Back to the list of the software developed in the IDPFrançais   Español


SWASHES: Shallow Water Analytic Solutions for Hydraulic and Environmental Studies.

SWASHES is a library of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies.
A significant number of analytic solutions to the Shallow Water equations is described in a unified formalism. They encompass a wide variety of flow conditions (supercritical, subcritical, shock, etc.), in 1 or 2 space dimensions, with or without rain and soil friction, for transitory flow or steady state.
The goal of this code is to help users of Shallow Water based models to easily find an adaptable benchmark library to validate numerical methods.

The SWASHES software can be downloaded on the website sourcesup.
This software is distributed under CeCILL-V2 (GPL compatible) free software license. So, you are authorized to use the Software, without any limitation as to its fields of application.
For any question, contact us at: (F. Darboux, O. Delestre, C. Lucas, M. Mancini).

If you are using the Conda package manager, the SWASHES package is available at anaconda.org/lrntct/swashes. It works for linux 64 bits, windows 32 bits and windows 64 bits.
SWASHES is also available as a Python library named pyswashes. With it you can obtain the selected analytic solution in the form of a csv, Pandas dataframe, NumPy array or ASCII Grid format. See pyswashes.readthedocs.io/en/latest/.
The Conda package and the Python library have been developed by L. Courty.

How to cite: bibtex file
SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies,
O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T. N. T. Vo, F. James, S. Cordier,
International Journal for Numerical Methods in Fluids, 72(3): 269-300, 2013, doi:10.1002/fld.3741

If you want to be informed of the main evolutions of SWASHES, please subscribe our newsletter http://listes.univ-orleans.fr/sympa/subscribe/swashes.infos.


Some examples (used in comparison with FullSWOF approximate solutions):

Transcritical flow with shock
Mac Donald’s type solution with a smooth transition and a shock
Dam break on a dry domain without friction
Thacker’s planar surface in a paraboloid
Mac Donald pseudo-2D supercritical solution
MacDonald pseudo-2d subcritical solution

For more details we refer to the documentation of the code.

You can also read the following articles:

Christophe Berthon; Stéphane Cordier; Minh H. Le; Olivier Delestre

An analytical solution of Shallow Water system coupled to Exner equation Article de journal

Dans: Comptes Rendus Mathématique, vol. 350, no. 3--4, p. 183–186, 2012.

Liens | BibTeX

Olivier Delestre; Carine Lucas; Pierre-Antoine Ksinant; Frédéric Darboux; Christian Laguerre; Thi Ngoc Tuoi Vo; François James; Stéphane Cordier

SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies Article de journal

Dans: International Journal for Numerical Methods in Fluids, vol. 72, no. 3, p. 269–300, 2013, (There are some errors in the published version. This is a corrected version.).

Liens | BibTeX

Olivier Delestre; Carine Lucas; Pierre-Antoine Ksinant; Frédéric Darboux; Christian Laguerre; François James; Stéphane Cordier

SWASHES: A library for benchmarking in hydraulics / SWASHES : une bibliothèque de bancs d'essai en hydraulique Recueil

Dans: Gourbesville, P.; Cunge, J.; Caignaert, G. (Ed.): Advances in Hydroinformatics - SIMHYDRO 2012 - New Frontiers of Simulation, p. 233–243, 2014.

Liens | BibTeX

Finally, SWASHES has been cited in:

