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Scalar fields in gravitational physics

Scalar fields in gravitational physics:

gravitational potential in Newtonian gravity

variation of “fundamental” constants

Brans-Dicke theory initially elaborated to solve the Mach problem

various compactification schemes

the low-energy limit of the superstring theory

scalar field as inflaton

scalar field as dark energy and/or dark matter

fundamental Higgs bosons, neutrinos, axions, . . .

etc. . .
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Horndeski theory

In 1974, Horndeski derived the action of the most general scalar-tensor
theories with second-order equations of motion
[G.Horndeski, Second-Order Scalar-Tensor Field Equations in a
Four-Dimensional Space, IJTP 10, 363 (1974)]

Horndeski Lagrangian:

LH =
√
−g (L2 + L3 + L4 + L5)

L2=G2(X,Φ) ,

L3=G3(X,Φ)�Φ ,

L4=G4(X,Φ)R+ ∂XG4(X,Φ) δµναβ ∇
α
µΦ∇βνΦ ,

L5=G5(X,Φ)Gµν∇µνΦ− 1
6 ∂XG5(X,Φ) δµνραβγ ∇αµΦ∇βνΦ∇γρΦ ,

where X = − 1
2 (∇φ)2, and Gk(X,Φ) are arbitrary functions,

and δλρνα = 2! δλ[νδ
ρ
α], δλρσναβ = 3! δλ[νδ

ρ
αδ
σ
β]
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Fab Four subclass of the Horndeski theory

There is a special subclass of the theory, sometimes called Fab Four (F4),
for which the coefficients are chosen such that the Lagrangian becomes

LF4 =
√
−g (LJ + LP + LG + LR − 2Λ)

with

LJ=VJ(Φ)Gµν∇µΦ∇νΦ ,

LP=VP (Φ)Pµνρσ∇µΦ∇ρΦ∇νσΦ ,

LG=VG(Φ)R ,

LR=VR(Φ) (RµναβR
µναβ − 4RµνR

µν +R2).

Here the double dual of the Riemann tensor is

Pµναβ = −1

4
δµνγδσλαβ R

σλ
γδ = −Rµναβ + 2Rµ[αδ

ν
β] − 2Rν[αδ

µ
β] −Rδ

µ
[αδ

ν
β] ,

whose contraction is the Einstein tensor, Pµανα = Gµν .
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Fab Four subclass of the Horndeski theory

Fab Four Lagrangian:

LF4 =
√
−g (LJ + LP + LG + LR − 2Λ)

The Fab Four model is distinguished by the screening property – it is
the most general subclass of the Horndeski theory in which flat
space is a solution, despite the presence of the cosmological term Λ.

This property suggests that Λ is actually irrelevant and hence there
is no need to explain its value.

Indeed, however large Λ is, Minkowski space is always a solution and
so one may hope that a slowly accelerating universe will be a
solution as well.
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Theory with nonminimal kinetic coupling

Action:

S =
1

2

∫
d4x
√
−g
[
M2

PlR− (ε gµν + η Gµν)∇µφ∇νφ− 2V (φ)
]

+ Sm

Field equations:

M2
PlGµν = T (φ)

µν + ηΘµν + T (m)
µν

[εgµν + ηGµν ]∇µ∇νφ = V ′φ

T (φ)
µν =ε

[
∇µφ∇νφ− 1

2
gµν(∇φ)2]− gµνV (φ),

Θµν=− 1
2
∇µφ∇νφR+ 2∇αφ∇(µφR

α
ν) − 1

2
(∇φ)2Gµν +∇αφ∇βφRµανβ

+∇µ∇αφ∇ν∇αφ−∇µ∇νφ�φ+ gµν
[
− 1

2
∇α∇βφ∇α∇βφ+ 1

2
(�φ)2

−∇αφ∇βφRαβ
]

T (m)
µν =(ρ+ p)UµUµ + pgµν ,

Notice: The field equations are of second order!
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Cosmological models: General formulas

Based on 0910.0980, 1002.3478, 1204.6372, 1306.5090, 1510.03264,
1604.06085, 1703.04966, 1803.01429

Collaborators: Saridakis, Toporensky, Skugoreva, Matsumoto, Capozziello,

Volkov, Starobinsky

Ansatz:

ds2 = −dt2 + a2(t)dx2,

φ = φ(t)

a(t) cosmological factor, H = ȧ/a Hubble parameter

Field equations:

