their height and label them ooy,
k € Z. Our hypotheses are:

Hypothesis 1 (planar domains and necks) The number N of ends of the
quotient M;/T; does not depend on t (N is even). There exists positive
integers ng, k € Z, such that ngyn = ng, and a covering of My by domains
Qkﬂj and Uk,i,t; ke€eZ,vr=1,---ng, such that Qk—l—N,t = Qkﬂj + T3, Uk-}-N,i,t =
Uk + Ty, and:



a) For all k, Q4 is a graph over a domain in the horizontal plane, and
contains the end ooy.

b) For all k,t, Uy is conformally an annulus whose two boundary com-
ponents lie in Q4 and Q41+ The Gauss map is one to one in Uy ; ;.

We call Q¢+ a planar domain and Uy ;; a neck between €y ; and Qp41¢. g
is the number of necks between € ; and Q41 ;.

\ ( Yke11t

Qi1

Fig. 1: planar domains and necks.

Hypothesis 2 (asymptotic behavior when t — 0)

a) For all k, the Gauss map converges on 4 to a vertical vector when
t—0.

b) For all k,t, Uy, is contained in a Euclidean ball whose radius goes to
zero and whose cenler converges to a point py; in the horizontal plane
z3 = 0. This implies that T = lim T; exists, T is a horizontal vector
and pp+N,; = pri+ 1. Moreover, for each k, we assume that the points
Phyis Phtij, 0 =1, -ng, =1, ngy1 are distinct.

c) We may rescale M; so that for any k, i, the necksize of Uy, has a
nonzero finite limit when t — 0, where the necksize of Uy, is the
vertical component of the flux of Uy ;.

Recall the flux of Uy ;s is the integral of the conormal on a circle going
around the neck (there is a matter of orientation which is clearly irrelevant
for this hypothesis). For a catenoid the necksize is the length of the waist. It



is known (although we will not use it) that under these hypotheses the necks
converge (after suitable rescaling) to catenoids, so the necksize is essentially
a way to measure the length of the waist of the neck. By hypothesis 2b, all
necksizes go to 0 when ¢ — 0, so hypothesis 2c is about how fast they go to
0 relative to each other.

1.1 Forces

As we will see, {py;} must satisfy a balancing condition, which is best
explained using forces. Let {pr;}, k € Z, ¢t = 1,---ny be a periodic set
of points in the plane, i.e. pryn,; = pi; + 1. Consider the points pi; as
particles in the plane, with charge

(=D*
ng

Q(pr,i) =

Let f(p,p’) be the 2-dimensional electrostatic force exerted by p’ on p:

N n P=D
fp,p) = Q(p)Q(p)in_p,Hz-

The force exerted by all other particles on py; is defined as

Nk41 Ng—1
Fri=2Y [(orirprg) + D f(Prisperrg) + > f(Pris Pe-1,5)-
J# J=1 i=1
So py,; interacts repulsively with the particles py ; — mind the factor 2 — and

attractively with the particles py_1 ; and pg41,;. We say that the configura-
tion {pg;} is balanced if all forces are zero.

Theorem 1 Let {M;}, t > 0 be a family of simply-periodic minimal sur-
faces satisfying hypotheses 1 and 2. Then the configuration {py ;} is balanced.
Moreover we have the following geometric information: we may rescale M;
(by a factor going to infinity) so that for all k, i, the necksize of Uy ;+ con-
verges to 1/n; whent — 0. We may rescale M; (by another factor going to
infinity) so that for all k, the distance between the asymptotic planes of the
ends ooy, and 0oy converges to 1/ny.

Theorem 2 Let {p;;} be a non-degenerate balanced configuration. Then
Jor t > 0 small enough there exislts a smooth family M; of embedded simply-
pertodic minimal surfaces with horizontal planar ends satisfying hypotheses



1 and 2. Moreover this family is unique in the following sense: if M, is
another family of simply-periodic minimal surfaces with the same period T;
and satisfying hypotheses 1 and 2 (with the same numbers ny and points
Pk,i), then up to a translation, M; = M, for t > 0 small enough (this may
be used to detect symmetries of M;).

Here non-degenerate means the following: Let m = ny 4+ ---ny. Let F
(resp. p) be the vector in R*™ whose components are the Fy; (resp. p.)
for k=1,---N and ¢ = 1,---ng. We say that the balanced configuration
{p,i} is non-degenerate if the differential of the map p — F : R*™ — R*™
has rank 2(m—1). It cannot have rank 2m because from f(p’,p) = —f(p, p'),

one has
N ng
Vp, ZZFJH = 0.

k=1 i=1
So non-degenerate means that the differential has maximal possible rank.
Note that the period T is fixed in this definition.

From the kernel point of view, the forces are clearly invariant under
translation of all particles, so the kernel of the differential has dimension at
least two. So non-degenerate means that translations are the only infinites-
imal deformations of the configuration.

We identify R? with C. Then

Qr)QW
flp.p) = (_)7_(,)

p—Dp
sop— F:C™ — C™ is antiholomorphic. Nondegenerate means that the
m X m complex matrix dFy ;/dp, ; has complex rank m — 1.

1.2 Overview of the paper

In section 2 we give examples and classification results. We prove theorem
2 in sections 3 to 7. We use the Weierstrass representation. Recall that
given a Riemann surface ¥, a meromorphic function g : ¥ — C U oo (the
Gauss map) and a holomorphic differential 1 on X (the height differential),
the Weierstrass representation formulae are:

i

¢:%¢h@¢m)=(%@‘”—mm§@‘“+mmn> (1)

w(z) = (Re/Z:qbl,Re/Z:dﬁQ,Re/Z:qbg) 2)
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where z € ¥ and zg € ¥ is a base point. The problem is that ¢(z) depends
on the path of integration; this is usually called the period problem.

We define all possible reasonable candidates for the Weierstrass data
(2, 9,n) of the minimal surface we want to construct, depending on some
parameters, and then adjust the parameters to solve the period problem.
The most important parameter for our construction is a small nonzero real
number r. ¥ is a sum of Riemann spheres connected by small necks whose
“size” is controlled by the parameter r. We write X for the collection of all
other parameters. We write the period problem as a finite set of equations
F(r,X)=0.

When r = 0, X degenerates into a sum of disjoint Riemann spheres,
so the Weierstrass data degenerates into the Weierstrass data of disjoint
minimal surfaces. The key point is that the map F(r, X) extends smoothly
to r = 0. Moreover the limit F(0, X) can be ezplicitly computed.

The equation F (0, X) = 0 boils down to the balancing condition. More
specifically, the forces come from the horizontal periods of the Weierstrass
data around the necks.

Since we have an explicit formula for F (0, X'), we can compute explicitly
D;F(0,X). The non-degeneracy condition gives that Dy F (0, X) is invert-
ible.

The implicit function theorem (in finite dimension) says that for r small
enough, there exists a unique X (r) such that F(r, X(r)) = 0. This proves
the existence of the family of minimal surfaces. It degenerates when r = 0.

Finally, we prove in section 7 that the surfaces are embedded. It is usu-
ally not easy to prove that a minimal surface given in terms of its Weierstrass
data is embedded. In our case, we have explicit asymptotic formulae for the
Weierstrass data when r — 0. Using this, we can decompose the surfaces
into pieces which are either graphs or converge to catenoids, and prove that
it is embedded.

We prove theorem 1 in section 8. We prove that if a family of minimal
surfaces satisfy our hypotheses, then its Weierstrass data is one of the candi-
dates introduced above, so it has to satisfy the equation F (0, X') = 0, which
implies the balancing condition. This proof does not give any geometrical
interpretation of these forces. It would be very interesting to have a more
geometric proof of Theorem 1.
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Fig. 2: One of Wei examples. Computer image by J. Hoffman and F. Wei.

