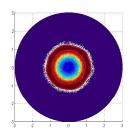


Some equations from mathematical biology

Benoît Perthame



- The status of physics his written in the names of equations
- What are the fundamental principle of biology?

- The status of physics his written in the names of equations
- What are the fundamental principle of biology?
- Is mathematics the good language for life sciences?

- The status of physics his written in the names of equations
- What are the fundamental principle of biology?

"Science is a differential equation" (Alan Turing)

- The status of physics his written in the names of equations
- Newton's fundamental principle of dynamics

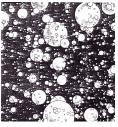
$$\begin{cases} \frac{d}{dt}X(t) = V(t) \\ \frac{d}{dt}V(t) = F(X(t), V(t)) \end{cases}$$

- The status of physics his written in the names of equations
- Fluid flows (Navier-Stokes eq., 1823-1845)

$$\left\{ \begin{array}{l} \frac{\partial}{\partial t} u + u.\nabla u + \nabla p = \nu \Delta u, \\ \operatorname{div} u = 0 \end{array} \right.$$

L. Boltzmann - A gas is the result of collisions between molecules (1872)





 $f(x, \xi, t) = \text{density of molecules with velocity } \xi \in V = \mathbb{R}^3$

$$\underbrace{\frac{\partial}{\partial t} f(x, \xi, t) + \xi. \nabla_{x} f}_{\text{Transport with velocity } \xi} = \underbrace{Q(f, f)}_{\text{Binary collisions}}$$

PARTICLE SCALE

$$\begin{cases} \frac{d}{dt}X_i(t) = V_i(t), & 1 \leq i \leq N, \\ \frac{d}{dt}V_i(t) = F(X(t), V(t)) \end{cases}$$

KINETIC/DILUTE GAS $N \to \infty$

$$\frac{\partial}{\partial t} f(x, \xi, t) + \xi . \nabla_x f = \frac{1}{\kappa} \underbrace{Q(f, f)}_{\text{Binary collisions}}$$

MACROSCOPIC/FLUID $\kappa \to 0$

$$\begin{cases} \frac{\partial}{\partial t} u + u \cdot \nabla u + \nabla p = \nu \Delta u, \\ \operatorname{div} u = 0 \end{cases}$$

■ The status of physics his written in the names of equations

$$-\Delta u = f \qquad \qquad \text{(Laplace/Poisson)}$$

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = 0 = \Box u \qquad \qquad \text{(D'Alembert)}$$

$$\frac{\partial u}{\partial t} - \Delta u = 0 \qquad \qquad \text{(Fourier)}$$

$$\left\{ \begin{array}{l} \operatorname{div} E = 0, & \operatorname{curl} E = -\frac{\partial B}{\partial t} \\ \operatorname{div} B = 0, & \operatorname{curl} B = -\frac{1}{c^2} \frac{\partial E}{\partial t} \end{array} \right. \qquad \text{(Maxwell)}$$

$$i \frac{\partial u}{\partial t} - \Delta u = 0 \qquad \qquad \text{(Schrödinger)}$$

Names of PDE of physics

	Euler	Lagran	ige Liouville	Boussinesq		
	Hamilton-Jacobi		Bellman	Kirchhoff		
	Allen-Cahn Ca Ginzburg-Landau Thomas-Fermi		nn-Hilliard	Vlasov	Landau	
			Gross-Pitaevs			
			Einstein			
	Dirac Airy		Kolmogorov	Fokker-Planck		
	Monge-Am	oère Kor	teweg de Vries	Camassa-Holme		
	Maxwel	l-Stefan	Kuramoto-Shiva	ashinsky	Choquard	
	Burgers	Lorentz	Saint-Venant	Benjamir	n-Ono	
	KPP	KPZ	Zhakarov	Born-I	nfeld = >) ५ (२

And in biology?

