Ir a la página de los códigos del IDP | English Français |
Descargar el código |
SWASHES: Shallow Water Analytic Solutions for Hydraulic and Environmental Studies.
SWASHES es un código de soluciones analiticas para la hidrologia y los estudios ambientales. Un número importante de soluciones analiticas para las ecuaciones de Saint-Venant están descritas adoptando un formalismo común. Cubren una gran variedad de condiciones de flujo (supercrítico, subcrítico, choque…), en 1 o 2 dimensiones de espacio, con o sin lluvia y con o sin fricción a nivel del suelo, para flujos transitorios o estados de equilibrio. La meta de este programa es facilitar la validación de los métodos numéricos empleados en códigos basados en Saint-Venant, proporcionando a los usuarios de aquellos una librería de benchmarks adecuada.
El código SWASHES puede ser descargado en el sitio sourcesup.
Está distribuido bajo la licencia librer CeCILL-V2 (compatible con la licencia GPL). Tiene entonces la posibilidad de usarlo sin restricciones respeto al campo de aplicación.
Si tiene una pregunta, se puede escribir a: (F. Darboux, O. Delestre, C. Lucas, M. Mancini).
Si está utilizando el gestor de paquetes Conda, el paquete SWASHES está disponible en anaconda.org/lrntct/swashes. Se ejecuta en Linux de 64 bits, Windows de 32 bits y Windows de 64 bits.
SWASHES también está disponible como un módulo de python, pyswashes. Este módulo permite obtener la solución analítica elegida en formato csv, dataframe Pandas, array Numpy o grilla ASCII. Consulte pyswashes.readthedocs.io/en/latest/ .
El paquete Conda y el módulo python fueron desarrollados por L. Courty.
Citación : fichero bibtex
SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies,
O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T. N. T. Vo, F. James, S. Cordier,
International Journal for Numerical Methods in Fluids, 72(3): 269-300, 2013, doi:10.1002/fld.3741
Si quiere conocer los desarrollos del código SWASHES, suscribe a la newsletter http://listes.univ-orleans.fr/sympa/subscribe/swashes.infos.
Ejemplos | Bibliografía | Citas |
Algunos ejemplos (para comparalos con las soluciones aproximadas proporcionadas por FullSWOF):
Para más detalles, le invitamos a consultar la documentación del código.
También puede referirse a las publicaciones siguientes:
An analytical solution of Shallow Water system coupled to Exner equation Article de journal
Dans: Comptes Rendus Mathématique, vol. 350, no. 3--4, p. 183–186, 2012.
SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies Article de journal
Dans: International Journal for Numerical Methods in Fluids, vol. 72, no. 3, p. 269–300, 2013, (There are some errors in the published version. This is a corrected version.).
Dans: Gourbesville, P.; Cunge, J.; Caignaert, G. (Ed.): Advances in Hydroinformatics - SIMHYDRO 2012 - New Frontiers of Simulation, p. 233–243, 2014.
Por fin, indiquemos las publicaciones que citan SWASHES:
- A non-hydrostatic model for water waves in nearshore region,
Fang K., Sun J., Liu Z., Yin J.,
Advances in Water Science, 26(1): 114-122, 2015, (in Chinese), doi: 10.14042/j.cnki.32.1309.2015.01.015 - An analysis of dam-break flow on slope,
Wang L., Pan C.,
Journal of Hydrodynamics, Ser. B. 26(6):902-911, 2015, doi: 10.1016/S1001-6058(14)60099-8 - Efficient GPU-Implementation of Adaptive Mesh Refinement for the Shallow-Water Equations,
Sætra M. L., Brodtkorb A. R., Lie K.-A.,
Journal of Scientific Computing, 63(1): 23-48, 2015, doi: 10.1007/s10915-014-9883-4 - The MOOD method for the non-conservative shallow-water system,
Clain S., Figueiredo J.,
Computers & Fluids, 145, 99–128, 2017 doi: 10.1016/j.compfluid.2016.11.013 - Shallow Water Simulations on Graphics Hardware,
Sætra M. L.,
PhD Thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, ISSN 1501-7710, 2014, http://urn.nb.no/URN:NBN:no-45020 - Upwind Stabilized Finite Element Modelling of Non-hydrostatic Wave Breaking and Run-up,
Bacigaluppi P., Ricchiuto M., Bonneton P.,
Research Report #8536, Project-Team BACCHUS, 2014, http://hal.inria.fr/hal-00990002 - An Explicit Staggered Finite Volume Scheme for the Shallow Water Equations. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects,
Doyen D., Gunawan P. H.,
Springer Proceedings in Mathematics & Statistics, 77: 227-235, 2014, doi: 10.1007/978-3-319-05684-5_21 - A Simple Finite Volume Model for Dam Break Problems in Multiply Connected Open Channel Networks with General Cross-Sections,
Yoshioka H., Unami K., Fujihara M.,
Theoretical and Applied Mechanics Japan, 62: 131-140, 2014, doi: 10.11345/nctam.62.131 - A finite element/volume method model of the depth-averaged horizontally 2D shallow water equations,
Yoshioka H., Unami K., Fujihara M.,
International Journal For Numerical Methods in Fluids, 75(1): 23-41, 2014, doi: 10.1002/fld.3882 - A lattice Boltzmann-finite element model for two-dimensional fluid-structure interaction problems involving shallow waters,
De Rosis A.,
Advances in Water Resources, 65: 18-24, 2014, doi: 10.1016/j.advwatres.2014.01.003 - Gerris tests,
Popinet J.,
2013, http://gerris.dalembert.upmc.fr/gerris/tests/tests/index.html - FullSWOF_Paral: Comparison of two parallelizations strategies (MPI and SkelGIS) on a software designed for hydrology applications,
Cordier S., Coullon H., Delestre O., Laguerre C., Le M. H., Pierre D., Sadaka G,
ESAIM Proceedings, 43: 59-79, 2013, doi:10.1051/proc/201343004 - DassFow-Shallow, variational data assimilation for shallow-water models: Numerical schemes, user and developer Guides,
Couderc F., Madec R., Monnier J., Vila J.-P.