  1. A non-hydrostatic model for water waves in nearshore region,
    Fang K., Sun J., Liu Z., Yin J.,
    Advances in Water Science, 26(1): 114-122, 2015, (in Chinese), doi: 10.14042/j.cnki.32.1309.2015.01.015
  2. An analysis of dam-break flow on slope,
    Wang L., Pan C.,
    Journal of Hydrodynamics, Ser. B. 26(6):902-911, 2015, doi: 10.1016/S1001-6058(14)60099-8
  3. Efficient GPU-Implementation of Adaptive Mesh Refinement for the Shallow-Water Equations,
    Sætra M. L., Brodtkorb A. R., Lie K.-A.,
    Journal of Scientific Computing, 63(1): 23-48, 2015, doi: 10.1007/s10915-014-9883-4
  4. The MOOD method for the non-conservative shallow-water system,
    Clain S., Figueiredo J.,
    Computers & Fluids, 145, 99–128, 2017 doi: 10.1016/j.compfluid.2016.11.013
  5. Shallow Water Simulations on Graphics Hardware,
    Sætra M. L.,
    PhD Thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, ISSN 1501-7710, 2014, http://urn.nb.no/URN:NBN:no-45020
  6. Upwind Stabilized Finite Element Modelling of Non-hydrostatic Wave Breaking and Run-up,
    Bacigaluppi P., Ricchiuto M., Bonneton P.,
    Research Report #8536, Project-Team BACCHUS, 2014, http://hal.inria.fr/hal-00990002
  7. An Explicit Staggered Finite Volume Scheme for the Shallow Water Equations. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects,
    Doyen D., Gunawan P. H.,
    Springer Proceedings in Mathematics & Statistics, 77: 227-235, 2014, doi: 10.1007/978-3-319-05684-5_21
  8. A Simple Finite Volume Model for Dam Break Problems in Multiply Connected Open Channel Networks with General Cross-Sections,
    Yoshioka H., Unami K., Fujihara M.,
    Theoretical and Applied Mechanics Japan, 62: 131-140, 2014, doi: 10.11345/nctam.62.131
  9. A finite element/volume method model of the depth-averaged horizontally 2D shallow water equations,
    Yoshioka H., Unami K., Fujihara M.,
    International Journal For Numerical Methods in Fluids, 75(1): 23-41, 2014, doi: 10.1002/fld.3882
  10. A lattice Boltzmann-finite element model for two-dimensional fluid-structure interaction problems involving shallow waters,
    De Rosis A.,
    Advances in Water Resources, 65: 18-24, 2014, doi: 10.1016/j.advwatres.2014.01.003
  11. Gerris tests,
    Popinet J.,
    2013, http://gerris.dalembert.upmc.fr/gerris/tests/tests/index.html
  12. FullSWOF_Paral: Comparison of two parallelizations strategies (MPI and SkelGIS) on a software designed for hydrology applications,
    Cordier S., Coullon H., Delestre O., Laguerre C., Le M. H., Pierre D., Sadaka G,
    ESAIM Proceedings, 43: 59-79, 2013, doi:10.1051/proc/201343004
  13. DassFow-Shallow, variational data assimilation for shallow-water models: Numerical schemes, user and developer Guides,
    Couderc F., Madec R., Monnier J., Vila J.-P.
    Research Report, University of Toulouse, CNRS, IMT, INSA, ANR, 2013 https://hal.archives-ouvertes.fr/hal-01120285/
  14. An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography,
    Zhou F., Chen G.X., Huang Y.F., Yang J.Z., Feng H.,
    Water Resources Research, 49(4): 1914-1928, 2013, doi: 10.1002/wrcr.20179
  15. Efficient well-balanced hydrostatic upwind schemes for shallow-water equations,
    Berthon C., Foucher F.,
    Journal of Computational Physics, 231(15): 4993-5015, 2012, doi: 10.1016/j.jcp.2012.02.031
  16. Solving Shallow Water flows in 2D with FreeFem++ on structured mesh,
    Sadaka G.,
    Research report, LAMFA, 2012, http://hal.archives-ouvertes.fr/hal-00715301
  17. A faster numerical scheme for a coupled system modeling soil erosion and sediment transport,
    Le M.-H., Cordier S., Lucas C., Cerdan O.,
    Water Resources Research, 51(2): 987-1005, 2015, doi: 10.1002/2014WR015690
  18. Stabilized spectral element approximation of the Saint Venant system using the entropy viscosity technique,
    Pasquetti R., Guermond J.L., Popov B.
    International Conference on Spectral and High Order Method (ICOSAHOM 2014), Salt Lake City, June 23-27, 8 p., 2014, http://math1.unice.fr/~rpas/publis/ico14.pdf
  19. Consistent Weighted Average Flux of Well-balanced TVD-RK Discontinuous Galerkin Method for Shallow Water Flows,
    Pongsanguansin T., Maleewong M., Mekchay K.
    Modelling and Simulation in Engineering, Article ID 591282, 2015, doi 10.1155/2015/591282
  20. A discontinuous Galerkin method for modeling flow in networks of channels,
    Neupane P., Dawson C.
    Advances in Water Resources, 79: 61-79, 2015, doi 10.1016/j.advwatres.2015.02.012
  21. Second Order Discontinuous Galerkin scheme for compound natural channels with movable bed. Applications for the computation of rating curves,
    Minatti L., De Cicco P. N., Solari L.
    Advances in Water Resources, In Press, 2015, doi 10.1016/j.advwatres.2015.06.007
  22. Solution of two-dimensional Shallow Water Equations by a localized Radial Basis Function collocation method,
    Bustamante C. A. , Power H., Nieto C., Florez W. F.
    1st Pan-American Congress on Computational Mechanics. International Association for Computational Mechanics. Buenos Aires, April 27-29, 2015, http://congress.cimne.com/panacm2015/admin/files/fileabstract/a274.pdf
  23. A highly efficient shallow water model based on a selective lumping algorithm,
    Yoshioka H., Unami K., Fujihara M.
    Annual meeting of the Japanese Society of Irrigation, Drainage and Reclamation Engineering., 4-15: 398-399, 2013, (in Japanese), http://soil.en.a.u-tokyo.ac.jp/jsidre/search/PDFs/13/13004-15.pdf
  24. Friction slope formulae for the two-dimensional shallow water model,
    Yoshioka H., Unami K., Fujihara M.
    Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 70(4): I_55-I_60, 2014, (in Japanese), doi 10.2208/jscejhe.70.I_55
  25. ANUGA Software: Open Source Hydrodynamic / Hydraulic Modelling Project,
    Australian National University and Geoscience Australia
    2015, http://github.com/GeoscienceAustralia/anuga_core/tree/master/validation_tests/analytical_exact
  26. Impact de la résolution et de la précision de la topographie sur la modélisation de la dynamique d’invasion d’une crue en plaine inondable,
    Nguyen T. D.
    PhD thesis. Univ. Toulouse, France, 2012, (in French) http://ethesis.inp-toulouse.fr/archive/00002210/01/nguyen.pdf
  27. Benchmarks of the Basilisk software,
    Kirstetter G.
    2013, http://basilisk.fr/sandbox/geoffroy/friction/README