And in biology?

$$\begin{cases} \frac{dS(t)}{dt} = aS(t) - bS(t)P(t), \\ \frac{dP(t)}{dt} = -cP(t) + bS(t)P(t), \end{cases}$$
 (Lotka-Volterra)

Became a generic name for a class of equations in ecology

Lotka-Volterra

- \mathbf{x} = phenotypical trait (size, type of nutrient,...)
- n(x, t) =number of individuals of type x
- S(t) =environment (nutrient)

Lotka-Volterra

- \mathbf{x} = phenotypical trait (size, type of nutrient,...)
- $\mathbf{n}(x,t) =$ number of individuals of type x
- S(t) = environment (nutrient)

change in number

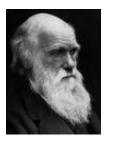
mutations

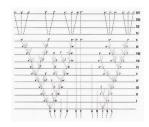
$$\frac{\partial n(x,t)}{\partial t} = \underbrace{R(x,S(t))}_{\text{growth/death rate}} n(x,t) + \underbrace{\mu \int b(y,S(t))M(y\rightarrow x)n(y,t)dy}_{\text{growth/death rate}}$$

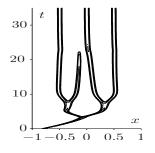
$$S(t) = S([n(t)])$$
 $S(t) = \frac{S_0}{1 + \int n(x, t) dx}$

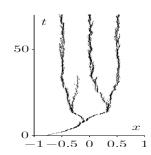
This expresses selection by competition with finite resources

Lotka-Volterra







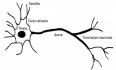


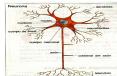
There is a small parameter for mutations

Neuroscience

The electrically active cells are described by

- **action potential** v(t)
- ionic chanels $g_i(t)$





Neuroscience

The electrically active cells are described by

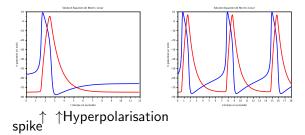
- **action potential** v(t)
- ionic chanels $g_i(t)$
- Hodgkin-Huxley
- Morris-Lecar
- Mitchell-Schaeffer
- FitzHugh-Nagumo

$$\begin{cases} \frac{dv(t)}{dt} = \sum_{i} g_i(t) (V_i - v(t)) + I(t) \\ \frac{dg_i(t)}{dt} = \frac{G_i(v(t)) - g_i(t)}{\tau_i}, \end{cases}$$

Neuroscience

The electrically active cells are described by

- **action potential** v(t)
- ionic chanels $g_i(t)$



The Leaky Integrate & Fire model is simpler

$$dv(t) = (-v(t) + I(t))dt + \sigma dW(t), \qquad v(t) < V_{\mathrm{Firing}}$$
 $v(t_{-}) = V_{\mathrm{Firing}} \implies v(t_{+}) = V_{\mathrm{Reset}}$ $0 < V_{R} < V_{F}$

- I(t) input current
- Noise or not

- Much simpler that Hodgkin-Huxley/Morris-Lecar models
- The idea was introduced by L. Lapicque (1907)

A short break

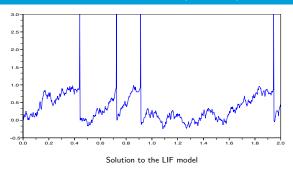
Brother of Charles Lapicque

The Leaky Integrate & Fire model is simpler

$$dv(t) = (-v(t) + I(t))dt + \sigma dW(t), \qquad v(t) < V_{\mathrm{Firing}}$$
 $v(t_{-}) = V_{\mathrm{Firing}} \implies v(t_{+}) = V_{\mathrm{Reset}}$ $0 < V_{R} < V_{F}$

- I(t) input current
- Noise or not

- Much simpler that Hodgkin-Huxley/Morris-Lecar models
- The idea was introduced by L. Lapicque (1907)



- N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler, Omurtag, Knight and Sirovich, Cai and Tao...
- Fit to measurements
- Use more realistic dynamics in place of -v

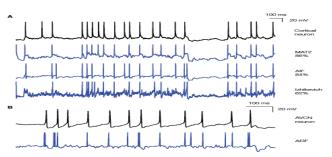


FIGURE 4 | Fitting spiking models to electrophysiological recordings. (A) The response of a cortical pyramidal cell to a fluctuating current (from the INICE competition) is fitted to versious models; MAT (Ecohyspikin) et al., 2000; Apptive integrate-and-fire, and briskevich (2003). Performance on the training data is indicated on the right as the gamma factor (close to the proportion of predicted spikes), relative to the intrinsic gamma factor of the neuron (i.e., proportion of colors to the proportion of the response of the proportion of the colors of the proportion of the colors of the proportion of the colors of the color

From C. Rossant et al, Frontiers in Neuroscience (2011)

