Agenda de l’IDP

Séminaire de Géométrie

Surfaces minimales dans des variétés homogènes (soutenance de thèse)
Rami Younes
vendredi 27 novembre 2009 14:30 -  Tours -  Amphithéâtre 0040 (Bât E)

Résumé :
Le cadre de cette thèse est la théorie des surfaces minimales dans deux variétés homogènes, R^3 et \tilde{PSL_2(R)}. Dans R^3, étant donné un pavage T du plan par des polygones, qui soit invariant par deux translations indépendantes, on construit une famille de surfaces minimales plongées et triplement périodiques qui désingularise T × R. Dans cette perspective, et inspiré par le travail de Martin Traizet, nous ouvrons les nodes d’une surface de Riemann singulière dans le but de coller ensemble des Karcher saddle towers, chacune placée sur un sommet avec ses bouts au long des arrêtes qui se terminent sur ce sommet même. Dans une seconde partie, nous étudions les graphes minimaux dans \tilde{PSL_2(R)} et nous fournissons des exemples de surfaces invariantes. Nous obtenons des estimées du gradient pour les solutions de l’équation des surfaces minimales dans l’espace en considération et on étudie le comportement des suites monotones de solutions. Nous concluons par prolonger à \tilde{PSL_2(R)} un théorème de Jenkins et Serrin, qui donnent une condition nécessaire et suffisante pour la solvabilité du problème du Dirichlet de l’équation des surfaces minimales dans R3, avec des données infinies sur le bord d’un domaine convexe et borné.

Liens :