Research Report, University of Toulouse, CNRS, IMT, INSA, ANR, 2013 https://hal.archives-ouvertes.fr/hal-01120285/ - An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography,
Zhou F., Chen G.X., Huang Y.F., Yang J.Z., Feng H.,
Water Resources Research, 49(4): 1914-1928, 2013, doi: 10.1002/wrcr.20179 - Efficient well-balanced hydrostatic upwind schemes for shallow-water equations,
Berthon C., Foucher F.,
Journal of Computational Physics, 231(15): 4993-5015, 2012, doi: 10.1016/j.jcp.2012.02.031 - Solving Shallow Water flows in 2D with FreeFem++ on structured mesh,
Sadaka G.,
Research report, LAMFA, 2012, http://hal.archives-ouvertes.fr/hal-00715301 - A faster numerical scheme for a coupled system modeling soil erosion and sediment transport,
Le M.-H., Cordier S., Lucas C., Cerdan O.,
Water Resources Research, 51(2): 987-1005, 2015, doi: 10.1002/2014WR015690 - Stabilized spectral element approximation of the Saint Venant system using the entropy viscosity technique,
Pasquetti R., Guermond J.L., Popov B.
International Conference on Spectral and High Order Method (ICOSAHOM 2014), Salt Lake City, June 23-27, 8 p., 2014, http://math1.unice.fr/~rpas/publis/ico14.pdf - Consistent Weighted Average Flux of Well-balanced TVD-RK Discontinuous Galerkin Method for Shallow Water Flows,
Pongsanguansin T., Maleewong M., Mekchay K.
Modelling and Simulation in Engineering, Article ID 591282, 2015, doi 10.1155/2015/591282 - A discontinuous Galerkin method for modeling flow in networks of channels,
Neupane P., Dawson C.
Advances in Water Resources, 79: 61-79, 2015, doi 10.1016/j.advwatres.2015.02.012 - Second Order Discontinuous Galerkin scheme for compound natural channels with movable bed. Applications for the computation of rating curves,
Minatti L., De Cicco P. N., Solari L.
Advances in Water Resources, In Press, 2015, doi 10.1016/j.advwatres.2015.06.007 - Solution of two-dimensional Shallow Water Equations by a localized Radial Basis Function collocation method,
Bustamante C. A. , Power H., Nieto C., Florez W. F.
1st Pan-American Congress on Computational Mechanics. International Association for Computational Mechanics. Buenos Aires, April 27-29, 2015, http://congress.cimne.com/panacm2015/admin/files/fileabstract/a274.pdf - A highly efficient shallow water model based on a selective lumping algorithm,
Yoshioka H., Unami K., Fujihara M.
Annual meeting of the Japanese Society of Irrigation, Drainage and Reclamation Engineering., 4-15: 398-399, 2013, (in Japanese), http://soil.en.a.u-tokyo.ac.jp/jsidre/search/PDFs/13/13004-15.pdf - Friction slope formulae for the two-dimensional shallow water model,
Yoshioka H., Unami K., Fujihara M.
Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 70(4): I_55-I_60, 2014, (in Japanese), doi 10.2208/jscejhe.70.I_55 - ANUGA Software: Open Source Hydrodynamic / Hydraulic Modelling Project,
Australian National University and Geoscience Australia
2015, http://github.com/GeoscienceAustralia/anuga_core/tree/master/validation_tests/analytical_exact - Impact de la résolution et de la précision de la topographie sur la modélisation de la dynamique d’invasion d’une crue en plaine inondable,
Nguyen T. D.
PhD thesis. Univ. Toulouse, France, 2012, (in French) http://ethesis.inp-toulouse.fr/archive/00002210/01/nguyen.pdf - Benchmarks of the Basilisk software,
Kirstetter G.
2013, http://basilisk.fr/sandbox/geoffroy/friction/README - Software Framework for Solving Hyperbolic Conservation Laws Using OpenCL,
Markussen J. K. R.
Master thesis. Institutt for informatikk, University of Oslo, 2015. https://www.duo.uio.no/bitstream/handle/10852/44764/markussen-master.pdf?sequence=1&isAllowed=y - High resolution rainfall-runoff simulation in urban aera: Assessment of Telemac-2D and FullSWOF-2D,
Ma Q., Abily M., Vo. N. D., Gourbesville P.
E-proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, 28 June – 3 July, 2015, http://89.31.100.18/~iahrpapers/84826.pdf - Numerical simulation of depth-averaged flow models : a class of Finite Volume and discontinuous Galerkin approaches,
Duran A.
PhD Thesis, Univ. Montpellier II, France, 2014, https://tel.archives-ouvertes.fr/tel-01109438 - Comparison and Validation of Two Parallelization Approaches of FullSWOF_2D Software on a Real Case. Advances in Hydroinformatics,
Delestre O., Abily M., Cordier F., Gourbesville P., Coullon H.
Advances in Hydroinformatics. Simhydro 2014. Part 2, pp. 395-407, 2016, doi 10.1007/978-981-287-615-7_27 - Numerical Scheme for a Viscous Shallow Water System Including New Friction Laws of Second Order: Validation and Application,
Delestre O., Razafison U.
Advances in Hydroinformatics. Simhydro 2014. Part 1, pp. 227-239, 2016, doi 10.1007/978-981-287-615-7_16 - An improved SWE model for simulation of dam-break flows,
Zhang Y., Lin P.
Proceedings of the Institution of Civil Engineers – Water Management, 2015, doi 10.1680/wama.15.00021 - Hydrostatic relaxation scheme for the 1D shallow water – Exner equations in bedload transport,
Gunawan P. H., Lhébrard X.
Computers & Fluids, 121: 44-50, 2015, doi 10.1016/j.compfluid.2015.08.001 - Second-order finite volume mood method for the shallow water with dry/wet interface,
Figueiredo J. M., Clain S.
SYMCOMP 2015 – ECCOMAS, Faro, Portugal, March 26-27 2015, https://repositorium.sdum.uminho.pt/bitstream/1822/36932/1/Symcomp-jorge.pdf - Overland Flow Modeling with the Shallow Water Equations Using a Well-Balanced Numerical Scheme: Better Predictions or Just More Complexity,
Rousseau, M., Cerdan, O., Delestre, O., Dupros, F., James, F., and Cordier, S.
Journal of Hydrologic Engineering , 20(10), 2015, doi 10.1061/(ASCE)HE.1943-5584.0001171 - Hyperbolic dual finite volume models for shallow water flows in multiply-connected open channel networks,
Yoshioka H., Unami K., Fujihara M.
The 27th Computational Fluid Dynamics Symposium, Paper No. B07-01, 2013, http://www2.nagare.or.jp/cfd/cfd27/webproc/B07-1.pdf - A study of the HLLC scheme of TELEMAC-2D,
Stadler L., Brudy-Zippelius T.
