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In [12] we proved the existence of simply-periodic minimal surfaces in
R? which could be described as desingularization of a set of vertical planes.
These surfaces were constructed by gluing Scherk surfaces using the tech-
nique of Kapouleas [9], which amounts to solve a nonlinear partial differential
equation on a manifold.

In this paper we obtain the Weierstrass representation of these surfaces.
This gives an independent (and mostly algebraic) proof of the existence of
these surfaces. It also proves that they form a smooth family, whereas with
the former method, it was not known that the family is continuous.

Let D = (Dy,---D,) be a finite set of distinct lines in the plane, n > 2.
We assume that at least two lines are non parallel, and the intersection of
any three lines is always empty (no triple intersection).

In this paper we construct a family of minimal surfaces Mp , where
7 €]0,¢[, € small enough, such that:

i) Mp , converges to D X R on compact subsets of R® when 7 — 0.
We say that Mp ; desingularize the set D x R.

i) Mp ; is a complete minimal surface, periodic with period (0,0, 7%),
with finite total curvature in the quotient. Mp ; has 2n Scherk-type
ends (i.e. asymptotic to vertical half-planes).

The asymptotic half-planes of the ends of Mp ; are not parallel to the lines
of D as picture 1 below suggests. They are asymptotically parallel to the
lines of D when 7 — 0. For this reason, the ends may intersect. However:

iii) If the lines of D are pairwise non parallel, Mp . is embedded.



iv) Let D; and D; be two non parallel lines of D and p = D;ND;. There
exists horizontal vectors p(t) such that p(t) — p and 77*(Mp  —p(T))
converges on compact subsets of R3 to a simply-periodic Scherk surface,
with period (0,0, 1), whose ends are parallel to the lines D; and D;.

This means that in a neighborhood of the intersection of two vertical planes
of D x R, Mp, looks like a Scherk surface scaled by 2.

v) The map (D, T) — Mp . is smooth in the sense that the Weierstrass
representation of Mp ; depends smoothly on (D, ).
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Fig. 1: A rough sketch of the surface we get in the case of four lines

We recall the principle of the Weierstrass representation of simply-periodic
minimal surfaces. The reference is [11]. Let M be a simply-periodic com-
plete minimal surface with period (0,0,1). We see M as a minimal surface
in the flat 3-manifold R3/(0,0,1). It is well known that if M has finite total
curvature, then M is conformally a compact Riemann surface 3 minus a
finite number of point called the punctures, or ends. Moreover, there exists
a meromorphic map ¢ and a meromorphic 1-form 5 on 3, such that if we

define

¢ = (p1,02,¢3) = (%(9‘1 —9)777%(9_1+9)777’77> (1)



X(p) = (Re/qubl,Re/pj@,Re/:gbg) (2)

then X = (X1, X2, X3) is a minimal immersion from ¥ minus the ends to
R3/(0,0,1) whose image is M. The triple (3, g,n) is called the Weierstrass
representation of M. The function g is the Gauss map.

Conversely, given a triple (X, g, 7), there are some well known conditions
so that the formula 2 defines a minimal immersion. The standard way to
construct minimal surfaces with the Weierstrass representation is to define
(2, g,m) depending on some parameters, and then prove that one can adjust
the parameters so that the conditions are satisfied (which is of course the
hard work).

In this paper, we prove that the equations have solutions using the im-
plicit function theorem. We consider Riemann surfaces ¥ in a neighborhood
of degenerated (i.e. singular) Riemann surfaces with ordinary double points
(also called nodes). We apply the implicit function theorem at a point (in
the space of the parameters) where the Riemann surface ¥ degenerates into
a set of Riemann spheres connected by ordinary double points, and on each
Riemann sphere, (g, n) is the Weierstrass representation of a Scherk surface.

The overall idea of the paper, and in particular the idea to parametrise
the couples (X, ¢g) by the branching values of g are taken from [10]. In section
6 of this paper, they prove that the Riemann Minimal Examples are unique
in a neighborhood of the boundary of the moduli space using the implicit
function theorem. Qur paper started as an attempt to construct minimal
surfaces using their idea. However, the arguments in [10] do not carry over
to our case because they are rather specific to the genus one case.

The method we use in section 2 to show that the Weierstrass data con-
verges when the Riemann surface degenerates is inspired from [2]. In this
paper the author studies the “period matrices” of Riemann surfaces in a
neighborhood of degenerated Riemann surfaces.

I would like to thank Florence Gaja for helping me with the algebraic
geometric aspects of the paper in section 4, and Marc Soret for reading the
first draft of this paper and for many useful suggestions.

1 The Weierstrass data

1.1 The Riemann surface and the Gauss map

Consider a finite set of n > 2 lines in the plane as in the introduction.
We see the union of these lines as a planar graph. Note that each vertex



has valence 4. We use this graph mostly as a combinatorial object to give
names to various quantities. Let n, be the number of vertices, n. be the
number of bounded edges, ny the number of bounded faces, n., the number
of unbounded edges (i.e. half-lines). We label:
- the vertices V;, 1 = 1, - -ny,
- the bounded edges F;, i = 1,---n,,
- the unbounded edges F;, i = ne 4+ 1, -1 + neo,
- the bounded faces F;, 1 =1,---ny.

We orient our graph as follows. Label each face (bounded or not) with a
+ or — sign, in such a way that any two faces sharing an edge have opposite
signs. (One way to do this is to note that each line divides the plane in two
half-planes. Put a 4+ sign on one and a — sign on the other. Label each
face with the product of the signs of the half-planes it lies on.) We orient
the boundary of each face with the positive orientation if the face is labelled
4+, and the negative orientation in the other case. This gives each edge an
orientation. We identify R? with C. For each i = 1,---n, + neo, let €% be
the normal to the oriented edge E; (i.e. pointing to the + face). We write
=101, 0pn4n,.)

Fig. 2: Orientation of the edges.

We consider a small number £ € (0,1). Given x = (21, Tp.4n.,) €
Cr*m> and y = (y1,-+yn.) € (C\ {0})", such that ||x — || < ¢ and
lly|| < e, we construct a Riemann surface Y y as follows.