  28. Software Framework for Solving Hyperbolic Conservation Laws Using OpenCL,
    Markussen J. K. R.
    Master thesis. Institutt for informatikk, University of Oslo, 2015. https://www.duo.uio.no/bitstream/handle/10852/44764/markussen-master.pdf?sequence=1&isAllowed=y
  29. High resolution rainfall-runoff simulation in urban aera: Assessment of Telemac-2D and FullSWOF-2D,
    Ma Q., Abily M., Vo. N. D., Gourbesville P.
    E-proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, 28 June – 3 July, 2015,
  30. Numerical simulation of depth-averaged flow models : a class of Finite Volume and discontinuous Galerkin approaches,
    Duran A.
    PhD Thesis, Univ. Montpellier II, France, 2014, https://tel.archives-ouvertes.fr/tel-01109438
  31. Comparison and Validation of Two Parallelization Approaches of FullSWOF_2D Software on a Real Case. Advances in Hydroinformatics,
    Delestre O., Abily M., Cordier F., Gourbesville P., Coullon H.
    Advances in Hydroinformatics. Simhydro 2014. Part 2, pp. 395-407, 2016, doi 10.1007/978-981-287-615-7_27
  32. Numerical Scheme for a Viscous Shallow Water System Including New Friction Laws of Second Order: Validation and Application,
    Delestre O., Razafison U.
    Advances in Hydroinformatics. Simhydro 2014. Part 1, pp. 227-239, 2016, doi 10.1007/978-981-287-615-7_16
  33. An improved SWE model for simulation of dam-break flows,
    Zhang Y., Lin P.
    Proceedings of the Institution of Civil Engineers – Water Management, 2015, doi 10.1680/wama.15.00021
  34. Hydrostatic relaxation scheme for the 1D shallow water – Exner equations in bedload transport,
    Gunawan P. H., Lhébrard X.
    Computers & Fluids, 121: 44-50, 2015, doi 10.1016/j.compfluid.2015.08.001
  35. Second-order finite volume mood method for the shallow water with dry/wet interface,
    Figueiredo J. M., Clain S.
    SYMCOMP 2015 – ECCOMAS, Faro, Portugal, March 26-27 2015, https://repositorium.sdum.uminho.pt/bitstream/1822/36932/1/Symcomp-jorge.pdf
  36. Overland Flow Modeling with the Shallow Water Equations Using a Well-Balanced Numerical Scheme: Better Predictions or Just More Complexity,
    Rousseau, M., Cerdan, O., Delestre, O., Dupros, F., James, F., and Cordier, S.
    Journal of Hydrologic Engineering , 20(10), 2015, doi 10.1061/(ASCE)HE.1943-5584.0001171
  37. Hyperbolic dual finite volume models for shallow water flows in multiply-connected open channel networks,
    Yoshioka H., Unami K., Fujihara M.
    The 27th Computational Fluid Dynamics Symposium, Paper No. B07-01, 2013, http://www2.nagare.or.jp/cfd/cfd27/webproc/B07-1.pdf
  38. A study of the HLLC scheme of TELEMAC-2D,
    Stadler L., Brudy-Zippelius T.
    Proceedings of the 21st Telemac Mascaret user conference, Grenoble, France, 15-17 October 2014, pp. 185-192, http://www.opentelemac.org/downloads/Papers%20and%20Proceedings/telemac-mascaret_user_conference_2014-proceedings.pdf
  39. Uncertainty related to high resolution topographic data use for flood event modeling over urban areas: Toward a sensitivity analysis approach,
    Abily M., Delestre O., Amossé L., Bertrand N., Richet Y., Duluc C.-M., Gourbesville P., Navaro P.
    In, N. Champagnat, T. Lelièvre, A. Nouy (Eds), ESAIM Proceedings and Surveys, 48: 385-399, 2015, http://www.esaim-proc.org/articles/proc/pdf/2015/01/proc144818.pdf
  40. A well-balanced FV scheme for compound channels with complex geometry and movable bed,
    Minatti L.
    Water Resources Research, 51(8):6564-6585, 2015, doi 10.1002/2014WR016584
  41. A shallow water code,
    Chabot S.
    Internship Report, 2015, https://etu.chabotsi.fr/en-vrac/sw-report.pdf
  42. Numerical comparison of shallow water models in multiply connected open channel networks,
    Yoshioka H., Unami K. and Fujihara M.
    Journal of Advanced Simulation in Science and Engineering, 2(2): 271-291, 2015, doi 10.15748/jasse.2.271
  43. Free Surface Axially Symmetric Flows and Radial Hydraulic Jumps,
    Valiani, A. and Caleffi, V.
    J. Hydraul. Eng., 2015 doi 10.1061/(ASCE)HY.1943-7900.0001104
  44. Hydrokinetic turbine location analysis by a local collocation method with radial basis functions for two-dimensional shallow water equations,
    Bustamante C. A., Florez W. F., Power H. and Hill A. F.
    WIT Transactions on Ecology and the Environment, 195:11, 2015 doi 10.2495/ESUS150011
  45. Simulation of Rain-Induced Floods on High Performance Computers Simulation,
    Scharoth N.
    Master’s Thesis in Informatics. Fakultät für Informatik. Technische Universität München, 2015 http://www5.in.tum.de/pub/Schaffroth2015_MasterThesis.pdf
  46. The Tagus 1969 tsunami simulation with a finite volume solver and the hydrostatic reconstruction technique,
    Clain S., Reis C., Costa R., Figueiredo J., Baptista M. A., Miranda J. M.
    Preprint, 2015, hal-01239498
  47. A well-balanced scheme for the shallow-water equations with topography or Manning friction,
    Michel-Dansac V., Berthon C., Clain S., Foucher F.
    Journal of Computational Physics, 335, 115–154, 2017. doi: 10.1016/j.jcp.2017.01.009
  48. High-resolution modelling with bi-dimensional shallow water equations based codes : high-resolution topographic data use for flood hazard assessment over urban and industrial environments.
    Abily M.
    PhD thesis, Université Nice Sophia Antipolis, France. 2015. https://tel.archives-ouvertes.fr/tel-01288217/
  49. A hybrid finite-volume finite-difference rotational Boussinesq-type model of surf-zone hydrodynamics.
    Tatlock, B.
    PhD thesis, University of Nottingham, Nottingham, UK. 2015. http://eprints.nottingham.ac.uk/30443/
  50. Well-balanced finite difference weighted essentially non-oscillatory schemes for the blood flow model.
    Wang Z., Li G., Delestre, O.
    International Journal for Numerical Methods in Fluids, 2016. doi:10.1002/fld.4232
  51. Parallelization of a relaxation scheme modelling the bedload transport of sediments in shallow water flow.
    Audusse E., Delestre O., Le M.H., Masson-Fauchier M., Navaro P., Serra R.
    ESAIM Proceedings, 43: 80-94, 2013. doi:10.1051/proc/201343005
  52. On the Convergence of a Shock Capturing Discontinuous Galerkin Method for Nonlinear Hyperbolic Systems of Conservation Laws.
    Zakerzadeh M., May G.
    SIAM J. Numer. Anal., 54(2), 874–898, 2016. doi: 10.1137/14096503X
