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Multi-field inflation and curved field space

The paradigm of single-field inflation is amazingly successful... but also
unrealistic

More plausible is that, besides the inflaton, other fields were present

−1
2 (∂φ)2 − V (φ) → −1

2 δIJ∂
µφI∂µφ

J − V (φI)

I Well motivated theoretically (string
theory and supergravity)

I Not problematic — if extra fields were
heavy (compared to the Hubble scale
H), dynamics can still be effectively
single-field
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Multi-field inflation and curved field space

But this is still a bit simplistic...

I More generally, higher dimension
operators will modify the kinetic
structure of the theory

−1
2 δIJ∂

µφI∂µφ
J → −1

2 GIJ (φ)∂µφI∂µφ
J

→ Curved internal field space

GIJ (φ)dφIdφJ = d(φ1)2 + d(φ2)2

+ (φ1)2

M2 d(φ2)2 + (φ2)2

M2 dφ1dφ2 + · · ·

V (�1, �2)

�1

�2

More realistic:

Geometrical 
instability

Light inflaton
+

Extra heavy fields
+

Curved field space

Basic mechanism Renaux-Petel, Turzynski, September 2016
PRL Editors’ Highlight
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Multi-field inflation and curved field space

I The field space curvature is
characterized by an energy scale M

RIJKL ∼
1

M2

The scale M need not be too large
compared to Hubble

H < M < MPl

so that the curvature of the field space
may lead to sizable effects

V (�1, �2)

�1

�2

More realistic:

Geometrical 
instability

Light inflaton
+

Extra heavy fields
+

Curved field space

Basic mechanism Renaux-Petel, Turzynski, September 2016
PRL Editors’ Highlight
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Multi-field inflation and curved field space

S =
∫

d4x
√
−g
[

M2
Pl

2 R(g)− 1
2 GIJ (φ)∂µφI∂µφ

J − V (φ)
]

Inflationary background

ḡµνdxµdxν = −dt2 + a2(t)d~x2 , φI = φ̄I(t)

Eqs. of motion
Dt

˙̄φI + 3H ˙̄φI + G IJV,J = 0

σ̇2 = 2M2
PlH2ε , V = M2

PlH2(3− ε)

with

σ̇ ≡
√

GIJ
˙̄φI ˙̄φJ

ε ≡ −Ḣ/H2

DtAI ≡ ȦI + ΓI
JK

˙̄φJAK
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Strongly non-geodesic motion

It is useful to introduce an
adiabatic-entropic basis

eI
σ = ˙̄φI/σ̇ , GIJeI

σeJ
s = 0

eI
σ → adiabatic direction

eI
s → entropic direction

φ1

φ2

φ̄I (t)

eIσ

eIs

Time derivative of basis vectors

DteI
σ = Hη⊥eI

s , DteI
s = −Hη⊥eI

σ

η⊥ → bending parameter
Groot Nibbelink & Van Tent (2002)
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Strongly non-geodesic motion

I η⊥ = 0 → geodesic motion (in field space)
I |η⊥| � 1 → strongly non-geodesic motion

Projecting the eq. of motion along eI
σ and eI

s

σ̈ + 3Hσ̇ + V,σ = 0 , Hσ̇η⊥ + V,s = 0

Remarks
I Inflation must occur on the

slope of the potential to
support |η⊥| � 1

I This can naturally be achieved
with curved field space
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Strongly non-geodesic motion
I Examples of models

– Hyperinflation Brown (2018)

GIJdφIdφJ = dρ2 + M2 sinh2(ρ/M)dθ2 , V = V (ρ)

– Sidetracked inflation SGS, Renaux-Petel & Ronayne (2018)

GIJdφIdφJ =
(

1 + 2χ2

M2

)
dϕ2 + dχ2 , V = V (ϕ) + m2

h
2 χ2

– Angular inflation Christodoulidis et al. (2018)

GIJdφIdφJ = α
dϕ2

1 + dϕ2
2

(1− ϕ2
1 − ϕ2

2)2 , V = α

2 (m2
1ϕ

2
1 + m2

2ϕ
2
2)

I Unified descriptions
– Dynamical attractors

Bjorkmo (2019), Christodoulidis et al. (2019)

– Effective field theory of perturbations
SGS & Renaux-Petel (2018)
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Strongly non-geodesic motion

Why is inflation with strongly non-geodesic motion interesting?