Consider n, copies of the Riemann sphere C = CU{cc}, labelled Cy,---C,, .
For each bounded edge E;, with endpoints V;, and V,,: Cut 62'1 along the
arc joining €% ~V¥ and e tV¥, Also cut C;, along the same arc. Glue C;,
and C,, along this arc in the usual way (i.e. in the same way one constructs
the Riemann surface w? = (z — a;)(z — az) by gluing two copies of C along



the cut [a1,a3].) We assume that ¢ is small enough so that the cuts are
contained in disjoint disks. This defines a compact Riemann surface that
we call Yy y.

Fig. 3: The compact Riemann surface ¥« y in the case of three lines. The
three curves are the lifts of the cuts to ¥y . The two branch points are
marked on each curve.

We define a meromorphic function z : ¥xy — C by 2(¢) = ¢ for ¢ € C;.
It is clearly well defined on Y4 y. z will be the Gauss map.

We use the notation 0; and oo; for the points 0 and oo on C;. z has one
zero at each 0; and one pole at each oo;. Therefore the degree of z is n,.

The function z has two branch points per edge, with branching values
¢ @i#V¥i | The total branching order of z is 2n.. By the Riemann Hurwitz
formula, the genus of ¥y y is 1 —n,+n.. Since the Euler characteristic of the
plane is 1, the genus of ¥y is ny. (This is also clear from the topological
point of view.)

Remark 1 Yy, does not depend on the determination of the square root
\/¥i, since replacing ,/y; by —,/y; does not change the cut. Actually the
square root is there precisely so that different values of y give different
branching values of z.

Remark 2 For the surface we want to construct, all the parameters x; and
y; are real. The reason we define Yy , for complex parameters z; and y; is
that in section 2 we need to have a family of Riemann surfaces depending
on complex parameters in order to use results from algebraic geometry.



1.2 The meromorphic 1-form

We have not used the parameters z,_ 41, %, 4, vet. For each unbounded
edge I, i = ne + 1, -ne + noo, with endpoint Vj, let ¢; be the point e
in @j. The ¢; will be the ends of our surface. 7%, will be a meromorphic
1-form with a simple pole at each g;.

There are a lot of such meromorphic 1-forms. By standard Riemann
surface theory, we can prescribe:
i) The residue of 7k y at each end ¢;, with the only condition that the sum of
the residues is zero, which is the condition for the existence of a meromorphic
1-form with prescribed principal parts ([3], Theorem 18.11).
ii) The integrals of 7xy on the g curves Ay, ---A, of a “canonical basis” of
H,(Xx,y,Z), where g is the genus of ¥y y.

Recall that a canonical basis of the homology is a set of 2g closed curves
Ay,---Ay, By, - By such that the intersection numbers satisfy

AZ'.A]‘ =0, BZ'.B]‘ =0, AZ'.B]‘ = 52']'

By standard Riemann surface theory, the map w +— (fAl w, - -ng w) is then

an isomorphism from the space of holomorphic 1-forms to C? (see [5] page
231). Prescribing the residues clearly defines 7xy up to a holomorphic 1-
form. Hence prescribing the A-periods defines 7y y uniquely.

For any bounded edge F;, ¢ = 1,---n., with endpoints V;, and V;,, ori-
ented from V;, to V;,, let 4; be a small circle in @iu enclosing the cut corre-
sponding to the edge, oriented positively. Note that this circle is homotopic
in Yy y to a small circle in C,,, enclosing the cut, oriented negatively.

For each unbounded edge E;, i = n. 4+ 1, -n. + n, with endpoint Vj,
let ~; be a small circle around the pole ¢;, oriented positively if the edge is
oriented from V; to infinity, and negatively otherwise.

In both cases we call +; the y-curve associated to the edge F;. We would
like to say that 7y y is the unique meromorphic 1-form with simples poles at
¢; and whose integral on any vy-curve is 1. It is not clear a priori that such a
1-form exists. So we choose a canonical basis, we define 74, by prescribing
its residues and A-periods, and then we prove that the integral of 7, on
any ~y-curve is 1.

For each bounded edge E;, from V;, to V;,, let ['; be a curve from the
point z = 2in C;, to the point z = 2 in C,,, such that I'; does not intersect
any y-curve other than ;. We call ['; the [-curve associated to the edge F;.
The reason to choose z = 2 here is that we need a point far from the cuts,
and neither a pole nor a zero of z.



For each face F;, let B; be the product of the I'-curves associated to the
edges on the boundary of the face F;. We think of B; as a curve which goes
around the face Fj, even if this does not really make sense.

Remark 3 There is no canonical way to choose I';, hence no canonical way
to define B;. However all choices of I'; are homotopic modulo ~;. We will
return to this problem in section 2.5.

We now define the curves A;. Without loss of generality, we may suppose
that all vertices have distinct abscissa. We order the bounded faces by the
abscissa of their leftmost point. For each face F}, let V; be the leftmost point
of F;. Let E} be one of the two edges on 0F;, with endpoint V;. Clearly the
face on the other side of F} is either unbounded, or a face F; with [ < 7. Let
A; be the curve 7.

By construction, the intersection numbers satisfy

AZ'.A]‘ =0, BZ'.B]‘ =0, A;.B;,=1and (AZ'.B]' =0ifi < ])

Hence {A;,---A,, By, --By} is not a “canonical basis” but if we define
m;; = A;.B;, the matrix m;; is invertible in SL(g,Z). Let B! =5 m%B;,
where m* is the inverse matrix of m;;. We have AZ-.B; = §;; and BZ’».B; =0
so {Ay, - Ay, By, -+ B;} is a canonical basis.

Fig. 4: Left: the curves v;, A; and B; on Yy y. The marked points are the
punctures. Right: this is what we expect the minimal surface to look like.
The surface is oriented by its normal which points toward the + faces.



Definition 1 7y, is the unique meromorphic 1-form on Xy y such that:
- For each unbounded edge F;, © = n. + 1,---n. + no, with endpoint V;:

Nx,y has one simple pole at the point q; = e of C;, with residue 9 iof the
i
-1
edge E; is oriented from V; lo infinity, and 9 otherwise. By definition of
i

~i, this is equivalent to / Nxy = 1.
¥i

- For each closed curve A; of the canonical basis, / Nxy = L.

2z

Proposition 1 Foranyit=1, - -n. + n., we have fv Mxy = 1.

Proof: we already know the period is 1 on the following curves: the A-curves
and the curves v; around the ends, i.e. fori =mn. 4+ 1, - -ne 4+ ngo.