Proceedings of the 21st Telemac Mascaret user conference, Grenoble, France, 15-17 October 2014, pp. 185-192, http://www.opentelemac.org/downloads/Papers%20and%20Proceedings/telemac-mascaret_user_conference_2014-proceedings.pdf - Uncertainty related to high resolution topographic data use for flood event modeling over urban areas: Toward a sensitivity analysis approach,
Abily M., Delestre O., Amossé L., Bertrand N., Richet Y., Duluc C.-M., Gourbesville P., Navaro P.
In, N. Champagnat, T. Lelièvre, A. Nouy (Eds), ESAIM Proceedings and Surveys, 48: 385-399, 2015, http://www.esaim-proc.org/articles/proc/pdf/2015/01/proc144818.pdf - A well-balanced FV scheme for compound channels with complex geometry and movable bed,
Minatti L.
Water Resources Research, 51(8):6564-6585, 2015, doi 10.1002/2014WR016584 - A shallow water code,
Chabot S.
Internship Report, 2015, https://etu.chabotsi.fr/en-vrac/sw-report.pdf - Numerical comparison of shallow water models in multiply connected open channel networks,
Yoshioka H., Unami K. and Fujihara M.
Journal of Advanced Simulation in Science and Engineering, 2(2): 271-291, 2015, doi 10.15748/jasse.2.271 - Free Surface Axially Symmetric Flows and Radial Hydraulic Jumps,
Valiani, A. and Caleffi, V.
J. Hydraul. Eng., 2015 doi 10.1061/(ASCE)HY.1943-7900.0001104 - Hydrokinetic turbine location analysis by a local collocation method with radial basis functions for two-dimensional shallow water equations,
Bustamante C. A., Florez W. F., Power H. and Hill A. F.
WIT Transactions on Ecology and the Environment, 195:11, 2015 doi 10.2495/ESUS150011 - Simulation of Rain-Induced Floods on High Performance Computers Simulation,
Scharoth N.
Master’s Thesis in Informatics. Fakultät für Informatik. Technische Universität München, 2015 http://www5.in.tum.de/pub/Schaffroth2015_MasterThesis.pdf - The Tagus 1969 tsunami simulation with a finite volume solver and the hydrostatic reconstruction technique,
Clain S., Reis C., Costa R., Figueiredo J., Baptista M. A., Miranda J. M.
Preprint, 2015, hal-01239498 - A well-balanced scheme for the shallow-water equations with topography or Manning friction,
Michel-Dansac V., Berthon C., Clain S., Foucher F.
Journal of Computational Physics, 335, 115–154, 2017. doi: 10.1016/j.jcp.2017.01.009 - High-resolution modelling with bi-dimensional shallow water equations based codes : high-resolution topographic data use for flood hazard assessment over urban and industrial environments.
Abily M.
PhD thesis, Université Nice Sophia Antipolis, France. 2015. https://tel.archives-ouvertes.fr/tel-01288217/ - A hybrid finite-volume finite-difference rotational Boussinesq-type model of surf-zone hydrodynamics.
Tatlock, B.
PhD thesis, University of Nottingham, Nottingham, UK. 2015. http://eprints.nottingham.ac.uk/30443/ - Well-balanced finite difference weighted essentially non-oscillatory schemes for the blood flow model.
Wang Z., Li G., Delestre, O.
International Journal for Numerical Methods in Fluids, 2016. doi:10.1002/fld.4232 - Parallelization of a relaxation scheme modelling the bedload transport of sediments in shallow water flow.
Audusse E., Delestre O., Le M.H., Masson-Fauchier M., Navaro P., Serra R.
ESAIM Proceedings, 43: 80-94, 2013. doi:10.1051/proc/201343005 - On the Convergence of a Shock Capturing Discontinuous Galerkin Method for Nonlinear Hyperbolic Systems of Conservation Laws.
Zakerzadeh M., May G.
SIAM J. Numer. Anal., 54(2), 874–898, 2016. doi: 10.1137/14096503X - Meshless particle modelling of free surface flow over spillways.
Jafari-Nadoushan E., Hosseini K., Shakibaeinia A., Mousavi S.-F.
Journal of Hydroinformatics, 18(2), 354-370, 2016. doi: 10.2166/hydro.2015.096 - A residual-based shock capturing scheme for the continuous/discontinuous spectral element solution of the 2D shallow water equations.
Marras S., Kopera M.A., Constantinescu E. M., Suckale J., Giraldo F. X.
Advances in Water Resources, 114 : 45-63, 2018. doi : 10.1016/j.advwatres.2018.02.003 - Towards a new friction model for shallow water equations through an interactive viscous layer.
James F., Lagrée P.-Y., Le H.-M. Legrand M.
ESAIM: M2AN 53 (1) 269-299, 2019. https://doi.org/10.1051/m2an/2018076 - Daino: A High-level Framework for Parallel and Efficient AMR on GPUs.
Wahib M., Maruyama N., Aoki T.
SC16: The International Conference for High Performance Computing, Networking, Storage and Analysis 2016, Salt Lake City, UT, USA; November 2016. http://mt.aics.riken.jp/publications/wahib_SC2016.pdf - Numerical simulation of shallow water equations and related models.
Gunawan H.P.
PhD thesis, Université Paris-Est, France. 2015, https://hal.archives-ouvertes.fr/tel-01216642 - A Newton multigrid method for steady-state shallow water equations with topography and dry areas.
Wu K., Tang H.
Applied Mathematics and Mechanics, 37(11), 1441–1466, 2016. doi: 10.1007/s10483-016-2108-6 - A GRASS GIS module for 2D superficial flow simulations.
Courty L. G., Pedrozo-Acuña A.
12th International Conference on Hydroinformatics, HIC 2016. https://zenodo.org/record/159617/files/Courty%20and%20Acu%C3%B1a%20-%20A%20GRASS%20GIS%20module%20for%202D%20superficial%20flow%20simulations.pdf - Modélisation de problèmes de mécanique des fluides : approches théoriques et numériques.
Lucas C.
HDR. Univ. Orléans, France, 2016. https://hal.archives-ouvertes.fr/tel-01420101 - Development of high-order well-balanced schemes for geophysical flows.
Michel-Dansac V.
PhD thesis, Univ. Nantes, France, 2016. https://hal.archives-ouvertes.fr/tel-01384958 - Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods.
Ranocha H.