3M2
PlH

2 =
1

2
φ̇2
(
ε− 9ηH2

)
+ V (φ),

M2
Pl(2Ḣ + 3H2) = −1

2
φ̇2
[
ε+ η

(
2Ḣ + 3H2 + 4Hφ̈φ̇−1

)]
+ V (φ),

d

dt

[
(ε− 3ηH2)a3φ̇

]
= −a3 dV (φ)

dφ
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Cosmological models: I. No potential V (φ) ≡ 0

Trivial model without kinetic coupling, i.e. η = 0

S =
1

2

∫
d4x
√
−g
[
M2

PlR− (∇φ)2
]

Solution:

a0(t) = t1/3; φ0(t) =
1

2
√

3π
ln t

ds2
0 = −dt2 + t2/3dx2

t = 0 is an initial singularity
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Cosmological models: I. No potential V (φ) ≡ 0
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Cosmological models: II. No potential V (φ) ≡ 0

Model without free kinetic term, i.e. ε = 0

S =
1

2

∫
d4x
√
−g
[
M2

PlR− ηGµνφ,µφ,ν
]

Solution:

a(t) = t2/3; φ(t) =
t

2
√

3π|η|
, η < 0

ds2
0 = −dt2 + t4/3dx2

t = 0 is an initial singularity
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Cosmological models: II. No potential V (φ) ≡ 0

Model without free kinetic term, i.e. ε = 0

S =
1

2

∫
d4x
√
−g
[
M2

PlR− ηGµνφ,µφ,ν
]

Solution:

a(t) = t2/3; φ(t) =
t

2
√

3π|η|
, η < 0

ds2
0 = −dt2 + t4/3dx2

t = 0 is an initial singularity
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Cosmological models: III. No potential V (φ) ≡ 0

Model for an ordinary scalar field (ε = 1) with
nonminimal kinetic coupling η 6= 0

S =
1

2

∫
d4x
√
−g
[
M2

PlR− (gµν + ηGµν)φ,µφ,ν
]

Asymptotic for t→∞:

a(t) ∼ a0(t) = t1/3; φ(t) ∼ φ0(t) =
1

2
√

3π
ln t

Notice: At large times the model with η 6= 0 has the same behavior like
that with η = 0
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Cosmological models: III. No potential V (φ) ≡ 0

Asymptotics for early times

The case η < 0:

at→0 ≈ t2/3; φt→0 ≈
t

2
√

3π|η|

ds2
t→0 = −dt2 + t4/3dx2

t = 0 is an initial singularity

The case η > 0:

at→−∞ ≈ eHηt; φt→−∞ ≈ Ce−t/
√
η

ds2
t→−∞ = −dt2 + e2Hηtdx2

de Sitter asymptotic with Hη = 1/
√

9η
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Cosmological models: III. No potential V (φ) ≡ 0

Plots of α = ln a in case η 6= 0, ε = 1, V = 0.

(a) η < 0;
η = 0;−1;−10;−100

(b) η > 0;
η = 0; 1; 10; 100

De Sitter asymptotics: α(t) =
t√
9η

⇒ H =
1√
9η

Notice: In the model with nonmnimal kinetic coupling one
get de Sitter phase without any potential!
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Cosmological models: IV. Cosmological constant

Models with the constant potential V (φ) = M2
PlΛ = const

S =

∫
d4x
√
−g
[
M2

Pl(R− 2Λ)− [εgµν + ηGµν ]φ,µφ,ν
]

There are two exact de Sitter solutions:

I. α(t) = HΛt, φ(t) = φ0 = const,

II. α(t) =
t√
3|η|

, φ(t) = MPl

∣∣∣∣3ηH2
Λ − 1

η

∣∣∣∣1/2 t,
HΛ =

√
Λ/3
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Cosmological models: IV. Cosmological constant

Plots of α(t) in case η > 0, ε = 1, V = M2
PlΛ

(a) H2
Λ < α̇2 < 1/9η (b) 1/9η < α̇2 < 1/3η < H2

Λ

De Sitter asymptotics:
α1(t) = HΛt (dashed),

α2(t) = t/
√

9η (dash-dotted),

α3(t) = t/
√

3η (dotted).
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Cosmological models: IV. Cosmological constant