For any vertex V;, consider the domain obtained from C; by removing
four small disks containing the four cuts (or ends in the case of unbounded
edges). The boundary of this domain is homologous to Z +7v;, where

Vi€aE,
V; € OF; means that the sum is taken on the four indices j such that E; is
an edge with endpoint V;. By our choice of the orientations, there are two

+ signs and two — signs. By Cauchy theorem, Z + [ nxy =0. Hence
vieal; 7

if we already know that three of the periods are 1, the last one is also 1.
Using this, it is easy to see on a given particular example of graph that

the proposition is true. Here is an argument in the general case (may be

skipped at first reading). We mark the edges for which the ~-periods are

known to be 1. At the beginning, the marked edges are the unbounded

edges and the edges corresponding to the A-curves.

Claim 1 If there is an unmarked edge, then there is a vertex with three
marked edges and one unmarked edge.

Thus we can mark the fourth edge, and by repeated use of the claim, we
can mark all edges.

Proof of the claim: Assume there is no vertex with three marked edges.
Then there is a vertex where at least two edges are unmarked. Follow one of
these edges. At the end there is another vertex which also has at least two
unmarked edges. Going on like this we eventually hit a vertex that we have
already met. Thus there is a cycle of unmarked edges. This cycle bounds a



compact region. Consider the leftmost vertex of this region. Then the two
edges going to the right from this vertex are unmarked. By construction of
the canonical basis, one of these edges is associated to a A-curve. This is a
contradiction, which proves the claim.

1.3 The equations

So far, what we have done is parametrise all potential Weierstrass data
(Xx,y:2,7x,y) by the branching values of the Gauss map: TRV =
1,---n., and the value of the Gauss map at the ends: €%, i = n.+1,---n.+
Moo -

We recall the conditions so that (X, g,n) is the Weierstrass data for a
simply-periodic minimal surface with period (0,0, 1) and Scherk-type ends:

- The zeroes of n are the zeroes and poles of g, with the same multiplicity.

+1
- 1 has only simple poles with residue 9 and |g| = 1 at the poles of 7.
v

This guarantees that the ends are asymptotic to vertical half-planes.

-Re [ ¢y =0, Re [ ¢y = 0 and Re [ ¢3 = 0 mod 1 for any closed
curve ¢ on X. Here ¢1, ¢ and ¢3 are defined by equation 1. This
guarantees that X (p) = Re fpi (1, P2, ¢3) is well defined, the so-called

period problem.

With (X, 9,7) = (xy, 2, 7x,y), these conditions become:

ey (00) = ey (00:) =0 (1= 1, -my) (3)

7, €R (i=ne+1,--n.+ns) (4)

/ o1 =0, Re/ $2 =10 (5)
Re/ ¢1 =0, Re/ ¢y =0, Re/ ¢3 = 0 mod 1 (6)
B; B; B;

Indeed, the number of zeroes of 7%,y is the number of poles plus 2g — 2,
hence it is 7o, +2ny — 2. Now each vertex has valence 4 so 4n, = n. + 2n..
Hence the number of zeroes is 4n, — 2n. + 2ny — 2 = 2n,. So equation 3
says that the zeroes of 7y, are the zeroes and poles of the Gauss map z.
The other equations are immediate consequences of the definition of 7y y.



1.4 Outline of the paper

The goal of the paper is to prove that the above equations have solutions.
These equations may be written as a system F'(x,y) = 0, where F’ is defined
on ||x—0|| <e, |lyl| <e, y; # 0. We prove that F' extends holomorphically
to the whole polydisk ||x —0|| < ¢, ||y|| < €, and then prove that F'(§,0) = 0
and F is a submersion at (6,0). The implicit function theorem then says
that F~1(0) is a nonempty submanifold of explicit dimension.

2 Convergence of 7y, when y; — 0

When one or more of the components y; of y is zero, the cut associated to
the edge F; degenerates into the point e'**. There are two ways to define
Yxy-

1) We identify the points e in C;, and C;, and obtain an ordinary
double point. X4, is a degenerate Riemann surface with ordinary
double points, also called a Riemann surface with nodes (see [8] page
245 for the definition of a Riemann surface with nodes).

2) We do not identify these two points. Yy y is a (possibly disconnected)
compact Riemann surface.

Both points of view are useful. The first one is natural when one considers
the family of all ¥x,. The second one is convenient when talking about
meromorphic 1-forms on ¥y ,. We use the same notation for both defini-
tions. We will say whether we consider ¥x y as a Riemann surface with or
without double points.

10



Fig. 5: Yx,y seen as a Riemann surface with a double point when y; = 0.

Proposition 2 When (x',y') = (x,y) and one or more of the components
y; of y is zero, ny y converges (away from the branch points and double
points) to the unique meromorphic 1-form nxy on Xy .y, seen as a Riemann
surface without double points, such that:

- Ix,y has simple poles atl the points q; = €%, j=n.+ 1, n. + ne, with

residue — as in definition 1.

i
- For any edge E; such that y; = 0, oriented from V; to Vi,, nxy has a

simple pole al the point €' of C;,, with residue Y and a simple pole at

. — ) ) -1
the point €™ of C,,, with residue v
T
- For any curve 7; on Xy y, fv Nxy = L.

Moreover, the map (x,y) — 1x,y is meromorphic on the whole polydisk
Ix =0l <e, [lyll <e.

By convergence away from the branch points and double points, we mean
the following. Let p > 0 be a small number. If (x’,y’) is close enough to

(x,¥), the points e EVY are in the disks of radius p and center €TV,
Yx,y’ minus all these disks is the same thing as ¥ y minus the same disks,
so does not depend on (x',y’). What we mean in the proposition is that for
all p > 0, 9y y converges to 7xy on the above domain. The last statement
of the proposition should be understood in a similar way.

The fact that 7x,y depends holomorphically on (x,y) when all y; are
nonzero may be considered standard. The main point in the proof of this
proposition is to prove that 7y s converges to a meromorphic 1-form when
yi — 0. Note that from the fact that f% Nxy’ = 1, it is clear that 7y y must

have poles at the two points e®i, with the indicated residues.

