[Publications | Enseignement | Conseils pour débuter]
Maître de conférences
Institut Denis Poisson CNRS UMR 7013
Département de mathématiques de l’Université de Tours
Équipe de recherche : Analyse et Géométrie
Contact :
Bureau : E2-2260
Téléphone : (33)-2-47-36-71-55
Email : romain.gicquaud[at]idpoisson.fr
Adresse postale :
Institut Denis Poisson
Université de Tours
Parc de Grandmont
37200 Tours, France
Publications :
- R. Gicquaud, De l’équation de prescription de courbure scalaire aux équations de contrainte en relativité générale sur une variété asymptotiquement hyperbolique, J. Math. Pures Appl. (9) 94, No. 2, 200-227 (2010), arXiv.
- R. Gicquaud, Linearization stability of the Einstein constraint equations on an asymptotically hyperbolic manifold, J. Math. Phys. 51, No. 7, 072501, 14 p. (2010), arXiv.
- E. Bahuaud, R. Gicquaud, Conformal compactication of asymptotically locally hyperbolic metrics, J. Geom. Anal. 21, No. 4, 1085-1118 (2011), arXiv.
- M. Dahl, R. Gicquaud, E. Humbert, A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method, Duke Math. J. 161, No. 14, 2669-2697 (2012), arXiv.
- R. Gicquaud, A. Sakovich, A large class of non-constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold, Commun. Math. Phys. 310, No. 3, 705-763 (2012), arXiv.
- M. Dahl, R. Gicquaud, E. Humbert, A non-existence result for a generalization of the equations of the conformal method in general relativity, Classical Quantum Gravity 30, No. 7, Article ID 075004, 8 p. (2013), arXiv.
- M. Dahl, R. Gicquaud, A. Sakovich, Penrose type inequalities for asymptotically hyperbolic graphs, Ann. Henri Poincaré 14, No. 5, 1135-1168 (2013), arXiv.
- R. Gicquaud, Conformal compactication of asymptotically locally hyperbolic metrics. II : Weakly ALH metrics, Commun. Partial Dier. Equations 38, No. 7-9, 1313-1367 (2013), arXiv.
- R. Gicquaud, D. Ji, Y. Shi, On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature, Commun. Anal. Geom. 21, No. 5, 1081-1113 (2013), arXiv.
- M. Dahl, R. Gicquaud, A. Sakovich, Asymptotically hyperbolic manifolds with small mass, Commun. Math. Phys. 325, No. 2, 757-801 (2014), arXiv.
- R. Gicquaud, Q. A. Ngô, A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor, Classical Quantum Gravity 31, No. 19, Article ID 195014, 20 p. (2014), arXiv.
- R. Gicquaud, T. C. Nguyen, Solutions to the Einstein-scalar eld constraint equations with a small TT-tensor, Calc. Var. Partial Dier. Equ. 55, No. 2, Paper No. 29, 23 p. (2016), arXiv.
- R. Gicquaud, C. Huneau, Limit equation for vacuum Einstein constraints with a translational Killing vector eld in the compact hyperbolic case, J. Geom. Phys. 107, 175-186 (2016), arXiv.
- P. T. Chrusciel, R. Gicquaud, Bifurcating solutions of the Lichnerowicz equation, Ann. Henri Poincaré 18, No. 2, 643-679 (2017), arXiv.
- R. Gicquaud, Solutions to the Einstein constraint equations with a small TT-tensor and vanishing Yamabe invariant, Ann. Henri Poincaré 22, No. 7, 2407-2435 (2021), arXiv.
- R. Gicquaud, Existence of solutions to the Lichnerowicz equation : a new proof, J. Math. Phys. 63, No. 2, Article ID 022501, 12 p. (2022), arXiv.
- R. Gicquaud, Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation, accepté pour publication à Commun. Anal. Geom, arXiv.
Prépublications :
- J. Cortier, M. Dahl, R. Gicquaud, Mass-like invariants for asymptotically hyperbolic metrics (98 pages), arXiv.
- R. Gicquaud, What Uniqueness for the Holst-Nagy-Tsogtgerel–Maxwell Solutions to the Einstein Conformal Constraint Equations? (21 pages), arXiv.
Thèses :
- Thèse de doctorat : Étude de quelques problèmes d’analyse et de géométrie sur les variétés asymptotiquement hyperboliques, soutenue le 10 juillet 2009 à l’Université Montpellier 2 sous la direction d’Erwann Delay, [pdf]
- Habilitation à diriger les recherches : Autour des données initiales pour le problème de Cauchy en relativité générale, soutenue le 6 novembre 2019, [pdf]
Enseignements
- Mes plus beaux développements limités