International Journal on Geomathematics, 8(1), 85-133, 2017. doi: 10.1007/s13137-016-0089-9 - Discrete Boltzmann model of shallow water equations with polynomial equilibria.
Meng J., Gu X.-J., Emerson D. R., Peng Y., Zhang J.
International Journal of Modern Physics C. 29(9), 1850080, 2018. doi: 10.1142/S0129183118500808 - Itzï (version 17.1): an open-source, distributed GIS model for dynamic flood simulation.
Courty L. G., Pedrozo-Acuña A., Bates P. D.
Geosci. Model Dev., 10, 1835-1847, 2017. doi: 10.5194/gmd-10-1835-2017 - Nouveaux schémas de convection pour les écoulements à surface libre
Pavan S.
PhD thesis, Univ. Paris-Est, France, 2016. http://www.theses.fr/2016PESC1011 - Shallow-water simulations by a well-balanced WAF finite volume method: a case study to the great flood in 2011, Thailand
Pongsanguansin T., Maleewong M., Mekchay K.
Computational Geosciences, 20(6), 1269–1285, 2016. doi: 10.1007/s10596-016-9589-9 - Simulação de onda de maré por meio do Método do Reticulado de Boltzmann.
Galina V., Cargnelutti J., Kaviski E., Gramani L. M., Lobeiro A. M.
Conference: I Simpósio de Métodos Numéricos em Engenharia, At Curitiba, 2016. https://www.researchgate.net/publication/310607583_Simulacao_de_onda_de_mare_por_meio_do_Metodo_do_Reticulado_de_Boltzmann - Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties
Ghigo A. R., Delestre O., Fullana J.-M., Lagrée P.-Y.
Journal of Computational Physics, 331, 108-136, 2017. doi: 10.1016/j.jcp.2016.11.032 - Second-order finite volume with hydrostatic reconstruction for tsunami simulation.
Clain S., Reis C., Costa R., Figueiredo J., Baptista M. A., Miranda J. M.
J. Adv. Model. Earth Syst., 2016. doi: 10.1002/2015MS000603 - Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds.
Neupane P.
PhD thesis. Univ. Texas Austin, USA, 2016. http://hdl.handle.net/2152/41984 - Three-dimensional shallow water system: A relaxation approach.
Liu X., Mohammadian A., Infante Sedano J. Á., Kurganov A.
Journal of Computational Physics, 333, 160 – 179, 2017. doi: 10.1016/j.jcp.2016.12.030 - A central moments-based lattice Boltzmann scheme for shallow water equations
De Rosis A.
Computer Methods in Applied Mechanics and Engineering, 319, 379–392, 2017. doi: 10.1016/j.cma.2017.03.001 - Simulation of Free-Surface Flow Using the Smoothed Particle Hydrodynamics (SPH) Method with Radiation Open Boundary Conditions.
Ni X., Sheng J., Feng W.
Journal of Atmospheric and Oceanic Technology, 33(11), 2435–2460, 2016. doi: 10.1175/JTECH-D-15-0179.1 - Free surface flow simulation in estuarine and coastal environments : numerical development and application on unstructured meshes.
Filippini, A.G.
PhD Thesis, Univ. de Bordeaux, 2016. https://hal.archives-ouvertes.fr/tel-01430609 - A new finite volume approach for transport models and related applications with balancing source terms.
Abreu E., Lambert W., Perez J., Santo A.
Mathematics and Computers in Simulation, 137, 2-28, 2017. doi: 10.1016/j.matcom.2016.12.012 - High-order discontinuous Galerkin methods with Lagrange multiplier for hyperbolic systems of conservation laws.
Kim M.-Y., Park E.-J., Shin, J.
Computers and Mathematics with Applications, 73(9), 1945-1974, 2017. doi: 10.1016/j.camwa.2017.02.039 - A mass conservative well-balanced reconstruction at wet/dry interfaces for the Godunov-type shallow water model.
Fiser M., Ozgen I., Hinkelmann R., Vimmr J.
International Journal for Numerical Methods in Fluids, 82(12), 893-908, 2016. doi: 10.1002/fld.4246 - Coupling methods for 2D/1D shallow water flow models for flood simulations.
Nwaigwe C.
PhD thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/id/eprint/88277 - A Godunov-Type Scheme for Shallow Water Equations Dedicated to Simulations of Overland Flows on Stepped Slopes.
Goutal N., Le M.-H., Ung P.
International Conference on Finite Volumes for Complex Applications, FVCA 2017: Finite Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems, p 275-283, 2017. doi: 10.1007/978-3-319-57394-6_30 - Etude mathématique de modèles de couches visqueuses pour des écoulements naturels.
Legrand M.
PhD Thesis, Univ. d’Orléans, 2016. https://tel.archives-ouvertes.fr/tel-01529756/ - MUSCL vs MOOD Techniques to Solve the SWE in the Framework of Tsunami Events.
Reis C., Figueiredo J., Clain S., Omira R., Baptista M.A., Miranda J.
SYMCOMP 2017 Guimarães, 6-7 April 2017, ECCOMAS, Portugal, p. 189-213, 2017. https://www.researchgate.net/publication/318429066_MUSCL_vs_MOOD_Techniques_to_Solve_the_SWE_in_the_Framework_of_Tsunami_Events - Numerical simulations of hydraulic jumps with the Shear Shallow Water model.
Delis A., Guillard H., Tai. Y.-C.
SMAI Journal of Computational Mathematics, 4, 319-344, 2018. doi: 10.5802/smai-jcm.37 - GPU driven finite difference WENO scheme for real time solution of the shallow water equations.
Parna P., Meyer K., Falconer R.
Computers & Fluids. 161: 107-120, 2018. doi : 10.1016/j.compfluid.2017.11.012 - Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries.
Li G., Delestre O., Yuan L.
Numerical methods in fluids. 86(7) : 491-508, 2017. doi : 10.1002/fld.4463 - Green-water phenomena for feed barges in exposed sea areas
Willams D. H.
Master Thesis. Norwegian University of Science and Technology, 105 p., June 2017. http://hdl.handle.net/11250/2456602 - A study of Lagrangian-Eulerian methods for hyperbolic problems and balance laws.
François J. R.
PhD Thesis, Instituto de Matemática, Estatística e Computação Científica. Universidade Estadual de Campinas. 135p., 2017 [In Portuguese]. http://repositorio.unicamp.br/jspui/handle/REPOSIP/325376 - Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows.
Peng Y., Meng J. P., Zhang J. M.