To prove the proposition, we take a more algebraic point of view. We
have a family of (possibly degenerated) Riemann surfaces ¥y y which we see
as abstract complex curves. From an algebraic point of view, a family of
curves is defined as a morphism 7 : X — Y of complex analytic varieties,
where Y is the space of parameters and the fibers are the curves. Note
that some of the fibers may be singular. A way to define a meromorphic
form on a singular fiber is to say that it is the restriction to the fiber of a
meromorphic form on X. If we have a meromorphic 1-form 7 on each curve,
a convenient way to say that n depends holomorphically on the parameters
is that 7 is the restriction to the curve of a meromorphic form on X.

11



We note that to prove the proposition, we may look at the variables z;
and y; separately since a function which is holomorphic with respect to each
variable separately is actually holomorphic as a function of several complexe
variables. In the following sections, we look at the variable y;. All the other
variables z; and yg, k # ¢ have fixed value, with y; # 0.

2.1 Preliminaries

To ease the notation we write y = y;. Since all the other variables have
fixed value we write ¥, = ¥y and 7, = 71x,y. We introduce the following
functions on 3J,.

v=2— % (emﬁ/ﬁ + €T y") =z — €'%i cosh \/y;

w= \/<z - e””'\/@) (z - em"_\/@)

A straightforward computation shows that w? = v? — ¢ with

. . 2
1Tt /Yi _ T —\/Yi .
(6 > € ) _ €22Ii (sinh /_yz)Q

Consider a small, fixed number r > 0. If ¢ is small enough, the cut
[iVVi i tV¥i] is contained in the disk of radius r and center ', Let
E; be ¥, minus this disk. More precisely, E; is ¥, minus the connected
component of the set of points such that |z — ei€i| < r, containing the two
branch points under consideration. E; does not depend on y.

Let X7 be the connected component of the set |v| < 2r containing the
branch points. X and X7 cover ¥,. We see 3 as the points that are far
from the branch point, and EZ as the points that are close to the branch
points.

The function w is well defined on ¥ up to a global definition of its sign.
We choose the sign as follows: If € is small compared to r, then on the
boundary of EZ we have w? ~ v%. We choose the sign of the square root
such that w ~ v on the component of the boundary included in C;,. Then
w is well defined and holomorphic on EZ, and w ~ —v on the component of
the boundary included in C;,.

We introduce the function V=v+ w and W = v — w on EZ. We have

VW =1

12



When y = 0, X, seen as a Riemann surface with a double point, is the
union of the two disks D(e”,2r) in C;, and C;, with the two points €'
identified. In the first disk we have w = v, V = 2v and W = 0. In the other
one we have w = —v, V =0 and W = 2v.

2.2 The complex 2-manifold X

We consider the disjoint union of all complex curves ¥,

X= U %
lyl<e

We make X into a complex analytic 2-manifold as follows. X is covered by
the two sets X' = [JX}, and X" = [JX7. Since X}, does not depend on y, X’
is in a natural way the product manifold D(e) x Xf, where D(e) is the disk
of radius € in C. Consider the map

p: X" C*  peXle (V(p),W(p)

@ is one to one. Indeed, if ¢(p) = p(p’) then VW = ¢ implies t(y) = t(y’)
hence y = 3’ because the function y — ¢ is well defined and one to one in a
neighborhood of 0. So p and p’ are on the same curve. On the other hand
»(p) = (p') implies p = p’ because (V, W) separate points on the curve
VW =1t.

©(X") is an open subsel of C%. Indeed this is the set of points (V, W)
such that |V + W| < 2r and VW € {(D(e)). Hence we may take ¢ as a
chart on X"

The manifold structures on X' and X" are compatible. This comes from
the fact that the map (y,p) — (V(p), W(p)) is holomorphic. (Recall that
a holomorphic bijection is biholomorphic). This makes X into a complex
analytic 2-manifold. We define the projection

7: X —=>C PEXy =Y

7 is holomorphic. This is clear on X", and on X', 7 is the composition
p (V,W) = VW =t~ y which is holomorphic. The fiber 77 (y) is ¥,,.

The canonical injection ¥, — X is holomorphic. This is clear on ¥,
and on X7, this comes from the fact that p — (V(p), W(p)) is holomorphic.
This means that the complex structure on X, seen as a curve in X, is the
same as its original complex structure.

13



2.3 Restriction of a meromorphic form

Given a meromorphic 2-form w on X, we define a meromorphic 1-form on
Yy, called the restriction of w to ¥, and written w|,,.

Consider a curve X, and p € 3,. I claim that unless y = 0 and p is the
double point, there exists a function ¢ in a neighborhood of p such that (¢, ¢)
are complex coordinates in a neighborhood of p in X. If p € X', this comes
from the fact that the function y — ¢ is biholomorphic in a neighborhood
of 0. If p € X", from VW = t, we see that (V,t) are coordinates in a
neighborhood of p if V(p) # 0, and (W, t) are coordinates if W(p) # 0. So
unless V(p) = W(p) = 0, we may take either ( =V or ( = W.

Write w = f(t,()dt A d¢ where f is a meromorphic function. Let w|, =
f(t(y),¢)d¢. 1t is straightforward to check that this definition does not
depend on the chosen coordinate {, so this defines a meromorphic form on
Yy if y # 0, and on ¥y minus the double point if y = 0.

Remark 4 In fact w|, is the Poincaré residue of the meromorphic 2-form
—w
t—1(y)

Now assume that w is holomorphic in a neighborhood of the double point

of ¥g. Write w = f(V,W)dV A dW where f is holomorphic. From VW =1t

we get
t dv t dw

w=—f (v,‘_/) th‘—/:f(W,W) an
Recall that g minus the double point has two components, one where
V = 0 and one where W = 0. On the component W = 0, we get w|p =
—f(V,0)dV/V hence w|g (restricted to this component) has a simple pole
at the double point, with residue —f(0,0). On the component V = 0, we
get wlg = f(0, W)dW/W hence w|p has a simple pole at the double point,
with residue f(0,0). In other words, w|op has a simple pole on each side of
the double point, with opposite residues. A convenient way to say this is
that w|p is meromorphic on Yy, seen as a Riemann surface without double
points, and has two simples poles with opposite residues at the two points
corresponding to the double point.

We may now state the

which has a pole along ¥, (see [5] page 147).

Lemma 1 For any y € D(eg), there exists a neighborhood U of y and a
meromorphic 2-form w on 7~ (U) C X such thal w|, = n, for any y in
U, y # 0. Moreover, w has a simple pole on D(c) x {¢;} C X', j =
Ne + 1, ne + Ny, and is holomorphic everywhere else

14



The proof of this lemma uses the language of sheaves, so we prove it in
section 4.