Plots of α(t) in cases η > 0, ε = −1 and η < 0, ε = 1

(a) η < 0, ε = 1 (b) η > 0, ε = −1

De Sitter asymptotic:

α1(t) = HΛt (dashed).
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Role of potential

S =

∫
d4x
√
−g
{
M2

PlR− [gµν + ηGµν ]φ,µφ,ν − 2V (φ)
}

↗

What a role does a potential play in cosmological
models with the nonminimal kinetic coupling?
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Power-law potential V (φ) = V0φ
N

Skugoreva, Sushkov, Toporensky, PRD 88, 083539 (2013)

Models with the quadratic potential V (φ) = 1
2
m2φ2

Primary (early-time) “kinetic” inflation:

Ht→−∞ ≈
1√
9η

(1 + 1
2ηm

2)

Late-time cosmological scenarios:
Oscillatory asymptotic or “graceful” exit from inflation

Ht→∞ ≈
2

3t

[
1− sin 2mt

2mt

]

quasi-de Sitter asymptotic or secondary inflation

Ht→∞ ≈
1√
3η

(
1±

√
1
6ηm

2

)
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Cosmological models: Power-law potential

Initial conditions
φ0 = φ̇0

Initial conditions
φ0 = −φ̇0

De Sitter asymptotics: Ht→−∞ ≈ 1/
√

9η(1 + 1
2
ηm2),

Ht→∞ ≈ 1/
√

3η
(

1±
√

1
6
ηm2

)
.
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Screening properties of Horndeski model:
Starobinsky, Sushkov, Volkov, JCAP, 2015

The FLRW ansatz for the metric:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dϑ2 + sin2 ϑdϕ2)

]
,

a(t) cosmological factor, H = ȧ/a Hubble parameter

Gravitational equations:

−3M2
Pl

(
H2 +

K

a2

)
+

1

2
εψ2 − 3

2
η ψ2

(
3H2 +

K

a2

)
+ Λ + ρ = 0,

−M2
Pl

(
2Ḣ + 3H2 +

K

a2

)
− 1

2
εψ2 − η ψ2

(
Ḣ +

3

2
H2 − K

a2
+ 2H

ψ̇

ψ

)
+ Λ− p = 0.

The scalar field equation:

1

a3

d

dt

(
a3

(
3η

(
H2 +

K

a2

)
− ε
)
ψ

)
= 0,

where ψ = φ̇, and φ = φ(t) is a homogeneous scalar field
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Screening properties of Horndeski model

The first integral of the scalar field equation:

a3

(
3η

(
H2 +

K

a2

)
− ε
)
ψ = Q,

where Q is the Noether charge associated with the shift symmetry
φ→ φ+ φ0.

Let Q = 0. One finds in this case two different solutions:

GR branch: ψ = 0 =⇒ H2 +
K

a2
=

Λ + ρ

3M2
Pl

Screening branch: H2 +
K

a2
=

ε

3η
=⇒ ψ2 =

η (Λ + ρ)− εM2
Pl

η (ε− 3η K/a2)

NOTICE: The role of the cosmological constant in the screening solution
is played by ε/3η while the Λ-term is screened and makes no contribution
to the universe acceleration.

Note also that the matter density ρ is screened in the same sense.
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Screening properties of Horndeski model

Let Q 6= 0, then

ψ =
Q

a3
[
3η (H2 + K

a2 )− ε
] ,

and the modified Friedmann equation reads

3M2
Pl

(
H2 +

K

a2

)
=
Q2
[
ε− 3η

(
3H2 + K

a2

)]
2a6

[
ε− 3η (H2 + K

a2 )
]2 + Λ + ρ.

Introducing dimensionless values and density parameters

H2 = H2
0 y, a = a0 a , ρcr = 3M2

PlH
2
0 , η =

ε

3η H2
0

,

Ω0 =
Λ

ρcr
, Ω2 = − K

H2
0 a2

0

, Ω6 =
Q2

6η a6
0 H

2
0 ρcr

, ρ = ρcr

(
Ω4

a4
+

Ω3

a3

)
gives

the master equation:

y = Ω0 +
Ω2

a2
+

Ω3

a3
+

Ω4

a4
+

Ω6

[
η − 3y + Ω2

a2

]
a6
[
η − y + Ω2

a2

]2
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Asymptotical behavior: Late time limit a→∞

GR branch:

y = Ω0 +
Ω2

a2
+

Ω3

a3
+

Ω4

a4
+

(η − 3 Ω0) Ω6

( Ω0 − η)2 a6
+O

(
1

a7

)
=⇒ H2 → Λ/3

Notice: The GR solution is stable (no ghost) if and only if η > Ω0.