2 Examples

In this section, F}; is the conjugate of the force. This is

more convenient for computations.

2.1 Generalisation of Riemann and Wei examples



Proposition 1 Lei n € N*. Let 6;

is balanced and non-degenerate: N

p1i = cotby, po1 = +V/—1 and T =

T

n+ )
2, ny =m, ng =1, Ve = 1,--n,

2v/—1. We use the notation /—1 to

The following configuration

avotid confusion with the index 1. n = 1 gives Riemann example; n = 2 gives

Wei example.

Pa1
P15 Pra Pz Py P11
3
Poa Poa 6

Fig. 3: left: n =2 (Wei example). Right: n = 5.

The proof is an elementary computation:

1/n 1/n 2/n?
Ry o= - Un 5 2
Pri— P21 Pri—pa1+ T o P1i—DP1,j
2 cot 6; 1
T on2 _n1+cot20i +Z¢:C0t0i — cot b,
i#

1 cott; 14 cot §; cot §; ~ cot(8; - 0;)
cotf; —cot; 1+cot?8;  (cot; —cot;)(1+cot?6;)  1+4cot?d;

2
Fri= n?(1 + cot? 6;)

cotf; — Zcot(ﬁi —0;)

J#

It is easy to see from this formula that Fy; = 0. By symmetry, F3; = 0.
This proves that the configuration is balanced. We now prove it is non-

dpL]-
do;

degenerate. Using that

OF1; _

= —(1 4 cot? 6;) we find that

-2

dp1;  n2(1+ cot?6;)(1+ cot? ;)

M; ;



with
Mm- =1+ cot? 0; + Z 1+ C0t2(0i — 0]')
J#
Mi,j =—-1- COtQ(HZ' — 0]‘) if 5 # i.

Since M; ; > Z |M; ;|, the matrix M is invertible by standard linear algebra.
i#F

. OFy;

Hence the matrix ——

apu
F has complex rank at least n. Hence the configuration is non-degenerate.

O

is invertible, which implies that the differential of

2.2 Uniqueness of the examples of section 2.1

Proposition 2 Let n € N*. Let py; be a balanced configuration such that
N =2, n =mn,n =1and T = 2/—1. Then up to translation and
permutalion, py; is the configuration of proposition 1.

We will see in proposition 4 that T cannot be zero for a balanced configu-
ration. Hence T' = 24/—1 can always be achieved by scaling and rotation.
Proof of the proposition: Without loss of generality we may assume that

p2,1 = v —1. Write p; ; = z;. Then

2 1 2
== _
L n2 %: zi — 2 nzf +1
e

Since the sum of all forces is zero we may discard the equation Fy; =

0. Therefore the configuration is balanced if and only if zy,-- -z, satisfy
the n equations Fy; = 0. Note that if (z1,---2,) is a solution then for
any permutation o, (20(1), - -zg(n)) is also a solution. We shall prove that
z1, -+ - zn are the roots of a one variable polynomial of degree n, which proves
that (zq,---2,) is unique up to permutation.

Let (z1,---2,) be a solution. Given J C {1,---n} let of be the kth
elementary symmetric function of the variables z;, i € {1,---n} \ J, namely
cr;g: Z Ziy %y
1 < e <y
t; €{1l,---n}\J



If J =0 we simply write o). Let

2
n
F;, = Fl,i X 7(1 + 2’22) H(ZZ - Z]‘).
i#i
The goal is to write E; as a polynomial in the variable z; with coefficients

depending only on oy, - - -0,. This is quite computational, we give the main
steps of the computation below.

E; = (142 ZH i~ 2k) —'nZiH(Zi—Zj)

J#FL ki, J#L
n—2
— (1+23)Zzakl71}(_1kn 2—k nzzzg kn 1-k
j#i k=0
Z Uki’j} =(n-1- k)a,g}

J#i

k
7 —i k—7
of = Y os(-1)ki
J=0

n n—1 n—1
o= Y ora(c1P T S (- Za] )
71=2 k=j7—2 k=j

Hence z; is a root of the polynomial

2{:03 5 ] n— ]( __j4_127l__j_k2)

i (=5 (n+147)
—Zaj(—l) z 5 .

Now the key point is that zq,-- -z, are distinct so they are all roots of P.
Looking at the highest order term we find that

n(n+1) zn:
2 =
Comparing the two formulae for P we find that oy = 0 and if 2 < 57 < n,

2= et1-g)
! (G+1)j %

n(n+ 1)

P(z)= -

n

j=1

9



This determines P and shows that {z,---z,} is unique. Explicitely,

n(n+ 1) E I —

P(z) = - Z ' 'z” .
2 0Sien (n—2k)1(2k + 1)!

T

n+1°

The roots of this polynomial are of course cot

2.3 Inductive construction of more complicated examples

Let F,::Z (resp. F,;Z) be the sum of the forces exerted by the particles pyy1 ;
(resp. pg—1;) on pg;, namely,

Nk41

Ff; = Z J(Priy Prt1,5)-

J=1

Proposition 3 Lel py; and p) ; be lwo balanced configurations. We use the
symbol ’ for all quantities associated to the configuration pﬁm», e.g. p;H_N, i =
pr.; +1'. Assume that:

1) nq=n]=1
2) pia= p'1,1 =0
3) Ffy=F1#0
Define the configuration p%ﬂ» as follows:
Vk e {1,---N}, nj =mny and pj; = pr;

Vke{l,---N'}, nj,ny=mn, andpi n;,=pp; +7T
The configuration pY , is periodic with N = N + N" and T" =T + 1" (see
the figure below). Then:
1) The configuration pj ; is balanced.

2) Assume that the configurations py; and pj . are unique up to transla-
tion. Then pY . is also unique up lo translation, in the sense thatl if
Py is another balanced configuration, with N" = N", ny = nj and

T" =T", then up to translation and permulalion, D =Dy

10



3) Assume that py; and pﬁm» are non-degenerate. Then so is pgﬂ-.

Note that condition 2 may always be achieved by translation, and condition
3 may always be achieved by rotation and scaling, provided F1—I,_1 # 0 and
Fih#o0.

Before proving the proposition, let us give an example. Consider the
configuration of proposition 1, scaled by %, and with the indices 1 and
2 exchanged so that ny = 1 and ny = n. An elementary computation
gives F1—I,_1 = —+/—1. Using proposition 3 and induction, we can construct
balanced configurations such that ny is any periodic sequence of positive
integers satisfying ny = 1 for odd k. All these configurations are non-

degenerate and unique up to translation.

4/3

3/2

Fig. 4: n =2 and n’' = 3.

Proof of proposition 3: From the definition, one deduce that p§<f+1,1 =
pN411- Hence FY; = 0 for k = 2,---N. Also piyniyry = Pyigrg + 1
so Fy!. y;=0for k=2,---N'. Moreover

" _ 4+ "— _ o+ - _ i+ +
FN+1,1 - FN+1,1 + FN+1,1 - F1,1 + F1,1 - F1,1 - F1,1 =0.

Since the sum of the forces is zero, also F|'; = 0. This proves 1.

Proof of 2: Let p ; be another balanced configuration with T" = T". With-
out loss of generality we may assume that pj, = p{, = 0.