  53. Meshless particle modelling of free surface flow over spillways.
    Jafari-Nadoushan E., Hosseini K., Shakibaeinia A., Mousavi S.-F.
    Journal of Hydroinformatics, 18(2), 354-370, 2016. doi: 10.2166/hydro.2015.096
  54. A residual-based shock capturing scheme for the continuous/discontinuous spectral element solution of the 2D shallow water equations.
    Marras S., Kopera M.A., Constantinescu E. M., Suckale J., Giraldo F. X.
    Advances in Water Resources, 114 : 45-63, 2018. doi : 10.1016/j.advwatres.2018.02.003
  55. Towards a new friction model for shallow water equations through an interactive viscous layer.
    James F., Lagrée P.-Y., Le H.-M. Legrand M.
    ESAIM: M2AN 53 (1) 269-299, 2019. https://doi.org/10.1051/m2an/2018076
  56. Daino: A High-level Framework for Parallel and Efficient AMR on GPUs.
    Wahib M., Maruyama N., Aoki T.
    SC16: The International Conference for High Performance Computing, Networking, Storage and Analysis 2016, Salt Lake City, UT, USA; November 2016. http://mt.aics.riken.jp/publications/wahib_SC2016.pdf
  57. Numerical simulation of shallow water equations and related models.
    Gunawan H.P.
    PhD thesis, Université Paris-Est, France. 2015, https://hal.archives-ouvertes.fr/tel-01216642
  58. A Newton multigrid method for steady-state shallow water equations with topography and dry areas.
    Wu K., Tang H.
    Applied Mathematics and Mechanics, 37(11), 1441–1466, 2016. doi: 10.1007/s10483-016-2108-6
  59. A GRASS GIS module for 2D superficial flow simulations.
    Courty L. G., Pedrozo-Acuña A.
    12th International Conference on Hydroinformatics, HIC 2016. https://zenodo.org/record/159617/files/Courty%20and%20Acu%C3%B1a%20-%20A%20GRASS%20GIS%20module%20for%202D%20superficial%20flow%20simulations.pdf
  60. Modélisation de problèmes de mécanique des fluides : approches théoriques et numériques.
    Lucas C.
    HDR. Univ. Orléans, France, 2016. https://hal.archives-ouvertes.fr/tel-01420101
  61. Development of high-order well-balanced schemes for geophysical flows.
    Michel-Dansac V.
    PhD thesis, Univ. Nantes, France, 2016. https://hal.archives-ouvertes.fr/tel-01384958
  62. Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods.
    Ranocha H.
    International Journal on Geomathematics, 8(1), 85-133, 2017. doi: 10.1007/s13137-016-0089-9
  63. Discrete Boltzmann model of shallow water equations with polynomial equilibria.
    Meng J., Gu X.-J., Emerson D. R., Peng Y., Zhang J.
    International Journal of Modern Physics C. 29(9), 1850080, 2018. doi: 10.1142/S0129183118500808
  64. Itzï (version 17.1): an open-source, distributed GIS model for dynamic flood simulation.
    Courty L. G., Pedrozo-Acuña A., Bates P. D.
    Geosci. Model Dev., 10, 1835-1847, 2017. doi: 10.5194/gmd-10-1835-2017
  65. Nouveaux schémas de convection pour les écoulements à surface libre
    Pavan S.
    PhD thesis, Univ. Paris-Est, France, 2016. http://www.theses.fr/2016PESC1011
  66. Shallow-water simulations by a well-balanced WAF finite volume method: a case study to the great flood in 2011, Thailand
    Pongsanguansin T., Maleewong M., Mekchay K.
    Computational Geosciences, 20(6), 1269–1285, 2016. doi: 10.1007/s10596-016-9589-9
  67. Simulação de onda de maré por meio do Método do Reticulado de Boltzmann.
    Galina V., Cargnelutti J., Kaviski E., Gramani L. M., Lobeiro A. M.
    Conference: I Simpósio de Métodos Numéricos em Engenharia, At Curitiba, 2016. https://www.researchgate.net/publication/310607583_Simulacao_de_onda_de_mare_por_meio_do_Metodo_do_Reticulado_de_Boltzmann
  68. Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties
    Ghigo A. R., Delestre O., Fullana J.-M., Lagrée P.-Y.
    Journal of Computational Physics, 331, 108-136, 2017. doi: 10.1016/j.jcp.2016.11.032
  69. Second-order finite volume with hydrostatic reconstruction for tsunami simulation.
    Clain S., Reis C., Costa R., Figueiredo J., Baptista M. A., Miranda J. M.
    J. Adv. Model. Earth Syst., 2016. doi: 10.1002/2015MS000603
  70. Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.
    Neupane P.
    PhD thesis. Univ. Texas Austin, USA, 2016. http://hdl.handle.net/2152/41984
  71. Three-dimensional shallow water system: A relaxation approach.
    Liu X., Mohammadian A., Infante Sedano J. Á., Kurganov A.
    Journal of Computational Physics, 333, 160 – 179, 2017. doi: 10.1016/j.jcp.2016.12.030
  72. A central moments-based lattice Boltzmann scheme for shallow water equations
    De Rosis A.
    Computer Methods in Applied Mechanics and Engineering, 319, 379–392, 2017. doi: 10.1016/j.cma.2017.03.001
  73. Simulation of Free-Surface Flow Using the Smoothed Particle Hydrodynamics (SPH) Method with Radiation Open Boundary Conditions.
    Ni X., Sheng J., Feng W.
    Journal of Atmospheric and Oceanic Technology, 33(11), 2435–2460, 2016. doi: 10.1175/JTECH-D-15-0179.1
  74. Free surface flow simulation in estuarine and coastal environments : numerical development and application on unstructured meshes.
    Filippini, A.G.
    PhD Thesis, Univ. de Bordeaux, 2016. https://hal.archives-ouvertes.fr/tel-01430609
  75. A new finite volume approach for transport models and related applications with balancing source terms.
    Abreu E., Lambert W., Perez J., Santo A.
    Mathematics and Computers in Simulation, 137, 2-28, 2017. doi: 10.1016/j.matcom.2016.12.012
  76. High-order discontinuous Galerkin methods with Lagrange multiplier for hyperbolic systems of conservation laws.
    Kim M.-Y., Park E.-J., Shin, J.
    Computers and Mathematics with Applications, 73(9), 1945-1974, 2017. doi: 10.1016/j.camwa.2017.02.039
  77. A mass conservative well-balanced reconstruction at wet/dry interfaces for the Godunov-type shallow water model.
    Fiser M., Ozgen I., Hinkelmann R., Vimmr J.
    International Journal for Numerical Methods in Fluids, 82(12), 893-908, 2016. doi: 10.1002/fld.4246
  78. Coupling methods for 2D/1D shallow water flow models for flood simulations.
    Nwaigwe C.
    PhD thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/id/eprint/88277
  79. A Godunov-Type Scheme for Shallow Water Equations Dedicated to Simulations of Overland Flows on Stepped Slopes.
    Goutal N., Le M.-H., Ung P.
    International Conference on Finite Volumes for Complex Applications, FVCA 2017: Finite Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems, p 275-283, 2017. doi: 10.1007/978-3-319-57394-6_30