2.4 Proof of proposition 2

In this section we see g as a Riemann surface without double points. Let
10 = wlo-
Since w has a simple pole on D(g) x {¢;}, we may write locally w =
t 0
Mdt A dz with f holomorphic. Hence 179 = M

z = z(qj) z = z(qj)
pole at ¢;.

As seen in the previous section, 79 has two more simple poles at the two
points corresponding to the double point.
Since fw wl|, depends continuously on y and is equal to 1 if y # 0, we
J

dz has a simple

see that the periods and residues of 7 are as in proposition 2.

From the fact that w is meromorphic we see that 7, depends holomor-
phically on y, and in particular converges to 1y when y — 0. Recalling
that y = y;, we have proven that y; — 75,y is holomorphic when all other
variables x;, yr, k # 4, have fixed arbitrary values, with y; # 0. The same
is true when some yy is zero by the same argument. The only difference is
that 7y will have two more simples poles per y; which is zero. The fact
that z; — 7xy is holomorphic is standard. Hence the map (x,y) — 7x,y is
holomorphic, since a map which is holomorphic with respect to each variable
when the other variables have arbitrary fixed values, is holomorphic (see [7]
Theorem 2.2.8 page 28).

2.5 A formula for fl‘i ey

Recall that for each bounded each edge E; we defined a path I'; which goes
from the point 2 € C;, to the point 2 € C;,. In fact there is no way to choose
I'; so that it depends continuously on y;, there is a multi-valuation problem.
The reader may try to convince himself that when y; makes on turn around
0 and we follow I['; continuously, we end up with a path homotopic to I'; +;.

. . log y;
Proposition 3 The function fi(x,y) :/ zknx“y — Ong / zknx“y where
T v .

7 Vi
k € Z is a fized integer, is well defined when y; # 0, and extends holomor-
phically to y; = 0.

Proof: We continue with the notations of the previous sections. First note
that the function p — z(p) is meromorphic on X, as may be seen by writing
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z as a function of (V,W). By lemma 1 we may write %7, = (zfw)|,. Let
2P0 = f(V,W)dV A dW where f is holomorphic. We may write f(V, W) =
> @ VW™, Let 2R > 0 be the radius of convergence of this series. We

get
t . dV
gy =—f(V, ‘7)7 = - Z A VT AV

n,m>0

We now choose representatives for the homotopy classes of v; and I'; in
3y. Note that when y is small, the point in ¥, such that V = R satisfies
|W| = |t/R| < R, hence v ~ w ~ R/2. So this point is in C;, and satisfies
z e R/2, so does not depend very much on y.

In the same way, the point such that V = t/R satisfies v ~ —w ~ R/2,
so this point is in C;, and also does not depend much on y.

Let v; be the path V(s) = Re', s € [0,27]. We define I'; as the product
of the following three paths:
- A curve from 2 € C;, to the point V = R,
- A curve which goes from the point V' = R to the point V = t/R and

||

stays inside the annulus 7 < |V| < R. For example we may take the spiral

V(s) = ((1— s)R+ s|t|/R)e™*2#®) s e [0, 1].
- A curve from the point V = t/R to the point 2 € C,,.

The first and third paths may be chosen to depend continuously on y.
On the other hand, the second path is not well defined because of the multi-
valuation of arg(t). We compute

27
/ any = —/ Zanm (Re’s)”_m_ltmiRe”dS = —QWiZamt”
Vi s=0

The integral of %5, on the first path defining T'; is a well defined holomorphic
function of y which extends holomorphically to y = 0 because this path is
contained in a domain where we have seen that 7, converges to 7. Same
thing for the third path. We compute the integral on the second path
defining ;.

t/R i t/R )
2n, = - At / VTV
/V=R ! Z V=R
Anm (tn — tm) 4
= — —_r ™ log —
n;;n R»"(n —m) Zn: “ 8 Rz

‘ 1 4 k
— bolomorphictt) + 51 (2 1) [
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Recalling that y +— ¢ is holomorphic one to one in a neighborhood of 0,
we see that we have proven that the function f; of the proposition extends
holomorphically to y; = 0 when all other variables have fixed values.

When y; is given a fixed, nonzero value, the function f; depends holomor-
phically on all other variables because I'; is a fixed path included in a domain
where 7y depends holomorphically on (x,y). Hence (x,y) — fi(x,y) is
holomorphic on the domain y; # 0. We now prove it is bounded. For any
¢’ < e, fi is holomorphic on the compact |y;| = €', |yx| < €, Jz; — 6;] < <.
Hence it is bounded by a constant M. Now for fixed z; and yx, k # 1,
y; — fi(x,y) is holomorphic on D(¢’) so its maximum is on the boundary,
o it is less than M. This proves that f; is bounded by M on the polydisk
of radius ¢’. By the Riemann extension theorem, f; is holomorphic. This
concludes the proof.

3 Using the implicit function theorem

3.1 Symmetry

We now restrict to the case where all variables z; and y; are real. When
all variables are real, the surface will have a symmetry which makes the
problem simpler.

Proposition 4 Assume that all z; and y; are real, y; # 0. Then there exists

an antiholomorphic involution o : ¥y y — Yxy such that zoo = — and

Z
0 Nxy = —TNx,y- Lhe equations 3, 4, 5, 6 reduce to the following equations:

Tx,y (Oz) = =1, -'TLU)

0 (=1
/¢1:/¢2:Oand/¢320m0d1 (@:1’9)
B; B; B;

Proof. For each bounded edge, consider a small disk in C containing the cut
and symmetric with respect to the unit circle (i.e. invariant by the inversion

1 — . . . .
z + —=). We define ¢ on each C; minus these disks as the inversion z — —.
z z
This defines 0 on Yy y away from the branch points.

It remains to define ¢ in a neighborhood of the branch points. To do
this we use the function w introduced in section 2.1. Recall that w? only
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depends on z. A straightforward computation shows that when both z; and

y; are real, '
1 2T (2)?
o (L) - ot

W

We have to prove that the two definitions of o are compatible. Recall that
away from the branch points we have w ~ a(z — €'*") where & = +1 on C;,
and o = —1 on C,;,. Hence

e’iﬂ’},‘ 1

—a(Z — e7®) = a(= — %)
Z Z

woo ~ —

This means that away from the branch points, ¢ maps C;, to C;, and C,,
to C,,. Hence the definition of o in a neighborhood of the branch points
agrees with the definition on each C;, so o is well defined on Xy y.