Mathematical Problems in Engineering. 2017 : 8917360, 5 p., 2017. doi : 10.1155/2017/8917360 - A High Order Well-Balanced Finite Volume WENO Scheme for a Blood Flow Model in Arteries.
Yao Z. H., Li G., Goa J. M.
East Asian Journal on Applied Mathematics, 7(4): 852-866, 2017. doi : 10.4208/eajam.181016.300517f - Well-Balanced Second-Order Approximation of the Shallow Water Equation with Continuous Finite Elements.
Azerad P., Guermond, J. L., Popov B.
SIAM Journal on Numerical Analysis, 55(6): 3203-3224, 2017. doi : 10.1137/17M1122463 - Modélisation de l’eutrophisation.
Crave A., Durand P., Lacroix G., Ménesguen A., Sánchez-Pérez J.-M., Sauvage S., Vinçon-Leite B.
In: L’eutrophisation: manifestations, causes, conséquences et prédictibilité. Pages 648-789. Rapport d’Expertise scientifique collective, Rapport CNRS- Ifremer-INRA-Irstea (France), 1283 pages, 2017 [In French]. www.cnrs.fr/inee/communication/breves/docs/Eutrophisation_Rapport/ESCo_Eutro_Chap6_Modelisation.pdf - FullSWOF: Full Shallow-Water equations for Overland Flow.
Delestre O., Darboux F., James F., Lucas C., Laguerre C., Cordier S.
Journal of Open Source Software, 2(20), 448, 2017. doi : 10.21105/joss.00448 - Método CE/SE com funçoes de base polinomial de segunda ordem para as equaçoes de Saint Venant Unidimensionais.
Rodrigues de Melo A.
In: 27th Iberian Latin American Congress on Computational Methods in Engineering (CILAMCE 2016), 6-9 Nov. Brasilia DF, Brazil, 15 p., 2016 [In Portuguese]. http://periodicos.unb.br/index.php/ripe/article/download/23407/16774 - Reduced-order models for blood flow in networks of large arteries.
Ghigo A.
PhD Thesis, Université Pierre et Marie Curie (Paris 6), 251 p., 2017. https://hal.archives-ouvertes.fr/tel-01666313 - A finite area scheme for shallow granular flows on three-dimensional surfaces.
Rauter M., Tuković Z.
Computers & Fluids, 166: 184-199, 2018. doi : 10.1016/j.compfluid.2018.02.017 - Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction.
Bonev B., Hesthaven J.S., Giraldo F.X., Kopera M.A.
Journal of Computational Physics, 362: 425 – 448, 2018. doi : 10.1016/j.jcp.2018.02.008 - New directional vector limiters for discontinuous Galerkin methods.
Hajduk H., Kuzmin D., Aizinger V.
Journal of Computational Physics, 384: 308-325, 2019. doi: 10.1016/j.jcp.2019.01.032 - Efficient numerical methods for the shallow water equations.
Lundgren L.
Master Thesis. Department of Information Technology, Uppsala Universitet, June 2018. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1222325&dswid=3738 - Stable and convergent discontinuous Galerkin methods for hyperbolic and viscous systems of conservation laws.
Zakerzadeh M.
PhD thesis, National Institute for Research in Computer Science and Control, TWTH Aachen University, 2017. https://www.researchgate.net/publication/325216968_Stable_and_convergent_discontinuous_galerkin_methods_for_hyperbolic_and_viscous_systems_of_conservation_laws - Estimating Time of Concentration for Overland Flow on Pervious Surfaces by Particle Tracking Method.
Li X., Fang X., Li J., Manoj K.C., Gong Y., Chen G.
Water, 10(4):379, 2018. doi : 10.3390/w10040379 - High-order CE/SE scheme for dam-break flow simulation.
Rodrigues de Melo A., Gramani L., Kaviski E.
Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 34(1):9, 2018.
doi :10.23967/j.rimni.2017.7.007 - Towards transient experimental water surfaces: A new benchmark dataset for 2D shallow water solvers.
Martínez-Aranda S., Fernández-Pato J., Caviedes-Voullième D., García-Palacín I., García-Navarro P.
Advances in Water Resources, 121, 130-149, 2018. doi: 10.1016/j.advwatres.2018.08.013 - Integrated modelling of overland flows and drainage networks in a urban environment.
Courty, L.
PhD Thesis, Univ. nacional autónoma de México, 2018. https://thesiscommons.org/38w4t/ - A non-intrusive B-splines Bézier elements-based method for uncertainty propagation.
Abdedou A., Soulaïmani A.
Computer Methods in Applied Mechanics and Engineering, 345, 774-804, 2019. doi: 10.1016/j.cma.2018.10.047 - Well-Balanced Second-Order Finite Element Approximation of the Shallow Water Equations with Friction.
Guermond J.-L., Quezada de Luna M., Popov B., Kees C. E., Farthing M. W.
SIAM Journal on Scientific Computing, 40(6), A3873–A3901, 2018. doi: 10.1137/17M1156162 - An Efficient High Order Well-Balanced Finite Difference WENO Scheme for the Blood Flow Model.
S. G. Qian, G. Li, X. Q. Lv, F. J. Shao
Advances in Applied Mathematics and Mechanics, 10(1), 22-40, 2018. http://www.global-sci.org/intro/article_detail.html?journal=aamm&article_id=10499 - Lattice Bolzmann Shallow water equations for large scale hydraulic analysis.
S. Venturi
PhD Thesis. University of Braunschweig, Institute of Technology and the Department of Civil and Environmental Engineering, University of Florence, 148 pages, 2018. https://flore.unifi.it/bitstream/2158/1145860/1/Diss_Venturi_Sara.pdf - Integration of FULLSWOF2D and PeanoClaw: Adaptivity and Local Time-Stepping for Complex Overland Flows.
K. Unterweger, R. Wittmann, P. Neumann, T. Weinzierl, H. J. Bungartz
In: Mehl M., Bischoff M., Schäfer M. (eds), Recent Trends in Computational Engineering – CE2014. Lecture Notes in Computational Science and Engineering, vol 105, 2015. doi: 10.1007/978-3-319-22997-3_11 - Finite Difference Numerical Scheme for Simulating Dam Break Flow.
M. Farid, B. Yakti, A. Rizaldi, M. B. Adityawan
The 5th HATHI International Seminar on Water Resilience in a Changing World, Bali. 2016. https://www.researchgate.net/publication/323836552_Finite_Difference_Numerical_Scheme_for_Simulating_Dam_Break_Flow - Evaluating lateral flow in an experimental channel using the diffusive wave inverse problem.