  80. Etude mathématique de modèles de couches visqueuses pour des écoulements naturels.
    Legrand M.
    PhD Thesis, Univ. d’Orléans, 2016. https://tel.archives-ouvertes.fr/tel-01529756/
  81. MUSCL vs MOOD Techniques to Solve the SWE in the Framework of Tsunami Events.
    Reis C., Figueiredo J., Clain S., Omira R., Baptista M.A., Miranda J.
    SYMCOMP 2017 Guimarães, 6-7 April 2017, ECCOMAS, Portugal, p. 189-213, 2017. https://www.researchgate.net/publication/318429066_MUSCL_vs_MOOD_Techniques_to_Solve_the_SWE_in_the_Framework_of_Tsunami_Events
  82. Numerical simulations of hydraulic jumps with the Shear Shallow Water model.
    Delis A., Guillard H., Tai. Y.-C.
    SMAI Journal of Computational Mathematics, 4, 319-344, 2018. doi: 10.5802/smai-jcm.37
  83. GPU driven finite difference WENO scheme for real time solution of the shallow water equations.
    Parna P., Meyer K., Falconer R.
    Computers & Fluids. 161: 107-120, 2018. doi : 10.1016/j.compfluid.2017.11.012
  84. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries.
    Li G., Delestre O., Yuan L.
    Numerical methods in fluids. 86(7) : 491-508, 2017. doi : 10.1002/fld.4463
  85. Green-water phenomena for feed barges in exposed sea areas
    Willams D. H.
    Master Thesis. Norwegian University of Science and Technology, 105 p., June 2017. http://hdl.handle.net/11250/2456602
  86. A study of Lagrangian-Eulerian methods for hyperbolic problems and balance laws.
    François J. R.
    PhD Thesis, Instituto de Matemática, Estatística e Computação Científica. Universidade Estadual de Campinas. 135p., 2017 [In Portuguese]. http://repositorio.unicamp.br/jspui/handle/REPOSIP/325376
  87. Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows.
    Peng Y., Meng J. P., Zhang J. M.
    Mathematical Problems in Engineering. 2017 : 8917360, 5 p., 2017. doi : 10.1155/2017/8917360
  88. A High Order Well-Balanced Finite Volume WENO Scheme for a Blood Flow Model in Arteries.
    Yao Z. H., Li G., Goa J. M.
    East Asian Journal on Applied Mathematics, 7(4): 852-866, 2017. doi : 10.4208/eajam.181016.300517f
  89. Well-Balanced Second-Order Approximation of the Shallow Water Equation with Continuous Finite Elements.
    Azerad P., Guermond, J. L., Popov B.
    SIAM Journal on Numerical Analysis, 55(6): 3203-3224, 2017. doi : 10.1137/17M1122463
  90. Modélisation de l’eutrophisation.
    Crave A., Durand P., Lacroix G., Ménesguen A., Sánchez-Pérez J.-M., Sauvage S., Vinçon-Leite B.
    In: L’eutrophisation: manifestations, causes, conséquences et prédictibilité. Pages 648-789. Rapport d’Expertise scientifique collective, Rapport CNRS- Ifremer-INRA-Irstea (France), 1283 pages, 2017 [In French]. www.cnrs.fr/inee/communication/breves/docs/Eutrophisation_Rapport/ESCo_Eutro_Chap6_Modelisation.pdf
  91. FullSWOF: Full Shallow-Water equations for Overland Flow.
    Delestre O., Darboux F., James F., Lucas C., Laguerre C., Cordier S.
    Journal of Open Source Software, 2(20), 448, 2017. doi : 10.21105/joss.00448
  92. Método CE/SE com funçoes de base polinomial de segunda ordem para as equaçoes de Saint Venant Unidimensionais.
    Rodrigues de Melo A.
    In: 27th Iberian Latin American Congress on Computational Methods in Engineering (CILAMCE 2016), 6-9 Nov. Brasilia DF, Brazil, 15 p., 2016 [In Portuguese]. http://periodicos.unb.br/index.php/ripe/article/download/23407/16774
  93. Reduced-order models for blood flow in networks of large arteries.
    Ghigo A.
    PhD Thesis, Université Pierre et Marie Curie (Paris 6), 251 p., 2017. https://hal.archives-ouvertes.fr/tel-01666313
  94. A finite area scheme for shallow granular flows on three-dimensional surfaces.
    Rauter M., Tuković Z.
    Computers & Fluids, 166: 184-199, 2018. doi : 10.1016/j.compfluid.2018.02.017
  95. Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction.
    Bonev B., Hesthaven J.S., Giraldo F.X., Kopera M.A.
    Journal of Computational Physics, 362: 425 – 448, 2018. doi : 10.1016/j.jcp.2018.02.008
  96. New directional vector limiters for discontinuous Galerkin methods.
    Hajduk H., Kuzmin D., Aizinger V.
    Journal of Computational Physics, 384: 308-325, 2019. doi: 10.1016/j.jcp.2019.01.032
  97. Efficient numerical methods for the shallow water equations.
    Lundgren L.
    Master Thesis. Department of Information Technology, Uppsala Universitet, June 2018. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1222325&dswid=3738
  98. Stable and convergent discontinuous Galerkin methods for hyperbolic and viscous systems of conservation laws.
    Zakerzadeh M.
    PhD thesis, National Institute for Research in Computer Science and Control, TWTH Aachen University, 2017. https://www.researchgate.net/publication/325216968_Stable_and_convergent_discontinuous_galerkin_methods_for_hyperbolic_and_viscous_systems_of_conservation_laws
  99. Estimating Time of Concentration for Overland Flow on Pervious Surfaces by Particle Tracking Method.
    Li X., Fang X., Li J., Manoj K.C., Gong Y., Chen G.
    Water, 10(4):379, 2018. doi : 10.3390/w10040379
  100. High-order CE/SE scheme for dam-break flow simulation.
    Rodrigues de Melo A., Gramani L., Kaviski E.
    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 34(1):9, 2018.
    doi :10.23967/j.rimni.2017.7.007
  101. Towards transient experimental water surfaces: A new benchmark dataset for 2D shallow water solvers.
    Martínez-Aranda S., Fernández-Pato J., Caviedes-Voullième D., García-Palacín I., García-Navarro P.
    Advances in Water Resources, 121, 130-149, 2018. doi: 10.1016/j.advwatres.2018.08.013
  102. Integrated modelling of overland flows and drainage networks in a urban environment.
    Courty, L.
    PhD Thesis, Univ. nacional autónoma de México, 2018. https://thesiscommons.org/38w4t/
  103. A non-intrusive B-splines Bézier elements-based method for uncertainty propagation.
    Abdedou A., Soulaïmani A.
    Computer Methods in Applied Mechanics and Engineering, 345, 774-804, 2019. doi: 10.1016/j.cma.2018.10.047
  104. Well-Balanced Second-Order Finite Element Approximation of the Shallow Water Equations with Friction.
    Guermond J.-L., Quezada de Luna M., Popov B., Kees C. E., Farthing M. W.
    SIAM Journal on Scientific Computing, 40(6), A3873–A3901, 2018. doi: 10.1137/17M1156162