Screening branches:

y± = η+
Ω2

a2
± χ

( Ω0 − η) a3
± Ω2Ω6

χa5
− Ω6(η − 3Ω0)± Ω3χ

2(Ω0 − η)2 a6
+O

(
1

a7

)
=⇒ H2 → ε/3α

Notice: The screening solutions are stable (no ghost) if and only if
0 < η < Ω0.
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Asymptotical behavior: The limit a→ 0

GR branch:

y =
Ω4

a4
+

Ω3

a3
+

Ω2Ω4 − 3Ω6

Ω4a2
+

3Ω3Ω6

Ω4a
+O(1)

Notice: The GR solution is unstable

Screening branch:

y+=
3Ω6

Ω4 a2
− 3Ω3Ω6

Ω2
4 a

+
5

3
η +

3Ω6Ω2
3 + 9Ω2

6

Ω3
4

+O(a),

y−=
1√
9η

+
4 η2

27 Ω6

(
Ω4 a

2 + Ω3 a
3
)

+O(a4)

Notice: Both screening solutions are stable
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Global behavior

y = Ω0 +
Ω2

a2
+

Ω3

a3
+

Ω4

a4
+

Ω6

[
η − 3y + Ω2

a2

]
a6
[
η − y + Ω2

a2

]2

�

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Solutions y(a) for Ω0 = Ω6 = 1, Ω2 = 0, Ω3 = Ω4 = 0 and for η = 6

Sergey Sushkov Perturbations in Horndeski Cosmology 25 / 42



ααα

Global behavior

y = Ω0 +
Ω2

a2
+

Ω3

a3
+

Ω4

a4
+

Ω6

[
η − 3y + Ω2

a2

]
a6
[
η − y + Ω2

a2

]2

�

�

��

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Solutions y(a) for Ω0 = Ω6 = 1, Ω2 = 0, Ω3 = Ω4 = 0, η = 0.2
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Global behavior

y = Ω0 +
Ω2

a2
+

Ω3

a3
+

Ω4

a4
+

Ω6

[
η − 3y + Ω2

a2

]
a6
[
η − y + Ω2

a2

]2

�

�

�

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Solutions y(a) for Ω0 = Ω6 = 1, Ω3 = 5, Ω4 = 0, η = 0.2. One has Ω2 = 0.
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Intermediate Summary

The nonminimal kinetic coupling provides an essentially new
inflationary mechanism which does not need any fine-tuned
potential.

At early cosmological times the coupling η-terms in the field
equations are dominating and provide the quasi-De Sitter behavior
of the scale factor: a(t) ∝ eHηt with Hη = 1/

√
9η.

The model provides a natural mechanism of epoch change without
any fine-tuned potential.

The model with nonminimal kinetic coupling is distinguished by the
screening property. This property suggests that Λ is actually
irrelevant and hence there is no need to explain its value.
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Scalar perturbations

Scalar perturbations in the Newtonian gauge:

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdx
idxj ,

φ = φ0 + δφ = φ0(1 + ϕ),

Ψ(t,x)� 1, Φ(t,x)� 1, ϕ(t,x)� 1

Fourier transformations: Ψ(t,x) =
∫
dkeikxΨ(t,k) and so on

Scalar modes:

−3H(Ψ̇−HΦ)− k2

a2
Ψ = 4π

[
φ̇2Φ− φ̇δφ̇

+η

(
9Hφ̇2Ψ̇− 18H2φ̇2Φ +

k2

a2
φ̇2Ψ + 9H2φ̇δφ̇+ 2

k2

a2
Hφ̇δφ

)]
,

Ψ̇−HΦ = 4π
[
−φ̇δφ+ η

(
3Hφ̇2Φ− φ̇2Ψ̇− 2Hφ̇δφ̇+ 3H2φ̇δφ

)]
,

Φ + Ψ = −4πη
[
φ̇2(Φ−Ψ) + 2(φ̈+Hφ̇)δφ

]