I Occurs naturally when field space has negative curvature

I Consistent with swampland conjectures Achucarro & Palma (2018)

MPl|∇V |
V & 1 , |∇V | =

√
G IJV,IV,J

– Single-field: ε ∼
(

MPl|∇V |
V

)2
� 1

– Multi-field: ε ∼ 1
1+η2

⊥

(
MPl|∇V |

V

)2
� 1

I Large non-Gaussianities with heavy fields

Bζ ∼
( 1

c2
s
− 1
)
O(1) +O(ε) , 1

c2
s
− 1 ∼ η2

⊥H2

m2
heavy
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Linear perturbations

S =
∫

d4x
√
−g
[

M2
Pl

2 R(g)− 1
2 GIJ (φ)∂µφI∂µφ

J − V (φ)
]

In the flat gauge the metric is unperturbed and we define

ζ = a2√2ε eI
σδφI → curvature perturbation

vs = a eI
sδφI → entropic perturbation

At quadratic order

S(2) = 1
2

∫
dτd3x

[
2a2ε

(
ζ ′2 − k2ζ2)+ v ′2s − k2v2

s

+
(a′′

a −m2
s

)
a2v2

s − 4a2√2εHη⊥vsζ
′
]

Effective entropic mass

m2
s ≡ V;ss + εRfsH2M2

Pl − η2
⊥H2
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Linear perturbations

m2
s ≡ V;ss + εRfsH2M2

Pl − η2
⊥H2

I Crucial observation is that we can have m2
s < 0

→ tachyonic instability

I Instability is typically only transient, since η⊥ → 0 at the end of
inflation

I But it leads to an exponential
enhancement of the scalar
power spectrum Pζ
Cremonini et al. (2011)
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Linear perturbations

Eq. of motion for entropic mode

v ′′s + k2vs + (m2
s − 2H2)a2vs = −2a2√2εHη⊥ζ ′

Suppose |m2
s | � k2/a2 , H2 , ∂2

τ

→ vs ' −
2
√

2εHη⊥
m2

s
ζ ′

Substitute to get an effective action for ζ

S(2)
eff =

∫
dτd3x a2ε

[
ζ ′2

c2
s
− k2ζ2

]
where cs is the effective speed of sound

1
c2

s
≡ 1 + 4H2η2

⊥
m2

s
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Inflation with imaginary speed of sound

S(2)
eff =

∫
dτd3x a2ε

[
ζ ′2

c2
s
− k2ζ2

]
,

1
c2

s
≡ 1 + 4H2η2

⊥
m2

s

In models with strongly non-geodesic motion

η2
⊥ � 1 , m2

s ∼ −H2η2
⊥ → c2

s = −O(1)

→ imaginary speed of sound

But if c2
s < 0 then ζ is a ghost and gradient-unstable

I This makes sense — a tachyonic instability becomes a UV-sensitive
instability in the EFT

I An EFT with a ghost? Wouldn’t it be...

– catastrophic? no – a Lorentz breaking EFT has a minimum timescale
1/Λcutoff for any instability

– useless? maybe – observables will be sensitive to Λcutoff , EFT can’t make
quantitative predictions
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Inflation with imaginary speed of sound

I We write the cutoff of the EFT in terms of a dimensionless
parameter x

k|cs |
a < xH

with x � 1

I In terms of time evolution, the EFT is valid for times τ such that

k|cs |τ + x > 0

with τ the conformal time, τ ∈ (−∞, 0)

I The curvature perturbation

ζk(τ) = αk

k3/2

(
ek|cs |τ+x (k|cs |τ − 1)− ρke iθk e−k|cs |τ−x (k|cs |τ + 1)

)
has exponentially growing and decaying modes, as expected
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Inflation with imaginary speed of sound

ζk(τ) = αk

k3/2

(
ek|cs |τ+x (k|cs |τ − 1)− ρke iθk e−k|cs |τ−x (k|cs |τ + 1)

)
We parametrize the coefficients of the mode function in terms of αk , ρk
and θk (all real)

Remarks
I No Bunch–Davies vacuum — no minimum energy state

I Physically we expect ρk = O(1), i.e. we expect the two modes to be
excited in roughly the same way

I Quantization condition gives the constraint

α2
kρk sin(θk) = H2

4ε|cs |M2
Pl
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Inflation with imaginary speed of sound

Power spectrum

Pζ(k) = α2
k

2π2

(
e2x + 2ρk cos(θk) + ρ2

ke−2x
)

I Very ugly result at first sight — depends on all the unknowns αk ,
ρk , θk and x