Let T = fﬁ;{,_l_m — pi1- Consider the configuration py; defined by py; =
fﬁgﬂ- for k=1,---N and pryn,i = Pk, + T for k € Z. Then PN41,1 = fﬁ?{,_l_l’l
S0 ﬁk,i =0 for k = 2,---N. Since the sum of the forces is zero, 15111 =0
as well. Hence the configuration py; is balanced. Let A = f/T Since

11



the configurations p;; and Apg; have the same period, they differ by a
translation. Since p; 1 = p1,; = 0, we have

Phyi = APk,
Let 7/ = ﬁ;{,+N,~+171 fpvxf_l_l - Consider the Conﬁguration Pj.; defined by
Pri=Phyn;— T fork=1,---N'and pp, n:; = pp; + 1" for k € Z. Then
as above, pj ; is balanced. Let \' = T'/T'. Then

Apkz

O_FN-HI—Fjléil,l‘*'FJ/\lf_+11:F/++F1_1
Hence A = ). Also
T'=T+T = AT+ AT = \T"

which implies that A = 1. Hence D}, = p} ., which proves 2.

Proof of 3: recall that py ; non—degeﬁerate ‘means that if Pk,i(t) is a deforma-
tion of py, such that T(t) = T and Fi;(t) = o(t), then up to a translation,
Dk,i(t) = pri+o(t). So we see that the proof of 3 is essentially the same as the
proof of 2, although of course non-degenerate and unique up to translation
are not equivalent. a

2.4 Further results

Let me state:
- If N =2 and ny = ny = 2 then there are no balanced configurations.

-If N =2, ny = 3 and ny = 2 then there are at least two non-
degenerated balanced configurations. For one of them, the points
P11, 1,2 and pp 3 are not on a line. (communicated by M. Weber

at M.S.R.L).

These examples show that given a periodic sequence of integers ng, one
cannot hope for existence nor uniqueness in general. Let me conclude this
section with a simple observation.

Proposition 4 There is no balanced configuration with T = 0.

12



Proof: when 7' =0, a straightforward computation gives

N ng N ng ng 1 N ng Pkt 1 N 1

)3 WATIEE) ) D) ST 35 3) DEE SRS D3

k=1 i=1 k=1 i=1 jmitl k=1 i=1 j=1 < kUkEL =1k
Hence the forces cannot all vanish. O

3 The Welerstrass data

We now begin the proof of Theorem 2. In this section we define all possible
candidates for the Weierstrass data of the family of minimal surfaces we
want to construct, depending on certain parameters.

It is well known [6] that a simply-periodic minimal surface with finite
total curvature in the quotient may be conformally parametrised on a com-
pact Riemann surface ¥ minus a finite number of points corresponding to
the ends. Moreover, the Gauss map ¢ is meromorphic on ¥ and in the case
of horizontal planar ends, the height differential 7 is holomorphic on .

We define 3. and g explicitly and we define n by prescribing its periods.

3.1 The Riemann surface and the Gauss map

Consider N copies of the Riemann sphere C = C Uoo, labelled C,---C y.

On each Cy, k=1,---N, consider the meromorphic function
O ki = Br
)t )t
z) = _——
!]k( ) z;z—a;m 2; Z—b]w'
= =

where the poles ay;, by; are distinct complex numbers, and ay;, B, are
nonzero complex numbers such that

ng—1

g
Z ag; = Z Br,i = 1. (3)

These are parameters of the construction. The first equality in (3) implies
that g has a zero of order at least 2 at infinity: this will be needed later.
The second equality is a normalisation.

For each £k = 1,---N, and ¢« = 1,---ng, we identify a small annulus
around ay; in Cj with a small annulus around br41, in @k-l-l? thus creating
ny small necks between C}, and Ek-H- We do this as follows.

13



Let vx; = 1/gg. This function has a simple zero at ay; hence is one
to one in a neighborhood of aj;. There exists ¢ > 0 such that vy, is
biholomorphic from a neighborhood of ay; to the disk D(0,e¢). We think
of vi; as a complex coordinate in a neighborhood of a;;, and really forget
that it is defined everywhere on Cj. When there is no possible confusion,
we will write v = vg;. In the same way, wry1,; = 1/gk+1 is biholomorphic
from a neighborhood of by44,; in C 41 to the disk D(0,¢).

Ek+ 1 ':: [€>) _:‘

o S

Fig. 5: creating necks.

I

Consider a positive number r such that 0 < r < 2. Remove the disk

r — r — __
|vgi| < = from Cj and |wp4y 4] < = from C41. Identify the points in Cy

and @k-H whose respective coordinates v = vg; and w = w41 ,; satisfy
r r
-<|v|<e, —-<wl<e, vw=r.
€ €

Doing this for all £k = 1,---N and ¢ = 1, - - -ny defines a compact Riemann
surface we call ¥ (r is the same for all necks and when k = N, £+ 1 should
be understood as 1). From the topological point of view, the genus of X is

N
G(E) =1+ (m—1).
k=1

We define the Gauss map g : 3 — C U oo by

Vrgr(z) if z € Cy, k even
1

mleE(Ck,kodd

To see that g is well defined on ¥, consider the coordinates v = vy, and
w = wgy1,. If k is even, then ¢ = \/r/v on Cyp and g = w/\/r on C .
Both values of g agree when vw = r. This proves that ¢ has the same value
at the two points that are identified when defining 3. The case k odd is
similar. This proves that ¢ is a well defined meromorphic function on X.

9(2) =

14



Remark 1 A more natural way to define X would be to use z as a local
coordinate instead of gi: Consider N copies of the Riemann sphere, and
points ay;, ¢ = 1,---ng and bg;, ¢ = 1,---ng_1 in each sphere. Let v =
z—ag; and w = z—bg41,;. Identify points using the rule vw = rj; where ry;
is a small complex number depending on the neck. This defines a compact
Riemann surface 3. The problem is that this does not define a meromorphic
function. The natural way to define ¢ is to prescribe its zeroes and poles,
but then we have to check the conditions of Abel’s Theorem, which means
more equations to solve. When Abel’s conditions are not satisfied, g only
exists as a multi-valued function. Since we solve all equations at the same
time (using the implicit function theorem), we have to compute the periods
of the Weierstrass data when Abel’s conditions are not yet satisfied, which
means that we have to compute the integrals of multi-valued differentials.

So instead of defining the Riemann surface and then the Gauss map, we
define both at the same time. Instead of gluing Riemann spheres, we glue
couples (Cy,gx). In fact, this construction gives all possible candidates for
the Weierstrass data of a minimal surface satisfying hypotheses 1 and 2. We
will see this in section 8 when we prove Theorem 1.

3.2 The height differential

By standard Riemann surface theory ([3] page 228), the space of holomor-
phic differentials on ¥ is isomorphic to CY (G is the genus of ). The
isomorphism is given by integration on the G curves Ay, ---Ag of a ”canon-
ical basis” of the homology of ¥. Recall that a canonical basis is a set of
2G closed curves Aq,---Ag, By, -+ Bg such that the intersection numbers
satisfy A;.B; = 1 and all other intersection numbers are zero. We define a
canonical basis as follows:

Let Aj; be the circle |vg| = € in C, oriented positively (i.e counter-
clockwise). Note that Ay ; is homotopic to the circle |wpy1 ;| = € in Cpqq,
oriented negatively, because v = ce'? gives w = —e™.

For = > 2, let By; be a closed curve in nghich intersects Ay ; with
intersection number —1 and Ay ; with intersection number 41, and does not
intersect any other A-curve or B-curve. Let Bj; be a closed curve in X
which intersect all curves Ay ; with intersection number 41, and does not
intersect any other A-curve or B-curve. We will define these B-curves more
precisely in section 5.2 when we compute the periods of the Weierstrass
data.