The poles of 74,y are invariant by o so 0*1x,y has the same poles as 7y y.
For any edge E; (bounded or not), the curve o(v;) is homologous to —7;.

Hence
, —_ , —_ * —_ _ *
/ Ux,y—/ Ux,y—/ 0 Tx,y = / 07 Tx,y
Vi Vi —i Vi

Hence the residues of 7y y 4+ 0*7x y are all zero, so it is holomorphic, and all
its A-periods vanish, so it is zero.
We compute

fﬁé—@%w=[%@>§xﬁmw=—]F§f5;;

Hence Re fw, ¢1 = 0. A similar computation shows that Re fq{, ¢2 = 0 and
Im f%, ¢3 = 0. This proves the proposition.

Remark 5 We already know that Im fw, ¢3 = 0 by proposition 1! In fact

when the variables x; and y; are complex, one should ask that fA_ Nxy =
1+ ia;, where (aq,---ay) are g real parameters.
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3.2 The equation 7,y (0;) =0

We consider the map F : R*t"= x R" — C"* defined by F;(x,y) =

2w 77(>lc,y (0;). By proposition 2, F' is defined in a neighborhood of (#,0) and
z

analytic.

oF
Proposition 5 F(§,0) = 0 and ——(6,0) is onto. We use the notation

0x
oF . ) ) .
8—(0, 0) for the partial differential of F' with respect to the variable x.
b
Proof: here we see Y as a Riemann surface without nodes. Yy is the
disjoint union of n, Riemann spheres C;. For each vertex V; and eapch edge
E; with endpoint V;, nxy has a simple pole in C; at the point €'’ with
.
residue ——, where £; = 1 if the edge is oriented away from V; and ¢; = —1

T
if it is oriented toward V;. Thus 7,y has four poles on each C; and
1 €jd2
Tx,0 = 97 Z 5 _ i
V,€0E;

where V; € JF; means that the summation is taken on the four indices j
such that F; is an edge with endpoint V;. Hence

Fi(x,0) =1 Z gjeT"

V;€9E;
and F(6,0) = 0. Moreover
OF; i
a—X(O,O): Z £5€ ejdwj
V; €0,

As usual we may assume that all vertices have distinct abscissa and order
them by their abscissa. For each vertex V;, let Ey,, and Fy,, be the two
edges with endpoint V; that are on the right of V,;. Let n = n.. We iden-

. . . or . .

tify C™ with R?". The matrix of ——(0,0) restricted to the 2n variables
x

Thy s Thyps " Thy 1y Thy, 18 a rectangular block matrix with n X n blocks

of size 2 x 2. All the blocks above the diagonal are zero because if ¢ < j
then V; is not an endpoint of Ey;, nor Ej,, so F; does not depend on the

corresponding x variables. The it block on the diagonal is the matrix of
—10g, —10. .. .
(Thj 1y Thyy) = Eky Tk € 00+ g, Tk € 2. It is invertible because

—ify, 0y

e %1 and e ""*2 are independent over R. This proves that the matrix has

real rank 2n. Hence the proposition is proven.
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3.3 The B-periods of ¢; and ¢,
Let F; be a bounded face. For each edge F; we defined a path I'; in section

1.2. Then
Bi= Y T
E,€0F,

where the + means the product of paths and E; € §F; means that the sum is
taken on all indices j such that F; is on the boundary of F;. By proposition

3 we have
log y;
k k
/F Z Ty = ( 27”-]/; z 77x,y> +f(X7Y)
J

J

where in this section, f(x,y) means an analytic function of (x,y) in a neigh-
borhood of (6,0). Hence for k =1,2,3

ke[ o) = ¥ e (lﬂ / ¢k)+f<x,y> (7

E;€dF,

We have seen that because of the symmetry fv ¢k is imaginary when k =
J
1,2, so

log |y,
. - “or | k=
(o) (o) e e

We see that each term in the above sum diverges when y = 0. What we
would like to do is normalise the period by dividing by log |y;|. There are

two problems: the y; are not all the same, and also y — o [y
ogly
differentiable at 0. We solve both problems as follows, but doing this, we

leave the realm of analytic functions.

For each bounded edge F; we fix an £; = +1. (These ¢; have nothing to
do with the ; of the previous section). For any r = (ry,---7,,) € (0,00)"
such that > r; =1, and for any 7 € R, let

—7r.
y;(r,7) =g exp (T—;) y;(r,0)=0
The map (r,7) — y is smooth in a neighborhood of any (r,0), and is one

to one if 7 > 0 thanks to the normalisation ) r; = 1. From now on our
variables are (x,r,7) instead of (x,y).
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Multiplying the above formula by 72 we get

TQRG(/Biqﬁk):— 3 ;—;Im</%<bk>+72f(x,y) (k=1,2)

E;€dF;

We define a complex-valued function

Gi(x,r,7)=2r7? (Re/ o1+ iRe/ ¢2> if 7#0
B; B;

By the above formula we see that G; extends smoothly to 7 = 0. Also when
7 =0, we have y = 0 so we may compute the integral on 7; as a residue at
€3, A straightforward computation gives

/ ¢1 = —isinz; / P2 =1cosx;
vy vy

Gi(x,r,0)= —t Z rje'vi

E;€dF,

Proposition 6 Let G = (Gy,---Gy). Let {; be the length of the edge E;,
and { = (€y,---L,.). Note that by scaling the graph we may assume that

> t;=1. Then G(0,¢,0) =0 and %—G(O,K, 0) is onto.
r

Proof: The first point is clear since —ie'¥s is the tangent vector to the

Hence

oriented edge E;. To prove the second point, note that G(6,r,0) is linear in
r so we must prove that r — G(6,r,0) is onto.

We order the bounded faces by the abscissa of their leftmost point. For
each face F;, let Fy, , and Fj,, be the two edges on the boundary of F;
whose endpoint is the leftmost vertex of F;. We identify C? with R?9. The
matrix of r —+ G/(0,r,0) restricted to the 2g variables ry, |, 7k, 5, Tk, 1, Thys
is a rectangular block matrix with g X g blocks of size 2 x 2. All the blocks
below the diagonal are zero because if ¢ > j, Fy, , and Ej,, are not on the
boundary of F; so (G; does not depend on Tky;y NOT Tk, . The ith block on
the diagonal is the matrix of (rg; ,, 7k, ,) — —i(rki’lewk%l + 1k, e'%*i2) which
is invertible as in the previous proposition. Hence r — G(6,r,0) is onto,
from R™ to CY.