Noisy LIF networks

It is now possible to write a system of N interacting neurons,

- For $1 \le j \le N$
- with t_j^k the spiking times : $v_j(t_j^{k-}) = V_F$
- $v_j(t_j^{k+}) = V_R$

$$\frac{d}{dt}v_i(t) = -v_i(t) + \underbrace{\frac{\beta}{N} \sum_{j=1}^{N} \sum_{k} \delta(t - t_j^k)}_{\text{current generated by spikes}} + \sigma dW_i(t), \qquad v_i(t) < V_F$$

Noisy LIF networks

See Delarue, Inglis, Rubenthaler, Tanre, Tallay, Locherbach, Lucon:

For assemblies, the mean field limit yields a current I = bN(t)

$$\begin{cases} \frac{\partial n(v,t)}{\partial t} + \frac{\partial}{\partial v} \left[\left(-v + bN(t) \right) n(v,t) \right] - a \left(N(t) \right) \frac{\partial^2 n(v,t)}{\partial v^2} = N(t) \, \delta_{V_R}(v), \\ v \leq V_F, \\ n(V_F,t) = 0, \qquad n(-\infty,t) = 0, \end{cases}$$

$$N(t) := -a \left(N(t) \right) \frac{\partial}{\partial v} n(V_F,t) \geq 0, \qquad \text{flux of firing neurons at } V_F$$

Constitutive laws

- b = connectivity
- $\blacksquare b > 0$ excitatory neurones
- \mathbf{b} < 0 inhibitory neurones

$$a(N) = a_0 + a_1 N$$

Noisy LIF networks (blow-up)

Theorem (M. Cáceres, J. Carrillo, BP) [excitatory, blow-up] Assume $a \ge a_0 > 0$ and b > 0. Then the solution blows-up in finite time in the two cases

- the initial data is concentrated enough around $v = V_F$ (depending on b)
- initial data is given, b is large enough

Surprisingly

- Noise does not help
- value of b does not count

Noisy LIF with refractory state

Proof. For $\mu = 2 \max(\frac{1}{b}, \frac{V_F}{a_0})$, define

$$\phi(v) = e^{\mu v}, \qquad M_{\mu}(t) := \int_{-\infty}^{V_F} \phi(v) n(v, t).$$

For smooth solutions, we prove that $M_{\mu}(t)$ becomes larger than $e^{\mu V_F}$

$$\frac{dM_{\mu}}{dt} = \mu \int_{-\infty}^{V_F} (bN(t) - v + \mu a) \phi(v) p(v, t) - N(t) \phi(V_F) + \frac{N(t)}{\tau} \phi(V_R)$$

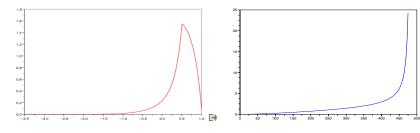
$$\geq N(t) \underbrace{\left[b\mu M_{\mu}(t) - \phi(V_F)\right]}_{\geq \mu V_F > 0} + \underbrace{\mu \left[\mu a_0 - V_F\right]}_{\geq \mu V_F > 0} M_{\mu}(t)$$

$$> 0 \text{ is needed only initially}$$

OK for b large enough or $M_{\mu}(0)$ large enough

To go further : the difficulty : no relation between M_{ii} and N

Noisy LIF networks (blow-up)



Excitatory integrate and fire model. Blow-up case. Left p(v, t), Right : N(t)

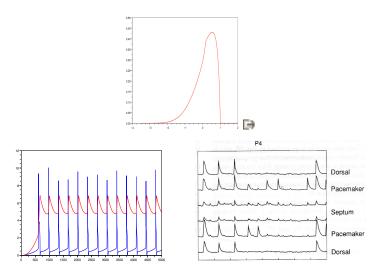
Noisy LIF networks (blow-up)

Possible interpretation

- $lacksquare N(t)
 ightarrow
 ho \delta(t-t_{
 m BU})$ and $t_{
 m BU} > 0$,
- partial synchronization

Simplified models : Kuramoto, Carillo-Ha-Kang, Dumont-Henry, Giacomin, Pakdaman

Spontaneous activity (regularized)

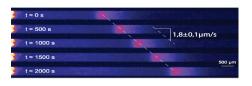


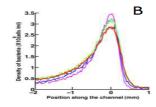
Left: Excitatory integrate & fire with refractory state and random firing threshold Right: Conhaim et al (2011) J. of physiology 589(10) 2529-2541.