15



The following set of curves: A, Bi1, Ak, Bi; for k =1,---N and

t = 2,---n form a basis of the homology of 3. Note that the number of
N

these curves is 2 + QZ(nk — 1) = 2G(X). This is not a canonical basis
k=1
because the intersection numbers Ay ;.B;; are not right, but replacing B ;

by Bi1 + Bi; gives a canonical basis.

Fig. 6: The Riemann surface in the case N =4, ny =2, ny = 1, ng = 3,

ng = 1. The top and bottom necks have to be identified. This surface has

genus 4. We have represented the Riemann spheres as planes so that the
picture looks like the minimal surface we want to construct.

Proposition 5 Consider some numbers v;;, k = 1,---N, i = 1,---ny,
such that for any k,
Nk
> k=1 (4)
=1

These are the remaining parameters of the construction. There exists a
untque holomorphic differential n on Y such that for any k = 1,---N and

t=1,---ng, one has
/ =2 iV, (5)
Agi
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Proof. There exists a unique holomorphic differential 7 on X such that (5)
holds for all curves Ay ; of the canonical basis. It remains to prove that (5)
holds for the remaining A-curves, namely Ay, k > 2.

Consider the domain in Cj bounded by the curves Api,t=1,---ng, and
Ap_14,t=1,---ng_1. Recall that A ; is a small circle around ay;, oriented
positively, while A;_; ; is a small circle around by ;, oriented negatively. By

Cauchy theorem,
ng_1

n
2;;~/;k—uin ::;é;~z;hin.

The result follows by induction on k using that > v ; does not depend on
k. The fact that it is equal to 1 is a normalisation. a

3.3 Parameters of the construction

We write a = (g1, @y, ) and a = (ay,---ay). We define similarly 3,
v, @ and b. Let X = («, 3,7,a,b). The parameters of the construction are
(r, X). We summarise our hypotheses on the parameters: for each k, the
numbers ay ;, by ; are distinct; the numbers ay;, B, are nonzero and

ng—1

nk nk
Z&m = Z Bri = Z’Yk,z' =1 (6)
=1 =1 =1

3.4 The equations

Let oo be the point z = 0o in Cj. The points ooy, - --coy will be the N
punctures on Y, i.e the points corresponding to the planar ends. Note that
thanks to (3), the Gauss map has multiplicity at least two at ooy, which is
needed for a planar end.

We recall the conditions so that (X, g,n) is the Weierstrass data for a
complete simply-periodic minimal surface with horizontal embedded planar
ends:

1) For any p € X, not a puncture (i.e p # ooy in our case) 1 has a
zero at p if and only if g has either a zero or a pole, with the same
multiplicity. For each puncture p € ¥ (i.e p = oo ), ¢ has a zero or a
pole of multiplicity m > 2 at p; n has a zero of multiplicity m — 2.

2) For any closed curve ¢ on X, Re fc ¢; = 0mod T;, 7 = 1,2,3, where
T = (T1, T2, T3) is the period of the surface.
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The zeroes and poles of g are the zeroes of all g;. Recalling that dz has a
double pole at oo, the first condition may be written:

1) The zeroes of 5 are the zeroes of grdz, k = 1,---N, with the same
multiplicity. In other words,

N
divg(n) = Z divg(grdz) (7)
k=1

where divg means the formal sum of the zeroes.

Remark 2 Note that by standard Riemann surface theory, the number of
zeroes of a holomorphic differential is 2G'(X) —2, which is equal to the degree
of the right hand side of (7). Hence an inequality in (7) implies equality.
Provided condition 1) is satisfied, ¢; and ¢z only have poles at the punctures
ooi. Therefore condition 2) needs only be checked for the curves of the
canonical basis and for small circles around the punctures. Using the Residue
Theorem as in the proof of proposition 5, condition 2) may be written:

2’) Forany j=1,2,3,anyk=1,---Nand i =1, - -ng,

Re ¢; = 0. (8)
Agi

Forany j=1,2,3,any k=1,---N and ¢ = 2,- - -ny,

Re ¢; = 0. 9)
By i

Re o; ="1T;. (10)

B

Note that condition 2) only asks that these periods are zero modulo 7;. The
above choices are motivated by our picture a priori of the surface we want
to construct.

The equations we have to solve are 7, 8 and 9. Equation 10 gives the
period of the minimal surface.
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4 Holomorphic extension to r =0

The definition of > and g are very explicit, but the definition of 7 is not.
One question we need to answer is: where are the zeroes of 5?7 The key
point to answer this question is that when r — 0, the Riemann surface X
degenerates. This allows us to compute the limit of » when r — 0. When
r =0, we define ¥ as the disjoint union C;U---C y and n by n = n; on Cy
where 7, is the unique meromorphic differential on C}, with simple poles at
ak;, bi,; with residues v;; and —vy,_; ;. Explicitely,

Nk Ng—1
Yk Vk—1,
pe= (Yo 2y T ) g,
- Z — Qf; N z — b;H'
=1 ’ =1 ’

The problem is to prove that r — 7 is continuous at » = 0. This is true, but
even better: continuous may be replaced by holomorphic. For this we need
to think of r as a complex number. This does not change anything to the
definition of ¥ and 7 (this introduces some multi-valuation in the definition
of g but we will not consider g in this section). We also fix the value of the
parameter X.

Proposition 6 Let 2 € Cy, 2 # ag,i, 2 # bri. Then r— n(z) is holomor-
phic in a neighborhood of 0.

It is important to realize that if z # az; and z # by, for all ¢, then for r
small enough, z is outside of the disks that were removed when constructing
Y, so z may be seen as a point on Y. Hence 7(z) makes sense.

Proof of the proposition: this result is essentially proven in Fay [2], propo-
sition 3.7 page 51. The difference is that in Fay, only one neck degenerates,
whereas in our case, all necks degenerate at the same time. To be able to
use the result of Fay, we introduce one parameter r;; per neck. We define
3} as in section 3.1, identifying the points such that vy ;wpy1,; = rr; when
Tk; 7 0. When r;; = 0 we do not identify points. Thus we have a compact
Riemann surface ¥ depending on complex parameters ry ;.

We first prove that 1 depends holomorphically on one r;; (in the sense
of the proposition) when all other parameters r,, ;, (m,7) # (k, ) have fixed
value, 7, ; # 0. We write r = rg;, v = g i, W = Wit1,i, @ = Gy b= bpg1,i,
Yp =% and n. = 1.

Fay defines a complex analytic 2-manifold C together with a holomorphic
function p : C — C whose fiber C. = p=1({r}) is ¥, if r # 0, and the fiber

Co is Yo with the points ¢ and b identified: a degenerate Riemann surface
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with a node (see the details page 50 of [2]. The notations of Fay are C' = ¥,
Zg =0,z =wand t =r).

He then proves (proposition 3.7 page 51, quoted with our notations) that
“there exists G linearly independent holomorphic 2-forms w,, ; on C whose
residues u,, ;» along C, for r in a sufficiently small disk about r» = 0 are a
normalised basis for the holomorphic differentials on X, if r # 0; while, for
r =0, the G —1 differentials u,, ;0, (m,j) # (k, ), are a normalised basis for
the holomorphic differentials on ¥ and wy ;o is the normalised differential
of the third kind on ¥y with simple poles of residue +1, —1 at a, b.”

What Fay means by the residue along C, of a holomorphic 2-form w, is
the Poincaré residue of w/(p — r). Namely, if z;, z3 are local coordinates on
C, and w = f(z1, 22)dz1 A dzq, the Poincaré residue of w/(p — r) is given by
(see [3] page 147):

f(z1,22)dzy
8p/82’2

J(z1,22)dzy
8p/82’1

p=r p=r

When r # 0, we may decompose

e =200 ) Yt i

m7j

where the summation is on the indices m, j such that A,, ; is a curve of the
canonical basis. So 7, is the residue on C, of the holomorphic 2-form

w=2m E Y, ;P

m7j

From this we see that 7, depends holomorphically on r, and g is the mero-
morphic differential on Yy with simple poles of residue 475, =7y at ax;
and by1,;, and whose integral on all curves A4;; is 2wy, ;.