Notice: Ψ = −Φ if η = 0, but generally Ψ 6= −Φ !
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Scalar perturbations in the inflationary epoch

On the inflationary stage the unperturbed solutions are

a(t) = aie
Hη(t−ti), φ(t) = φie

−3Hη(t−ti), where Hη =
1√
9η
.

ti – beginning of inflation

Scalar perturbations on the inflationary stage

3Hη(Ψ̇−HηΦ) +
k2

a2
Ψ = −4πφ2

[
9Hη(Ψ̇−HηΦ) +

k2

a2
χ

]
,

Ψ̇−HηΦ = 4πφ2 [3HηΦ− χ̇] ,

Φ + Ψ = −4πφ2 [Φ + Ψ− 2χ] .

where χ = Ψ− 2
3ϕ is a combination of pertubations
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Scalar perturbations in the inflationary epoch

Resolving with the respect of Ψ and Φ we find

Scalar perturbations of metric:

dΨ

dτ
=Φ− k2 e−2τ

6a2
iH

2
η

Φ + 3Ψ + 4πφ2
i e
−6τ (Φ + Ψ)

1 + 12πφ2
i e
−6τ

,

dΦ

dτ
=−7Φ + 6Ψ− 20πφ2

i e
−6τ Φ

1 + 4πφ2
i e
−6τ

+
k2 e−2τ

6a2
iH

2
η

3(Φ + 3Ψ) + 8πφ2
i e
−6τ (2Φ + 3Ψ) + 16π2φ4

i e
−12τ (Φ + Ψ)

(1 + 4πφ2
i e
−6τ )(1 + 12πφ2

i e
−6τ )

,

where we denote τ = Hη(t− ti)
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Scalar perturbations in the inflationary epoch

Assume that 8πφ2
i ≡

φ2
i

M2
Pl
� 1, then

Metric perturbations

dΨ

dτ
=Φ− k2 e−2τ

6a2
iH

2
η

(Φ + 3Ψ),

dΦ

dτ
=−(7Φ + 6Ψ) +

k2 e−2τ

2a2
iH

2
η

(Φ + 3Ψ).

Limiting cases:

A. k/ai � Hη (modes outside the Hubble horizon)

Ψ= 1
5 (6Ψi + Φi)e

−Hη(t−ti) − 1
5 (Ψi + Φi)e

−6Hη(t−ti),

Φ=− 1
5 (6Ψi + Φi)e

−Hη(t−ti) + 6
5 (Ψi + Φi)e

−6Hη(t−ti),

Ψi = Ψ(ti)� 1, Φi = Φ(ti)� 1, t = ti – beginning of inflation

Perturbs in course of inflation t > ti: Ψ = −Φ ∼ e−Hη(t−ti) ∼ a−1

NOTICE: Scalar modes k/a� Hη are exponentially decaying!
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Scalar perturbations: Modes outside the Hubble horizon

Limiting case:

A. k/ai � Hη (long-wave modes outside the Hubble horizon)

dΨ

dτ
=Φ−k

2 e−2τ

6a2
iH

2
η

(Φ + 3Ψ),

dΦ

dτ
=−(7Φ + 6Ψ)+

k2 e−2τ

2a2
iH

2
η

(Φ + 3Ψ).

Ψ= 1
5 (6Ψi + Φi)e

−Hη(t−ti) − 1
5 (Ψi + Φi)e

−6Hη(t−ti),

Φ=− 1
5 (6Ψi + Φi)e

−Hη(t−ti) + 6
5 (Ψi + Φi)e

−6Hη(t−ti),

Ψi = Ψ(ti)� 1, Φi = Φ(ti)� 1, t = ti – beginning of inflation

Perturbs in course of inflation t > ti: Ψ = −Φ ∼ e−Hη(t−ti) ∼ a−1

NOTICE: Scalar modes k/ai � Hη are exponentially decaying!
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Scalar perturbations: Modes inside the Hubble horizon

B. k/ai � Hη (short-wave modes inside the Hubble horizon)

dΨ

dτ
=Φ−k

2 e−2τ

6a2
iH

2
η

(Φ + 3Ψ),

dΦ

dτ
=−(7Φ + 6Ψ)+

k2 e−2τ

2a2
iH

2
η

(Φ + 3Ψ).

