Agenda de l’IDP

Séminaire de Géométrie

Somme connexe infinie de 3-variétés compactes
Laurent Béssières (Université de Bordeaux)
Tuesday 25 October 2022 10:20 -  Tours -  1180 (Bât. E2)

Résumé :

On considère des $3$-variétés ouvertes orientables qui sont somme connexe infinie de $3$-variétés compactes. On introduit pour ces variétés des invariants topologiques et on obtient un théorème de classification dans le cas où les composantes compactes sont prises dans une famille finie. Ce resultat généralise le théorème de décomposition de Kneser-Milnor pour les $3$-variétés compactes et la classification de Kerékjártó-Richards pour les surfaces ouvertes.



Liens :