So we have proven that for each (k, ), n depends holomorphically on ry ;
in a neighborhood of 0, when all other r,, ; have fixed nonzero value. By
lemma 1 below, 7 depends holomorphically on all r;; as a function of several
complex variables. In particular when all r;; are equal, we have proven the
proposition. a

Lemma 1 Let D be the unit disk in C and D* = D\{0}. Let f: (D*)" —
C be a holomorphic function of n variables z = (z1,---z,) such that for
each i, for any z; € D*, j # i, the function z; — f(z1,---2,) exlends
holomorphically to D. Then f extends holomorphically to D".

20



Proof: Let 0 < r < 1 and D(r) be the disk of radius r. Let C' < oo
be the supremum of |f(z)| on (0D(r))". Let z € (D*(r))”. The function
z1 — f(21,---z,) extends holomorphically to D(r) so its maximum is on
the boundary:

[f(2)[ < sup |f(z1,- - 2n)-
z1€9D(r)
Repeating the process for each variable we find that |f(z)| < C so f is
bounded on (D*(r))”. By the Riemann extension theorem ([3], page 9) f
extends holomorphically to D(r)™. ]
Proposition 6 gives the limit of n away from the necks. The following
proposition gives the behavior of 5 on the necks.

Proposition 7 Let v = vg;. On the domain Ir] < |v] < € of ¥, we have
€
the formula
r\ dv r dw
n:f<v7_) - = _f (_7w) —
v/ v w w

where f is a holomorphic function of two complex variables defined in a

neighborhood of (0,0).

Proof: we continue with the notations of the previous proposition. All
parameters are fixed except r = r; ;. We use (v, w) as local coordinates on
C and write w = f(v, w)dv A dw. The Poincaré residue is

f(v,w)dv r\ dv
777’:8(7) :f<”v,‘),—-
dw ('vw - T) vW=r v v
This proves the formula of the proposition. a

5 Estimation of the periods

We use propositions 6 and 7 to estimate the periods of 7, gn and g~'n on
the curves Ay ;, By ;. The following proposition gives the leading term of
each period when » — 0. We obtain formulae involving g and ng, for which
we have explicit formulae.

In this section we think of r as a real number. The reason for this is
that the B-periods are multi-valued functions of r when r is complex. This
comes from the fact that one cannot define By ; in a continuous way when r
is complex. This multi-valuation is clear in our formulae: we get log r terms.
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Proposition 8 Leir > 0. Then

/ g(_l)kn = Jr (2m' Resa, .gemn + 7 holo(r, X))

Agi

/ g(—l)“ln = Jr (—2m’ Resp, .y Gh+1Mk+1 + 7 holo(r, X))
Agi

/ n = (Yki— 7k1)logr + holo(r, X)
By i

/ (-1 ! /bkm ! logr holo(r, X) + r holo(r, X)
gl = — 911 Mk+1 + rlogr holo(r, X))+ r holo(r, -
By \/F bryi,: R

ki
/ g(_l)k+1?7 _ L / gk_l??k + rlog r holo(r, X) 4+ r holo(r, X)
Bk,i \/F Qg1

In this proposition holo(r, X') means a holomorphic function of the complex
variables (r, X') in a neighborhood of (0, Xy), where Xg is any value of the
paramelers satisfying the conditions of section 3.3. In general the B-periods
are multi-valued functions of the parameter X. They are only locally well

defined.

We prove this proposition in the following three sections.

5.1 The A periods of ¢!

For the first formula we see Ay ; as the circle vy ;| = ¢ in C . By definition,
g(_l)k = \/rgr. By proposition 6, 7 = n + r holo(r, X, v)dv on A,;. Hence
the first formula follows from the residue theorem. For the second formula
we see Ay ; as the circle |wi41 4] = € in @k-l-l? oriented negatively. The second

_1)k+1

formula comes from g( = \/rgr+1 and 1§ = ngy1 + 7 holo(r, X, w)dw on

Akﬂ'.

5.2 The B periods of 5

Let By; be the union of the following four paths c1, ¢3, c3, c4:

- ¢; is a curve in Cj which goes from the point v, ; = ¢ to the point
vk, = €. It does not depend on r, and we may choose it so that it
depends continuously on X (if X is in a neighborhood of Xj).

- ¢y is the curve parametrised by v ; = r/t fort € [r/e,e]. It goes from
the point vy ; = ¢ to the point wi41; = €.
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- ¢3 is a curve in @k-l-l which goes from the point wi41,; = € to the
point wg41,1 = €.

- ¢4 is the curve parametrised by wyy11 = r/t for t € [r/e,e]. Tt goes
from the point wy41,1 = € to the point vy =e.

The integrals of 7 on ¢; and c3 are holomorphic functions of (r, X) in a
neighborhood of r = 0 because 1 depends holomorphically on (r, X) on
these paths. To compute the integral of 1 on ¢y we use proposition 7. We
expand the function f of this proposition

flv,w) = Z Ay V" W™

n>0,m>0

We may assume that this series converges on |v| < ¢, |w| < e. Since vw =r
this gives

n= E ammv”_l_mrmdv.

/ n = 27t Res,—g E ammv”_l_mrm = 2mi E Up "
A, n
n _— .
E UpnT = Vki-
ko3

Hence
rfe
/77 = / E ammv”_l_mrmdv
co v=e
r An,m — —
= E " log — + E ——(r"e™ T — e
e n—m
n n#Em

= g,logr+ holo(r, X).

When ¢ = 1 this formula gives the integral of n on ¢4, with a minus sign
because ¢4 is oriented the other way. This proves the third formula of the
proposition.

5.3 The B periods of ¢gt'n

We start with the integral of g(_l)kn. For the paths ¢; and c3 we only need
proposition 6.

/ g(_l)kn = \/F/ gxn = /r holo(r, X).
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Wk41,1=€
/ g\~ 77 / gk+177 / g;il’nk+1 + 7 holo(r, X) | .
Cc3 \/_ We41,:=¢

For the paths ¢, and ¢4 we use proposition 7 as in the previous section.

/!] 77—\/_/ glm—\/—/ Zanmv” m2pm gy

€2 n,m

my Gy m rnl r”
Zam+1 mT 0g — 2 + Z n—m-—1 gn—m—l o egm—l—l—n

n#Em+1

1 m
= % (r log r holo(r, X') + r holo(r, X) + Z ngmﬂ) .

The leading (i.e last) term is equal to

i an o
——F ao’mwmdw_ i f 0 w —/ Ipa1Mk+1-
NG w:o; VT Jugri=0 w

The integral on ¢4 gives the same result with the leading term equal to
I .
= Ir1Mk+1-
\/; Wg41,1 =€ i

Collecting the four terms gives the fourth formula of the proposition. The
proof of the fifth formula is entirely similar. a

6 Implicit function theorem

In this section, we prove Theorem 2 assuming that for each k, the zeroes of
grdz are simple. In section 9 we will see how to adapt the proof when gidz
is allowed to have multiple zeroes.

6.1 The map F
Let (i, be the zeroes of gpdz in Cpyi=1, - -np+ ng_1 — 2. We define:
Frki = 1(Ck,i)-

As usual we write F1 ;= (F1 k1, Flhnpdne_, —2) and Fy = (Fia,- - Fi,n).
Since the simple zeroes of a polynomial depend analytically on its coeffi-
cients, F; depends analytically on (r, X') by proposition 6. Note that F; = 0
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only says that n has at least a zero at each zero of gp. By remark 2, each
zero is simple and 7 has no other zero.