R. Moussa, S. Majdalani
Advances in Water Resources, 127: 120-133. 2019. doi: 10.1016/j.advwatres.2019.03.009 - Development of an analytical benchmark solution to assess various gradually varied flow computations.
L. Homayoon, M. J. Abedini
ISH Journal of Hydraulic Engineering 2019. doi: 10.1080/09715010.2018.1563872 - Comparison between MUSCL and MOOD techniques in a finite volume well-balanced code to solve SWE. The Tohoku-Oki, 2011 example.
C. Reis, J. Figueiredo, S. Clain, R. Omira, M. A. Baptista, J. M. Miranda
Geophysical Journal International, 216(2): 958–983, 2019. doi: 10.1093/gji/ggy472 - Analytical solution of the nonlinear shallow water equations by using Laplace variational iteration method.
M. S. Aktar
Master Thesis. Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka. 2018. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/5147 - An SPH Wave-Current Flume using Open Boundary Conditions.
X. Ni, W. Feng, S. Huang, Z. Hu, Y. Liu
Journal of Hydrodynamics, 2019. doi: 10.1007/s42241-019-0030-4 - A MacCormack method for complete shallow water equations with source terms.
E. Ngondiep, A. T. Rubayyi, J. C. Ntonga
preprint, 27 pages, 2019. https://arxiv.org/abs/1903.11104 - A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. A. Buttinger-Kreuzhuber, Z. Horváth, S. Noelle, G. Blöschl, J. Waser
Advances in Water Resources, 127: 89-108, 2019. doi: 10.1016/j.advwatres.2019.03.010 - High-Order Entropy Stable Discontinuous Galerkin Schemes in a Space-Time Computational Framework.
M. Zakerzadeh, G. May
46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum, (AIAA 2016-3496), 2016. doi: 10.2514/6.2016-3496 - A fast, robust, and simple Lagrangian–Eulerian solver for balance laws and applications.
Abreu E., Pérez J.
Computers & Mathematics with Applications. 77(9), 2310-2336, 2019. doi: 10.1016/j.camwa.2018.12.019 - (Multi)wavelets increase both accuracy and efficiency of standard Godunov-type hydrodynamic models.
Kesserwani G., Shaw J., Sharifian M. K., Bau D., Keylock C. J., Bates P. D., Ryan J. K.
Advances in Water Resources, 129 : 31-55, 2019. doi: 10.1016/j.advwatres.2019.04.019 - Galilean-Invariant Expression for Bernoulli’s Equation.
Maranzoni A.
Journal of Hydraulic Engineering. 146 (2), 04019061,2020. doi: 10.1061/(ASCE)HY.1943-7900.0001680 - Modelling of depth-induced wave breaking in a fully nonlinear free-surface potential flow model.
Papoutsellis C E., Yates M L., Simon B., Benoit M.
Coastal Engineering, 154, 103579, 2019. doi: 10.1016/j.coastaleng.2019.103579 - A new collision operator for lattice Boltzmann shallow water model: a convergence and stability study.
Venturi S., Di Francesco S., Geier M., Manciola P
Advances in Water Resources, 135, 103474, 2020. doi: 10.1016/j.advwatres.2019.103474 - Timescale interpolation and no-neighbour discretization for a 1D finite-volume Saint-Venant solver.
Hodges B., Liu F.
Journal of Hydraulic Research, 2019. doi: 10.1080/00221686.2019.1671510 - Moving mesh version of wave propagation algorithm based on augmented Riemann solver.
Bagherpoorfard M., Soheili A. R.
Applied Mathematics and Computation, 375, 125087, 2020. doi: 10.1016/j.amc.2020.125087 - A comparative study on the use of stabilized and flux-corrected transport finite element methods to solve the shallow water equations.
Santos T. L., Coutinho A.
Conference: CILAMCE 2019 – XL Ibero-Latin American Congress on Computational Methods in Engineering, At Natal, Rio Grande do Norte, Brazil, 2019. https://www.researchgate.net/publication/337334414_A_comparative_study_on_the_use_of_stabilized_and_flux-corrected_transport_finite_element_methods_to_solve_the_shallow_water_equations - A shallow water event‐driven approach to simulate turbidity currents at stratigraphic scale.
Santos T. L., Lopes A. A. O., Coutinho A. L. G. A.
International Journal fo Numerical Methods in Fluids, 2020. doi: 10.1002/fld.4828 - Performance analysis of Volna-OP2 — massively parallel code for tsunami modelling.
Giles D., Kashdan E., Salmanidou D. M., Guillas S., Dias F.
Computers & Fluids, 104649, 2020. doi: 10.1016/j.compfluid.2020.104649 - Numerical approximation of blood flow in arteries using kinetic flux-vector splitting (KFVS) scheme.
Zia S., Rabbani O., Ahmed S. & Rehman A.
The European Physical Journal Plus, 135, 275, 2020. doi: 10.1140/epjp/s13360-020-00281-3 - Evaluation of Selected Finite-Difference and Finite-Volume Approaches to Rotational Shallow-Water Flow.
Holm H. H., Brodtkorb A. R., Broström G., Christensen K. H., Sætra M. L.
Commun. Comput. Phys., 27, 234-1274 , 2020. doi: 10.4208/cicp.OA-2019-0033 - Presa baten apurketaren ekuazioak: zenbakizko metodoen bidezko hurbilpena.
Garitano Larrabe A.
PhD, Universidad del Pais Vasco, 2019, https://hdl.handle.net/10810/36578 - Prototyping a numerical model coupled with remote sensing for tracking harmful algal blooms in shallow lakes.
Li ., Qin C ., He W., Sun F., Du P.
Global Ecology and Conservation, 22, e00938, 2020. doi: 10.1016/j.gecco.2020.e00938 - Modelling the Impact of Leaky Barriers with a 1D Godunov-Type Scheme for the Shallow Water Equations.
Leakey S., Hewett C. J. M., Glenis V., Quinn P. F.
Water, 12, 2, 371, 2020. doi: 10.3390/w12020371 - High Performance Computing in hydraulics: the new era of flood forecasting.
Morales-Hernández M., Sharif M. B., Gangrade S., Dullo T. T.,Kao S.-C., Kalyanapu A., Ghafoor S. K., Evans K. J.
