Agenda de l’IDP

Colloquium de l'IDP

Primes as sums of Fibonacci numbers
Michael Drmota (TU Wien)
Thursday 17 March 2022 14:00 -  Tours - 

Résumé :

The purpose of the talk is to discuss the relationship between prime numbers and sums of Fibonacci numbers. The main result says that for every sufficiently large integer k there exists a prime number that can be represented as the sum of k different and  non-consecutive Fibonacci numbers. This property is closely related to, and based on, a prime number theorem for certain so-called morphic sequences. The proof uses Gowers norms estimates that leads to  level-of-distribution results as well as to estimates of sums of type  I and II. Furthermore a strong central limit theorem for the  Zeckendorf sum-of-digits function along primes has to be established.

This is joint work with Clemens Müllner and Lukas Spiegelhofer

Liens :