Paradigm for collective organisation

Left : Courtesy S. Seror, B. Holland (Paris-Sud),

Right: Numerical simulation of a mathematical model

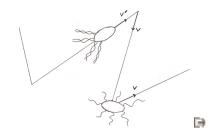




- Adler's famous experiment for *E. Coli* (1966) chemotactic
- Explain this pattern; its asymmetry (experiments Curie institute)

■ How can a model of chemotaxis (Keller-Segel) generate robust trvaeling pulses?

E. Coli is known to move by run and tumble Alt, Dunbar, Othmer, Stevens, Hillen, Schmeiser...



A beautiful example of multiscale motion

- $f(t,x,\xi)$ population density of cells moving with velocity ξ
- c(t,x) the chemoattractant concentration

$$\frac{\partial}{\partial t} f(t, x, \xi) + \underbrace{\xi \cdot \nabla_{x} f}_{\text{run}} = \underbrace{\mathcal{K}[c, S] f}_{\text{tumble}},$$

$$\mathcal{K}[c, S] f = \int_{B} K(c, S; \xi, \xi') f(\xi') d\xi' - \int_{B} K(c, S; \xi', \xi) d\xi' f,$$

$$\kappa[c, S] f = \int_{B} \kappa(c, S; \xi, \xi) f(\xi) d\xi - \int_{B} \kappa(c, S; \xi, \xi) d\xi$$
$$-\Delta c = n(x, t) := \int f(t, x, \xi) d\xi$$

■ Typical is pathwise sensing

$$K(c; \xi, \xi') = K(\partial_t c + \xi' \cdot \nabla_x c)$$

Multiscale analysis based on the stiffness

Define the small parameter ε

$$K(c; \xi, \xi') = \mathbf{K}_{\varepsilon} \left(\underbrace{\frac{\partial c}{\partial t} + \xi' \cdot \nabla c}_{D_t c} \right)$$

$$\begin{cases} \frac{\partial}{\partial t} f_{\varepsilon}(t, x, \xi) + \frac{\xi \cdot \nabla_{x} f_{\varepsilon}}{\varepsilon} = \frac{\mathcal{K}[c_{\varepsilon}, f_{\varepsilon}]}{\varepsilon^{2}}, \\ -\Delta c_{\varepsilon}(t, x) = n_{\varepsilon}(t, x) := \int f_{\varepsilon}(t, x, \xi) d\xi. \end{cases}$$

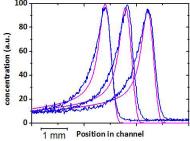
Multiscale analysis based on sensing stiffness

Theorem (Diffusion limit)

As ε vanishes, $f_{\varepsilon} \to n(x,t) \mathbb{1}_{\{v \in V\}}$ and

$$\begin{cases} \frac{\partial}{\partial t} n(t, x) - \Delta n(t, x) + \operatorname{div}(nU) = 0 \\ -\Delta c(t, x) = n(t, x) \\ U = \phi(|\nabla c|) |\nabla c| \end{cases}$$

Flux Limited Keller-Segel system



POPULATION SCALE

$$\begin{cases} \frac{\partial}{\partial t} n(t, x) - \Delta n(t, x) + \operatorname{div}(nU) = 0 \\ -\Delta c(t, x) = n(t, x), \qquad U = \phi(|\nabla c|) |\nabla c| \end{cases}$$

KINETIC/INDIVIDUAL SCALE

$$\frac{\partial}{\partial t} f_{\varepsilon}(t, x, \xi) + \frac{\xi \cdot \nabla_{x} f_{\varepsilon}}{\varepsilon} = \frac{\mathcal{K}[c_{\varepsilon}, f_{\varepsilon}]}{\varepsilon^{2}},$$

Bacterial motion

POPULATION SCALE

$$\begin{cases} \frac{\partial}{\partial t} n(t, x) - \Delta n(t, x) + \operatorname{div}(nU) = 0 \\ -\Delta c(t, x) = n(t, x), \qquad U = \phi(|\nabla c|) |\nabla c| \end{cases}$$