  105. An Efficient High Order Well-Balanced Finite Difference WENO Scheme for the Blood Flow Model.
    S. G. Qian, G. Li, X. Q. Lv, F. J. Shao
    Advances in Applied Mathematics and Mechanics, 10(1), 22-40, 2018. http://www.global-sci.org/intro/article_detail.html?journal=aamm&article_id=10499
  106. Lattice Bolzmann Shallow water equations for large scale hydraulic analysis.
    S. Venturi
    PhD Thesis. University of Braunschweig, Institute of Technology and the Department of Civil and Environmental Engineering, University of Florence, 148 pages, 2018. https://flore.unifi.it/bitstream/2158/1145860/1/Diss_Venturi_Sara.pdf
  107. Integration of FULLSWOF2D and PeanoClaw: Adaptivity and Local Time-Stepping for Complex Overland Flows.
    K. Unterweger, R. Wittmann, P. Neumann, T. Weinzierl, H. J. Bungartz
    In: Mehl M., Bischoff M., Schäfer M. (eds), Recent Trends in Computational Engineering – CE2014. Lecture Notes in Computational Science and Engineering, vol 105, 2015. doi: 10.1007/978-3-319-22997-3_11
  108. Finite Difference Numerical Scheme for Simulating Dam Break Flow.
    M. Farid, B. Yakti, A. Rizaldi, M. B. Adityawan
    The 5th HATHI International Seminar on Water Resilience in a Changing World, Bali. 2016. https://www.researchgate.net/publication/323836552_Finite_Difference_Numerical_Scheme_for_Simulating_Dam_Break_Flow
  109. Evaluating lateral flow in an experimental channel using the diffusive wave inverse problem.
    R. Moussa, S. Majdalani
    Advances in Water Resources, 127: 120-133. 2019. doi: 10.1016/j.advwatres.2019.03.009
  110. Development of an analytical benchmark solution to assess various gradually varied flow computations.
    L. Homayoon, M. J. Abedini
    ISH Journal of Hydraulic Engineering 2019. doi: 10.1080/09715010.2018.1563872
  111. Comparison between MUSCL and MOOD techniques in a finite volume well-balanced code to solve SWE. The Tohoku-Oki, 2011 example.
    C. Reis, J. Figueiredo, S. Clain, R. Omira, M. A. Baptista, J. M. Miranda
    Geophysical Journal International, 216(2): 958–983, 2019. doi: 10.1093/gji/ggy472
  112. Analytical solution of the nonlinear shallow water equations by using Laplace variational iteration method.
    M. S. Aktar
    Master Thesis. Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka. 2018. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/5147
  113. An SPH Wave-Current Flume using Open Boundary Conditions.
    X. Ni, W. Feng, S. Huang, Z. Hu, Y. Liu
    Journal of Hydrodynamics, 2019. doi: 10.1007/s42241-019-0030-4
  114. A MacCormack method for complete shallow water equations with source terms.
    E. Ngondiep, A. T. Rubayyi, J. C. Ntonga
    preprint, 27 pages, 2019. https://arxiv.org/abs/1903.11104
  115. A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. A. Buttinger-Kreuzhuber, Z. Horváth, S. Noelle, G. Blöschl, J. Waser
    Advances in Water Resources, 127: 89-108, 2019. doi: 10.1016/j.advwatres.2019.03.010
  116. High-Order Entropy Stable Discontinuous Galerkin Schemes in a Space-Time Computational Framework.
    M. Zakerzadeh, G. May
    46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum, (AIAA 2016-3496), 2016. doi: 10.2514/6.2016-3496
  117. A fast, robust, and simple Lagrangian–Eulerian solver for balance laws and applications.
    Abreu E., Pérez J.
    Computers & Mathematics with Applications. 77(9), 2310-2336, 2019. doi: 10.1016/j.camwa.2018.12.019
  118. (Multi)wavelets increase both accuracy and efficiency of standard Godunov-type hydrodynamic models.
    Kesserwani G., Shaw J., Sharifian M. K., Bau D., Keylock C. J., Bates P. D., Ryan J. K.
    Advances in Water Resources, 129 : 31-55, 2019. doi: 10.1016/j.advwatres.2019.04.019
  119. Galilean-Invariant Expression for Bernoulli’s Equation.
    Maranzoni A.
    Journal of Hydraulic Engineering. 146 (2), 04019061,2020. doi: 10.1061/(ASCE)HY.1943-7900.0001680
  120. Modelling of depth-induced wave breaking in a fully nonlinear free-surface potential flow model.
    Papoutsellis C E., Yates M L., Simon B., Benoit M.
    Coastal Engineering, 154, 103579, 2019. doi: 10.1016/j.coastaleng.2019.103579
  121. A new collision operator for lattice Boltzmann shallow water model: a convergence and stability study.
    Venturi S., Di Francesco S., Geier M., Manciola P
    Advances in Water Resources, 135, 103474, 2020. doi: 10.1016/j.advwatres.2019.103474
  122. Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver.
    Hodges B., Liu F.
    Journal of Hydraulic Research, 2019. doi: 10.1080/00221686.2019.1671510
  123. Moving mesh version of wave propagation algorithm based on augmented Riemann solver.
    Bagherpoorfard M., Soheili A. R.
    Applied Mathematics and Computation, 375, 125087, 2020. doi: 10.1016/j.amc.2020.125087
  124. A comparative study on the use of stabilized and flux-corrected transport finite element methods to solve the shallow water equations.
    Santos T. L., Coutinho A.
    Conference: CILAMCE 2019 – XL Ibero-Latin American Congress on Computational Methods in Engineering, At Natal, Rio Grande do Norte, Brazil, 2019. https://www.researchgate.net/publication/337334414_A_comparative_study_on_the_use_of_stabilized_and_flux-corrected_transport_finite_element_methods_to_solve_the_shallow_water_equations
  125. A shallow water event‐driven approach to simulate turbidity currents at stratigraphic scale.
    Santos T. L., Lopes A. A. O., Coutinho A. L. G. A.
    International Journal fo Numerical Methods in Fluids, 2020. doi: 10.1002/fld.4828
  126. Performance analysis of Volna-OP2 — massively parallel code for tsunami modelling.
    Giles D., Kashdan E., Salmanidou D. M., Guillas S., Dias F.
    Computers & Fluids, 104649, 2020. doi: 10.1016/j.compfluid.2020.104649
  127. Numerical approximation of blood flow in arteries using kinetic flux-vector splitting (KFVS) scheme.
    Zia S., Rabbani O., Ahmed S. & Rehman A.
    The European Physical Journal Plus, 135, 275, 2020. doi: 10.1140/epjp/s13360-020-00281-3
  128. Evaluation of Selected Finite-Difference and Finite-Volume Approaches to Rotational Shallow-Water Flow.
    Holm H. H., Brodtkorb A. R., Broström G., Christensen K. H., Sætra M. L.
    Commun. Comput. Phys., 27, 234-1274 , 2020. doi: 10.4208/cicp.OA-2019-0033