Conference: Modeling Hydrodynamics for Water Resources (MODWATER 2019), University of Zaragoza, 17-20 June 2019. https://www.osti.gov/biblio/1559648-high-performance-computing-hydraulics-new-era-flood-forecasting - Numerical scheme for solving a porous Saint-Venant type model for water flow on vegetated hillslopes.
Ion S., Marinescu D., Cruceanu S.-G.
Applied Numerical Mathematics, 172: 67-98, 2022. doi: 10.1016/j.apnum.2021.09.019 134 - Energy versus entropy estimates for nonlinear hyperbolic systems of equations.
Nordström J., Winters A. R.
2019. arxiv: 1907.10713 - Understanding of Road-Bioretention Strip Design and Improvement from Hydraulic Perspective.
Li X.
PhD, Auburn University, USA, 2019. http://hdl.handle.net/10415/6760 - Multi-Scale Approximation of Thin-Layer Flows on Curved Topographies.
Tai Y.-C., Vides J., Nkonga B., Kuo C.-Y.
2019. HAL: hal-02305269 - Constructive Approach of the Solution of Riemann Problem for Shallow Water Equations with Topography and Vegetation.
Ion S., Marinescu D., Cruceanu S.-G.
2019. Analele Stiintifice Ale Universitatii Ovidius Constanta-seria Matematica, 28: 93-114, 2020 doi: 10.2478/auom-2020-0021 - Manning’s roughness coefficient determination in laboratory experiments using 2D modeling and automatic calibration.
Lavoie B., Mahdi T. F.
Houille blanche – Revue internationale de l’eau, 1, 22-33, 2020.
doi: 10.1051/lhb/2020001 - Dam-Break Wave Propagation in Alpine Valley with HEC-RAS 2D: Experimental Cancano Test Case.
Pilotti M., Milanesi L., Bacchi V., Tomirotti M., Maranzoni A.
Journal of Hydraulic Engineering, 146(6), 05020003, 2020. doi: 10.1061/(ASCE)HY.1943-7900.0001779 - Short-Term and Long-Term Solutions of Two-Dimensional Shallow Water Equations Using the Modified Decomposition Method.
Saboorkazeran H., Naeeni M. R., Banihashemi M. A.
Iranian Journal of Science and Technology – Transactions of Civil Engineering, 2020. doi: 10.1007/s40996-020-00423-8 - Stable Algorithm Based On Lax-Friedrichs Scheme for Visual Simulation of Shallow Water.
Arry Sanjoyo B., Hariadi M., Purnomo, M. H.
EMITTER International Journal of Engineering Technology, 8(1), 19-34, 2020. doi: 10.24003/emitter.v8i1.479 - A two-dimensional high-order well-balanced scheme for the shallow water equations with topography and Manning friction.
Michel-Dansac V., Berthon C., Clain S., Foucher F.
2020. doi:https://10.1016/j.compfluid.2021.105152 - Study of an Optimization Method for the Positioning of Hydraulic Turbines in a Gradually Varied Flow.
Loureiro H. F. J.
Projeto de Graduação, Universidad Federal do Rio de Janeiro / Escola Politécnica, 2020. http://monografias.poli.ufrj.br/monografias/monopoli10030356.pdf - Transcritical flow simulation using shallow water equation model.
Damarnegara S., Ali R. P., Ansori M.B.
Journal of Civil Engineering, 34(2), 55-60, 2019. http://www.iptek.its.ac.id/index.php/jce/article/view/6468/4526 - What do models tell us about water and sediment connectivity?
Baartman J. E. M., Nunes J. P., Masselink R., Darboux F., Bielders C., Degre, A., Cantreul V., Cerdan O., Grangeon T., Fiener P., Wilken F., Schindewolf M., Wainwright J.
Geomorphology, : 107300, 2020. doi: 10.1016/j.geomorph.2020.107300 - OpenMP Performance in Numerical Simulation of Dambreak Problem Using Shallow Water Equations
Gunawan P. H.
Lontar Komputer, 11(1): 1-8, 2020. doi : 10.24843/LKJITI.2020.v11.i01.p01 - Evaluation of Selected Finite Difference Solutions to the Shallow Water Equations
Røed L. P.
MET report, Norwegian Meteorological Institute, Number 08/2020, ISSN 2387-4201 - Assessment of Time Integration Methods in the Numerical Solution of Two-Dimensional Shallow Water Equations
Asadi M., Mazaheri M., Mohamad Vali Samani J.
Journal of Irrigation Sciences and Engineering, 43: 215-230, 2019. doi: 10.22055/jise.2019.25785.1765 - 1-D shallow water equation, with no viscosity and no rotation, for a topography represented by a quadratic function
Cortés-Vélez C., Martín-Atienza B., Hernandez-Walls R.
Journal of Physics Communications, 4: 085005, 2020. doi: 10.1088/2399-6528/abaa8c - A general comparison between the solutions generated by the FVC scheme and different benchmarks of the SWE
Ziggaf M.
45e CANUM (Congrès d’Analyse Numérique) December 3-4. Paris, France. 37, 2020. https://indico.math.cnrs.fr/event/6098/contributions/4922/attachments/2886/3696/Slides_Ziggaf_al_CANUM.pdf - A multilayer SPH formulation for free surface flows
Macavero L.
School of Industrial and Information Engineering, Politecnico di Milano, Italy, 2020. https://www.politesi.polimi.it/bitstream/10589/174050/1/2021_04_Macavero.pdf - An efficient finite difference method for the shallow water equations.
Lundgren L., Mattsson, K.
Journal of Computational Physics, 422, 2020. doi: 10.1016/j.jcp.2020.109784 - A newly implemented upwind scheme and numerical benchmark for the resolution of the Exner equation in GAIA.
Revillon S., Taccone F., Souillé, F.
Online proceedings of the papers submitted to the 2020 TELEMAC-MASCARET User Conference, International Marine & Dredging Consultants (Eds). 130-137, 2020. https://hdl.handle.net/20.500.11970/107444 - Application of particle swarm optimization in optimal placement of tsunami sensors.
Ferrolino A., Mendoza R., Magdalena I., Lope J. E.
Peerj Computer Science, 6:e333, 2020. doi: 10.7717/peerj-cs.333 - A well-balanced positivity preserving cell-vertex finite volume method satisfying the discrete maximum-minimum principle for coupled models of surface water flow and scalar transport.
Karjoun H., Beljadid A., LeFloch, P. G.
Preprint 2020. http://arxiv.org/abs/2012.13702 - Geometrically intrinsic modeling of shallow water flows.