We now look at the period problem. By definition of 5, the equation
Re fAm n = 0 is equivalent to 7;; € R, which we assume from now on. A
straig}itforward computation gives

Re/(bl—l—iRe/cﬁz:%(/g_ln—/gn).

In view of proposition 8 we define:

1

Fory = Re/ n, =2, ng.
logr By

Fap: = \/F(/ 9_177—/ 977>7 1=2,-ng.
By By i
(-1)F / ,
Faki = gtn - gn|, i=1,---ng.
\/F Agi Agi

The reason for the (—1)’“ in the definition of F4 1 ; will be seen in proposition
11. We define the vectors F,, F3 and F4 in the obvious way and F =
(F1, Fz, F3, Fa). The equations of section 3.4 are equivalent to F = 0.
What we have done is rescale the periods by a suitable function of r so that
by proposition 8, F has a limit when » — 0. The problem is that F3 and F3
are not differentiable with respect to r at r = 0. The problem comes from
the log r terms. We solve this problem by writing

r=r(t)= e r(0)=0, teR

By proposition 8, (¢, X) — F is smooth in a neighborhood of ¢ = 0. More-
over F (0, X) is given explicitly by

Fi ki = Mie(Cyi)-

Foki = Yhi = V-

ag; bry1,:
.7:37]672- = (—1)k COIljk-}-l / gk_lnk + (_1)]9 COndC / 91;4}177’““ .
ag.1 bryi,1

Faki = 27Ti(_1)k (COij+1 ( Resbk+1,i9k+177k+1) - COIljk ( Resak,e‘gknk)) :

where conj is the conjugation in C, i.e conjk(z) = z if k is even and
conjf(z) = Z if k is odd.
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Proposition 9 Let {px;} be a balanced configuration. Define Xy by:
Qi = Vi = Bry1i = 1/nk,

ar; = (—1)% conj* (pr,),
bri = (—1)% conj* ! (pr_1,).

Then F(0,Xg) = 0. Conversely, if X is a solution to F(0,X) = 0, then
X = Xy for some balanced configuration {px;} (up to some identifications to
be explained in the proof). Moreover, if {py;} is a non-degenerate balanced
configuration, then Dy F (0, Xo) is an isomorphism (again, up to some iden-
tifications). By the implicit function theorem, for t in a neighborhood of 0,
there exists a unique X (t) in a neighborhood of Xy such that F(t, X (t)) = 0.

The corresponding Weierstrass data gives an immersed simply-periodic min-
imal surface with embedded planar ends. We will see in section 7 that it is
embedded. We prove the proposition in the next four sections.

Remark 3 Since r(—t) = r(t) we have F(t, X (—-t)) = F(-t, X (-t)) = 0.
By uniqueness in the implicit function theorem, X (—t) = X(¢). Hence ¢

and —t give the same minimal surface. Moreover E(O) = 0so X(t) =

Xo+O(t*) = Xo+O(1/logr). This will be useful in section 7.

6.2 The equation F; = 0 (zeroes of 7)

In the following sections we assume that r = 0. F;; = 0 is equivalent to:
grdz and 7y, have the same zeroes on Cj. Since they already have the same
poles, they are proportional. By normalisation (6), they are equal. Thus
Fi1 =0 is equivalent to ay; = v and B ; = Yr—1,.

Proposition 10 Let F = {(ak, k) € C™ =1 | S ap, = > B, = 0}.
The partial differential of F; 1, with respect to (ay, Br) is an isomorphism:

E — Critmo =2,

Proof: Since Fi j is zero when ap = v; and 8 = yi—1,

5] 5] -1
—Fik = g —Figj = -
dag; Lk 0Vk,i Lk Chj — Gk

J J 1

Tk = 5 F1kj =
0Pk Lk 0Vk—1,i L Chyj — by

’
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Let L be the partial differential of F; j at the point (o, B;). We prove L is
one to one. Assume that there exists (cu, 8x) € F such that L(dg, Bi) = 0.
We use dots to distinguish between the point (g, k) where we compute
the differential and the tangent vector (dv, Bx). Let

nk ng—1
. akz . ﬁkl
f(Z) Zz_akz Z-Z_;Z_bkz

Then L(dk,ﬁk) = 0 gives f(Cx,;) = 0. Since Y by ; = Eﬁk,i, f has at least

a double zero at co. Hence f and g, have the same zeroes and poles so

we may write f = Agg. This gives ay; = Aoy and ﬁk7i = ABg,;i. Since
Yobg;=0and Y ap; =1, we get A =0. a
6.3 The equation F, =0 (B-periods of n)

From the normalisation ) vz, = 1, we see that F; 5 = 0 is equivalent to

1

Ve = —-
ng

6.4 The equation F; =0 (B-periods of ¢, ¢;)

In this section we assume that F; = 0 so 1y = g dz. This gives:
Fapi= (=1)* coni**! (ar; — ap1) + (=1)" conj® (bpy1.i — bryi1) -

So F3 = 0 is equivalent to

bit1, — brp1,1 = — conj(ag; — ag1). (11)

6.5 The equation F, =0 (A-periods of ¢;, ¢»)
In this section we assume that F; = 0. Then 7, = gx dz gives:
Fapi= 27Ti(—1)k+1 COIljk ( Resak’ig,%) + 271'1'(—1)]C Conjk‘i'1 ( Resbk+17ig£+1) .

Expanding the squares and taking residues gives

. ) Ok Ok Ok,iBkj
Fapi = 4772(—1)k+1 conj” E — E e
i#i Gk — Ak ; QL ; _bk,]

+ 4772( COIlJ Z bﬁk—l—l Zﬁk-}—l,] Z bﬁk—l—l P18 %

k+1,0 — bk—}—l,j k+1,: — Gk41,5
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The balancing condition of the introduction is hiding in this formula. To
see it we need to introduce the parameters py ;. Let m =n;+---ny. Given
some complex numbers pg;, k =1,---N, ¢ =1,---ng, let p € C™ be the
vector whose components are py;. Given (1,p,¢q) € C x C™ x C™, define
(a,b) by

ap; = (—1)F conj* ™ (pri + qr,1)

bri = (—=1)F conj* (pe—1i + gr.i)

where pyin; = pri + 71 and qeyn; = qr; + 7. Then
F3ki = —Qrt1,i + Qr1,1-

Assuming that F3 = 0, we get

f4 o= —dmi | 2 Z VEdVk Z TRiTk—1,j Vi i Vk+1,5
2 T — —
i Pri = Pr,; Pri — Pr—1, ; Prki = Pk+y1,;

Assuming that Fy = 0, we get
Fagi= —4mily;

where F},; is the force introduced in section 1.1. This proves the first state-
ment of proposition 9.

