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Multi-field inflation and curved field space

The paradigm of single-field inflation is amazingly successful... but also
unrealistic

More plausible is that, besides the inflaton, other fields were present

—%(3@2 -V(p) — _%6IJ6M¢18M¢J - V(¢")

> Well motivated theoretically (string
theory and supergravity)

> Not problematic — if extra fields were
heavy (compared to the Hubble scale
H), dynamics can still be effectively
single-field
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Multi-field inflation and curved field space

But this is still a bit simplistic...

> More generally, higher dimension
operators will modify the kinetic
structure of the theory

1 1
5 0u0"6'0,6” = —2 Gu(6)9"¢'9,,¢?
— Curved internal field space
Gu(¢)do'dg? = d(¢')? + d(¢%)
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Multi-field inflation and curved field space

» The field space curvature is
characterized by an energy scale M

Rk ~ V2

The scale M need not be too large
compared to Hubble

H< M < Mp,

so that the curvature of the field space
may lead to sizable effects

Image credit: S. Renaux-Petel
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Multi-field inflation and curved field space

M2 1
5= [ x| "E RE) - 5 600" 0'0,0" - V(o)
Inflationary background
Badxidx’ = —di? + 2(t)dR2, ¢ =/(t)

Egs. of motion _ _
D¢ +3He' + GV, =0

52 = 2M3 H%, V = M3,H?(3 —¢)
with
&=/ Gyole!
e=—H/H?

DA = Al 4T, G/ AK
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Strongly non-geodesic motion

It is useful to introduce an
adiabatic-entropic basis

I e I
el =¢'Jo, Guelel =0

el — adiabatic direction

el — entropic direction

Time derivative of basis vectors
D.el = Hn, €
tCoe — 77L s

71 — bending parameter

b2

q~

oL (t)

0~

Dte; = anLec’,

Groot Nibbelink & Van Tent (2002)
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Strongly non-geodesic motion

» 1, =0 — geodesic motion (in field space)

> |n.|>1 — strongly non-geodesic motion

Projecting the eq. of motion along e/ and e!

G+3H6+V,=0,  Hon +Vs=0

Remarks

> Inflation must occur on the
slope of the potential to
support .| > 1

» This can naturally be achieved
with curved field space
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Strongly non-geodesic motion

» Examples of models

— Hyperinflation Brown (2018)

Giydd'dp? = dp* + M?sinh?(p/M)d6? V = V(p)

— Sidetracked inflation SGS, Renaux-Petel & Ronayne (2018)
1 4.J 2x mi
Gde'do :(1+—)d<p A, V= V(e)+ 2y
— Angular inflation Christodoulidis et al. (2018)
dy? + dp3 a
G id Id J _ 1 2 V= — 2 2 2 2
1J ¢ ¢ (1 — QD% _ @%)2 ) 2 (ml@l + m2802)

» Unified descriptions

— Dynamical attractors
Bjorkmo (2019), Christodoulidis et al. (2019)

— Effective field theory of perturbations
SGS & Renaux-Petel (2018)

S. Garcia-Saenz (Imperial)



Strongly non-geodesic motion

Why is inflation with strongly non-geodesic motion interesting?

» Occurs naturally when field space has negative curvature

> Consistent with swampland conjectures  Achucarro & Palma (2018)

Mp, |V V|
o > — 1J
v ~L V= 6HVaVy

2
~ Single-field: €~ (w) <1
2
~ Multi-field: ewﬁﬁwﬁm)<l

» Large non-Gaussianities with heavy fields

1 1 7”2 H?
&N(g—gmn+a¢ é—u«;

s mheavy
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Linear perturbations

2
5= [ d*x/E | 7F R(E) - 5 Gul0)9"6'0,07 - V(o)

In the flat gauge the metric is unperturbed and we define
¢ =a’v2eeld¢; — curvature perturbation

vs = aeldp; — entropic perturbation

At quadratic order

1
5@ = 5 / drd®x [Zaze(CQ —K*C) + v — kv

S

/!

+ (a— — mi)a2vs2 —42%V/2¢ Hm_vsg'}
a
Effective entropic mass

m? = Vigs + eRes H2* M3, — 03 H?
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Linear perturbations

m? Vies + eRszzl\/Ig,l — niH2

s =

» Crucial observation is that we can have m? < 0

— tachyonic instability

» Instability is typically only transient, since n;, — 0 at the end of

inflation

> But it leads to an exponential
enhancement of the scalar
power spectrum P

Cremonini et al. (2011)
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Linear perturbations

Eq. of motion for entropic mode

v+ K2, + (m? — 2H?*)a?v, = —2a%V2e Hny ¢!