KINETIC/INDIVIDUAL SCALE

$$\frac{\partial}{\partial t} f_{\varepsilon}(t, x, \xi) + \frac{\xi \cdot \nabla_{x} f_{\varepsilon}}{\varepsilon} = \frac{\mathcal{K}[c_{\varepsilon}, f_{\varepsilon}]}{\varepsilon^{2}},$$

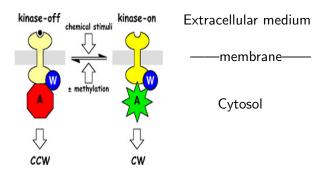
MOLECULAR SCALE

$$\frac{\partial}{\partial t} f_{\varepsilon}(t, x, \xi, y) + \xi \cdot \nabla_{x} f_{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_{y} [R_{\varepsilon} f_{\varepsilon}] = \Lambda_{\varepsilon}(y) \int [f_{\varepsilon}(\xi') - f_{\varepsilon}(\xi)] d\xi'$$

Biochemical pathways

Can one explain the tumbling rate

$$K(c; \xi, \xi') = \mathbf{K} \left(\frac{\partial c}{\partial t} + \xi' \cdot \nabla c \right)$$
?



Biochemical pathways

Can one explain the tumbling rate $K(\frac{\partial c}{\partial t} + \xi' . \nabla c)$?

Departing from

$$\frac{\partial}{\partial t} f_{\varepsilon}(t, x, \xi, y) + \xi \cdot \nabla_{x} f_{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_{y} [R_{\varepsilon} f_{\varepsilon}] = \Lambda_{\varepsilon}(y) \int [f_{\varepsilon}(\xi') - f_{\varepsilon}(\xi)] d\xi'$$

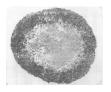
Theorem As $\varepsilon \to 0$, the limit is

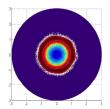
$$f_{\varepsilon}(t,x,\xi,y) \to \bar{f}(t,x,\xi)\delta(y=Y(c))$$

and

$$\begin{split} &\frac{\partial}{\partial t}\bar{f}(t,x,\xi) + \xi \cdot \nabla_x \bar{f} = \\ &= \int \left[\mathbf{K} \left(\frac{\partial c}{\partial t} \right. + \xi' \cdot \nabla c \right) \bar{f}(\xi') - \mathbf{K} \left(\frac{\partial c}{\partial t} \right. + \xi \cdot \nabla c \right) \bar{f}(\xi) \right] d\xi' \end{split}$$

Models used for tumor growth





Simplest model is mechanical only:

n(x,t) = population density of tumor cells at location x, time t, v(x,t) = cell velocity at location x and time t, p(x,t) = pressure in the tissue,

Change in number of cells

$$\frac{\partial n}{\partial t} = \underbrace{-\operatorname{div}(nv)}_{\text{movement of cells}} + division - death$$

Darcy's law for friction (with ECM) dominated flow

$$v = -\nabla p(x, t),$$

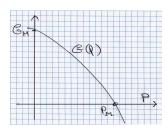
Constitutive law (compressible fluid)

$$p(x, t) \equiv \Pi(n) := n^{\gamma}, \quad \gamma > 1$$

The compressible mechanical model

$$\left\{ \begin{array}{l} \frac{\partial}{\partial t} n + \operatorname{div} \big(n v \big) = n G \big(p(x,t) \big), \qquad x \in \mathbb{R}^d, \ t \geq 0, \\ \\ v = - \nabla p(x,t), \qquad p(x,t) \equiv \Pi(n) := n^\gamma, \quad \gamma > 0. \end{array} \right.$$

Byrne, Drasdo, Chaplain, Joanny-Prost-Jülicher...etc 'homeostatic pressure'



The compressible mechanical model

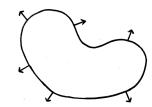
$$\left\{ \begin{array}{l} \frac{\partial}{\partial t} n + \operatorname{div} \big(n v \big) = n G \big(p(x,t) \big), \qquad x \in \mathbb{R}^d, \ t \geq 0, \\ \\ v = - \nabla p(x,t), \qquad p(x,t) \equiv \Pi(n) := n^\gamma, \quad \gamma > 0. \end{array} \right.$$

Specific properties

$$\blacksquare \frac{\partial}{\partial t} n(t=0) \ge -\frac{C}{t} e^{-\gamma c_G t}$$