To prove the converse we need to do some identifications because F3 = 0
does not imply ¢ = 0. We first remark that F3 and F4 are not changed if we
translate all ax;, by ; (k fixed, ¢ varying) by the same amount. In fact the
Weierstrass data itself is not affected by such a translation. Indeed, given
some numbers Mg, let ax; = ax; + Ax and b;“ = bgi+ Mg Let (E g,“) be
the corresponding Weierstrass data. Then it is straightforward to check that
the map ¢ : 3 — i], 2 € Cp — 24 Mg is an isomorphism. Moreover ¢*§ = g
and ¢*n = 7. Hence the two Weierstrass data are isomorphic, so define the
same minimal surface. So we make the following identification:

(a, b) ~ (a’, b/) < Vk, E|/\k,Vi, aﬁw- = Qk; + /\k7 b;w- = bkﬂ' + /\k-
Concerning p and ¢, we make the following identifications:
prp = INVE NV =R+ A

qn~ q/ — \V/k, ElAk,Vl, q;c,z = Gk, + Ak-
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Then the map
(T',p,q) = (a,b)
is well defined and it is easy to see that it is an isomorphism, both spaces
having the same dimension ) (2n; — 1). With these identifications, F3 = 0
gives ¢ ~ 0, which proves the second statement of proposition 9.
I claim that the partial differential of F with respect to the variables
(v, B), v, ¢, p has the form:

Zy - 0 0
0 Z, 0 0
. s 0
14
where 7y, ---74 are invertible linear operators, so it is invertible.

Let me first explain the zeroes in this matrix. If agp = v, and By = vi—1,
then n; = g dz whatever the values of @ and b, hence F; = 0. This explains
the zeroes in the first line. The other zeroes are clear.

The fact that Z; is invertible is proposition 10. Z; is clearly invertible,
and so is Z3 thanks to our identification on ¢. Up to a constant, Z, is
the differential of 7 with respect to p. The problem is that it is not onto
because the sum of the forces is always zero. We are saved by the following
proposition which says that the same is true for Fy.

N ng
Proposition 11 V(t,X),ZZ]—'47k7i(t,X) =0.
k=1 1=1

Proof. Consider the domain in Cj bounded by the curves Apivi=1,---ny
and Ag_1;,2=1,---ng_1. If kis even, gn is holomorphic in this domain so
by Cauchy theorem

Ng—1 nk
Hence
N ng
D)LY TR
k=1 i=1 Ag,i

In the same way, when k is odd, ¢g~'7 is holomorphic in this domain which

gives .
D) BEIL VETE)

k=1 1:=1 A,
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Hence we may see Fy as taking values in the subspace ) Fy 5, = 0. The
non-degeneracy condition gives that Z4 is onto. Our identification on p gives
that it is invertible. This proves the claim and proposition 9. a

Remark 4 At this point we have two free parameters ¢t and T. So the
implicit function theorem gives a family of solutions depending on (¢,7). 1
claim however that varying T does not give any new solution. To see this, let
(¥, 9,m) be the Weierstrass data associated to some value of the parameters
r,a, 3,7, T, pand q. Let A be a positive real number. Let (X,¢,7) be the
Weierstrass data associated to the parameters ¥ = A%r, T = AT, p = Ap,
¢ = Aq, all other parameters having the same value. It is easy to check that
IS f], z + Az is an isomorphism. Moreover ¢*g = g and ¢*7n = 7, so
the two Weierstrass data are isomorphic. N

In the same way, let A € C such that |A| = 1. Let T = AT, p = Ap,
Gg=XAqg, 7=7r. Then ¢ : ¥ — 3, 2€Cr conj**t1())z is an isomorphism,
©*g = Ag and ¢*17 = 7. So up to a rotation of angle arg A, the two minimal
surfaces are the same. As a conclusion we may as well fix the value of T
(equal to the period of the given balanced configuration).

7 Embeddedness

In this section, we prove that the minimal surface we obtained in the previous
section is embedded. This will conclude the proof of Theorem 2.

Given t > 0, let (X, g,n) be the Weierstrass data given by proposition 9

and ¥ : ¥ — R3 be the corresponding immersion. Recall that r = e,

We write
¥(2) = (‘horiz(z), height(z)) € C x R ~ R?.

Proposition 12 There exists a constant C, not depending on t, such that:
1) For any point z in Cy, such that Vi, |vy ;| > &, |wg,;| > €,

| height (z) — height(ocog)| < C.

2) For any point z in Cy, such that L« lvgi(2)] < &,
€

height(z) — height(cor) — L log |vgi(2)]| < C.
n
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1
3) | height(cog+1) — height(ocok) — n—logr <C.
k

4) Let Py; € X be the point such that vy; = \/r. (This is the point on
the neck where g =1.) Then

2y/r( horiz(Py ;)— horiz(Py,;)) — (—1)k conjkﬂ(ak’j—ak,i) = Dk,j—DPk,i-
2\/?( hOIiZ(PkJ')— hOI’iZ(Pk_LZ')) — (—1)k COIljk-}'1 (ak7j_bk7i) = Pk,j—Pk—1,-
Hence we may translate the surface so that,

Vk, Vi, 2\/; hOI‘iZ(P]w') — Pki-

1 ) .
5) Let 0 < 0 < 3 The image of the domain r'=7 < |v;| < 1% converges

. . . . ™ .o
(up to translation) to a catenoid with necksize —. Moreover it is
ng

ra—l/?

included in a vertical cylinder with radius
ng

6) The period of ¢ is

T (1
T: Re B171 qbﬁ (ﬁ, (; n—k> 10g7’> .

The proof of this proposition is straightforward computations similar to
those of section 5. We omit the details. a

It is now easy to prove embeddedness. Let ¢ > 0 be a small number.
Consider the horizontal slab of R3:

height (cog41) + i| logr| < x5 < height(ocog) — i| log r|.
ng ng

By point 3 these slabs (for varying k) are disjoint. Let z € ¥ such that ¥ (z)
is in this slab. If r is small enough, z has to be in the domain of point 2 for
some 7. Moreover (up to some bounded terms that we can safely neglect)

l1-0c

height (oo )+
ik

logr < height(ook)—i—ilog|vk7i| < height(ook)—}—ilog r.
ng ng

rl=7 < |vg,i(2)] < r?.
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So z is in the domain of point 5. The images of these domains (for varying ¢)
are contained in disjoint vertical cylinders by point 4. Hence the intersection
of the surface with the slab under consideration has n; disjoint components,
each converging to a catenoid. So it is embedded.

Consider the horizontal slab:

height(co) — nikl logr| < 25 < height(ocog) + nik| logr|.

Let z € X such that ¢(z) is in this slab. Then z € Cj, and satisfies |vg ;| > 7,
|wg,i| > r? for all <. Hence |g(z)| # 1 so the Gauss map is never horizontal
on this domain. On the boundary, the surface is a graph since it converges
to a catenoid. In a neighborhood of infinity, the surface is also a graph since
we have an embedded planar end. This implies that the intersection of the
surface with the slab under consideration is a graph above the horizontal
plane, hence embedded. Since these slabs cover all of R3, this proves that
the surface is embedded.

Proposition 12 implies that the surface, scaled by 2./r, satisfy the hy-
potheses 1 and 2. In particular point 4 says that py; is the asymptotic
position of the neck. The uniqueness statement in Theorem 2 comes from
the uniqueness in the implicit function theorem, and the fact that the Weier-
strass data of a family of minimal surface satisfying our hypotheses may be
written as in section 3. We will see this in the next section. This concludes
the proof of Theorem 2.

8 Proof of theorem 1

Our strategy is to prove that if M; satisfies the hypotheses of the introduc-
tion, we may write its Weierstrass representation as in section 3, and then
use proposition 9.