Ψ = C1 + C2e
−2τ , Φ = −3

[
C1 + C2e

−2τ
]

+
12a2iH

2
η

k2 C2,

where C1 = Ψi − C2, C2 = k2

12a2iH
2
η

(
3Ψi + Φi

)
During the inflation, t > ti, metric perturbations tend to

Ψf ∼ Φf ∼
k2

a2
iH

2
η

(
3Ψi + Φi

)
NOTICE: During the inflation the initial short-wave perturbations are

amplifying by the factor k2

a2iH
2
η

!
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Scalar perturbations: Modes inside the Hubble horizon

Estimations:

Ψfinal ∼ Φfinal ∼ 1 =⇒ k2

a2
iH

2
η

(
3Ψi + Φi

)
∼ 1

Ψi ∼ Φi ∼ [Planck ] =⇒ k2

a2
iH

2
η

∼ [Planck ]
−1

=⇒ λmode ∼ LPl

NOTICE: Only modes with very short (Planckian) initial wavelengths are
able to amplify enough during the kinetic inflation.

TENDENCY: During the inflation, modes with short wavelength are
stretching and come outside the Hubble horizon. After they have gone
outside the Hubble horizon, they are exponential decaying.
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Scalar perturbations: Numerical analysis

Examples of numerical analysis for scalar mode evolution:

Longwave modes Shortwave modes

Sergey Sushkov Perturbations in Horndeski Cosmology 36 / 42



ααα

Tensor perturbations

Perturbed metric:

ds2 = −dt2 + a2(t)
(
δij + hij

)
dxidxj

Small transversal traceless pertubarions:

hij(t,x)� 1, ∂ihij = 0, hii = 0

Two polarizations: hij =
∑

A=+,×
e

(A)
ij h(A)

Fourier transformation: h(A)(t,x) =

∫
dkeikxh(A)(t,k)

Equation for tensor modes h(A)(t,k):

(1 + 4πηφ̇2)ḧ+
(

3H(1 + 4πηφ̇2) + 8πηφ̇φ̈
)
ḣ+

k2

a2
(1− 4πηφ̇2)h = 0
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Tensor perturbations on the inflationary stage

Unperturbed solutions on the inflationary stage:

a(t) = aie
Hη(t−ti), φ(t) = φie

−3Hη(t−ti), Hη = 1√
9η

Smallness of derivatives of the scalar field: 8πηφ̇2 � 1

Equation for tensor modes on the inflationary stage:

d2h

dτ2
+ 3

dh

dτ
+

k2

a2
iH

2
η

e−2τh = 0.

τ = Hη(t− ti)

NOTICE: Compare with GR: ḧ+ 3Hḣ+ k2

a2 h = 0
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Tensor perturbations: Modes outside and inside the
Hubble horizon

A. k/ai � Hη (long-wave modes outside the Hubble horizon)

d2h

dτ2
+ 3

dh

dτ
+

k2

a2
iH

2
η

e−2τh = 0

h = C1 + C2e
−3τ

NOTICE: During the inflation longwave tensor modes tend to constant
values (constant modes)

B. k/ai � Hη (short-wave modes inside the Hubble horizon)

d2h

dτ2
+3

dh

dτ
+

k2

a2
iH

2
η

e−2τh = 0

NOTICE: Shortwave tensor modes are oscillating and damping

Sergey Sushkov Perturbations in Horndeski Cosmology 39 / 42



ααα

Tensor perturbations: Numerical analysis

Examples of numerical analysis for tensor mode evolution:

Longwave modes Shortwave modes
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Final conclusions

The behavior of tensor modes during the kinetic inflation is
analogous to that in “usual” slow-roll inflation.

Long-wave scalar modes with k/ai � Hη are exponentially decaying
during the kinetic inflation. Therefore, the large-scale structure of
the Universe keeps to be homogeneous and isotropic.

During the kinetic inflation the initial short-wave scalar modes are

amplifying by the factor k2

a2iH
2
η

. Then, they stretch, come outside the

Hubble horizon and exponential decay. Only modes with very short
(Planckian) initial wavelengths are able to amplify enough during
the kinetic inflation.
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THANKS FOR YOUR ATTENTION!
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