I But recall that x � 1, and that we expect ρk ∼ 1, α2
k ∼ H2

4ε|cs |M2
Pl

, so

Pζ(k) ' α2
k

2π2 e2x ∼ H2

8π2ε|cs |M2
Pl

e2x

The tensor-to-scalar ratio will then be suppressed by e−2x relative to
single-field expectation
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Inflation with imaginary speed of sound

I Recall that x determines the regime of validity of the EFT

τ ∈
(
− x

k|cs |
, 0
)

I It is undetermined within the EFT, but we can estimate it via a
“matching calculation”

I For instance, we can compare
the numerical entropic power
spectrum PS with the one
derived from the relation

vs ' −
2
√

2εHη⊥
m2

s
ζ ′
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EFT of single-field inflation

I So far we’ve only discussed the power spectrum or 2-point function

I To derive higher-point correlations (non-Gaussianities) we have
three options

– Compute numerically in the full two-field theory
so far only possible for the bispectrum

e.g. Ronayne & Mulryne (2018)

– Integrate out the entropic mode beyond quadratic order
so far only possible for the bispectrum

SGS, Pinol & Renaux-Petel (2019)

– Use the complete EFT of single-field inflation
Creminelli et al. (2006), Cheung et al. (2007)
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EFT of single-field inflation
Inflation can be described in a model-independent way using effective field
theory (EFT)
As with any EFT, we construct the action in three steps

I Identify the light degrees of freedom

– Inflaton φ = φ̄(t) + δφ(t, ~x)
– Graviton gµν = ḡFLRW

µν (t) + hµν(t, ~x)

I Identify the relevant symmetries

– Unbroken spatial diffeomorphisms ~ξ(t, ~x)
~x → ~x + ~ξ , δφ→ δφ

– Broken time diffeomorphisms ξ0(t, ~x)
t → t + ξ0 , δφ→ δφ+ ˙̄φ(t)ξ0

I Write the most general action consistent with the symmetries, as a
series in perturbations δφ, hµν and in derivatives ∂µ
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EFT of single-field inflation

To start it’s useful to choose a gauge where ξ0 is such that δφ = 0 (unitary
gauge)

The most general action is

S =
∫

d4x
√
−g
[

M2
Pl

2 R + M2
PlḢg00 −M2

Pl(3H2 + Ḣ)

+ F (δg00, δKµν , δRµνρσ;∇µ; t)
]

Here F is an arbitrary function of

δg00 = g00 + 1

extrinsic curvature δKµν (uncontracted 0 indices allowed)

Riemann tensor δRµνρσ (uncontracted 0 indices allowed)

derivatives thereof

explicit functions of t
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EFT of single-field inflation

At lowest order in perturbations and in derivatives

F = 1
2 M2(t)4(δg00)2 + 1

6 M3(t)4(δg00)3

For the purpose of computing observables it’s convenient to reintroduce
the scalar degree of freedom that was “eaten” by the metric

Rather than reintroduce δφ, we can reintroduce the Goldstone π(t, ~x)
associated to the breaking of time translations

t → t + π , g00 → ∂µ(t + π)∂ν(t + π)gµν

The final result simplifies in the decoupling limit where the mixing with
gravity can be neglected

g00 → −2π̇ − π̇2 + (~∇π)2

a2
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EFT of single-field inflation

After this approximation our final action up to cubic order is

S =
∫

dtd3x a3M2
PlεH2

[
π̇2

c2
s
− (~∇π)2

a2 −
(

1
c2

s
− 1
)(

π̇(~∇π)2

a2 + A
c2

s
π̇3
)]

The curvature perturbation is then ζ ' −Hπ

I There are two relevant coefficients

– Speed of sound: 1
c2

s
≡ 1 + 2M2

2
M2

PlεH2

– Coupling constant: A ≡ −c2
s

(
1− 2

3

(
M3
M2

)4
)

I They are undetermined within the EFT — to know them we need a
UV completion
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EFT of single-field inflation

The UV completion is our two-field model in curved field space, and the
EFT is obtained upon integrating out the entropic perturbation vs

I At quadratic we already derived the speed of sound

1
c2

s
= 1 + 4H2η2

⊥
m2

s

I To find A one needs to integrate out vs at cubic order

A = −1− c2
s

2 + 2εH2M2
PlRfs(1 + 2c2

s )
3m2

s

−
√

2εMPl(1− c2
s )

6η⊥m2
s

(
V;sss + εH2M2

PlRfs;s
)

SGS, Pinol & Renaux-Petel (2019)
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Bispectrum with c2
s < 0

Cubic action

S(3)
eff = −

∫
dτd3x aεM2

Pl
H

(
1
|cs |2

+ 1
)(

ζ ′(~∇ζ)2 − A
|cs |2

ζ ′3
)

The reduced bispectrum is

fNL = Bζ(k1, k2, k3)
Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)

= S(k1, k2, k3)
k2

1/(k2k3) + (2 perm.)