Bachini E., Putti M.
European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, EDP Sciences, Les Ulis, Société de Mathématiques Appliquées et Industrielles (SMAI), Institut Henri Poincaré, Paris, 54: 2125-2157, 2020. doi: 10.1051/m2an/2020031 - Implementation and assessment of a flux limiter based wetting and drying scheme in NEMO.
O’Dea E., Bell M. J., Coward A., Holt J.
Ocean Modelling, 155, 2020. doi: 10.1016/j.ocemod.2020.101708 - Uncertainty propagation of dam break flow using the stochastic non-intrusive B-splines Bezier elements-based method.
Abdedou A., Soulaimani A., Tchamen, G. W.
Journal of Hydrology, 590, 2020. doi: 10.1016/j.jhydrol.2020.125342 - P0 time/space subcell limiting DG-DGLM method for hyperbolic systems of conservation laws.
Shin J., Kim M.-Y.
Computers & Mathematics with Applications, 94: 114-135, 2020. doi: 10.1016/j.camwa.2021.04.024 - Accurate and fast hydrodynamic modeling of fluvial and pluvial floods at large scales.
Buttinger-Kreuzhuber A.
PhD Thesis. Technische Universität Wien, Austria, 2021 . doi: 10.34726/hss.2021.94420 - A lattice Boltzmann model for the viscous shallow water equations with source terms.
Liu Y., Chai Z., Guo X., Shi, B.
Journal of Hydrology, 598, 2021. doi: 10.1016/j.jhydrol.2021.126428 - A MOOD-MUSCL hybrid formulation for the non-conservative shallow-water system.
Figueiredo J., Clain, S.
Journal of Scientific Computing, 88, 2021. doi: 10.1007/s10915-021-01513-z - A residual based artificial viscosity method for the stabilization of the shallow water equations.
Stavropoulou C.
Master Thesis. Department of Information Technology, Uppsala University, Sweden, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449237 - A unifying model framework for soil erosion, river bedload and chemical transport.
Nouhou-Bako A., Lucas C., Darboux F., James F., Gaveau N.
Journal of Hydrology X, 12, 2021. doi: 10.1016/j.hydroa.2021.100082 - A very easy high-order well-balanced reconstruction for hyperbolic systems with source terms.
Berthon C., Bulteau S., Foucher F., M’Baye M., Michel-Dansac V.
2021. https://hal.archives-ouvertes.fr/hal-03271103 - A well balanced reconstruction with bounded velocities and low-oscillation slow shocks for the shallow water equations.
Skevington E. W. G.
2021. http://arxiv.org/abs/2106.11256 - B-flood 1.0: an open-source Saint-Venant model for flash flood simulation using adaptive refinement.
Kirstetter G., Delestre O., Lagrée P.-Y., Popinet S., Josserand C.
Geoscientific Model Development Discussions, preprint, 2021. doi: 10.5194/gmd-2021-15 - Efficient solvers for shallow-water Saint-Venant equations and debris transportation-deposition models.
De Vuyst F.
2021. http://arxiv.org/abs/2102.07457 - Learning free-surface flow with physics-informed neural networks.
Hurler M.
Fakultät Informatik, Elektrotechnik und Informationstechnik. Institute of Parallel and Distributed Systems, 2021. doi: 10.18419/opus-11531 - Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems.
Kuzmin D., Hajduk H., Rupp A.
2021. http://arxiv.org/abs/2107.11283 - Méthodes stochastiques non-intrusives pour l’analyse de la propagation d’incertitudes: Application aux écoulements des ruptures de barrages.
Abdedou A.
PhD Thesis. École de technologie supérieure, Université du Québec, Canada, 2021. https://espace.etsmtl.ca/id/eprint/2746/ - Multi-mesh-scale approximation of thin geophysical mass flows on complex topographies.
Tai Y.-C., Vides J., Nkonga B., Kuo C.-Y.
Communications in Computational Physics, 29: 148-185, 2021. doi: 10.4208/cicp.OA-2019-0184 - Numerical methods for the shallow water equations.
Burgerjon L. M. A.
Bachelor Thesis. Eindhoven University of Technology, The Netherlands, 2021. https://research.tue.nl/en/studentTheses/numerical-methods-for-the-shallow-water-equations - Numerical simulation and entropy dissipative cure of the carbuncle instability for the shallow water circular hydraulic jump.
Ketcheson D. I., Quezada de Luna M.
2021. http://arxiv.org/abs/2103.09664 - Shallow Water Models for Efficiently Visualizing Fluid Flow in Complex Topography Areas.
Sanjoyo B. A., Purwitasari D., Hariadi M., Tsukasa K., Purnomo M. H.
International Journal of Applied Mathematics, International Association of Engineers, 51: 1-10, 2021. https://www.proquest.com/docview/2503980402/abstract/32E12B4D451D4969PQ/1 - Simulasi Numerik Persamaan Gelombang Air Dangkal untuk Kasus Bendungan Bobol.
Umbara R. P.
Jurnal Alami: Jurnal Teknologi Reduksi Risiko Bencana, 5: 31-38, 2021. doi: 10.29122/alami.v5i1.4725 - Taitoko, an advanced code for tsunami propagation, developed at the French tsunami warning centers.
Heinrich P., Jamelot A., Cauquis A., Gailler A.
European Journal of Mechanics B-fluids, 88: 72-88, 2021. doi: 10.1016/j.euromechflu.2021.03.001 - TRITON: a multi-GPU open source 2D hydrodynamic flood model.
Morales-Hernandez M., Sharif M. B., Kalyanapu A., Ghafoor S. K., Dullo T. T., Gangrade S., Kao S. C., Norman M. R., Evans K. J.
Environmental Modelling & Software, 141:, 2021. doi: 10.1016/j.envsoft.2021.105034 - Entwicklung eines voll impliziten Verfahrens zur Simulation der langfristigen und großräumigen Sohlentwicklung in Fließgewässern.
Stadler L.
Report. BuE-Abschlussbericht B3953.05.04.70004. Bundesanstalt für Wasserbau, Karlsruhe, Germany, 2021. https://hdl.handle.net/20.500.11970/107612 - Predicting the Steady State Solutions of the 1D Shallow Water Equations.
Waade E., Huss S., Sjösten W.
Project report, Uppsala Universitet, Jan. 2020. http://www.it.uu.se/edu/course/homepage/projektTDB/ht19/project10a/Project10a_report.pdf