  129. Presa baten apurketaren ekuazioak: zenbakizko metodoen bidezko hurbilpena.
    Garitano Larrabe A.
    PhD, Universidad del Pais Vasco, 2019, https://hdl.handle.net/10810/36578
  130. Prototyping a numerical model coupled with remote sensing for tracking harmful algal blooms in shallow lakes.
    Li ., Qin C ., He W., Sun F., Du P.
    Global Ecology and Conservation, 22, e00938, 2020. doi: 10.1016/j.gecco.2020.e00938
  131. Modelling the Impact of Leaky Barriers with a 1D Godunov-Type Scheme for the Shallow Water Equations.
    Leakey S., Hewett C. J. M., Glenis V., Quinn P. F.
    Water, 12, 2, 371, 2020. doi: 10.3390/w12020371
  132. High Performance Computing in hydraulics: the new era of flood forecasting.
    Morales-Hernández M., Sharif M. B., Gangrade S., Dullo T. T.,Kao S.-C., Kalyanapu A., Ghafoor S. K., Evans K. J.
    Conference: Modeling Hydrodynamics for Water Resources (MODWATER 2019), University of Zaragoza, 17-20 June 2019. https://www.osti.gov/biblio/1559648-high-performance-computing-hydraulics-new-era-flood-forecasting
  133. Numerical scheme for solving a porous Saint-Venant type model for water flow on vegetated hillslopes.
    Ion S., Marinescu D., Cruceanu S.-G.
    Applied Numerical Mathematics, 172: 67-98, 2022. doi: 10.1016/j.apnum.2021.09.019 134
  134. Energy versus entropy estimates for nonlinear hyperbolic systems of equations.
    Nordström J., Winters A. R.
    2019. arxiv: 1907.10713
  135. Understanding of Road-Bioretention Strip Design and Improvement from Hydraulic Perspective.
    Li X.
    PhD, Auburn University, USA, 2019. http://hdl.handle.net/10415/6760
  136. Multi-Scale Approximation of Thin-Layer Flows on Curved Topographies.
    Tai Y.-C., Vides J., Nkonga B., Kuo C.-Y.
    2019. HAL: hal-02305269
  137. Constructive Approach of the Solution of Riemann Problem for Shallow Water Equations with Topography and Vegetation.
    Ion S., Marinescu D., Cruceanu S.-G.
    2019. Analele Stiintifice Ale Universitatii Ovidius Constanta-seria Matematica, 28: 93-114, 2020 doi: 10.2478/auom-2020-0021
  138. Manning’s roughness coefficient determination in laboratory experiments using 2D modeling and automatic calibration.
    Lavoie B., Mahdi T. F.
    Houille blanche – Revue internationale de l’eau, 1, 22-33, 2020.
    doi: 10.1051/lhb/2020001
  139. Dam-Break Wave Propagation in Alpine Valley with HEC-RAS 2D: Experimental Cancano Test Case.
    Pilotti M., Milanesi L., Bacchi V., Tomirotti M., Maranzoni A.
    Journal of Hydraulic Engineering, 146(6), 05020003, 2020. doi: 10.1061/(ASCE)HY.1943-7900.0001779
  140. Short-Term and Long-Term Solutions of Two-Dimensional Shallow Water Equations Using the Modified Decomposition Method.
    Saboorkazeran H., Naeeni M. R., Banihashemi M. A.
    Iranian Journal of Science and Technology – Transactions of Civil Engineering, 2020. doi: 10.1007/s40996-020-00423-8
  141. Stable Algorithm Based On Lax-Friedrichs Scheme for Visual Simulation of Shallow Water.
    Arry Sanjoyo B., Hariadi M., Purnomo, M. H.
    EMITTER International Journal of Engineering Technology, 8(1), 19-34, 2020. doi: 10.24003/emitter.v8i1.479
  142. A two-dimensional high-order well-balanced scheme for the shallow water equations with topography and Manning friction.
    Michel-Dansac V., Berthon C., Clain S., Foucher F.
    2020. doi:https://10.1016/j.compfluid.2021.105152
  143. Study of an Optimization Method for the Positioning of Hydraulic Turbines in a Gradually Varied Flow.
    Loureiro H. F. J.
    Projeto de Graduação, Universidad Federal do Rio de Janeiro / Escola Politécnica, 2020. http://monografias.poli.ufrj.br/monografias/monopoli10030356.pdf
  144. Transcritical flow simulation using shallow water equation model.
    Damarnegara S., Ali R. P., Ansori M.B.
    Journal of Civil Engineering, 34(2), 55-60, 2019. http://www.iptek.its.ac.id/index.php/jce/article/view/6468/4526
  145. What do models tell us about water and sediment connectivity?
    Baartman J. E. M., Nunes J. P., Masselink R., Darboux F., Bielders C., Degre, A., Cantreul V., Cerdan O., Grangeon T., Fiener P., Wilken F., Schindewolf M., Wainwright J.
    Geomorphology, : 107300, 2020. doi: 10.1016/j.geomorph.2020.107300
  146. OpenMP Performance in Numerical Simulation of Dambreak Problem Using Shallow Water Equations
    Gunawan P. H.
    Lontar Komputer, 11(1): 1-8, 2020. doi : 10.24843/LKJITI.2020.v11.i01.p01
  147. Evaluation of Selected Finite Difference Solutions to the Shallow Water Equations
    Røed L. P.
    MET report, Norwegian Meteorological Institute, Number 08/2020, ISSN 2387-4201
  148. Assessment of Time Integration Methods in the Numerical Solution of Two-Dimensional Shallow Water Equations
    Asadi M., Mazaheri M., Mohamad Vali Samani J.
    Journal of Irrigation Sciences and Engineering, 43: 215-230, 2019. doi: 10.22055/jise.2019.25785.1765
  149. 1-D shallow water equation, with no viscosity and no rotation, for a topography represented by a quadratic function
    Cortés-Vélez C., Martín-Atienza B., Hernandez-Walls R.
    Journal of Physics Communications, 4: 085005, 2020. doi: 10.1088/2399-6528/abaa8c
  150. A general comparison between the solutions generated by the FVC scheme and different benchmarks of the SWE
    Ziggaf M.
    45e CANUM (Congrès d’Analyse Numérique) December 3-4. Paris, France. 37, 2020. https://indico.math.cnrs.fr/event/6098/contributions/4922/attachments/2886/3696/Slides_Ziggaf_al_CANUM.pdf
  151. A multilayer SPH formulation for free surface flows
    Macavero L.
    School of Industrial and Information Engineering, Politecnico di Milano, Italy, 2020. https://www.politesi.polimi.it/bitstream/10589/174050/1/2021_04_Macavero.pdf
  152. An efficient finite difference method for the shallow water equations.
    Lundgren L., Mattsson, K.
    Journal of Computational Physics, 422, 2020. doi: 10.1016/j.jcp.2020.109784
  153. A newly implemented upwind scheme and numerical benchmark for the resolution of the Exner equation in GAIA.
    Revillon S., Taccone F., Souillé, F.
    Online proceedings of the papers submitted to the 2020 TELEMAC-MASCARET User Conference, International Marine & Dredging Consultants (Eds). 130-137, 2020. https://hdl.handle.net/20.500.11970/107444
  154. Application of particle swarm optimization in optimal placement of tsunami sensors.
    Ferrolino A., Mendoza R., Magdalena I., Lope J. E.