Suppose |m2| > k?/a, H?, 02

2\/ZH7]L
_T

C/

— Vs ~

Substitute to get an effective action for ¢
2
ng) = /de3x a’e [Ccz — kzcz}
where ¢; is the effective speed of sound

4H L

2
mg

1
2
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Inflation with imaginary speed of sound

2 1 4H2 2
s@) = /d7d3x a?e {2 - k2g2} . =14
C (o5 m

¢ s
In models with strongly non-geodesic motion
nm>1, m? ~ —H?n3 — 2 =-0(1)
— imaginary speed of sound

But if 2 < 0 then ( is a ghost and gradient-unstable

> This makes sense — a tachyonic instability becomes a UV-sensitive
instability in the EFT

» An EFT with a ghost? Wouldn't it be...

— catastrophic? no — a Lorentz breaking EFT has a minimum timescale
1/Acusofr for any instability

— useless? maybe — observables will be sensitive to Acytor, EFT can't make
quantitative predictions
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Inflation with imaginary speed of sound

» We write the cutoff of the EFT in terms of a dimensionless
parameter x

k|c
M < XH
a
with x > 1
» In terms of time evolution, the EFT is valid for times 7 such that
klcs|T+x >0

with 7 the conformal time, 7 € (—o0,0)

» The curvature perturbation
¢ i —klcs|T—x
Ck(T) = kTL(ek\QlTer(k‘csh__ l)—pkeleke kcs| (k|Cs|T+1)>

has exponentially growing and decaying modes, as expected
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Inflation with imaginary speed of sound

() = s (1 (ke — 1) — pre™ e M (Kl + 1)

We parametrize the coefficients of the mode function in terms of ay, p«
and 6y (all real)

Remarks

» No Bunch—Davies vacuum — no minimum energy state

> Physically we expect px = O(1), i.e. we expect the two modes to be
excited in roughly the same way

» Quantization condition gives the constraint

2 H2
apisin(i) = G| ME,
S Pl
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Inflation with imaginary speed of sound

Power spectrum

2
Pe(k) = ke (ezx + 2py cos(0x) + p3 e_zx)
272 k

> Very ugly result at first sight — depends on all the unknowns a,

Pk, Ok and x
2

» But recall that x > 1, and that we expect px ~ 1, a2 ~ #\’V’fn' so

2 2

« H

Pe(k)~ K e v e
c(k) =5 8m2e|cs| M2,

The tensor-to-scalar ratio will then be suppressed by e~ relative to

single-field expectation
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Inflation with imaginary speed of sound
» Recall that x determines the regime of validity of the EFT
X
Tel———,0
< k|cs] )

»> |t is undetermined within the EFT, but we can estimate it via a
“matching calculation”

S
14
i 10 kss/a = |ms| kss|cslfa=H
» For instance, we can compare 1012 U
the numerical entropic power 10104
. o \
spectrum Ps with the one & 108
: . g
derived from the relation 1061 / BN =InGx) —
104 — Ps.err
_ _2V2eHn, , 102\ Ps
Ve @ ——————— ¢ -4 3 2 1 0 i 2
m?2 N
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EFT of single-field inflation

» So far we've only discussed the power spectrum or 2-point function

» To derive higher-point correlations (non-Gaussianities) we have
three options

— Compute numerically in the full two-field theory
so far only possible for the bispectrum

e.g. Ronayne & Mulryne (2018)

— Integrate out the entropic mode beyond quadratic order

so far only possible for the bispectrum

SGS, Pinol & Renaux-Petel (2019)

— Use the complete EFT of single-field inflation
Creminelli et al. (2006), Cheung et al. (2007)
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EFT of single-field inflation
Inflation can be described in a model-independent way using effective field
theory (EFT)

As with any EFT, we construct the action in three steps
> |dentify the light degrees of freedom
— Inflaton b = ¢(t) + 0¢(t,X)
— Graviton 8uv = &LV (t) + hyuw(t, X)

> |dentify the relevant symmetries

—

— Unbroken spatial diffeomorphisms &(t, X)
X>X4+E,  bp— 60
— Broken time diffeomorphisms £°(t, X)

t st e, Gp— 6+ o(t)e

> Write the most general action consistent with the symmetries, as a
series in perturbations d¢, h,,, and in derivatives J,,

S. Garcia-Saenz (Imperial)



EFT of single-field inflation

To start it's useful to choose a gauge where €0 is such that §¢ = 0 (unitary
gauge)

The most general action is
M2 . .
S = /d4xx/7—g [21’1 R+ M3 Hg® — M2,(3H? + H)
+ F(5g00, 0K, R poi Vi t)

Here F is an arbitrary function of
5g%0 = g% 4 1
extrinsic curvature 9K, (uncontracted 0 indices allowed)
Riemann tensor 0R,,, - (uncontracted 0 indices allowed)
derivatives thereof

explicit functions of t
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EFT of single-field inflation

At lowest order in perturbations and in derivatives

F= 5 Ma(t)*(56%) + ¢ Ms(1)*(56%)

For the purpose of computing observables it's convenient to reintroduce
the scalar degree of freedom that was “eaten” by the metric