We write the shape function as

S(k1, k2, k3) = Sζ′(~∇ζ)2 + A Sζ′3

with A = O(1)
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Bispectrum with c2
s < 0

ζk(τ) = αk

k3/2

(
ek|cs |τ+x (k|cs |τ − 1)− ρke iθk e−k|cs |τ−x (k|cs |τ + 1)

)
Even though Bζ and Pζ are UV sensitive

Pζ ∝ e2x , Bζ ∝ e4x

the quantity fNL is UV insensitive (with caveats)

The results again depend on the unknown parameters ρk , θk . But because
x � 1 the outcome turns out to be “universal”

Sζ′3 = 3
4

(
1
|cs |2

+ 1
){
− k1k2k3

(k1 + k2 + k3)3

+ k1k2k3

k̃3
1

[
1− e−xk̃1/kmax

(
1 + x k̃1

kmax
+ x2

2
k̃2

1
k2

max

)]}
+ (2 perm.)

k̃1 ≡ k2 + k3 − k1, etc.
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Bispectrum with c2
s < 0

Sζ′3 = 3
4

(
1
|cs |2

+ 1
){
− k1k2k3

(k1 + k2 + k3)3

+ k1k2k3

k̃3
1

[
1− e−xk̃1/kmax

(
1 + x k̃1

kmax
+ x2

2
k̃2

1
k2

max

)]}
+ (2 perm.)

k̃1 ≡ k2 + k3 − k1, etc.

Remarks
I Result is independent of αk , ρk , θk

I Whenever k̃i > 0, result is also independent of cutoff parameter x

Equilateral shape
Sζ′3 (k, k, k) ' 13

6|cs |2
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Bispectrum with c2
s < 0

Sζ′3 = 3
4

(
1
|cs |2

+ 1
){
− k1k2k3

(k1 + k2 + k3)3

+ k1k2k3

k̃13

[
1− e−xk̃1/kmax

(
1 + x k̃1

kmax
+ x2

2
k̃1

2

k2
max

)]}
+ (2 perm.)

k̃1 ≡ k2 + k3 − k1, etc.

I On the triangle edges k̃i → 0. The result is still finite but with a
power-law cutoff dependence

Squashed configuration

Sζ′3 (k, k/2, k/2) ' 1
128|cs |2

(
39 + 4x3)

– On the triangle edges the non-Gaussianities are large — but not
exponentially so

– The EFT predicts non-Gaussianities peaked on squashed shapes
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Bispectrum with c2
s < 0

Test of the EFT with hyperinflation model

Numerical result in full theory Analytical result in EFT
(using x = 10, c2

s = −1, A = 1/3)
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x=11
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Higher-point correlations with c2
s < 0

Higher-point correlation functions

I Just like for the bispectrum, the reduced n-point function is not
exponentially amplified

〈ζn〉 ∼ e2x(n−1) , 〈ζ2〉 ∼ e2x → 〈ζn〉
〈ζ2〉n−1 ∼ “order 1”

Bjorkmo, Ferreira & Marsh (2019)

I However, flattened shapes generically have a power-law
enhancement

〈ζn〉
〈ζ2〉n−1 ∼

[(
1
|cs |2

+ 1
)

x3
]n−2

Fumagalli, SGS, Pinol, Renaux-Petel & Ronayne (2019)

I These models are still under perturbative control, but strongly
constrained by experimental bounds on 〈ζ3〉 and 〈ζ4〉

S. Garcia-Saenz (Imperial)



Summary

I Inflation with strongly non-geodesic motion

– Well motivated by microscopic considerations
many scalars, curved field space, swampland conjectures

– Interesting observational signatures
suppressed tensor-to-scalar ratio, large non-Gaussianities of flattened
shapes

I Description from effective field theory

– Unusual theory with a ghost and gradient instability, yet with a
clear regime of validity

– Results match very well first-principles numerical calculations

– Allows to go beyond current numerical techniques

Thank you
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