    Peerj Computer Science, 6:e333, 2020. doi: 10.7717/peerj-cs.333
  155. A well-balanced positivity preserving cell-vertex finite volume method satisfying the discrete maximum-minimum principle for coupled models of surface water flow and scalar transport.
    Karjoun H., Beljadid A., LeFloch, P. G.
    Preprint 2020. http://arxiv.org/abs/2012.13702
  156. Geometrically intrinsic modeling of shallow water flows.
    Bachini E., Putti M.
    European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, EDP Sciences, Les Ulis, Société de Mathématiques Appliquées et Industrielles (SMAI), Institut Henri Poincaré, Paris, 54: 2125-2157, 2020. doi: 10.1051/m2an/2020031
  157. Implementation and assessment of a flux limiter based wetting and drying scheme in NEMO.
    O’Dea E., Bell M. J., Coward A., Holt J.
    Ocean Modelling, 155, 2020. doi: 10.1016/j.ocemod.2020.101708
  158. Uncertainty propagation of dam break flow using the stochastic non-intrusive B-splines Bezier elements-based method.
    Abdedou A., Soulaimani A., Tchamen, G. W.
    Journal of Hydrology, 590, 2020. doi: 10.1016/j.jhydrol.2020.125342
  159. P­0 time/space subcell limiting DG-DGLM method for hyperbolic systems of conservation laws.
    Shin J., Kim M.-Y.
    Computers & Mathematics with Applications, 94: 114-135, 2020. doi: 10.1016/j.camwa.2021.04.024
  160. Accurate and fast hydrodynamic modeling of fluvial and pluvial floods at large scales.
    Buttinger-Kreuzhuber A.
    PhD Thesis. Technische Universität Wien, Austria, 2021 . doi: 10.34726/hss.2021.94420
  161. A lattice Boltzmann model for the viscous shallow water equations with source terms.
    Liu Y., Chai Z., Guo X., Shi, B.
    Journal of Hydrology, 598, 2021. doi: 10.1016/j.jhydrol.2021.126428
  162. A MOOD-MUSCL hybrid formulation for the non-conservative shallow-water system.
    Figueiredo J., Clain, S.
    Journal of Scientific Computing, 88, 2021. doi: 10.1007/s10915-021-01513-z
  163. A residual based artificial viscosity method for the stabilization of the shallow water equations.
    Stavropoulou C.
    Master Thesis. Department of Information Technology, Uppsala University, Sweden, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449237
  164. A unifying model framework for soil erosion, river bedload and chemical transport.
    Nouhou-Bako A., Lucas C., Darboux F., James F., Gaveau N.
    Journal of Hydrology X, 12, 2021. doi: 10.1016/j.hydroa.2021.100082
  165. A very easy high-order well-balanced reconstruction for hyperbolic systems with source terms.
    Berthon C., Bulteau S., Foucher F., M’Baye M., Michel-Dansac V.
    2021. https://hal.archives-ouvertes.fr/hal-03271103
  166. A well balanced reconstruction with bounded velocities and low-oscillation slow shocks for the shallow water equations.
    Skevington E. W. G.
    2021. http://arxiv.org/abs/2106.11256
  167. B-flood 1.0: an open-source Saint-Venant model for flash flood simulation using adaptive refinement.
    Kirstetter G., Delestre O., Lagrée P.-Y., Popinet S., Josserand C.
    Geoscientific Model Development Discussions, preprint, 2021. doi: 10.5194/gmd-2021-15
  168. Efficient solvers for shallow-water Saint-Venant equations and debris transportation-deposition models.
    De Vuyst F.
    2021. http://arxiv.org/abs/2102.07457
  169. Learning free-surface flow with physics-informed neural networks.
    Hurler M.
    Fakultät Informatik, Elektrotechnik und Informationstechnik. Institute of Parallel and Distributed Systems, 2021. doi: 10.18419/opus-11531
  170. Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems.
    Kuzmin D., Hajduk H., Rupp A.
    2021. http://arxiv.org/abs/2107.11283
  171. Méthodes stochastiques non-intrusives pour l’analyse de la propagation d’incertitudes: Application aux écoulements des ruptures de barrages.
    Abdedou A.
    PhD Thesis. École de technologie supérieure, Université du Québec, Canada, 2021. https://espace.etsmtl.ca/id/eprint/2746/
  172. Multi-mesh-scale approximation of thin geophysical mass flows on complex topographies.
    Tai Y.-C., Vides J., Nkonga B., Kuo C.-Y.
    Communications in Computational Physics, 29: 148-185, 2021. doi: 10.4208/cicp.OA-2019-0184
  173. Numerical methods for the shallow water equations.
    Burgerjon L. M. A.
    Bachelor Thesis. Eindhoven University of Technology, The Netherlands, 2021. https://research.tue.nl/en/studentTheses/numerical-methods-for-the-shallow-water-equations
  174. Numerical simulation and entropy dissipative cure of the carbuncle instability for the shallow water circular hydraulic jump.
    Ketcheson D. I., Quezada de Luna M.
    2021. http://arxiv.org/abs/2103.09664
  175. Shallow Water Models for Efficiently Visualizing Fluid Flow in Complex Topography Areas.
    Sanjoyo B. A., Purwitasari D., Hariadi M., Tsukasa K., Purnomo M. H.
    International Journal of Applied Mathematics, International Association of Engineers, 51: 1-10, 2021. https://www.proquest.com/docview/2503980402/abstract/32E12B4D451D4969PQ/1
  176. Simulasi Numerik Persamaan Gelombang Air Dangkal untuk Kasus Bendungan Bobol.
    Umbara R. P.
    Jurnal Alami: Jurnal Teknologi Reduksi Risiko Bencana, 5: 31-38, 2021. doi: 10.29122/alami.v5i1.4725
  177. Taitoko, an advanced code for tsunami propagation, developed at the French tsunami warning centers.
    Heinrich P., Jamelot A., Cauquis A., Gailler A.
    European Journal of Mechanics B-fluids, 88: 72-88, 2021. doi: 10.1016/j.euromechflu.2021.03.001
  178. TRITON: a multi-GPU open source 2D hydrodynamic flood model.
    Morales-Hernandez M., Sharif M. B., Kalyanapu A., Ghafoor S. K., Dullo T. T., Gangrade S., Kao S. C., Norman M. R., Evans K. J.
    Environmental Modelling & Software, 141:, 2021. doi: 10.1016/j.envsoft.2021.105034
  179. Entwicklung eines voll impliziten Verfahrens zur Simulation der langfristigen und großräumigen Sohlentwicklung in Fließgewässern.
    Stadler L.
    Report. BuE-Abschlussbericht B3953.05.04.70004. Bundesanstalt für Wasserbau, Karlsruhe, Germany, 2021. https://hdl.handle.net/20.500.11970/107612
  180. Predicting the Steady State Solutions of the 1D Shallow Water Equations.
    Waade E., Huss S., Sjösten W.
    Project report, Uppsala Universitet, Jan. 2020. http://www.it.uu.se/edu/course/homepage/projektTDB/ht19/project10a/Project10a_report.pdf