Rather than reintroduce d¢, we can reintroduce the Goldstone 7(t,X)
associated to the breaking of time translations

t—t+m, g0 =0, (t+m)o(t+m)eg"

The final result simplifies in the decoupling limit where the mixing with
gravity can be neglected

(V)
22

g% — —2r — w2+
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EFT of single-field inflation

After this approximation our final action up to cubic order is

=2 =, \2 T, )2
S— /dtd3x B3M2,eH? Hz _ (V7 ( L_ 1) (W(W) + ?27%3”

S = 2
The curvature perturbation is then ( ~ —Hw

» There are two relevant coefficients

2M2
MI%IEH2

1
— Speed of sound: — =1+
CS
4
— Coupling constant: A= -2 (1 - % (%) )

> They are undetermined within the EFT — to know them we need a
UV completion
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EFT of single-field inflation

The UV completion is our two-field model in curved field space, and the
EFT is obtained upon integrating out the entropic perturbation vg

» At quadratic we already derived the speed of sound

1 4Hp
Sl
C

S s

» To find A one needs to integrate out vs at cubic order

1-¢? N 2eH? M3, Res(1 + 2¢2)

A=—
2 3m?
\/27€Mp1(]. — C2)
T e Ves M MR

SGS, Pinol & Renaux-Petel (2019)
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Bispectrum with ¢2 < 0

Cubic action

@G _ 3 acM (1 a2 A s
s® /drdx ; (C|2+1 VP~ ¢

|cs

The reduced bispectrum is

BC(klv ka, k3)

= B (k) Pe(k2) T P (ko) P (ks) T Pe(ka) P ()

_ S(klak27k3)
k? /(kaks) + (2 perm.)

We write the shape function as

S(ki, ko, k3) =S

c(gep T A

with A= O(1)
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Bispectrum with ¢2 < 0

« i —k|cs|T—x
G(7) = 5 (4117 (Kleslr = 1) = pre™ e Mo (k| + 1))

Even though B¢ and P¢ are UV sensitive
Pe ox e, B¢ oc e™
the quantity fy; is UV insensitive (with caveats)

The results again depend on the unknown parameters pg, 6. But because
x > 1 the outcome turns out to be “universal”

3/ 1 ki koks
S n==|—+4 1 - - -
T (|Cs|2 ) { (ki + ko + k3)?

ki kok . k 2k
e D
1 max

max

/}1 = ko + k3 — kq, etc.
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Bispectrum with ¢2 < 0

3/ 1 kykoks
Sp="—5+1)8 - 22
¢ 4<| i ){ (ki + ko + k3)?

k1k2k3 —xk1 / ke k L
4+ —== k3 —e ki/kmax 1+ kaax + 7 12 + (2 perm')

max

/}1 = ky + k3 — kq, etc.

Remarks

> Result is independent of ay, pk, O«

» Whenever k; > 0, result is also independent of cutoff parameter x

Equilateral shape
13

Sen(k, k, k) ~ e
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Bispectrum with ¢2 < 0

3/ 1 ki ks
S n=—=|—+4 1 - - -
T <|Cs|2 ) { (ki + ko + k3)3

ky ko k i k 2 k2
+1;1233[1_e_xk1/km <1+Xk : +X2k21>]}+(2 perm.)

max

/}1 = ky + k3 — kq, etc.
» On the triangle edges k; — 0. The result is still finite but with a
power-law cutoff dependence

Squashed configuration

1
SC/S(k,k/2,k/2) ~ W(39+4X3)

— On the triangle edges the non-Gaussianities are large — but not
exponentially so

— The EFT predicts non-Gaussianities peaked on squashed shapes
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Bispectrum with ¢2 < 0

Test of the EFT with hyperinflation model
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Higher-point correlations with c2 < 0
Higher-point correlation functions

» Just like for the bispectrum, the reduced n-point function is not
exponentially amplified

€ ~ e2x(n—1), <C2> ~ 2 N <<<2<>:>1 ~ “order 1"

Bjorkmo, Ferreira & Marsh (2019)

» However, flattened shapes generically have a power-law

enhancement
Cn 1 n—2
<<<2>">—1 ~ K|cs|2 * 1) Xs]

Fumagalli, SGS, Pinol, Renaux-Petel & Ronayne (2019)

» These models are still under perturbative control, but strongly
constrained by experimental bounds on (¢3) and (¢*)
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Summary

» Inflation with strongly non-geodesic motion

— Well motivated by microscopic considerations
many scalars, curved field space, swampland conjectures

— Interesting observational signatures
suppressed tensor-to-scalar ratio, large non-Gaussianities of flattened

shapes

» Description from effective field theory

— Unusual theory with a ghost and gradient instability, yet with a
clear regime of validity

— Results match very well first-principles numerical calculations

— Allows to go beyond current numerical techniques

Thank you
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