Without loss of generality we may assume that €, Uy, are closed
domains with disjoint interiors. Let g; be the Gauss map of M;. We may
assume that g;(ocor) is equal to 0 if & is even and co otherwise. First assume
that k& is odd and consider the planar domain ;. By hypothesis 2a, ¢,
converges to oo on this domain. Consider the domain Uy ;; and the circle
(OUg;t) N Q. The Gauss map sends this circle to a small circle near co
in C Uoo. Let Dy ;¢ be the disk bounded by this circle, containing 0. Glue
this disk to Q¢ by identifying the point p € OUy ;+ with g:(p) € 0Dy +. Do
the same for the circles (OUg_1,+) N Q. Let Qk,t be the resulting genus
zero compact Riemann surface.
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Let A; be the scaling factor of hypothesis 2¢, i.e such that the necksizes
of A¢M; have nonzero limits. We define a meromorphic function g ; on ﬁk,t
by gkt = 2X¢/g: in Q¢ and g = 2X¢/2 in each disk. So g+ has one simple
pole in each disk. Now we would like to write g;; as in section 3.1 but
for this we need to identify Qk,t with C U oo. In other words, we need to
define a global coordinate z : Qk,t — C U oo (not to be confused with the z
coordinate on the disks above).

We choose z as follows: Let 7y : Qp; — R? be the projection to the
horizontal plane. Since g; >~ oo on i, 7 is close to be an orientation
preserving isometry. We choose z such that 7y >~ —z on Qg +. (The minus
sign is here so that the notations agree with the rest of the paper). To prove
that this is possible, we use quasiconformal mappings as follows:

It is well known that we may prescribe the value of z at three points.
Let (i, ¢z be two points in 74(2; ;). We define 2 = —2’ where 2’ is uniquely
defined by

{ A7) =G, i=1,2
2'(oog) = 00
By the analytic definition of quasiconformal mappings (see [4] page 168)
m¢ is Ky-quasiconformal on €, with K; — 1. Hence Z/Oﬂ't_l is also K
quasiconformal.

Let ¢ € m4(2%,;). Consider the quadrilateral @ = ((1,¢2,¢,00). By
the geometric definition of quasiconformal mappings (see [4] page 16), the
conformal modulus of 2’or; }(Q) converges to the modulus of (. Since these
quadrilaterals already agree at three points, this means that z’or; 1 (¢) — C.
This proves that m; >~ —z on €y ;.

We may write

ng Ng—1

B Qg it Bit
Gkt = E — - E P
1Z—akit — Z — Okt
=1

Here z = aj ;¢ is the pole in the disk Dy ;+. By hypothesis 2b, 7;(0Dy ;)
is contained in a disk whose radius goes to 0 and whose center converges to
Pk,i- Hence ap;; — —pr; and in a similar way, br ;¢ = —pr—1.

To see that ay;; and Bi;; have nonzero limits, let 7 be the height
differential of \;M;. The necksize of A\;U} ;¢ is the imaginary part of fAki ;.

Since the real part is zero, we may write

/ e = 27Ti7k,z’,t
Agi
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where 7y ; ¢ is real and has a nonzero limit v;; by hypothesis 2c.
Since g; >~ oo on {2} ; we have dry ~~ —%gtnt ~ —dz.

1
ne =297 (1 +&4(2))dz = /\—gkﬂg(l +e4(2))dz
t

where £4(2) converges uniformly to 0. Integrating on a representative of Ay ;
contained in €2 ¢, we find

. ] oy k
2T Vg = 271 Qg+ / £4(2) Z ! Z - . },],;
- 7]7

Ak,i ]¢ 7]7

It is easy to see from this formula that ay;; — i and similarly, 8, —

Vk—1,-

It remains to see that ay; ¢, Bk, and vy ;¢ satisfy the normalisation (6).
ng

Since the flux is homology invariant, Z%W does not depend on k. Hence

we may assume it is equal to 1 by Choz)sing suitably A;. Since g; has at least
a double pole at ooy, we also have Y g+ = Y Bri¢. Since ag;t — Vi,
this sum converges to 1. Note that ay;; is the residue at ay ;¢ of gi¢dz, so
depends on the choice of the coordinate z. By multiplying z by a suitable
constant (converging to 1), we can assume that ) ag;; = 1.

When k£ is even, the above definitions have to be changed as follows:

Gkt = It and 7y ~ Z (m; reverses orientation when g ~ 0).

20
1
The construction of section 3 with /r = S gives back the Weierstrass
t

data of A;M; (the notations are the same up to the indices t). Note that
A¢ — oo implies that r — 0. Since the period problem is solved for M,
proposition 9 implies that v ; = 1/nj and pg; is a balanced configuration.
O

9 The case of multiple zeroes

In this section we remove the restriction that gydz has simple zeroes (see the
beginning of section 6). We only have to change the definition of the map
Fi. The problem is that grdz might have a multiple zero for some value
of the parameter X, and simple zeroes for nearby values of X, so we have
to define F; without knowing a priori the multiplicity of the zeroes. The
following lemma is useful:
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Lemma 2 Let P be a polynomial of degree n in C. Letl 2 be a bounded
domain in C containing all the zeroes of P. Let [ be a holomorphic funclion

on 2. Let ®)
P
Fk:/ L k=1
s P

Then F, =0, k=1,---n if and only if P divides [ in the ring of holomor-
phic functions on §, i.e f/P is holomorphic in Q.

Proof: It is well known (see [3] page 11) that we may write f = Ph 4+ Q
where h is holomorphic on  and @ is a polynomial with deg(Q) < deg(P).
In fact, b and ) are given by contour integration

_ 1 flw)dw
hz) = 21 /39 P(w)(w — 2)

1 J(w)(P(w) = P(z))dw

e = 21 Jq P(w)(w - z)

We want to prove that () = 0. Using Cauchy theorem we get

(k)
Fk:/ PrQ
an P

By the residue theorem on the complementary of €,

PHRQ
P

Fi, = —2m1 Resy, dz.

Let w = 1/z. The fraction P(*) /P has a zero of multiplicity k at co so we

may write
k

plk) i
- = Za;ww” with ayr # 0.
v=k

Q= z”: b“,z“_l.
u=1

F, = 271 Resy—g i z”: akwbuw”_“_l = 2m Z ar, by

v=k u=1 u=k

The system of n equation Fj = 0 in the unknowns b, is triangular with
nonzero coefficients ay , on the diagonal, so b, =0 and ) = 0. a
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First assume that gx only has a double zero at infinity, for X in a neigh-
borhood of Xy. We define F j as follows. Let €2 be a bounded domain in
C which contains the zeroes of grdz and none of its poles. Let

nEg—1

P(z) = gr(2) x H(Z — agi) % H (z = br).

P is clearly a polynomial and since g has a double zero at infinity, P has
degree ny + ni—; — 2. Also P and gipdz have the same zeroes. Define F 4
by

PG,
fum'z/ '7, t=1,-np+np_ —2.
s P

By lemma 2, F; ;, = 0 if and only if 7/g; is holomorphic in € which is what
we want. When g; has more than a double zero at infinity, we first do an
inversion so that the zeroes of grdz are in a bounded domain and we define
Fi,k in a similar way.

It remains to prove proposition 10 with this new definition of F; ;. We
write D for the partial differential with respect to the variables (o, 8;). Let
(dk,ﬁk) € F such that Df17k(dk,ﬁk) = 0. We compute

DPW (y, By)n _/ PODP(éy, B)n
o9

DZFy i(6o, By) =
( ) 20 P P2

Since we compute the differential at a point where F; = 0, /P is holomor-
phic so the first integral vanishes by Cauchy theorem. By lemma 2, the van-
ishing of the second integral for all i implies that P divides nDP(cv, Bx)/P
as holomorphic functions in €. Since /P has no zero in €, this means that
P divides DP(éy, ﬁk) as polynomials, and since they have the same degree,
we may write DP(dk,ﬁk) = AP. Since (ag, Bi) — P is linear, this implies
that éy; = Aag,; and ﬁf;m' = ABg,;. From Y i, =0 and Y ap; =1, we get
A = 0. Hence &, = ﬁk = 0. This proves proposition 10. a
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