Spatial domain $\Omega(t)$

$$v(x,t) = -\nabla p(x,t)$$



Compute the pressure as

$$\begin{cases} -\Delta p = G(p) & x \in \Omega(t), \\ p = 0 & \text{on } \partial \Omega(t). \end{cases}$$

Surface tension may be included ($\kappa = \text{mean curvature}$)

$$p(x, t) = \eta \kappa(x, t),$$
 on $\partial \Omega(t)$

$$\begin{cases} \frac{\partial}{\partial t} n_{\gamma} + \operatorname{div}(n_{\gamma} v_{\gamma}) = n_{\gamma} G(p_{\gamma}(x, t)), & x \in \mathbb{R}^{d} \\ v_{\gamma} = -\nabla p_{\gamma}(x, t), & p_{\gamma}(x, t) \equiv \Pi(n_{\gamma}) := n^{\gamma}, \end{cases}$$

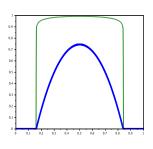
Theorem (Hele-Shaw limit) : As $\gamma \to \infty$

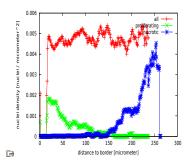
$$n_{\gamma}
ightharpoonup n_{\infty} \leq 1, \qquad p_{\gamma}
ightharpoonup p_{\infty} \leq p_{M}$$

$$\left\{ egin{array}{l} rac{\partial}{\partial t} n_{\infty} - \operatorname{div}ig(n_{\infty}
abla p_{\infty}ig) = n_{\infty} Gig(p_{\infty}ig) \\ p_{\infty} = 0 \quad ext{for} \quad n_{\infty}(x,t) < 1 \\ p_{\infty}ig(\Delta p_{\infty} + G(p_{\infty})ig) = 0 \end{array}
ight.$$

Remarks

- 1. Unique solution to the equation on n_{∞} (Oleinik, Crowley)
- 2. This is a weak formulation of the geometric problem
- 3. Benilan, Caffarelli-Friedman, Gil, Quiros, Vazquez...etc





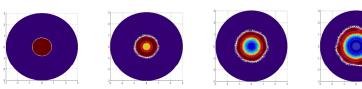
Left: The model solution

Right: Cell culture data in vitro at two different times. From N. Jagiella PhD thesis, INRIA and UPMC (2012)

Model with nutrient

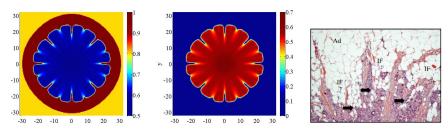
$$\begin{cases} \frac{\partial}{\partial t} n + \operatorname{div}(nv) = nG(p(x,t), \underbrace{c(x,t)}_{\text{nutrients}}), \\ v = -\nabla p, & p = n^{\gamma}, \\ \frac{\partial}{\partial t} c - \Delta c + \underbrace{R(n)c = c_B}_{\text{nutrients consumption/release}} \end{cases}$$

Open question. $p_{\infty}(\Delta p_{\infty} + G(p_{\infty}, c_{\infty})) = 0$



Model with different cells

$$\begin{cases} \frac{\partial}{\partial t} n_P + \operatorname{div}(\mu_P n_P v) = n_P G(p(x, t)) - \alpha n_P, \\ \frac{\partial}{\partial t} n_H + \operatorname{div}(\mu_H n_H v) = 0, \\ v = -\nabla p, \qquad p = (n_P + n_H)^{\gamma} \end{cases}$$



Credit for picture A. Lorz, T. Lorenzi (Saffman-Taylor instability? growth is important)

Concrete applications

Image based predictions: include

- Active cells
- Nutrients and vasculature

■ Quiescent, necrotic, healthy cells

Credit for pictures : INRIA team Monc (Bordeaux)

Conclusion

- 4 examples where Partial Differential Equations arise
- Many asymptotic problems
- There are concrete applications
- There are quantitative fit with experiments

■ Unlike physics, parameters are not known (distributed)

Thanks to my co-authors

D. Salort, K. Pakdaman,

J. A. Carrillo, D. Smets,

Min Tang, N. Vauchelet, Z.-A. Wang

J.-L. Vazquez, F. Quiros, A. Mellet,

A. Lorz, T. Lorenzi,

THANK YOU