It remains to prove that it is still onto when restricted to > r; = 0. Now
for any r, the vector s = r — (D> r;)l satisfies ) s; = 0 and G(0,s,0) =
G(6,r,0). This proves the proposition.
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Consider the map H(x,r,7) = (F(x,y(r,7)),G(x,r,7)) where F is the
map defined in the previous section. H is smooth in a neighborhood of
(6,£,0). Tt takes values in C™**"f. The differential of H with respect to the
variables x and r at (6,¢,0) has the matrix

oF

8_x(0’0) 0

oG oG
8—x(0’€’ 0) 6—r(0’£’ 0)

The upper right block is zero because g—y(r,O) = 0. By proposition 5 and
r

6, the matrix has real rank 2n, 4+ 2ny. By the implicit function theorem we
get

Corollary 1 In a neighborhood of (8,£,0), H=1(0) is a smooth submanifold
of Rmetnee x R™~1 X R of dimension (ne +neo) + (ne — 1) +1—2n, —2ny =
Neo — 2. Here we identify R~ with the subspace > r; =1 of R™.

3.4 The B-periods of ¢3

Recall that there is no canonical way to choose the closed curve B; but all
choices are homotopic modulo the curves v; for E; € JF;. Since f% ¢3 = 1,
the integral of ¢3 on B; is well defined modulo 1.

When all y; are positive, we may choose the path B; such that o(B;) =
B;. Then o*¢3 = —¢3 implies that Re fB,; ¢3 = 0.

When some of the y; are negative, all one can say is that o(B;) is homo-
topic to B; modulo the curves v; for E; € 0F;. Then fBi —¢3 = fB¢ ¢3 mod 1
hence

Re/ qbg,:Omod1
B; 2

On the other hand, from formula 7 of the previous section,
log
Re/}3¢¢3: Z Re( s )—I—f(x,y)

E,€dF,
1 . . 1 ..
= 0 mod —, the function f is equal to zero modulo —. Since

log
it is continuous, it is constant. Evaluating when all y; are positive, we find

that f is zero. Hence

Since
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Proposition 7 The period Re fB' Nx,y 15 equal modulo 1 to half the number
of edges E; on the boundary of the face F; such that y; < 0.

In section 3.5 we will see a geometric explanation of this proposition. From
now on we fix the values of ¢; = £1 so that for each face, the number of
edges F/; on its boundary with ¢; = —1 is even.

3.5 The surfaces Mp ,

Propositions 6 and 7 give the existence of a smooth family of minimal sur-
faces depending on n., — 2 parameters. We shall see that when 7 is fixed,
the remaining n., — 3 parameters correspond to the deformations of the set
of lines D.

Consider an integer n > 3. Let D be the set of all n-uples of lines
D = (Dy,---D,) such that:

i) The intersection of any three lines of D is empty.
ii) Any two lines of D are non parallel.
iii) Dy and Dy intersect at the origin.

iv) The sum of the lengths of the bounded edges of the graph D;U--- D,

is one.
D is in a natural way a smooth (non connected) manifold of dimension 2n—3.

Theorem 1 There exists a neighborhood U of Dx {0} in D xR and a family
of minimal surfaces Mp ; where (D,7) € U\ (D x {0}) which satisfies the
assertions i) to v) of the introduction.

Proof: It suffices to prove the theorem for each connected component of D.
We consider one component and still call it D. Each element D of D defines
a planar graph. From hypothesis 7 and ¢, all these graphs are isomorphic so
we may orient and label the edges E;(D) so that E£;(D) depends continuously
on D.

Let ¢%(P) be the normal to the oriented edge E;(D). Since there is a
multi-valuation problem we see #;(D) as a number in R/27. Let ¢;(D) be
the length of the edge E;(D).

Let E = (R/2m)"etm= x R"~1 x R. Recall that we identified R~ with
the subspace > r; = 1 of R™. We define ¢» : D — F by



It is easy to see that % is an injective immersion. The map H defined in
section 3.3 is well defined in a neighborhood of (D) in E. By proposition
6, for any D € D, H(¢)(D)) = 0 and H is a submersion at (D). Hence
H~'(0) is a smooth submanifold of E in a neighborhood of ¢(D). Note that
H=Y(0)n{r = 0} is a codimension one submanifold of H~1(0). Since D and
H=1(0)n{r = 0} have the same dimension, ¢ is a diffeomorphism from D
to an open subset of H=1(0)n{r = 0}.

We define h : H™*(0) — R by h(x,r,7) = 7. To prove theorem 1 we
parametrise in a natural way H~1(0) by A~!(0) x R. We define a smooth

vector field on H=1(0) by x = We define ¢ : h~1(0) x R — H~1(0)
by

[IVA*

P00 =0 2ol = x(p(v,5)
Then ¢ is defined and smooth in a neighborhood of A™'(0) x {0} and
dihogo(v, s) = (Vh,x) = 1. Hence ¢ maps h~1(0) x {r} to h~1(7).

’ Given D € D and 7 > 0 small enough, let (x,r,7) = ¢(¢(D),7) and y =
y(r,7). Then (Xxy, 2, 7x,y) is the Weierstrass data for a complete minimal
immersion Xp ; into R?/(0, 0, 1). It is defined up to a translation. We choose
the translation so that Xp .(0;) = (0,0,0) where V; is the intersection of
Dy and D, and 0y is the corresponding zero of z in C;. Let Mp, ;> be the
image of Xp . scaled by T2,

In the remaining of the section we briefly discuss the geometry of Mp ;.
We start with embeddedness. We fix a D € D.

On each C; minus four small disks around the ends and cuts, the Weier-
strass data converges when 7 — 0 to the Weierstrass data of a Scherk surface
whose ends have asymptotic normal e'% (D). Since the Scherk surfaces are
embedded, the image of the above domain by Xp . is embedded for 7 small
enough.

The image of a neighborhood |z — ¢'%| < r of a branch point or an end
is also embedded because it is a graph.

