Jeremie Guilhot

Lecturer in Institut Denis Poisson, Université de Tours


Postal address:Dr Jérémie Guilhot
Institut Denis Poisson
Université de Tours
Faculté des Sciences et Techniques
Parc de Grandmont
37200 Tours – FRANCE
Bureau :Batiment E2, bureau 3130
Courriel :jeremie.guilhot at idpoisson dot fr
Téléphone :+33 2 47 36 72 59
FAX:+33 2 47 36 70 68

Curriculum Vitae, pdf


Research Interests

  • Coxeter groups
  • Hecke algebras
  • Kazhdan-Lusztig cells in affine Weyl groups with unequal parameters

List of publications

  • On the determination of Kazhdan-Lusztig cells for affine Weyl groups with unequal parameters,
    J. Algebra, available on arxiv
  • On the generalized lowest two-sided cell in affine Weyl groups,
    Represent. Theory, available on arXiv
  • Generalized Induction of Kazhdan-Lusztig cells,
    Ann. Inst. Fourier, available on arXiv
  • Kazhdan-Lusztig cells in affine Weyl groups of rank 2,
    Int Math Res Notices, available on arXiv
  • Affine cellularity of affine Hecke algebras of rank 2,
    in collaboration with V.Miemietz, Mathematische Zeitschrift, available on arXiv
  • Asymptotic lowest two-sided cell,
    in collaboration with C.Bonnafe , preprint available on arXiv
  • Cellularity of the lowest two-sided ideal of an affine Hecke algebra, Advances in Mathematics, available on arXiv
  • Ordering Families using Lusztig’s symbols in type B: the integer case,
    in collaboration with N. Jacon, Journal of Algebraic Combinatorics,
    available on arXiv
  • Isomorphic induced modules and Dynkin diagram automorphisms of semisimple Lie algebras,
    in collaboration with C.Lecouvey, Glasgow Math. Journal, available on arXiv
  • Admissible subsets and Littelmann paths in affine Kazhdan-Lusztig theory,
    Transformation Groups, available on arxiv
  • A proof of Lusztig’s conjectures for affine type G_2 for arbitrary parameters,
    in collaboration with J. Parkinson, Proceedings of the London Mathematical Society, available on arXiv and the matrices for cell representations pdf
  • Balanced representations, the asymptotic Plancherel formula, and Lusztig’s conjectures for C_2, in collaboration with J. Parkinson, Algebraic Combinatorics, available on arXiv

Miscellaneous

    • My PhD thesis, available at pdf
    • Computations in « Generalized induction of Kazhdan-Lusztig cells », pdf
    • Project