For any edge F; with endpoints V;, and Vj,, 72 (Xp - (0s,) — Xp +(0;,))
converges when 7 — 0 to V;, — V;,. Hence 72X p .(0;) converges to V; when
T — 0.

The normal at the end ¢; is e and z;(D, T) converges to 6;(D)
when 7 — 0. Hence the asymptotic half-plane of the end ¢; of Mp ; con-
verges when 7 — 0 to the vertical half-plane £; x R. Since the lines of D
are non parallel, the asymptotic half-planes of the ends will not intersect if

iz (D7)
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7 is small enough. This implies that Mp ; is embedded.
The involution o corresponds to a symmetry of Mp . with respect to a

horizontal plane. Mp ; has in fact two horizontal planes of symmetry at
2

distance _ from each other.

If y; < 0, then the two branch points corresponding to the edge FE; are
fixed by o. It is not hard to see that they are not on the same horizontal
plane of symmetry. The intersection of Mp ; with each plane of symmetry
has a flex point at the branch point.

If y; > 0, then the branch points are not on the planes of symmetry. The
intersection of Mp , with each plane of symmetry is locally convex.

Y.< 0 y3< 0

v,>0

Fig. 6: The intersection of Mp ; with one of its planes of symmetry. We
see that the number of flex points per face has to be even, which gives a
geometrical interpretation of proposition 7.

4 A short detour in coherent sheaves

In this section we prove lemma 1. We assume the reader is familiar with
elementary sheaf theory, such as presented in [3], chapter 6.

The notations are those of section 2. Let n = n., be the number of
poles of 7, when y # 0 and & be the set of poles of 7,. Recall that 6 does
not depend on y. Let A be the set D(¢) x 6 on X. Let F be the sheaf of
meromorphic 2-forms on X who have at most simple poles on A and are
otherwise holomorphic.

We state the following theorem of Grauert.
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Theorem 2 (Grauert) Let 7 : X — Y be a proper morphism of complex
analytic manifolds. Let X,, be the fiber m='({y}). Let F be a coherent ana-
lytic sheaf on X which is flat with respect to Y. Suppose that diim H(X,, F,)
does not depend on y € Y. Then the sheaf w,F tis locally free of rank
dim H°(X,, F,).

See [4], page 291 for the original statement (which is more general) or [1],
Theorem 4.12, page 134. See also the classical book [6], Corollary 12.9, page
288 for the corresponding statement in the algebraic (instead of analytic)
case.

We now prove that the hypotheses of the theorem are satisfied in our
case. F coherent means that locally, i.e. for small open sets U C X, F(U)
is a module on the ring Ox (U) which is finitely generated, and moreover
the relations between the generators are finitely generated. Oy is the sheaf
of holomorphic functions on X. In our case, F is locally free or rank one
hence coherent.

The word “flat” has an algebraic meaning here. 7 : X — Y = C is open
because it is a non constant holomorphic function. Then Oy is flat with
respect to Y by [1], Theorem 2.13 page 181. Since F is locally free of rank
one, F is flat over Y.

Fy is the quotient sheaf F/Z,, where Z, is the subsheaf of F of 2-forms
which vanish on X,. We first show that F, is isomorphic to a more familiar
shealf.

If y # 0, let Q, be the sheaf of meromorphic 1-forms on X, who have
at most a pole on § and are otherwise holomorphic. If y = 0, let Qg be the
sheaf of meromorphic 1-forms on Xy minus the double point, which have
at most a pole on §, and which, in a neighborhood of the double point,
may be written f(W)dW/W in the component V =0 and ¢(V)dV/V in the
component W = 0, with f(0) 4+ ¢(0) = 0.

The restriction operator w — w/|, defined in this section induces a sheaf
homomorphism R, : F — Q,, where we see €, as a sheaf on X. The
following facts are not hard to check:

- The kernel of this homomorphism is Z,,
- For small open sets U C X, R, (F(U)) = Q,(U).

Hence we have an exact sequence of sheaves
072y - F—=Q,—0
from which we get

dim H°(X,, F,) = dim H°(X,,Q,)
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When y # 0, we have dim H°(X,, ) = n—1+yg, because a meromorphic
1-form with simple poles is given by its n residues and its g A-periods, with
the only condition that the sum of the residues is zero.

When y = 0 there are two cases:

- If X¢ minus the double point is connected, then its genus is g — 1. A
1-form in H%(Xg, Qo) has n+ 2 poles, with the condition that the two poles
corresponding to the double point have opposite residues, and the sum of
all residues is zero. Hence the dimension of HY isn +2—-1—-1+ g— 1.

- If X minus the double point is not connected, then it has two components
of genus ¢’ and g” with ¢'+¢” = g. Let n’ (resp. n”’) be the number of points
of § which are in the first (resp. second) component, so that n’ 4+ n” = n.
Then the dimension of HY is (n'+1-144¢")+(n"+1-14¢")—1. (We have
a —1 in each parenthesis because the sum of the residues in each component
has to be zero, and the last —1 is there because the two poles corresponding
to the node must have opposite residues).

In all cases we find dim H% = n+ g — 1 so by the theorem, 7, F is locally
free of rank n + ¢ — 1. This means that for any yg € Y, there exists a
neighborhood U of yy such that 7, F(U) is a free module of rank n 4+ ¢ — 1
over Oy (U), where by definition m,F(U) = F(x~1(U)). Let wy, - wnyg-1
be a basis of F(7~!(U)) over Oy (U). We define

Fly,w) = ( /A Wy /A wlys Res ]y, Res qn_lwly)
1 g

where ¢, - - -, are the poles of 7,.

Let M;;(y) = Fi(y,w;). For any y in U, the square matrix M (y) is
invertible. Indeed, if there exists ¢ € C™*9~! such that M(y)¢ = 0, let w =
> &w;. Then F(y,w) = 0 implies that w|, = 0. Hence w = (7 — y)w’ where
W' e F(r~H(U)). Write o’ = Y &'w; where the &} are functions in Oy (U).
Then by uniqueness of the decomposition, §; = (7 —y)&;. Evaluating on X,
where m = y we see that £ = 0 so M (y) is invertible.

1 1
Let &(y) = M(y) ™' (1,---1, iT’ - 2—) where the signs are those of
)

!
the residues of n,. Then & € Oy (U) and w = ) & (y)w; satisfies w|, = 7,
for any y € U, y # 0. This proves lemma 1.
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